[RAMEN9610-20880]wlbt: Driver changes for VTS Q Support for Auto Channel Selection
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
46 #include <linux/nospec.h>
47
48 #include "internal.h"
49
50 #define AIO_RING_MAGIC 0xa10a10a1
51 #define AIO_RING_COMPAT_FEATURES 1
52 #define AIO_RING_INCOMPAT_FEATURES 0
53 struct aio_ring {
54 unsigned id; /* kernel internal index number */
55 unsigned nr; /* number of io_events */
56 unsigned head; /* Written to by userland or under ring_lock
57 * mutex by aio_read_events_ring(). */
58 unsigned tail;
59
60 unsigned magic;
61 unsigned compat_features;
62 unsigned incompat_features;
63 unsigned header_length; /* size of aio_ring */
64
65
66 struct io_event io_events[0];
67 }; /* 128 bytes + ring size */
68
69 #define AIO_RING_PAGES 8
70
71 struct kioctx_table {
72 struct rcu_head rcu;
73 unsigned nr;
74 struct kioctx __rcu *table[];
75 };
76
77 struct kioctx_cpu {
78 unsigned reqs_available;
79 };
80
81 struct ctx_rq_wait {
82 struct completion comp;
83 atomic_t count;
84 };
85
86 struct kioctx {
87 struct percpu_ref users;
88 atomic_t dead;
89
90 struct percpu_ref reqs;
91
92 unsigned long user_id;
93
94 struct __percpu kioctx_cpu *cpu;
95
96 /*
97 * For percpu reqs_available, number of slots we move to/from global
98 * counter at a time:
99 */
100 unsigned req_batch;
101 /*
102 * This is what userspace passed to io_setup(), it's not used for
103 * anything but counting against the global max_reqs quota.
104 *
105 * The real limit is nr_events - 1, which will be larger (see
106 * aio_setup_ring())
107 */
108 unsigned max_reqs;
109
110 /* Size of ringbuffer, in units of struct io_event */
111 unsigned nr_events;
112
113 unsigned long mmap_base;
114 unsigned long mmap_size;
115
116 struct page **ring_pages;
117 long nr_pages;
118
119 struct rcu_head free_rcu;
120 struct work_struct free_work; /* see free_ioctx() */
121
122 /*
123 * signals when all in-flight requests are done
124 */
125 struct ctx_rq_wait *rq_wait;
126
127 struct {
128 /*
129 * This counts the number of available slots in the ringbuffer,
130 * so we avoid overflowing it: it's decremented (if positive)
131 * when allocating a kiocb and incremented when the resulting
132 * io_event is pulled off the ringbuffer.
133 *
134 * We batch accesses to it with a percpu version.
135 */
136 atomic_t reqs_available;
137 } ____cacheline_aligned_in_smp;
138
139 struct {
140 spinlock_t ctx_lock;
141 struct list_head active_reqs; /* used for cancellation */
142 } ____cacheline_aligned_in_smp;
143
144 struct {
145 struct mutex ring_lock;
146 wait_queue_head_t wait;
147 } ____cacheline_aligned_in_smp;
148
149 struct {
150 unsigned tail;
151 unsigned completed_events;
152 spinlock_t completion_lock;
153 } ____cacheline_aligned_in_smp;
154
155 struct page *internal_pages[AIO_RING_PAGES];
156 struct file *aio_ring_file;
157
158 unsigned id;
159 };
160
161 /*
162 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
163 * cancelled or completed (this makes a certain amount of sense because
164 * successful cancellation - io_cancel() - does deliver the completion to
165 * userspace).
166 *
167 * And since most things don't implement kiocb cancellation and we'd really like
168 * kiocb completion to be lockless when possible, we use ki_cancel to
169 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
170 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
171 */
172 #define KIOCB_CANCELLED ((void *) (~0ULL))
173
174 struct aio_kiocb {
175 struct kiocb common;
176
177 struct kioctx *ki_ctx;
178 kiocb_cancel_fn *ki_cancel;
179
180 struct iocb __user *ki_user_iocb; /* user's aiocb */
181 __u64 ki_user_data; /* user's data for completion */
182
183 struct list_head ki_list; /* the aio core uses this
184 * for cancellation */
185
186 /*
187 * If the aio_resfd field of the userspace iocb is not zero,
188 * this is the underlying eventfd context to deliver events to.
189 */
190 struct eventfd_ctx *ki_eventfd;
191 };
192
193 /*------ sysctl variables----*/
194 static DEFINE_SPINLOCK(aio_nr_lock);
195 unsigned long aio_nr; /* current system wide number of aio requests */
196 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
197 /*----end sysctl variables---*/
198
199 static struct kmem_cache *kiocb_cachep;
200 static struct kmem_cache *kioctx_cachep;
201
202 static struct vfsmount *aio_mnt;
203
204 static const struct file_operations aio_ring_fops;
205 static const struct address_space_operations aio_ctx_aops;
206
207 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
208 {
209 struct qstr this = QSTR_INIT("[aio]", 5);
210 struct file *file;
211 struct path path;
212 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
213 if (IS_ERR(inode))
214 return ERR_CAST(inode);
215
216 inode->i_mapping->a_ops = &aio_ctx_aops;
217 inode->i_mapping->private_data = ctx;
218 inode->i_size = PAGE_SIZE * nr_pages;
219
220 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
221 if (!path.dentry) {
222 iput(inode);
223 return ERR_PTR(-ENOMEM);
224 }
225 path.mnt = mntget(aio_mnt);
226
227 d_instantiate(path.dentry, inode);
228 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
229 if (IS_ERR(file)) {
230 path_put(&path);
231 return file;
232 }
233
234 file->f_flags = O_RDWR;
235 return file;
236 }
237
238 static struct dentry *aio_mount(struct file_system_type *fs_type,
239 int flags, const char *dev_name, void *data)
240 {
241 static const struct dentry_operations ops = {
242 .d_dname = simple_dname,
243 };
244 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
245 AIO_RING_MAGIC);
246
247 if (!IS_ERR(root))
248 root->d_sb->s_iflags |= SB_I_NOEXEC;
249 return root;
250 }
251
252 /* aio_setup
253 * Creates the slab caches used by the aio routines, panic on
254 * failure as this is done early during the boot sequence.
255 */
256 static int __init aio_setup(void)
257 {
258 static struct file_system_type aio_fs = {
259 .name = "aio",
260 .mount = aio_mount,
261 .kill_sb = kill_anon_super,
262 };
263 aio_mnt = kern_mount(&aio_fs);
264 if (IS_ERR(aio_mnt))
265 panic("Failed to create aio fs mount.");
266
267 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
268 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
269
270 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
271
272 return 0;
273 }
274 __initcall(aio_setup);
275
276 static void put_aio_ring_file(struct kioctx *ctx)
277 {
278 struct file *aio_ring_file = ctx->aio_ring_file;
279 struct address_space *i_mapping;
280
281 if (aio_ring_file) {
282 truncate_setsize(file_inode(aio_ring_file), 0);
283
284 /* Prevent further access to the kioctx from migratepages */
285 i_mapping = aio_ring_file->f_mapping;
286 spin_lock(&i_mapping->private_lock);
287 i_mapping->private_data = NULL;
288 ctx->aio_ring_file = NULL;
289 spin_unlock(&i_mapping->private_lock);
290
291 fput(aio_ring_file);
292 }
293 }
294
295 static void aio_free_ring(struct kioctx *ctx)
296 {
297 int i;
298
299 /* Disconnect the kiotx from the ring file. This prevents future
300 * accesses to the kioctx from page migration.
