tcp: fastopen: fix on syn-data transmit failure
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 4194304; // 4MB, For_WiFi_Throughput_enhancement
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism. */
138 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
139 {
140 struct tcp_sock *tp = tcp_sk(sk);
141 s32 delta = tcp_time_stamp - tp->lsndtime;
142 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (sysctl_tcp_slow_start_after_idle &&
165 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
166 tcp_cwnd_restart(sk, __sk_dst_get(sk));
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183
184 /* Determine a window scaling and initial window to offer.
185 * Based on the assumption that the given amount of space
186 * will be offered. Store the results in the tp structure.
187 * NOTE: for smooth operation initial space offering should
188 * be a multiple of mss if possible. We assume here that mss >= 1.
189 * This MUST be enforced by all callers.
190 */
191 void tcp_select_initial_window(int __space, __u32 mss,
192 __u32 *rcv_wnd, __u32 *window_clamp,
193 int wscale_ok, __u8 *rcv_wscale,
194 __u32 init_rcv_wnd)
195 {
196 unsigned int space = (__space < 0 ? 0 : __space);
197
198 /* If no clamp set the clamp to the max possible scaled window */
199 if (*window_clamp == 0)
200 (*window_clamp) = (65535 << 14);
201 space = min(*window_clamp, space);
202
203 /* Quantize space offering to a multiple of mss if possible. */
204 if (space > mss)
205 space = (space / mss) * mss;
206
207 /* NOTE: offering an initial window larger than 32767
208 * will break some buggy TCP stacks. If the admin tells us
209 * it is likely we could be speaking with such a buggy stack
210 * we will truncate our initial window offering to 32K-1
211 * unless the remote has sent us a window scaling option,
212 * which we interpret as a sign the remote TCP is not
213 * misinterpreting the window field as a signed quantity.
214 */
215 if (sysctl_tcp_workaround_signed_windows)
216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
217 else
218 (*rcv_wnd) = space;
219
220 (*rcv_wscale) = 0;
221 if (wscale_ok) {
222 /* Set window scaling on max possible window
223 * See RFC1323 for an explanation of the limit to 14
224 */
225 space = max_t(u32, space, sysctl_tcp_rmem[2]);
226 space = max_t(u32, space, sysctl_rmem_max);
227 space = min_t(u32, space, *window_clamp);
228 while (space > 65535 && (*rcv_wscale) < 14) {
229 space >>= 1;
230 (*rcv_wscale)++;
231 }
232 }
233
234 /* Set initial window to a value enough for senders starting with
235 * initial congestion window of sysctl_tcp_default_init_rwnd. Place
236 * a limit on the initial window when mss is larger than 1460.
237 */
238 if (mss > (1 << *rcv_wscale)) {
239 int init_cwnd = sysctl_tcp_default_init_rwnd;
240 if (mss > 1460)
241 init_cwnd = max_t(u32, (1460 * init_cwnd) / mss, 2);
242 /* when initializing use the value from init_rcv_wnd
243 * rather than the default from above
244 */
245 if (init_rcv_wnd)
246 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
247 else
248 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
249 }
250
251 /* Set the clamp no higher than max representable value */
252 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
253 }
254 EXPORT_SYMBOL(tcp_select_initial_window);
255
256 /* Chose a new window to advertise, update state in tcp_sock for the
257 * socket, and return result with RFC1323 scaling applied. The return
258 * value can be stuffed directly into th->window for an outgoing
259 * frame.
260 */
261 static u16 tcp_select_window(struct sock *sk)
262 {
263 struct tcp_sock *tp = tcp_sk(sk);
264 u32 cur_win = tcp_receive_window(tp);
265 u32 new_win = __tcp_select_window(sk);
266
267 /* Never shrink the offered window */
268 if (new_win < cur_win) {
269 /* Danger Will Robinson!
270 * Don't update rcv_wup/rcv_wnd here or else
271 * we will not be able to advertise a zero
272 * window in time. --DaveM
273 *
274 * Relax Will Robinson.
275 */
276 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
277 }
278 tp->rcv_wnd = new_win;
279 tp->rcv_wup = tp->rcv_nxt;
280
281 /* Make sure we do not exceed the maximum possible
282 * scaled window.
283 */
284 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
285 new_win = min(new_win, MAX_TCP_WINDOW);
286 else
287 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
288
289 /* RFC1323 scaling applied */
290 new_win >>= tp->rx_opt.rcv_wscale;
291
292 /* If we advertise zero window, disable fast path. */
293 if (new_win == 0)
294 tp->pred_flags = 0;
295
296 return new_win;
297 }
298
299 /* Packet ECN state for a SYN-ACK */
300 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
301 {
302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
303 if (!(tp->ecn_flags & TCP_ECN_OK))
304 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
305 }
306
307 /* Packet ECN state for a SYN. */
308 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
309 {
310 struct tcp_sock *tp = tcp_sk(sk);
311
312 tp->ecn_flags = 0;
313 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
314 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
315 tp->ecn_flags = TCP_ECN_OK;
316 }
317 }
318
319 static __inline__ void
320 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
321 {
322 if (inet_rsk(req)->ecn_ok)
323 th->ece = 1;
324 }
325
326 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
327 * be sent.
328 */
329 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
330 int tcp_header_len)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333
334 if (tp->ecn_flags & TCP_ECN_OK) {
335 /* Not-retransmitted data segment: set ECT and inject CWR. */
336 if (skb->len != tcp_header_len &&
337 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
338 INET_ECN_xmit(sk);
339 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
340 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
341 tcp_hdr(skb)->cwr = 1;
342 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
343 }
344 } else {
345 /* ACK or retransmitted segment: clear ECT|CE */
346 INET_ECN_dontxmit(sk);
347 }
348 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
349 tcp_hdr(skb)->ece = 1;
350 }
351 }
352
353 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
354 * auto increment end seqno.