301 */
302 put_aio_ring_file(ctx);
303
304 for (i = 0; i < ctx->nr_pages; i++) {
305 struct page *page;
306 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
307 page_count(ctx->ring_pages[i]));
308 page = ctx->ring_pages[i];
309 if (!page)
310 continue;
311 ctx->ring_pages[i] = NULL;
312 put_page(page);
313 }
314
315 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
316 kfree(ctx->ring_pages);
317 ctx->ring_pages = NULL;
318 }
319 }
320
321 static int aio_ring_mremap(struct vm_area_struct *vma)
322 {
323 struct file *file = vma->vm_file;
324 struct mm_struct *mm = vma->vm_mm;
325 struct kioctx_table *table;
326 int i, res = -EINVAL;
327
328 spin_lock(&mm->ioctx_lock);
329 rcu_read_lock();
330 table = rcu_dereference(mm->ioctx_table);
331 for (i = 0; i < table->nr; i++) {
332 struct kioctx *ctx;
333
334 ctx = rcu_dereference(table->table[i]);
335 if (ctx && ctx->aio_ring_file == file) {
336 if (!atomic_read(&ctx->dead)) {
337 ctx->user_id = ctx->mmap_base = vma->vm_start;
338 res = 0;
339 }
340 break;
341 }
342 }
343
344 rcu_read_unlock();
345 spin_unlock(&mm->ioctx_lock);
346 return res;
347 }
348
349 static const struct vm_operations_struct aio_ring_vm_ops = {
350 .mremap = aio_ring_mremap,
351 #if IS_ENABLED(CONFIG_MMU)
352 .fault = filemap_fault,
353 .map_pages = filemap_map_pages,
354 .page_mkwrite = filemap_page_mkwrite,
355 #endif
356 };
357
358 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
359 {
360 vma->vm_flags |= VM_DONTEXPAND;
361 vma->vm_ops = &aio_ring_vm_ops;
362 return 0;
363 }
364
365 static const struct file_operations aio_ring_fops = {
366 .mmap = aio_ring_mmap,
367 };
368
369 #if IS_ENABLED(CONFIG_MIGRATION)
370 static int aio_migratepage(struct address_space *mapping, struct page *new,
371 struct page *old, enum migrate_mode mode)
372 {
373 struct kioctx *ctx;
374 unsigned long flags;
375 pgoff_t idx;
376 int rc;
377
378 /*
379 * We cannot support the _NO_COPY case here, because copy needs to
380 * happen under the ctx->completion_lock. That does not work with the
381 * migration workflow of MIGRATE_SYNC_NO_COPY.
382 */
383 if (mode == MIGRATE_SYNC_NO_COPY)
384 return -EINVAL;
385
386 rc = 0;
387
388 /* mapping->private_lock here protects against the kioctx teardown. */
389 spin_lock(&mapping->private_lock);
390 ctx = mapping->private_data;
391 if (!ctx) {
392 rc = -EINVAL;
393 goto out;
394 }
395
396 /* The ring_lock mutex. The prevents aio_read_events() from writing
397 * to the ring's head, and prevents page migration from mucking in
398 * a partially initialized kiotx.
399 */
400 if (!mutex_trylock(&ctx->ring_lock)) {
401 rc = -EAGAIN;
402 goto out;
403 }
404
405 idx = old->index;
406 if (idx < (pgoff_t)ctx->nr_pages) {
407 /* Make sure the old page hasn't already been changed */
408 if (ctx->ring_pages[idx] != old)
409 rc = -EAGAIN;
410 } else
411 rc = -EINVAL;
412
413 if (rc != 0)
414 goto out_unlock;
415
416 /* Writeback must be complete */
417 BUG_ON(PageWriteback(old));
418 get_page(new);
419
420 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
421 if (rc != MIGRATEPAGE_SUCCESS) {
422 put_page(new);
423 goto out_unlock;
424 }
425
426 /* Take completion_lock to prevent other writes to the ring buffer
427 * while the old page is copied to the new. This prevents new
428 * events from being lost.
429 */
430 spin_lock_irqsave(&ctx->completion_lock, flags);
431 migrate_page_copy(new, old);
432 BUG_ON(ctx->ring_pages[idx] != old);
433 ctx->ring_pages[idx] = new;
434 spin_unlock_irqrestore(&ctx->completion_lock, flags);
435
436 /* The old page is no longer accessible. */
437 put_page(old);
438
439 out_unlock:
440 mutex_unlock(&ctx->ring_lock);
441 out:
442 spin_unlock(&mapping->private_lock);
443 return rc;
444 }
445 #endif
446
447 static const struct address_space_operations aio_ctx_aops = {
448 .set_page_dirty = __set_page_dirty_no_writeback,
449 #if IS_ENABLED(CONFIG_MIGRATION)
450 .migratepage = aio_migratepage,
451 #endif
452 };
453
454 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
455 {
456 struct aio_ring *ring;
457 struct mm_struct *mm = current->mm;
458 unsigned long size, unused;
459 int nr_pages;
460 int i;
461 struct file *file;
462
463 /* Compensate for the ring buffer's head/tail overlap entry */
464 nr_events += 2; /* 1 is required, 2 for good luck */
465
466 size = sizeof(struct aio_ring);
467 size += sizeof(struct io_event) * nr_events;
468
469 nr_pages = PFN_UP(size);
470 if (nr_pages < 0)
471 return -EINVAL;
472
473 file = aio_private_file(ctx, nr_pages);
474 if (IS_ERR(file)) {
475 ctx->aio_ring_file = NULL;
476 return -ENOMEM;
477 }
478
479 ctx->aio_ring_file = file;
480 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
481 / sizeof(struct io_event);
482
483 ctx->ring_pages = ctx->internal_pages;
484 if (nr_pages > AIO_RING_PAGES) {
485 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
486 GFP_KERNEL);
487 if (!ctx->ring_pages) {
488 put_aio_ring_file(ctx);
489 return -ENOMEM;
490 }
491 }
492
493 for (i = 0; i < nr_pages; i++) {
494 struct page *page;
495 page = find_or_create_page(file->f_mapping,
496 i, GFP_HIGHUSER | __GFP_ZERO);
497 if (!page)
498 break;
499 pr_debug("pid(%d) page[%d]->count=%d\n",
500 current->pid, i, page_count(page));
501 SetPageUptodate(page);
502 unlock_page(page);
503
504 ctx->ring_pages[i] = page;
505 }
506 ctx->nr_pages = i;
507
508 if (unlikely(i != nr_pages)) {
509 aio_free_ring(ctx);
510 return -ENOMEM;
511 }
512
513 ctx->mmap_size = nr_pages * PAGE_SIZE;
514 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
515
516 if (down_write_killable(&mm->mmap_sem)) {
517 ctx->mmap_size = 0;
518 aio_free_ring(ctx);
519 return -EINTR;
520 }
521
522 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
523 PROT_READ | PROT_WRITE,
524 MAP_SHARED, 0, &unused, NULL);
525 up_write(&mm->mmap_sem);
526 if (IS_ERR((void *)ctx->mmap_base)) {
527 ctx->mmap_size = 0;