355 */
356 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
357 {
358 skb->ip_summed = CHECKSUM_PARTIAL;
359 skb->csum = 0;
360
361 TCP_SKB_CB(skb)->tcp_flags = flags;
362 TCP_SKB_CB(skb)->sacked = 0;
363
364 skb_shinfo(skb)->gso_segs = 1;
365 skb_shinfo(skb)->gso_size = 0;
366 skb_shinfo(skb)->gso_type = 0;
367
368 TCP_SKB_CB(skb)->seq = seq;
369 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
370 seq++;
371 TCP_SKB_CB(skb)->end_seq = seq;
372 }
373
374 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
375 {
376 return tp->snd_una != tp->snd_up;
377 }
378
379 #define OPTION_SACK_ADVERTISE (1 << 0)
380 #define OPTION_TS (1 << 1)
381 #define OPTION_MD5 (1 << 2)
382 #define OPTION_WSCALE (1 << 3)
383 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
384
385 struct tcp_out_options {
386 u16 options; /* bit field of OPTION_* */
387 u16 mss; /* 0 to disable */
388 u8 ws; /* window scale, 0 to disable */
389 u8 num_sack_blocks; /* number of SACK blocks to include */
390 u8 hash_size; /* bytes in hash_location */
391 __u8 *hash_location; /* temporary pointer, overloaded */
392 __u32 tsval, tsecr; /* need to include OPTION_TS */
393 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
394 };
395
396 /* Write previously computed TCP options to the packet.
397 *
398 * Beware: Something in the Internet is very sensitive to the ordering of
399 * TCP options, we learned this through the hard way, so be careful here.
400 * Luckily we can at least blame others for their non-compliance but from
401 * inter-operatibility perspective it seems that we're somewhat stuck with
402 * the ordering which we have been using if we want to keep working with
403 * those broken things (not that it currently hurts anybody as there isn't
404 * particular reason why the ordering would need to be changed).
405 *
406 * At least SACK_PERM as the first option is known to lead to a disaster
407 * (but it may well be that other scenarios fail similarly).
408 */
409 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
410 struct tcp_out_options *opts)
411 {
412 u16 options = opts->options; /* mungable copy */
413
414 if (unlikely(OPTION_MD5 & options)) {
415 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
416 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
417 /* overload cookie hash location */
418 opts->hash_location = (__u8 *)ptr;
419 ptr += 4;
420 }
421
422 if (unlikely(opts->mss)) {
423 *ptr++ = htonl((TCPOPT_MSS << 24) |
424 (TCPOLEN_MSS << 16) |
425 opts->mss);
426 }
427
428 if (likely(OPTION_TS & options)) {
429 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
430 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
431 (TCPOLEN_SACK_PERM << 16) |
432 (TCPOPT_TIMESTAMP << 8) |
433 TCPOLEN_TIMESTAMP);
434 options &= ~OPTION_SACK_ADVERTISE;
435 } else {
436 *ptr++ = htonl((TCPOPT_NOP << 24) |
437 (TCPOPT_NOP << 16) |
438 (TCPOPT_TIMESTAMP << 8) |
439 TCPOLEN_TIMESTAMP);
440 }
441 *ptr++ = htonl(opts->tsval);
442 *ptr++ = htonl(opts->tsecr);
443 }
444
445 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
446 *ptr++ = htonl((TCPOPT_NOP << 24) |
447 (TCPOPT_NOP << 16) |
448 (TCPOPT_SACK_PERM << 8) |
449 TCPOLEN_SACK_PERM);
450 }
451
452 if (unlikely(OPTION_WSCALE & options)) {
453 *ptr++ = htonl((TCPOPT_NOP << 24) |
454 (TCPOPT_WINDOW << 16) |
455 (TCPOLEN_WINDOW << 8) |
456 opts->ws);
457 }
458
459 if (unlikely(opts->num_sack_blocks)) {
460 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
461 tp->duplicate_sack : tp->selective_acks;
462 int this_sack;
463
464 *ptr++ = htonl((TCPOPT_NOP << 24) |
465 (TCPOPT_NOP << 16) |
466 (TCPOPT_SACK << 8) |
467 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
468 TCPOLEN_SACK_PERBLOCK)));
469
470 for (this_sack = 0; this_sack < opts->num_sack_blocks;
471 ++this_sack) {
472 *ptr++ = htonl(sp[this_sack].start_seq);
473 *ptr++ = htonl(sp[this_sack].end_seq);
474 }
475
476 tp->rx_opt.dsack = 0;
477 }
478
479 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
480 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
481
482 *ptr++ = htonl((TCPOPT_EXP << 24) |
483 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
484 TCPOPT_FASTOPEN_MAGIC);
485
486 memcpy(ptr, foc->val, foc->len);
487 if ((foc->len & 3) == 2) {
488 u8 *align = ((u8 *)ptr) + foc->len;
489 align[0] = align[1] = TCPOPT_NOP;
490 }
491 ptr += (foc->len + 3) >> 2;
492 }
493 }
494
495 /* Compute TCP options for SYN packets. This is not the final
496 * network wire format yet.
497 */
498 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
499 struct tcp_out_options *opts,
500 struct tcp_md5sig_key **md5)
501 {
502 struct tcp_sock *tp = tcp_sk(sk);
503 unsigned int remaining = MAX_TCP_OPTION_SPACE;
504 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
505
506 #ifdef CONFIG_TCP_MD5SIG
507 *md5 = tp->af_specific->md5_lookup(sk, sk);
508 if (*md5) {
509 opts->options |= OPTION_MD5;
510 remaining -= TCPOLEN_MD5SIG_ALIGNED;
511 }
512 #else
513 *md5 = NULL;
514 #endif
515
516 /* We always get an MSS option. The option bytes which will be seen in
517 * normal data packets should timestamps be used, must be in the MSS
518 * advertised. But we subtract them from tp->mss_cache so that
519 * calculations in tcp_sendmsg are simpler etc. So account for this
520 * fact here if necessary. If we don't do this correctly, as a
521 * receiver we won't recognize data packets as being full sized when we
522 * should, and thus we won't abide by the delayed ACK rules correctly.
523 * SACKs don't matter, we never delay an ACK when we have any of those
524 * going out. */
525 opts->mss = tcp_advertise_mss(sk);
526 remaining -= TCPOLEN_MSS_ALIGNED;
527
528 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
529 opts->options |= OPTION_TS;
530 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
531 opts->tsecr = tp->rx_opt.ts_recent;
532 remaining -= TCPOLEN_TSTAMP_ALIGNED;
533 }
534 if (likely(sysctl_tcp_window_scaling)) {
535 opts->ws = tp->rx_opt.rcv_wscale;
536 opts->options |= OPTION_WSCALE;
537 remaining -= TCPOLEN_WSCALE_ALIGNED;
538 }
539 if (likely(sysctl_tcp_sack)) {
540 opts->options |= OPTION_SACK_ADVERTISE;
541 if (unlikely(!(OPTION_TS & opts->options)))
542 remaining -= TCPOLEN_SACKPERM_ALIGNED;
543 }
544
545 if (fastopen && fastopen->cookie.len >= 0) {
546 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
547 need = (need + 3) & ~3U; /* Align to 32 bits */
548 if (remaining >= need) {
549 opts->options |= OPTION_FAST_OPEN_COOKIE;
550 opts->fastopen_cookie = &fastopen->cookie;
551 remaining -= need;
552 tp->syn_fastopen = 1;
553 }
554 }
555
556 return MAX_TCP_OPTION_SPACE - remaining;
557 }
558
559 /* Set up TCP options for SYN-ACKs. */
560 static unsigned int tcp_synack_options(struct sock *sk,
561 struct request_sock *req,
562 unsigned int mss, struct sk_buff *skb,
563 struct tcp_out_options *opts,
564 struct tcp_md5sig_key **md5,
565 struct tcp_fastopen_cookie *foc)
566 {
567 struct inet_request_sock *ireq = inet_rsk(req);
568 unsigned int remaining = MAX_TCP_OPTION_SPACE;
569
570 #ifdef CONFIG_TCP_MD5SIG
571 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
572 if (*md5) {
573 opts->options |= OPTION_MD5;
574 remaining -= TCPOLEN_MD5SIG_ALIGNED;
575
576 /* We can't fit any SACK blocks in a packet with MD5 + TS
577 * options. There was discussion about disabling SACK
578 * rather than TS in order to fit in better with old,
579 * buggy kernels, but that was deemed to be unnecessary.
580 */
581 ireq->tstamp_ok &= !ireq->sack_ok;
582 }
583 #else
584 *md5 = NULL;
585 #endif
586
587 /* We always send an MSS option. */
588 opts->mss = mss;
589 remaining -= TCPOLEN_MSS_ALIGNED;
590
591 if (likely(ireq->wscale_ok)) {
592 opts->ws = ireq->rcv_wscale;
593 opts->options |= OPTION_WSCALE;
594 remaining -= TCPOLEN_WSCALE_ALIGNED;
595 }
596 if (likely(ireq->tstamp_ok)) {
597 opts->options |= OPTION_TS;
598 opts->tsval = TCP_SKB_CB(skb)->when;
599 opts->tsecr = req->ts_recent;
600 remaining -= TCPOLEN_TSTAMP_ALIGNED;
601 }
602 if (likely(ireq->sack_ok)) {
603 opts->options |= OPTION_SACK_ADVERTISE;
604 if (unlikely(!ireq->tstamp_ok))
605 remaining -= TCPOLEN_SACKPERM_ALIGNED;
606 }
607 if (foc != NULL) {
608 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
609 need = (need + 3) & ~3U; /* Align to 32 bits */
610 if (remaining >= need) {
611 opts->options |= OPTION_FAST_OPEN_COOKIE;
612 opts->fastopen_cookie = foc;
613 remaining -= need;
614 }
615 }
616
617 return MAX_TCP_OPTION_SPACE - remaining;
618 }
619
620 /* Compute TCP options for ESTABLISHED sockets. This is not the
621 * final wire format yet.
622 */
623 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
624 struct tcp_out_options *opts,
625 struct tcp_md5sig_key **md5)
626 {
627 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
628 struct tcp_sock *tp = tcp_sk(sk);
629 unsigned int size = 0;
630 unsigned int eff_sacks;
631
632 #ifdef CONFIG_TCP_MD5SIG
633 *md5 = tp->af_specific->md5_lookup(sk, sk);
634 if (unlikely(*md5)) {
635 opts->options |= OPTION_MD5;
636 size += TCPOLEN_MD5SIG_ALIGNED;
637 }
638 #else
639 *md5 = NULL;
640 #endif
641
642 if (likely(tp->rx_opt.tstamp_ok)) {
643 opts->options |= OPTION_TS;
644 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
645 opts->tsecr = tp->rx_opt.ts_recent;
646 size += TCPOLEN_TSTAMP_ALIGNED;
647 }
648
649 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
650 if (unlikely(eff_sacks)) {
651 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
652 opts->num_sack_blocks =
653 min_t(unsigned int, eff_sacks,
654 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
655 TCPOLEN_SACK_PERBLOCK);
656 size += TCPOLEN_SACK_BASE_ALIGNED +
657 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
658 }
659
660 return size;
661 }
662
663
664 /* TCP SMALL QUEUES (TSQ)
665 *
666 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
667 * to reduce RTT and bufferbloat.
668 * We do this using a special skb destructor (tcp_wfree).
669 *
670 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
671 * needs to be reallocated in a driver.
672 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
673 *
674 * Since transmit from skb destructor is forbidden, we use a tasklet
675 * to process all sockets that eventually need to send more skbs.
676 * We use one tasklet per cpu, with its own queue of sockets.
677 */
678 struct tsq_tasklet {
679 struct tasklet_struct tasklet;
680 struct list_head head; /* queue of tcp sockets */
681 };
682 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
683
684 static void tcp_tsq_handler(struct sock *sk)
685 {
686 if ((1 << sk->sk_state) &
687 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
688 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
689 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
690 0, GFP_ATOMIC);
691 }
692 /*
693 * One tasklest per cpu tries to send more skbs.