528 aio_free_ring(ctx);
529 return -ENOMEM;
530 }
531
532 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
533
534 ctx->user_id = ctx->mmap_base;
535 ctx->nr_events = nr_events; /* trusted copy */
536
537 ring = kmap_atomic(ctx->ring_pages[0]);
538 ring->nr = nr_events; /* user copy */
539 ring->id = ~0U;
540 ring->head = ring->tail = 0;
541 ring->magic = AIO_RING_MAGIC;
542 ring->compat_features = AIO_RING_COMPAT_FEATURES;
543 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
544 ring->header_length = sizeof(struct aio_ring);
545 kunmap_atomic(ring);
546 flush_dcache_page(ctx->ring_pages[0]);
547
548 return 0;
549 }
550
551 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
552 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
553 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
554
555 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
556 {
557 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
558 struct kioctx *ctx = req->ki_ctx;
559 unsigned long flags;
560
561 spin_lock_irqsave(&ctx->ctx_lock, flags);
562
563 if (!req->ki_list.next)
564 list_add(&req->ki_list, &ctx->active_reqs);
565
566 req->ki_cancel = cancel;
567
568 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
569 }
570 EXPORT_SYMBOL(kiocb_set_cancel_fn);
571
572 static int kiocb_cancel(struct aio_kiocb *kiocb)
573 {
574 kiocb_cancel_fn *old, *cancel;
575
576 /*
577 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
578 * actually has a cancel function, hence the cmpxchg()
579 */
580
581 cancel = ACCESS_ONCE(kiocb->ki_cancel);
582 do {
583 if (!cancel || cancel == KIOCB_CANCELLED)
584 return -EINVAL;
585
586 old = cancel;
587 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
588 } while (cancel != old);
589
590 return cancel(&kiocb->common);
591 }
592
593 /*
594 * free_ioctx() should be RCU delayed to synchronize against the RCU
595 * protected lookup_ioctx() and also needs process context to call
596 * aio_free_ring(), so the double bouncing through kioctx->free_rcu and
597 * ->free_work.
598 */
599 static void free_ioctx(struct work_struct *work)
600 {
601 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
602
603 pr_debug("freeing %p\n", ctx);
604
605 aio_free_ring(ctx);
606 free_percpu(ctx->cpu);
607 percpu_ref_exit(&ctx->reqs);
608 percpu_ref_exit(&ctx->users);
609 kmem_cache_free(kioctx_cachep, ctx);
610 }
611
612 static void free_ioctx_rcufn(struct rcu_head *head)
613 {
614 struct kioctx *ctx = container_of(head, struct kioctx, free_rcu);
615
616 INIT_WORK(&ctx->free_work, free_ioctx);
617 schedule_work(&ctx->free_work);
618 }
619
620 static void free_ioctx_reqs(struct percpu_ref *ref)
621 {
622 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
623
624 /* At this point we know that there are no any in-flight requests */
625 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
626 complete(&ctx->rq_wait->comp);
627
628 /* Synchronize against RCU protected table->table[] dereferences */
629 call_rcu(&ctx->free_rcu, free_ioctx_rcufn);
630 }
631
632 /*
633 * When this function runs, the kioctx has been removed from the "hash table"
634 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
635 * now it's safe to cancel any that need to be.
636 */
637 static void free_ioctx_users(struct percpu_ref *ref)
638 {
639 struct kioctx *ctx = container_of(ref, struct kioctx, users);
640 struct aio_kiocb *req;
641
642 spin_lock_irq(&ctx->ctx_lock);
643
644 while (!list_empty(&ctx->active_reqs)) {
645 req = list_first_entry(&ctx->active_reqs,
646 struct aio_kiocb, ki_list);
647 kiocb_cancel(req);
648 list_del_init(&req->ki_list);
649 }
650
651 spin_unlock_irq(&ctx->ctx_lock);
652
653 percpu_ref_kill(&ctx->reqs);
654 percpu_ref_put(&ctx->reqs);
655 }
656
657 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
658 {
659 unsigned i, new_nr;
660 struct kioctx_table *table, *old;
661 struct aio_ring *ring;
662
663 spin_lock(&mm->ioctx_lock);
664 table = rcu_dereference_raw(mm->ioctx_table);
665
666 while (1) {
667 if (table)
668 for (i = 0; i < table->nr; i++)
669 if (!rcu_access_pointer(table->table[i])) {
670 ctx->id = i;
671 rcu_assign_pointer(table->table[i], ctx);
672 spin_unlock(&mm->ioctx_lock);
673
674 /* While kioctx setup is in progress,
675 * we are protected from page migration
676 * changes ring_pages by ->ring_lock.
677 */
678 ring = kmap_atomic(ctx->ring_pages[0]);
679 ring->id = ctx->id;
680 kunmap_atomic(ring);
681 return 0;
682 }
683
684 new_nr = (table ? table->nr : 1) * 4;
685 spin_unlock(&mm->ioctx_lock);
686
687 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
688 new_nr, GFP_KERNEL);
689 if (!table)
690 return -ENOMEM;
691
692 table->nr = new_nr;
693
694 spin_lock(&mm->ioctx_lock);
695 old = rcu_dereference_raw(mm->ioctx_table);
696
697 if (!old) {
698 rcu_assign_pointer(mm->ioctx_table, table);
699 } else if (table->nr > old->nr) {
700 memcpy(table->table, old->table,
701 old->nr * sizeof(struct kioctx *));
702
703 rcu_assign_pointer(mm->ioctx_table, table);
704 kfree_rcu(old, rcu);
705 } else {
706 kfree(table);
707 table = old;
708 }
709 }
710 }
711
712 static void aio_nr_sub(unsigned nr)
713 {
714 spin_lock(&aio_nr_lock);
715 if (WARN_ON(aio_nr - nr > aio_nr))
716 aio_nr = 0;
717 else
718 aio_nr -= nr;
719 spin_unlock(&aio_nr_lock);
720 }
721
722 /* ioctx_alloc
723 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
724 */
725 static struct kioctx *ioctx_alloc(unsigned nr_events)
726 {
727 struct mm_struct *mm = current->mm;
728 struct kioctx *ctx;
729 int err = -ENOMEM;
730
731 /*
732 * Store the original nr_events -- what userspace passed to io_setup(),
733 * for counting against the global limit -- before it changes.
734 */
735 unsigned int max_reqs = nr_events;
736
737 /*
738 * We keep track of the number of available ringbuffer slots, to prevent
739 * overflow (reqs_available), and we also use percpu counters for this.
740 *
741 * So since up to half the slots might be on other cpu's percpu counters
742 * and unavailable, double nr_events so userspace sees what they
743 * expected: additionally, we move req_batch slots to/from percpu
744 * counters at a time, so make sure that isn't 0:
745 */
746 nr_events = max(nr_events, num_possible_cpus() * 4);
747 nr_events *= 2;
748
749 /* Prevent overflows */
750 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
751 pr_debug("ENOMEM: nr_events too high\n");
752 return ERR_PTR(-EINVAL);
753 }
754
755 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
756 return ERR_PTR(-EAGAIN);
757
758 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
759 if (!ctx)
760 return ERR_PTR(-ENOMEM);
761
762 ctx->max_reqs = max_reqs;
763
764 spin_lock_init(&ctx->ctx_lock);
765 spin_lock_init(&ctx->completion_lock);
766 mutex_init(&ctx->ring_lock);
767 /* Protect against page migration throughout kiotx setup by keeping
768 * the ring_lock mutex held until setup is complete. */
769 mutex_lock(&ctx->ring_lock);
770 init_waitqueue_head(&ctx->wait);
771
772 INIT_LIST_HEAD(&ctx->active_reqs);
773
774 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
775 goto err;
776
777 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
778 goto err;
779
780 ctx->cpu = alloc_percpu(struct kioctx_cpu);
781 if (!ctx->cpu)
782 goto err;
783
784 err = aio_setup_ring(ctx, nr_events);
785 if (err < 0)
786 goto err;
787
788 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
789 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
790 if (ctx->req_batch < 1)
791 ctx->req_batch = 1;
792
793 /* limit the number of system wide aios */
794 spin_lock(&aio_nr_lock);
795 if (aio_nr + ctx->max_reqs > aio_max_nr ||
796 aio_nr + ctx->max_reqs < aio_nr) {
797 spin_unlock(&aio_nr_lock);
798 err = -EAGAIN;
799 goto err_ctx;
800 }
801 aio_nr += ctx->max_reqs;
802 spin_unlock(&aio_nr_lock);
803
804 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
805 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
806
807 err = ioctx_add_table(ctx, mm);
808 if (err)
809 goto err_cleanup;
810
811 /* Release the ring_lock mutex now that all setup is complete. */
812 mutex_unlock(&ctx->ring_lock);
813
814 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
815 ctx, ctx->user_id, mm, ctx->nr_events);
816 return ctx;
817
818 err_cleanup:
819 aio_nr_sub(ctx->max_reqs);
820 err_ctx:
821 atomic_set(&ctx->dead, 1);
822 if (ctx->mmap_size)
823 vm_munmap(ctx->mmap_base, ctx->mmap_size);
824 aio_free_ring(ctx);
825 err:
826 mutex_unlock(&ctx->ring_lock);
827 free_percpu(ctx->cpu);
828 percpu_ref_exit(&ctx->reqs);
829 percpu_ref_exit(&ctx->users);
830 kmem_cache_free(kioctx_cachep, ctx);
831 pr_debug("error allocating ioctx %d\n", err);
832 return ERR_PTR(err);
833 }
834
835 /* kill_ioctx
836 * Cancels all outstanding aio requests on an aio context. Used
837 * when the processes owning a context have all exited to encourage
838 * the rapid destruction of the kioctx.
839 */
840 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
841 struct ctx_rq_wait *wait)
842 {
843 struct kioctx_table *table;
844
845 spin_lock(&mm->ioctx_lock);
846 if (atomic_xchg(&ctx->dead, 1)) {
847 spin_unlock(&mm->ioctx_lock);
848 return -EINVAL;
849 }
850
851 table = rcu_dereference_raw(mm->ioctx_table);
852 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
853 RCU_INIT_POINTER(table->table[ctx->id], NULL);
854 spin_unlock(&mm->ioctx_lock);
855
856 /* free_ioctx_reqs() will do the necessary RCU synchronization */
857 wake_up_all(&ctx->wait);
858
859 /*
860 * It'd be more correct to do this in free_ioctx(), after all
861 * the outstanding kiocbs have finished - but by then io_destroy
862 * has already returned, so io_setup() could potentially return
863 * -EAGAIN with no ioctxs actually in use (as far as userspace
864 * could tell).
865 */
866 aio_nr_sub(ctx->max_reqs);
867
868 if (ctx->mmap_size)
869 vm_munmap(ctx->mmap_base, ctx->mmap_size);
870
871 ctx->rq_wait = wait;
872 percpu_ref_kill(&ctx->users);
873 return 0;
874 }
875
876 /*
877 * exit_aio: called when the last user of mm goes away. At this point, there is
878 * no way for any new requests to be submited or any of the io_* syscalls to be
879 * called on the context.
880 *
881 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
882 * them.
883 */
884 void exit_aio(struct mm_struct *mm)
885 {
886 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
887 struct ctx_rq_wait wait;
888 int i, skipped;
889
890 if (!table)
891 return;
892
893 atomic_set(&wait.count, table->nr);
894 init_completion(&wait.comp);
895
896 skipped = 0;
897 for (i = 0; i < table->nr; ++i) {
898 struct kioctx *ctx =
899 rcu_dereference_protected(table->table[i], true);
900
901 if (!ctx) {
902 skipped++;
903 continue;
904 }
905
906 /*
907 * We don't need to bother with munmap() here - exit_mmap(mm)
908 * is coming and it'll unmap everything. And we simply can't,
909 * this is not necessarily our ->mm.
910 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
911 * that it needs to unmap the area, just set it to 0.
912 */
913 ctx->mmap_size = 0;
914 kill_ioctx(mm, ctx, &wait);
915 }
916
917 if (!atomic_sub_and_test(skipped, &wait.count)) {
918 /* Wait until all IO for the context are done. */
919 wait_for_completion(&wait.comp);
920 }
921
922 RCU_INIT_POINTER(mm->ioctx_table, NULL);
923 kfree(table);
924 }
925
926 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
927 {
928 struct kioctx_cpu *kcpu;
929 unsigned long flags;
930
931 local_irq_save(flags);
932 kcpu = this_cpu_ptr(ctx->cpu);
933 kcpu->reqs_available += nr;
934
935 while (kcpu->reqs_available >= ctx->req_batch * 2) {
936 kcpu->reqs_available -= ctx->req_batch;
937 atomic_add(ctx->req_batch, &ctx->reqs_available);
938 }
939
940 local_irq_restore(flags);
941 }
942
943 static bool get_reqs_available(struct kioctx *ctx)
944 {
945 struct kioctx_cpu *kcpu;
946 bool ret = false;
947 unsigned long flags;
948
949 local_irq_save(flags);
950 kcpu = this_cpu_ptr(ctx->cpu);
951 if (!kcpu->reqs_available) {
952 int old, avail = atomic_read(&ctx->reqs_available);
953
954 do {
955 if (avail < ctx->req_batch)
956 goto out;
957
958 old = avail;
959 avail = atomic_cmpxchg(&ctx->reqs_available,
960 avail, avail - ctx->req_batch);
961 } while (avail != old);
962
963 kcpu->reqs_available += ctx->req_batch;
964 }
965
966 ret = true;
967 kcpu->reqs_available--;
968 out:
969 local_irq_restore(flags);
970 return ret;
971 }
972
973 /* refill_reqs_available
974 * Updates the reqs_available reference counts used for tracking the
975 * number of free slots in the completion ring. This can be called
976 * from aio_complete() (to optimistically update reqs_available) or
977 * from aio_get_req() (the we're out of events case). It must be
978 * called holding ctx->completion_lock.