694 * We run in tasklet context but need to disable irqs when
695 * transfering tsq->head because tcp_wfree() might
696 * interrupt us (non NAPI drivers)
697 */
698 static void tcp_tasklet_func(unsigned long data)
699 {
700 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
701 LIST_HEAD(list);
702 unsigned long flags;
703 struct list_head *q, *n;
704 struct tcp_sock *tp;
705 struct sock *sk;
706
707 local_irq_save(flags);
708 list_splice_init(&tsq->head, &list);
709 local_irq_restore(flags);
710
711 list_for_each_safe(q, n, &list) {
712 tp = list_entry(q, struct tcp_sock, tsq_node);
713 list_del(&tp->tsq_node);
714
715 sk = (struct sock *)tp;
716 bh_lock_sock(sk);
717
718 if (!sock_owned_by_user(sk)) {
719 tcp_tsq_handler(sk);
720 } else {
721 /* defer the work to tcp_release_cb() */
722 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
723 }
724 bh_unlock_sock(sk);
725
726 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
727 sk_free(sk);
728 }
729 }
730
731 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
732 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
733 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
734 (1UL << TCP_MTU_REDUCED_DEFERRED))
735 /**
736 * tcp_release_cb - tcp release_sock() callback
737 * @sk: socket
738 *
739 * called from release_sock() to perform protocol dependent
740 * actions before socket release.
741 */
742 void tcp_release_cb(struct sock *sk)
743 {
744 struct tcp_sock *tp = tcp_sk(sk);
745 unsigned long flags, nflags;
746
747 /* perform an atomic operation only if at least one flag is set */
748 do {
749 flags = tp->tsq_flags;
750 if (!(flags & TCP_DEFERRED_ALL))
751 return;
752 nflags = flags & ~TCP_DEFERRED_ALL;
753 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
754
755 if (flags & (1UL << TCP_TSQ_DEFERRED))
756 tcp_tsq_handler(sk);
757
758 /* Here begins the tricky part :
759 * We are called from release_sock() with :
760 * 1) BH disabled
761 * 2) sk_lock.slock spinlock held
762 * 3) socket owned by us (sk->sk_lock.owned == 1)
763 *
764 * But following code is meant to be called from BH handlers,
765 * so we should keep BH disabled, but early release socket ownership
766 */
767 sock_release_ownership(sk);
768
769 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
770 tcp_write_timer_handler(sk);
771 __sock_put(sk);
772 }
773 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
774 tcp_delack_timer_handler(sk);
775 __sock_put(sk);
776 }
777 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
778 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
779 __sock_put(sk);
780 }
781 }
782 EXPORT_SYMBOL(tcp_release_cb);
783
784 void __init tcp_tasklet_init(void)
785 {
786 int i;
787
788 for_each_possible_cpu(i) {
789 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
790
791 INIT_LIST_HEAD(&tsq->head);
792 tasklet_init(&tsq->tasklet,
793 tcp_tasklet_func,
794 (unsigned long)tsq);
795 }
796 }
797
798 /*
799 * Write buffer destructor automatically called from kfree_skb.
800 * We cant xmit new skbs from this context, as we might already
801 * hold qdisc lock.
802 */
803 void tcp_wfree(struct sk_buff *skb)
804 {
805 struct sock *sk = skb->sk;
806 struct tcp_sock *tp = tcp_sk(sk);
807
808 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
809 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
810 unsigned long flags;
811 struct tsq_tasklet *tsq;
812
813 /* Keep a ref on socket.
814 * This last ref will be released in tcp_tasklet_func()
815 */
816 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
817
818 /* queue this socket to tasklet queue */
819 local_irq_save(flags);
820 tsq = &__get_cpu_var(tsq_tasklet);
821 list_add(&tp->tsq_node, &tsq->head);
822 tasklet_schedule(&tsq->tasklet);
823 local_irq_restore(flags);
824 } else {
825 sock_wfree(skb);
826 }
827 }
828
829 /* This routine actually transmits TCP packets queued in by
830 * tcp_do_sendmsg(). This is used by both the initial
831 * transmission and possible later retransmissions.
832 * All SKB's seen here are completely headerless. It is our
833 * job to build the TCP header, and pass the packet down to
834 * IP so it can do the same plus pass the packet off to the
835 * device.
836 *
837 * We are working here with either a clone of the original
838 * SKB, or a fresh unique copy made by the retransmit engine.
839 */
840 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
841 gfp_t gfp_mask)
842 {
843 const struct inet_connection_sock *icsk = inet_csk(sk);
844 struct inet_sock *inet;
845 struct tcp_sock *tp;
846 struct tcp_skb_cb *tcb;
847 struct tcp_out_options opts;
848 unsigned int tcp_options_size, tcp_header_size;
849 struct tcp_md5sig_key *md5;
850 struct tcphdr *th;
851 int err;
852
853 BUG_ON(!skb || !tcp_skb_pcount(skb));
854
855 /* If congestion control is doing timestamping, we must
856 * take such a timestamp before we potentially clone/copy.
857 */
858 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
859 __net_timestamp(skb);
860
861 if (likely(clone_it)) {
862 const struct sk_buff *fclone = skb + 1;
863
864 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
865 fclone->fclone == SKB_FCLONE_CLONE))
866 NET_INC_STATS_BH(sock_net(sk),
867 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
868
869 if (unlikely(skb_cloned(skb)))
870 skb = pskb_copy(skb, gfp_mask);
871 else
872 skb = skb_clone(skb, gfp_mask);
873 if (unlikely(!skb))
874 return -ENOBUFS;
875 }
876
877 inet = inet_sk(sk);
878 tp = tcp_sk(sk);
879 tcb = TCP_SKB_CB(skb);
880 memset(&opts, 0, sizeof(opts));
881
882 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
883 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
884 else
885 tcp_options_size = tcp_established_options(sk, skb, &opts,
886 &md5);
887 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
888
889 if (tcp_packets_in_flight(tp) == 0)
890 tcp_ca_event(sk, CA_EVENT_TX_START);
891
892 /* if no packet is in qdisc/device queue, then allow XPS to select
893 * another queue.