979 */
980 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
981 unsigned tail)
982 {
983 unsigned events_in_ring, completed;
984
985 /* Clamp head since userland can write to it. */
986 head %= ctx->nr_events;
987 if (head <= tail)
988 events_in_ring = tail - head;
989 else
990 events_in_ring = ctx->nr_events - (head - tail);
991
992 completed = ctx->completed_events;
993 if (events_in_ring < completed)
994 completed -= events_in_ring;
995 else
996 completed = 0;
997
998 if (!completed)
999 return;
1000
1001 ctx->completed_events -= completed;
1002 put_reqs_available(ctx, completed);
1003 }
1004
1005 /* user_refill_reqs_available
1006 * Called to refill reqs_available when aio_get_req() encounters an
1007 * out of space in the completion ring.
1008 */
1009 static void user_refill_reqs_available(struct kioctx *ctx)
1010 {
1011 spin_lock_irq(&ctx->completion_lock);
1012 if (ctx->completed_events) {
1013 struct aio_ring *ring;
1014 unsigned head;
1015
1016 /* Access of ring->head may race with aio_read_events_ring()
1017 * here, but that's okay since whether we read the old version
1018 * or the new version, and either will be valid. The important
1019 * part is that head cannot pass tail since we prevent
1020 * aio_complete() from updating tail by holding
1021 * ctx->completion_lock. Even if head is invalid, the check
1022 * against ctx->completed_events below will make sure we do the
1023 * safe/right thing.
1024 */
1025 ring = kmap_atomic(ctx->ring_pages[0]);
1026 head = ring->head;
1027 kunmap_atomic(ring);
1028
1029 refill_reqs_available(ctx, head, ctx->tail);
1030 }
1031
1032 spin_unlock_irq(&ctx->completion_lock);
1033 }
1034
1035 /* aio_get_req
1036 * Allocate a slot for an aio request.
1037 * Returns NULL if no requests are free.
1038 */
1039 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1040 {
1041 struct aio_kiocb *req;
1042
1043 if (!get_reqs_available(ctx)) {
1044 user_refill_reqs_available(ctx);
1045 if (!get_reqs_available(ctx))
1046 return NULL;
1047 }
1048
1049 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1050 if (unlikely(!req))
1051 goto out_put;
1052
1053 percpu_ref_get(&ctx->reqs);
1054
1055 req->ki_ctx = ctx;
1056 return req;
1057 out_put:
1058 put_reqs_available(ctx, 1);
1059 return NULL;
1060 }
1061
1062 static void kiocb_free(struct aio_kiocb *req)
1063 {
1064 if (req->common.ki_filp)
1065 fput(req->common.ki_filp);
1066 if (req->ki_eventfd != NULL)
1067 eventfd_ctx_put(req->ki_eventfd);
1068 kmem_cache_free(kiocb_cachep, req);
1069 }
1070
1071 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1072 {
1073 struct aio_ring __user *ring = (void __user *)ctx_id;
1074 struct mm_struct *mm = current->mm;
1075 struct kioctx *ctx, *ret = NULL;
1076 struct kioctx_table *table;
1077 unsigned id;
1078
1079 if (get_user(id, &ring->id))
1080 return NULL;
1081
1082 rcu_read_lock();
1083 table = rcu_dereference(mm->ioctx_table);
1084
1085 if (!table || id >= table->nr)
1086 goto out;
1087
1088 id = array_index_nospec(id, table->nr);
1089 ctx = rcu_dereference(table->table[id]);
1090 if (ctx && ctx->user_id == ctx_id) {
1091 if (percpu_ref_tryget_live(&ctx->users))
1092 ret = ctx;
1093 }
1094 out:
1095 rcu_read_unlock();
1096 return ret;
1097 }
1098
1099 /* aio_complete
1100 * Called when the io request on the given iocb is complete.
1101 */
1102 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1103 {
1104 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1105 struct kioctx *ctx = iocb->ki_ctx;
1106 struct aio_ring *ring;
1107 struct io_event *ev_page, *event;
1108 unsigned tail, pos, head;
1109 unsigned long flags;
1110
1111 if (kiocb->ki_flags & IOCB_WRITE) {
1112 struct file *file = kiocb->ki_filp;
1113
1114 /*
1115 * Tell lockdep we inherited freeze protection from submission
1116 * thread.
1117 */
1118 if (S_ISREG(file_inode(file)->i_mode))
1119 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1120 file_end_write(file);
1121 }
1122
1123 /*
1124 * Special case handling for sync iocbs:
1125 * - events go directly into the iocb for fast handling
1126 * - the sync task with the iocb in its stack holds the single iocb
1127 * ref, no other paths have a way to get another ref
1128 * - the sync task helpfully left a reference to itself in the iocb
1129 */
1130 BUG_ON(is_sync_kiocb(kiocb));
1131
1132 if (iocb->ki_list.next) {
1133 unsigned long flags;
1134
1135 spin_lock_irqsave(&ctx->ctx_lock, flags);
1136 list_del(&iocb->ki_list);
1137 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1138 }
1139
1140 /*
1141 * Add a completion event to the ring buffer. Must be done holding
1142 * ctx->completion_lock to prevent other code from messing with the tail
1143 * pointer since we might be called from irq context.
1144 */
1145 spin_lock_irqsave(&ctx->completion_lock, flags);
1146
1147 tail = ctx->tail;
1148 pos = tail + AIO_EVENTS_OFFSET;
1149
1150 if (++tail >= ctx->nr_events)
1151 tail = 0;
1152
1153 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1154 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1155
1156 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1157 event->data = iocb->ki_user_data;
1158 event->res = res;
1159 event->res2 = res2;
1160
1161 kunmap_atomic(ev_page);
1162 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1163
1164 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1165 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1166 res, res2);
1167
1168 /* after flagging the request as done, we
1169 * must never even look at it again
1170 */
1171 smp_wmb(); /* make event visible before updating tail */
1172
1173 ctx->tail = tail;
1174
1175 ring = kmap_atomic(ctx->ring_pages[0]);
1176 head = ring->head;
1177 ring->tail = tail;
1178 kunmap_atomic(ring);
1179 flush_dcache_page(ctx->ring_pages[0]);
1180
1181 ctx->completed_events++;
1182 if (ctx->completed_events > 1)
1183 refill_reqs_available(ctx, head, tail);
1184 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1185
1186 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1187
1188 /*
1189 * Check if the user asked us to deliver the result through an
1190 * eventfd. The eventfd_signal() function is safe to be called
1191 * from IRQ context.
1192 */
1193 if (iocb->ki_eventfd != NULL)
1194 eventfd_signal(iocb->ki_eventfd, 1);
1195
1196 /* everything turned out well, dispose of the aiocb. */
1197 kiocb_free(iocb);
1198
1199 /*
1200 * We have to order our ring_info tail store above and test
1201 * of the wait list below outside the wait lock. This is
1202 * like in wake_up_bit() where clearing a bit has to be
1203 * ordered with the unlocked test.