894 */
895 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
896
897 skb_push(skb, tcp_header_size);
898 skb_reset_transport_header(skb);
899
900 skb_orphan(skb);
901 skb->sk = sk;
902 skb->destructor = tcp_wfree;
903 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
904
905 /* Build TCP header and checksum it. */
906 th = tcp_hdr(skb);
907 th->source = inet->inet_sport;
908 th->dest = inet->inet_dport;
909 th->seq = htonl(tcb->seq);
910 th->ack_seq = htonl(tp->rcv_nxt);
911 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
912 tcb->tcp_flags);
913
914 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
915 /* RFC1323: The window in SYN & SYN/ACK segments
916 * is never scaled.
917 */
918 th->window = htons(min(tp->rcv_wnd, 65535U));
919 } else {
920 th->window = htons(tcp_select_window(sk));
921 }
922 th->check = 0;
923 th->urg_ptr = 0;
924
925 /* The urg_mode check is necessary during a below snd_una win probe */
926 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
927 if (before(tp->snd_up, tcb->seq + 0x10000)) {
928 th->urg_ptr = htons(tp->snd_up - tcb->seq);
929 th->urg = 1;
930 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
931 th->urg_ptr = htons(0xFFFF);
932 th->urg = 1;
933 }
934 }
935
936 tcp_options_write((__be32 *)(th + 1), tp, &opts);
937 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
938 TCP_ECN_send(sk, skb, tcp_header_size);
939
940 #ifdef CONFIG_TCP_MD5SIG
941 /* Calculate the MD5 hash, as we have all we need now */
942 if (md5) {
943 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
944 tp->af_specific->calc_md5_hash(opts.hash_location,
945 md5, sk, NULL, skb);
946 }
947 #endif
948
949 icsk->icsk_af_ops->send_check(sk, skb);
950
951 if (likely(tcb->tcp_flags & TCPHDR_ACK))
952 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
953
954 if (skb->len != tcp_header_size)
955 tcp_event_data_sent(tp, sk);
956
957 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
958 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
959 tcp_skb_pcount(skb));
960
961 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
962 if (likely(err <= 0))
963 return err;
964
965 tcp_enter_cwr(sk, 1);
966
967 return net_xmit_eval(err);
968 }
969
970 /* This routine just queues the buffer for sending.
971 *
972 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
973 * otherwise socket can stall.
974 */
975 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
976 {
977 struct tcp_sock *tp = tcp_sk(sk);
978
979 /* Advance write_seq and place onto the write_queue. */
980 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
981 skb_header_release(skb);
982 tcp_add_write_queue_tail(sk, skb);
983 sk->sk_wmem_queued += skb->truesize;
984 sk_mem_charge(sk, skb->truesize);
985 }
986
987 /* Initialize TSO segments for a packet. */
988 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
989 unsigned int mss_now)
990 {
991 /* Make sure we own this skb before messing gso_size/gso_segs */
992 WARN_ON_ONCE(skb_cloned(skb));
993
994 if (skb->len <= mss_now || !sk_can_gso(sk) ||
995 skb->ip_summed == CHECKSUM_NONE) {
996 /* Avoid the costly divide in the normal
997 * non-TSO case.
998 */
999 skb_shinfo(skb)->gso_segs = 1;
1000 skb_shinfo(skb)->gso_size = 0;
1001 skb_shinfo(skb)->gso_type = 0;
1002 } else {
1003 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1004 skb_shinfo(skb)->gso_size = mss_now;
1005 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1006 }
1007 }
1008
1009 /* When a modification to fackets out becomes necessary, we need to check
1010 * skb is counted to fackets_out or not.
1011 */
1012 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1013 int decr)
1014 {
1015 struct tcp_sock *tp = tcp_sk(sk);
1016
1017 if (!tp->sacked_out || tcp_is_reno(tp))
1018 return;
1019
1020 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1021 tp->fackets_out -= decr;
1022 }
1023
1024 /* Pcount in the middle of the write queue got changed, we need to do various
1025 * tweaks to fix counters
1026 */
1027 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1028 {
1029 struct tcp_sock *tp = tcp_sk(sk);
1030
1031 tp->packets_out -= decr;
1032
1033 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1034 tp->sacked_out -= decr;
1035 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1036 tp->retrans_out -= decr;
1037 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1038 tp->lost_out -= decr;
1039
1040 /* Reno case is special. Sigh... */
1041 if (tcp_is_reno(tp) && decr > 0)
1042 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1043
1044 tcp_adjust_fackets_out(sk, skb, decr);
1045
1046 if (tp->lost_skb_hint &&
1047 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1048 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1049 tp->lost_cnt_hint -= decr;
1050
1051 tcp_verify_left_out(tp);
1052 }
1053
1054 /* Function to create two new TCP segments. Shrinks the given segment
1055 * to the specified size and appends a new segment with the rest of the
1056 * packet to the list. This won't be called frequently, I hope.
1057 * Remember, these are still headerless SKBs at this point.
1058 */
1059 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1060 unsigned int mss_now)
1061 {
1062 struct tcp_sock *tp = tcp_sk(sk);
1063 struct sk_buff *buff;
1064 int nsize, old_factor;
1065 int nlen;
1066 u8 flags;
1067
1068 if (WARN_ON(len > skb->len))
1069 return -EINVAL;
1070
1071 nsize = skb_headlen(skb) - len;
1072 if (nsize < 0)
1073 nsize = 0;
1074
1075 if (skb_unclone(skb, GFP_ATOMIC))
1076 return -ENOMEM;
1077
1078 /* Get a new skb... force flag on. */
1079 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1080 if (buff == NULL)
1081 return -ENOMEM; /* We'll just try again later. */
1082
1083 sk->sk_wmem_queued += buff->truesize;
1084 sk_mem_charge(sk, buff->truesize);
1085 nlen = skb->len - len - nsize;
1086 buff->truesize += nlen;
1087 skb->truesize -= nlen;
1088
1089 /* Correct the sequence numbers. */
1090 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1091 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1092 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1093
1094 /* PSH and FIN should only be set in the second packet. */
1095 flags = TCP_SKB_CB(skb)->tcp_flags;
1096 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1097 TCP_SKB_CB(buff)->tcp_flags = flags;
1098 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1099
1100 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1101 /* Copy and checksum data tail into the new buffer. */
1102 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1103 skb_put(buff, nsize),
1104 nsize, 0);
1105
1106 skb_trim(skb, len);
1107
1108 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1109 } else {
1110 skb->ip_summed = CHECKSUM_PARTIAL;
1111 skb_split(skb, buff, len);
1112 }
1113
1114 buff->ip_summed = skb->ip_summed;
1115
1116 /* Looks stupid, but our code really uses when of
1117 * skbs, which it never sent before. --ANK
1118 */
1119 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1120 buff->tstamp = skb->tstamp;
1121
1122 old_factor = tcp_skb_pcount(skb);
1123
1124 /* Fix up tso_factor for both original and new SKB. */
1125 tcp_set_skb_tso_segs(sk, skb, mss_now);
1126 tcp_set_skb_tso_segs(sk, buff, mss_now);
1127
1128 /* If this packet has been sent out already, we must
1129 * adjust the various packet counters.