1204 */
1205 smp_mb();
1206
1207 if (waitqueue_active(&ctx->wait))
1208 wake_up(&ctx->wait);
1209
1210 percpu_ref_put(&ctx->reqs);
1211 }
1212
1213 /* aio_read_events_ring
1214 * Pull an event off of the ioctx's event ring. Returns the number of
1215 * events fetched
1216 */
1217 static long aio_read_events_ring(struct kioctx *ctx,
1218 struct io_event __user *event, long nr)
1219 {
1220 struct aio_ring *ring;
1221 unsigned head, tail, pos;
1222 long ret = 0;
1223 int copy_ret;
1224
1225 /*
1226 * The mutex can block and wake us up and that will cause
1227 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1228 * and repeat. This should be rare enough that it doesn't cause
1229 * peformance issues. See the comment in read_events() for more detail.
1230 */
1231 sched_annotate_sleep();
1232 mutex_lock(&ctx->ring_lock);
1233
1234 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1235 ring = kmap_atomic(ctx->ring_pages[0]);
1236 head = ring->head;
1237 tail = ring->tail;
1238 kunmap_atomic(ring);
1239
1240 /*
1241 * Ensure that once we've read the current tail pointer, that
1242 * we also see the events that were stored up to the tail.
1243 */
1244 smp_rmb();
1245
1246 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1247
1248 if (head == tail)
1249 goto out;
1250
1251 head %= ctx->nr_events;
1252 tail %= ctx->nr_events;
1253
1254 while (ret < nr) {
1255 long avail;
1256 struct io_event *ev;
1257 struct page *page;
1258
1259 avail = (head <= tail ? tail : ctx->nr_events) - head;
1260 if (head == tail)
1261 break;
1262
1263 avail = min(avail, nr - ret);
1264 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1265 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1266
1267 pos = head + AIO_EVENTS_OFFSET;
1268 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1269 pos %= AIO_EVENTS_PER_PAGE;
1270
1271 ev = kmap(page);
1272 copy_ret = copy_to_user(event + ret, ev + pos,
1273 sizeof(*ev) * avail);
1274 kunmap(page);
1275
1276 if (unlikely(copy_ret)) {
1277 ret = -EFAULT;
1278 goto out;
1279 }
1280
1281 ret += avail;
1282 head += avail;
1283 head %= ctx->nr_events;
1284 }
1285
1286 ring = kmap_atomic(ctx->ring_pages[0]);
1287 ring->head = head;
1288 kunmap_atomic(ring);
1289 flush_dcache_page(ctx->ring_pages[0]);
1290
1291 pr_debug("%li h%u t%u\n", ret, head, tail);
1292 out:
1293 mutex_unlock(&ctx->ring_lock);
1294
1295 return ret;
1296 }
1297
1298 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1299 struct io_event __user *event, long *i)
1300 {
1301 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1302
1303 if (ret > 0)
1304 *i += ret;
1305
1306 if (unlikely(atomic_read(&ctx->dead)))
1307 ret = -EINVAL;
1308
1309 if (!*i)
1310 *i = ret;
1311
1312 return ret < 0 || *i >= min_nr;
1313 }
1314
1315 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1316 struct io_event __user *event,
1317 struct timespec __user *timeout)
1318 {
1319 ktime_t until = KTIME_MAX;
1320 long ret = 0;
1321
1322 if (timeout) {
1323 struct timespec ts;
1324
1325 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1326 return -EFAULT;
1327
1328 until = timespec_to_ktime(ts);
1329 }
1330
1331 /*
1332 * Note that aio_read_events() is being called as the conditional - i.e.
1333 * we're calling it after prepare_to_wait() has set task state to
1334 * TASK_INTERRUPTIBLE.
1335 *
1336 * But aio_read_events() can block, and if it blocks it's going to flip
1337 * the task state back to TASK_RUNNING.
1338 *
1339 * This should be ok, provided it doesn't flip the state back to
1340 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1341 * will only happen if the mutex_lock() call blocks, and we then find
1342 * the ringbuffer empty. So in practice we should be ok, but it's
1343 * something to be aware of when touching this code.
1344 */
1345 if (until == 0)
1346 aio_read_events(ctx, min_nr, nr, event, &ret);
1347 else
1348 wait_event_interruptible_hrtimeout(ctx->wait,
1349 aio_read_events(ctx, min_nr, nr, event, &ret),
1350 until);
1351
1352 if (!ret && signal_pending(current))
1353 ret = -EINTR;
1354
1355 return ret;
1356 }
1357
1358 /* sys_io_setup:
1359 * Create an aio_context capable of receiving at least nr_events.
1360 * ctxp must not point to an aio_context that already exists, and
1361 * must be initialized to 0 prior to the call. On successful
1362 * creation of the aio_context, *ctxp is filled in with the resulting
1363 * handle. May fail with -EINVAL if *ctxp is not initialized,
1364 * if the specified nr_events exceeds internal limits. May fail
1365 * with -EAGAIN if the specified nr_events exceeds the user's limit
1366 * of available events. May fail with -ENOMEM if insufficient kernel
1367 * resources are available. May fail with -EFAULT if an invalid
1368 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1369 * implemented.
1370 */
1371 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1372 {
1373 struct kioctx *ioctx = NULL;
1374 unsigned long ctx;
1375 long ret;
1376
1377 ret = get_user(ctx, ctxp);
1378 if (unlikely(ret))
1379 goto out;
1380
1381 ret = -EINVAL;
1382 if (unlikely(ctx || nr_events == 0)) {
1383 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1384 ctx, nr_events);
1385 goto out;
1386 }
1387
1388 ioctx = ioctx_alloc(nr_events);
1389 ret = PTR_ERR(ioctx);
1390 if (!IS_ERR(ioctx)) {
1391 ret = put_user(ioctx->user_id, ctxp);
1392 if (ret)
1393 kill_ioctx(current->mm, ioctx, NULL);
1394 percpu_ref_put(&ioctx->users);
1395 }
1396
1397 out:
1398 return ret;
1399 }
1400
1401 #ifdef CONFIG_COMPAT
1402 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1403 {
1404 struct kioctx *ioctx = NULL;
1405 unsigned long ctx;
1406 long ret;
1407
1408 ret = get_user(ctx, ctx32p);
1409 if (unlikely(ret))
1410 goto out;
1411
1412 ret = -EINVAL;
1413 if (unlikely(ctx || nr_events == 0)) {
1414 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1415 ctx, nr_events);
1416 goto out;
1417 }
1418
1419 ioctx = ioctx_alloc(nr_events);
1420 ret = PTR_ERR(ioctx);
1421 if (!IS_ERR(ioctx)) {
1422 /* truncating is ok because it's a user address */
1423 ret = put_user((u32)ioctx->user_id, ctx32p);
1424 if (ret)
1425 kill_ioctx(current->mm, ioctx, NULL);
1426 percpu_ref_put(&ioctx->users);
1427 }
1428
1429 out:
1430 return ret;
1431 }
1432 #endif
1433
1434 /* sys_io_destroy:
1435 * Destroy the aio_context specified. May cancel any outstanding
1436 * AIOs and block on completion. Will fail with -ENOSYS if not
1437 * implemented. May fail with -EINVAL if the context pointed to
1438 * is invalid.
1439 */
1440 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1441 {
1442 struct kioctx *ioctx = lookup_ioctx(ctx);
1443 if (likely(NULL != ioctx)) {
1444 struct ctx_rq_wait wait;
1445 int ret;
1446
1447 init_completion(&wait.comp);
1448 atomic_set(&wait.count, 1);
1449
1450 /* Pass requests_done to kill_ioctx() where it can be set
1451 * in a thread-safe way. If we try to set it here then we have
1452 * a race condition if two io_destroy() called simultaneously.
1453 */
1454 ret = kill_ioctx(current->mm, ioctx, &wait);
1455 percpu_ref_put(&ioctx->users);
1456
1457 /* Wait until all IO for the context are done. Otherwise kernel
1458 * keep using user-space buffers even if user thinks the context
1459 * is destroyed.
1460 */
1461 if (!ret)
1462 wait_for_completion(&wait.comp);
1463
1464 return ret;
1465 }
1466 pr_debug("EINVAL: invalid context id\n");
1467 return -EINVAL;
1468 }
1469
1470 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1471 bool vectored, bool compat, struct iov_iter *iter)
1472 {
1473 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1474 size_t len = iocb->aio_nbytes;
1475
1476 if (!vectored) {
1477 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1478 *iovec = NULL;
1479 return ret;
1480 }
1481 #ifdef CONFIG_COMPAT
1482 if (compat)
1483 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1484 iter);
1485 #endif
1486 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1487 }
1488
1489 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1490 {
1491 switch (ret) {
1492 case -EIOCBQUEUED:
1493 return ret;
1494 case -ERESTARTSYS:
1495 case -ERESTARTNOINTR:
1496 case -ERESTARTNOHAND:
1497 case -ERESTART_RESTARTBLOCK:
1498 /*
1499 * There's no easy way to restart the syscall since other AIO's
1500 * may be already running. Just fail this IO with EINTR.
1501 */
1502 ret = -EINTR;
1503 /*FALLTHRU*/
1504 default:
1505 aio_complete(req, ret, 0);
1506 return 0;
1507 }
1508 }
1509
1510 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1511 bool compat)
1512 {
1513 struct file *file = req->ki_filp;
1514 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1515 struct iov_iter iter;
1516 ssize_t ret;
1517
1518 if (unlikely(!(file->f_mode & FMODE_READ)))
1519 return -EBADF;
1520 if (unlikely(!file->f_op->read_iter))
1521 return -EINVAL;
1522
1523 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1524 if (ret)
1525 return ret;
1526 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1527 if (!ret)
1528 ret = aio_ret(req, call_read_iter(file, req, &iter));
1529 kfree(iovec);
1530 return ret;
1531 }
1532
1533 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1534 bool compat)
1535 {
1536 struct file *file = req->ki_filp;
1537 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1538 struct iov_iter iter;
1539 ssize_t ret;
1540
1541 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1542 return -EBADF;
1543 if (unlikely(!file->f_op->write_iter))
1544 return -EINVAL;
1545
1546 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1547 if (ret)
1548 return ret;
1549 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1550 if (!ret) {
1551 req->ki_flags |= IOCB_WRITE;
1552 file_start_write(file);
1553 ret = aio_ret(req, call_write_iter(file, req, &iter));
1554 /*
1555 * We release freeze protection in aio_complete(). Fool lockdep
1556 * by telling it the lock got released so that it doesn't
1557 * complain about held lock when we return to userspace.
1558 */
1559 if (S_ISREG(file_inode(file)->i_mode))
1560 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1561 }
1562 kfree(iovec);
1563 return ret;
1564 }
1565
1566 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1567 struct iocb *iocb, bool compat)
1568 {
1569 struct aio_kiocb *req;
1570 struct file *file;
1571 ssize_t ret;
1572
1573 /* enforce forwards compatibility on users */
1574 if (unlikely(iocb->aio_reserved2)) {
1575 pr_debug("EINVAL: reserve field set\n");
1576 return -EINVAL;
1577 }
1578
1579 /* prevent overflows */
1580 if (unlikely(
1581 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1582 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1583 ((ssize_t)iocb->aio_nbytes < 0)
1584 )) {
1585 pr_debug("EINVAL: overflow check\n");
1586 return -EINVAL;
1587 }
1588
1589 req = aio_get_req(ctx);
1590 if (unlikely(!req))
1591 return -EAGAIN;
1592
1593 req->common.ki_filp = file = fget(iocb->aio_fildes);
1594 if (unlikely(!req->common.ki_filp)) {
1595 ret = -EBADF;
1596 goto out_put_req;
1597 }
1598 req->common.ki_pos = iocb->aio_offset;
1599 req->common.ki_complete = aio_complete;
1600 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1601 req->common.ki_hint = file_write_hint(file);
1602
1603 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1604 /*
1605 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1606 * instance of the file* now. The file descriptor must be
1607 * an eventfd() fd, and will be signaled for each completed
1608 * event using the eventfd_signal() function.
1609 */
1610 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1611 if (IS_ERR(req->ki_eventfd)) {
1612 ret = PTR_ERR(req->ki_eventfd);
1613 req->ki_eventfd = NULL;
1614 goto out_put_req;
1615 }
1616
1617 req->common.ki_flags |= IOCB_EVENTFD;
1618 }
1619
1620 ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1621 if (unlikely(ret)) {
1622 pr_debug("EINVAL: aio_rw_flags\n");
1623 goto out_put_req;
1624 }
1625
1626 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1627 if (unlikely(ret)) {
1628 pr_debug("EFAULT: aio_key\n");
1629 goto out_put_req;
1630 }
1631
1632 req->ki_user_iocb = user_iocb;
1633 req->ki_user_data = iocb->aio_data;
1634
1635 get_file(file);
1636 switch (iocb->aio_lio_opcode) {
1637 case IOCB_CMD_PREAD:
1638 ret = aio_read(&req->common, iocb, false, compat);
1639 break;
1640 case IOCB_CMD_PWRITE:
1641 ret = aio_write(&req->common, iocb, false, compat);
1642 break;
1643 case IOCB_CMD_PREADV:
1644 ret = aio_read(&req->common, iocb, true, compat);
1645 break;
1646 case IOCB_CMD_PWRITEV:
1647 ret = aio_write(&req->common, iocb, true, compat);
1648 break;
1649 default:
1650 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1651 ret = -EINVAL;
1652 break;
1653 }
1654 fput(file);
1655
1656 if (ret && ret != -EIOCBQUEUED)
1657 goto out_put_req;
1658 return 0;
1659 out_put_req:
1660 put_reqs_available(ctx, 1);
1661 percpu_ref_put(&ctx->reqs);
1662 kiocb_free(req);
1663 return ret;
1664 }
1665
1666 static long do_io_submit(aio_context_t ctx_id, long nr,
1667 struct iocb __user *__user *iocbpp, bool compat)
1668 {
1669 struct kioctx *ctx;
1670 long ret = 0;
1671 int i = 0;
1672 struct blk_plug plug;
1673
1674 if (unlikely(nr < 0))
1675 return -EINVAL;
1676
1677 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1678 nr = LONG_MAX/sizeof(*iocbpp);
1679
1680 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1681 return -EFAULT;
1682
1683 ctx = lookup_ioctx(ctx_id);
1684 if (unlikely(!ctx)) {
1685 pr_debug("EINVAL: invalid context id\n");
1686 return -EINVAL;
1687 }
1688
1689 blk_start_plug(&plug);
1690
1691 /*
1692 * AKPM: should this return a partial result if some of the IOs were
1693 * successfully submitted?