1130 */
1131 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1132 int diff = old_factor - tcp_skb_pcount(skb) -
1133 tcp_skb_pcount(buff);
1134
1135 if (diff)
1136 tcp_adjust_pcount(sk, skb, diff);
1137 }
1138
1139 /* Link BUFF into the send queue. */
1140 skb_header_release(buff);
1141 tcp_insert_write_queue_after(skb, buff, sk);
1142
1143 return 0;
1144 }
1145
1146 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1147 * eventually). The difference is that pulled data not copied, but
1148 * immediately discarded.
1149 */
1150 static void __pskb_trim_head(struct sk_buff *skb, int len)
1151 {
1152 int i, k, eat;
1153
1154 eat = min_t(int, len, skb_headlen(skb));
1155 if (eat) {
1156 __skb_pull(skb, eat);
1157 len -= eat;
1158 if (!len)
1159 return;
1160 }
1161 eat = len;
1162 k = 0;
1163 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1164 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1165
1166 if (size <= eat) {
1167 skb_frag_unref(skb, i);
1168 eat -= size;
1169 } else {
1170 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1171 if (eat) {
1172 skb_shinfo(skb)->frags[k].page_offset += eat;
1173 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1174 eat = 0;
1175 }
1176 k++;
1177 }
1178 }
1179 skb_shinfo(skb)->nr_frags = k;
1180
1181 skb_reset_tail_pointer(skb);
1182 skb->data_len -= len;
1183 skb->len = skb->data_len;
1184 }
1185
1186 /* Remove acked data from a packet in the transmit queue. */
1187 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1188 {
1189 if (skb_unclone(skb, GFP_ATOMIC))
1190 return -ENOMEM;
1191
1192 __pskb_trim_head(skb, len);
1193
1194 TCP_SKB_CB(skb)->seq += len;
1195 skb->ip_summed = CHECKSUM_PARTIAL;
1196
1197 skb->truesize -= len;
1198 sk->sk_wmem_queued -= len;
1199 sk_mem_uncharge(sk, len);
1200 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1201
1202 /* Any change of skb->len requires recalculation of tso factor. */
1203 if (tcp_skb_pcount(skb) > 1)
1204 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1205
1206 return 0;
1207 }
1208
1209 /* Calculate MSS not accounting any TCP options. */
1210 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1211 {
1212 const struct tcp_sock *tp = tcp_sk(sk);
1213 const struct inet_connection_sock *icsk = inet_csk(sk);
1214 int mss_now;
1215
1216 /* Calculate base mss without TCP options:
1217 It is MMS_S - sizeof(tcphdr) of rfc1122
1218 */
1219 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1220
1221 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1222 if (icsk->icsk_af_ops->net_frag_header_len) {
1223 const struct dst_entry *dst = __sk_dst_get(sk);
1224
1225 if (dst && dst_allfrag(dst))
1226 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1227 }
1228
1229 /* Clamp it (mss_clamp does not include tcp options) */
1230 if (mss_now > tp->rx_opt.mss_clamp)
1231 mss_now = tp->rx_opt.mss_clamp;
1232
1233 /* Now subtract optional transport overhead */
1234 mss_now -= icsk->icsk_ext_hdr_len;
1235
1236 /* Then reserve room for full set of TCP options and 8 bytes of data */
1237 if (mss_now < 48)
1238 mss_now = 48;
1239 return mss_now;
1240 }
1241
1242 /* Calculate MSS. Not accounting for SACKs here. */
1243 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1244 {
1245 /* Subtract TCP options size, not including SACKs */
1246 return __tcp_mtu_to_mss(sk, pmtu) -
1247 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1248 }
1249
1250 /* Inverse of above */
1251 int tcp_mss_to_mtu(struct sock *sk, int mss)
1252 {
1253 const struct tcp_sock *tp = tcp_sk(sk);
1254 const struct inet_connection_sock *icsk = inet_csk(sk);
1255 int mtu;
1256
1257 mtu = mss +
1258 tp->tcp_header_len +
1259 icsk->icsk_ext_hdr_len +
1260 icsk->icsk_af_ops->net_header_len;
1261
1262 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1263 if (icsk->icsk_af_ops->net_frag_header_len) {
1264 const struct dst_entry *dst = __sk_dst_get(sk);
1265
1266 if (dst && dst_allfrag(dst))
1267 mtu += icsk->icsk_af_ops->net_frag_header_len;
1268 }
1269 return mtu;
1270 }
1271
1272 /* MTU probing init per socket */
1273 void tcp_mtup_init(struct sock *sk)
1274 {
1275 struct tcp_sock *tp = tcp_sk(sk);
1276 struct inet_connection_sock *icsk = inet_csk(sk);
1277
1278 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1279 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1280 icsk->icsk_af_ops->net_header_len;
1281 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1282 icsk->icsk_mtup.probe_size = 0;
1283 }
1284 EXPORT_SYMBOL(tcp_mtup_init);
1285
1286 /* This function synchronize snd mss to current pmtu/exthdr set.
1287
1288 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1289 for TCP options, but includes only bare TCP header.
1290
1291 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1292 It is minimum of user_mss and mss received with SYN.
1293 It also does not include TCP options.
1294
1295 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1296
1297 tp->mss_cache is current effective sending mss, including
1298 all tcp options except for SACKs. It is evaluated,
1299 taking into account current pmtu, but never exceeds
1300 tp->rx_opt.mss_clamp.
1301
1302 NOTE1. rfc1122 clearly states that advertised MSS
1303 DOES NOT include either tcp or ip options.
1304
1305 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1306 are READ ONLY outside this function. --ANK (980731)
1307 */
1308 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1309 {
1310 struct tcp_sock *tp = tcp_sk(sk);
1311 struct inet_connection_sock *icsk = inet_csk(sk);
1312 int mss_now;
1313
1314 if (icsk->icsk_mtup.search_high > pmtu)
1315 icsk->icsk_mtup.search_high = pmtu;
1316
1317 mss_now = tcp_mtu_to_mss(sk, pmtu);
1318 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1319
1320 /* And store cached results */
1321 icsk->icsk_pmtu_cookie = pmtu;
1322 if (icsk->icsk_mtup.enabled)
1323 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1324 tp->mss_cache = mss_now;
1325
1326 return mss_now;
1327 }
1328 EXPORT_SYMBOL(tcp_sync_mss);
1329
1330 /* Compute the current effective MSS, taking SACKs and IP options,
1331 * and even PMTU discovery events into account.
1332 */
1333 unsigned int tcp_current_mss(struct sock *sk)
1334 {
1335 const struct tcp_sock *tp = tcp_sk(sk);
1336 const struct dst_entry *dst = __sk_dst_get(sk);
1337 u32 mss_now;
1338 unsigned int header_len;
1339 struct tcp_out_options opts;
1340 struct tcp_md5sig_key *md5;
1341
1342 mss_now = tp->mss_cache;
1343
1344 if (dst) {
1345 u32 mtu = dst_mtu(dst);
1346 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1347 mss_now = tcp_sync_mss(sk, mtu);
1348 }
1349
1350 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1351 sizeof(struct tcphdr);
1352 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1353 * some common options. If this is an odd packet (because we have SACK
1354 * blocks etc) then our calculated header_len will be different, and
1355 * we have to adjust mss_now correspondingly */
1356 if (header_len != tp->tcp_header_len) {
1357 int delta = (int) header_len - tp->tcp_header_len;
1358 mss_now -= delta;
1359 }
1360
1361 return mss_now;
1362 }
1363
1364 /* Congestion window validation. (RFC2861) */
1365 static void tcp_cwnd_validate(struct sock *sk)
1366 {
1367 struct tcp_sock *tp = tcp_sk(sk);
1368
1369 if (tp->packets_out >= tp->snd_cwnd) {
1370 /* Network is feed fully. */
1371 tp->snd_cwnd_used = 0;
1372 tp->snd_cwnd_stamp = tcp_time_stamp;
1373 } else {
1374 /* Network starves. */
1375 if (tp->packets_out > tp->snd_cwnd_used)
1376 tp->snd_cwnd_used = tp->packets_out;
1377
1378 if (sysctl_tcp_slow_start_after_idle &&
1379 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1380 tcp_cwnd_application_limited(sk);
1381 }
1382 }
1383
1384 /* Returns the portion of skb which can be sent right away without
1385 * introducing MSS oddities to segment boundaries. In rare cases where
1386 * mss_now != mss_cache, we will request caller to create a small skb
1387 * per input skb which could be mostly avoided here (if desired).
1388 *
1389 * We explicitly want to create a request for splitting write queue tail
1390 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1391 * thus all the complexity (cwnd_len is always MSS multiple which we
1392 * return whenever allowed by the other factors). Basically we need the
1393 * modulo only when the receiver window alone is the limiting factor or
1394 * when we would be allowed to send the split-due-to-Nagle skb fully.
1395 */
1396 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1397 unsigned int mss_now, unsigned int max_segs)
1398 {
1399 const struct tcp_sock *tp = tcp_sk(sk);
1400 u32 needed, window, max_len;
1401
1402 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1403 max_len = mss_now * max_segs;
1404
1405 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1406 return max_len;
1407
1408 needed = min(skb->len, window);
1409
1410 if (max_len <= needed)
1411 return max_len;
1412
1413 return needed - needed % mss_now;
1414 }
1415
1416 /* Can at least one segment of SKB be sent right now, according to the
1417 * congestion window rules? If so, return how many segments are allowed.
1418 */
1419 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1420 const struct sk_buff *skb)
1421 {
1422 u32 in_flight, cwnd;
1423
1424 /* Don't be strict about the congestion window for the final FIN. */
1425 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1426 tcp_skb_pcount(skb) == 1)
1427 return 1;
1428
1429 in_flight = tcp_packets_in_flight(tp);
1430 cwnd = tp->snd_cwnd;
1431 if (in_flight < cwnd)
1432 return (cwnd - in_flight);
1433
1434 return 0;
1435 }
1436
1437 /* Initialize TSO state of a skb.
1438 * This must be invoked the first time we consider transmitting
1439 * SKB onto the wire.
1440 */
1441 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1442 unsigned int mss_now)
1443 {
1444 int tso_segs = tcp_skb_pcount(skb);
1445
1446 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1447 tcp_set_skb_tso_segs(sk, skb, mss_now);
1448 tso_segs = tcp_skb_pcount(skb);
1449 }
1450 return tso_segs;
1451 }
1452
1453 /* Minshall's variant of the Nagle send check. */
1454 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1455 {
1456 return after(tp->snd_sml, tp->snd_una) &&
1457 !after(tp->snd_sml, tp->snd_nxt);
1458 }
1459
1460 /* Return false, if packet can be sent now without violation Nagle's rules:
1461 * 1. It is full sized.
1462 * 2. Or it contains FIN. (already checked by caller)
1463 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1464 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1465 * With Minshall's modification: all sent small packets are ACKed.
1466 */
1467 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1468 const struct sk_buff *skb,
1469 unsigned int mss_now, int nonagle)
1470 {
1471 return skb->len < mss_now &&
1472 ((nonagle & TCP_NAGLE_CORK) ||
1473 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1474 }
1475
1476 /* Return true if the Nagle test allows this packet to be
1477 * sent now.