1694 */
1695 for (i=0; i<nr; i++) {
1696 struct iocb __user *user_iocb;
1697 struct iocb tmp;
1698
1699 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1700 ret = -EFAULT;
1701 break;
1702 }
1703
1704 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1705 ret = -EFAULT;
1706 break;
1707 }
1708
1709 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1710 if (ret)
1711 break;
1712 }
1713 blk_finish_plug(&plug);
1714
1715 percpu_ref_put(&ctx->users);
1716 return i ? i : ret;
1717 }
1718
1719 /* sys_io_submit:
1720 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1721 * the number of iocbs queued. May return -EINVAL if the aio_context
1722 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1723 * *iocbpp[0] is not properly initialized, if the operation specified
1724 * is invalid for the file descriptor in the iocb. May fail with
1725 * -EFAULT if any of the data structures point to invalid data. May
1726 * fail with -EBADF if the file descriptor specified in the first
1727 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1728 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1729 * fail with -ENOSYS if not implemented.
1730 */
1731 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1732 struct iocb __user * __user *, iocbpp)
1733 {
1734 return do_io_submit(ctx_id, nr, iocbpp, 0);
1735 }
1736
1737 #ifdef CONFIG_COMPAT
1738 static inline long
1739 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1740 {
1741 compat_uptr_t uptr;
1742 int i;
1743
1744 for (i = 0; i < nr; ++i) {
1745 if (get_user(uptr, ptr32 + i))
1746 return -EFAULT;
1747 if (put_user(compat_ptr(uptr), ptr64 + i))
1748 return -EFAULT;
1749 }
1750 return 0;
1751 }
1752
1753 #define MAX_AIO_SUBMITS (PAGE_SIZE/sizeof(struct iocb *))
1754
1755 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1756 int, nr, u32 __user *, iocb)
1757 {
1758 struct iocb __user * __user *iocb64;
1759 long ret;
1760
1761 if (unlikely(nr < 0))
1762 return -EINVAL;
1763
1764 if (nr > MAX_AIO_SUBMITS)
1765 nr = MAX_AIO_SUBMITS;
1766
1767 iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1768 ret = copy_iocb(nr, iocb, iocb64);
1769 if (!ret)
1770 ret = do_io_submit(ctx_id, nr, iocb64, 1);
1771 return ret;
1772 }
1773 #endif
1774
1775 /* lookup_kiocb
1776 * Finds a given iocb for cancellation.
1777 */
1778 static struct aio_kiocb *
1779 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1780 {
1781 struct aio_kiocb *kiocb;
1782
1783 assert_spin_locked(&ctx->ctx_lock);
1784
1785 if (key != KIOCB_KEY)
1786 return NULL;
1787
1788 /* TODO: use a hash or array, this sucks. */
1789 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1790 if (kiocb->ki_user_iocb == iocb)
1791 return kiocb;
1792 }
1793 return NULL;
1794 }
1795
1796 /* sys_io_cancel:
1797 * Attempts to cancel an iocb previously passed to io_submit. If
1798 * the operation is successfully cancelled, the resulting event is
1799 * copied into the memory pointed to by result without being placed
1800 * into the completion queue and 0 is returned. May fail with
1801 * -EFAULT if any of the data structures pointed to are invalid.
1802 * May fail with -EINVAL if aio_context specified by ctx_id is
1803 * invalid. May fail with -EAGAIN if the iocb specified was not
1804 * cancelled. Will fail with -ENOSYS if not implemented.
1805 */
1806 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1807 struct io_event __user *, result)
1808 {
1809 struct kioctx *ctx;
1810 struct aio_kiocb *kiocb;
1811 u32 key;
1812 int ret;
1813
1814 ret = get_user(key, &iocb->aio_key);
1815 if (unlikely(ret))
1816 return -EFAULT;
1817
1818 ctx = lookup_ioctx(ctx_id);
1819 if (unlikely(!ctx))
1820 return -EINVAL;
1821
1822 spin_lock_irq(&ctx->ctx_lock);
1823
1824 kiocb = lookup_kiocb(ctx, iocb, key);
1825 if (kiocb)
1826 ret = kiocb_cancel(kiocb);
1827 else
1828 ret = -EINVAL;
1829
1830 spin_unlock_irq(&ctx->ctx_lock);
1831
1832 if (!ret) {
1833 /*
1834 * The result argument is no longer used - the io_event is
1835 * always delivered via the ring buffer. -EINPROGRESS indicates
1836 * cancellation is progress:
1837 */
1838 ret = -EINPROGRESS;
1839 }
1840
1841 percpu_ref_put(&ctx->users);
1842
1843 return ret;
1844 }
1845
1846 /* io_getevents:
1847 * Attempts to read at least min_nr events and up to nr events from
1848 * the completion queue for the aio_context specified by ctx_id. If
1849 * it succeeds, the number of read events is returned. May fail with
1850 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1851 * out of range, if timeout is out of range. May fail with -EFAULT
1852 * if any of the memory specified is invalid. May return 0 or
1853 * < min_nr if the timeout specified by timeout has elapsed
1854 * before sufficient events are available, where timeout == NULL
1855 * specifies an infinite timeout. Note that the timeout pointed to by
1856 * timeout is relative. Will fail with -ENOSYS if not implemented.
1857 */
1858 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1859 long, min_nr,
1860 long, nr,
1861 struct io_event __user *, events,
1862 struct timespec __user *, timeout)
1863 {
1864 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1865 long ret = -EINVAL;
1866
1867 if (likely(ioctx)) {
1868 if (likely(min_nr <= nr && min_nr >= 0))
1869 ret = read_events(ioctx, min_nr, nr, events, timeout);
1870 percpu_ref_put(&ioctx->users);
1871 }
1872 return ret;
1873 }
1874
1875 #ifdef CONFIG_COMPAT
1876 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1877 compat_long_t, min_nr,
1878 compat_long_t, nr,
1879 struct io_event __user *, events,
1880 struct compat_timespec __user *, timeout)
1881 {
1882 struct timespec t;
1883 struct timespec __user *ut = NULL;
1884
1885 if (timeout) {
1886 if (compat_get_timespec(&t, timeout))
1887 return -EFAULT;
1888
1889 ut = compat_alloc_user_space(sizeof(*ut));
1890 if (copy_to_user(ut, &t, sizeof(t)))
1891 return -EFAULT;
1892 }
1893 return sys_io_getevents(ctx_id, min_nr, nr, events, ut);
1894 }
1895 #endif