1478 */
1479 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1480 unsigned int cur_mss, int nonagle)
1481 {
1482 /* Nagle rule does not apply to frames, which sit in the middle of the
1483 * write_queue (they have no chances to get new data).
1484 *
1485 * This is implemented in the callers, where they modify the 'nonagle'
1486 * argument based upon the location of SKB in the send queue.
1487 */
1488 if (nonagle & TCP_NAGLE_PUSH)
1489 return true;
1490
1491 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1492 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1493 return true;
1494
1495 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1496 return true;
1497
1498 return false;
1499 }
1500
1501 /* Does at least the first segment of SKB fit into the send window? */
1502 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1503 const struct sk_buff *skb,
1504 unsigned int cur_mss)
1505 {
1506 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1507
1508 if (skb->len > cur_mss)
1509 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1510
1511 return !after(end_seq, tcp_wnd_end(tp));
1512 }
1513
1514 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1515 * should be put on the wire right now. If so, it returns the number of
1516 * packets allowed by the congestion window.
1517 */
1518 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1519 unsigned int cur_mss, int nonagle)
1520 {
1521 const struct tcp_sock *tp = tcp_sk(sk);
1522 unsigned int cwnd_quota;
1523
1524 tcp_init_tso_segs(sk, skb, cur_mss);
1525
1526 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1527 return 0;
1528
1529 cwnd_quota = tcp_cwnd_test(tp, skb);
1530 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1531 cwnd_quota = 0;
1532
1533 return cwnd_quota;
1534 }
1535
1536 /* Test if sending is allowed right now. */
1537 bool tcp_may_send_now(struct sock *sk)
1538 {
1539 const struct tcp_sock *tp = tcp_sk(sk);
1540 struct sk_buff *skb = tcp_send_head(sk);
1541
1542 return skb &&
1543 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1544 (tcp_skb_is_last(sk, skb) ?
1545 tp->nonagle : TCP_NAGLE_PUSH));
1546 }
1547
1548 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1549 * which is put after SKB on the list. It is very much like
1550 * tcp_fragment() except that it may make several kinds of assumptions
1551 * in order to speed up the splitting operation. In particular, we
1552 * know that all the data is in scatter-gather pages, and that the
1553 * packet has never been sent out before (and thus is not cloned).
1554 */
1555 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1556 unsigned int mss_now, gfp_t gfp)
1557 {
1558 struct sk_buff *buff;
1559 int nlen = skb->len - len;
1560 u8 flags;
1561
1562 /* All of a TSO frame must be composed of paged data. */
1563 if (skb->len != skb->data_len)
1564 return tcp_fragment(sk, skb, len, mss_now);
1565
1566 buff = sk_stream_alloc_skb(sk, 0, gfp);
1567 if (unlikely(buff == NULL))
1568 return -ENOMEM;
1569
1570 sk->sk_wmem_queued += buff->truesize;
1571 sk_mem_charge(sk, buff->truesize);
1572 buff->truesize += nlen;
1573 skb->truesize -= nlen;
1574
1575 /* Correct the sequence numbers. */
1576 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1577 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1578 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1579
1580 /* PSH and FIN should only be set in the second packet. */
1581 flags = TCP_SKB_CB(skb)->tcp_flags;
1582 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1583 TCP_SKB_CB(buff)->tcp_flags = flags;
1584
1585 /* This packet was never sent out yet, so no SACK bits. */
1586 TCP_SKB_CB(buff)->sacked = 0;
1587
1588 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1589 skb_split(skb, buff, len);
1590
1591 /* Fix up tso_factor for both original and new SKB. */
1592 tcp_set_skb_tso_segs(sk, skb, mss_now);
1593 tcp_set_skb_tso_segs(sk, buff, mss_now);
1594
1595 /* Link BUFF into the send queue. */
1596 skb_header_release(buff);
1597 tcp_insert_write_queue_after(skb, buff, sk);
1598
1599 return 0;
1600 }
1601
1602 /* Try to defer sending, if possible, in order to minimize the amount
1603 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1604 *
1605 * This algorithm is from John Heffner.
1606 */
1607 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1608 {
1609 struct tcp_sock *tp = tcp_sk(sk);
1610 const struct inet_connection_sock *icsk = inet_csk(sk);
1611 u32 send_win, cong_win, limit, in_flight;
1612 int win_divisor;
1613
1614 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1615 goto send_now;
1616
1617 if (icsk->icsk_ca_state != TCP_CA_Open)
1618 goto send_now;
1619
1620 /* Defer for less than two clock ticks. */
1621 if (tp->tso_deferred &&
1622 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1623 goto send_now;
1624
1625 in_flight = tcp_packets_in_flight(tp);
1626
1627 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1628
1629 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1630
1631 /* From in_flight test above, we know that cwnd > in_flight. */
1632 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1633
1634 limit = min(send_win, cong_win);
1635
1636 /* If a full-sized TSO skb can be sent, do it. */
1637 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1638 tp->xmit_size_goal_segs * tp->mss_cache))
1639 goto send_now;
1640
1641 /* Middle in queue won't get any more data, full sendable already? */
1642 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1643 goto send_now;
1644
1645 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1646 if (win_divisor) {
1647 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1648
1649 /* If at least some fraction of a window is available,
1650 * just use it.
1651 */
1652 chunk /= win_divisor;
1653 if (limit >= chunk)
1654 goto send_now;
1655 } else {
1656 /* Different approach, try not to defer past a single
1657 * ACK. Receiver should ACK every other full sized
1658 * frame, so if we have space for more than 3 frames
1659 * then send now.
1660 */
1661 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1662 goto send_now;
1663 }
1664
1665 /* Ok, it looks like it is advisable to defer.
1666 * Do not rearm the timer if already set to not break TCP ACK clocking.
1667 */
1668 if (!tp->tso_deferred)
1669 tp->tso_deferred = 1 | (jiffies << 1);
1670
1671 return true;
1672
1673 send_now:
1674 tp->tso_deferred = 0;
1675 return false;
1676 }
1677
1678 /* Create a new MTU probe if we are ready.
1679 * MTU probe is regularly attempting to increase the path MTU by
1680 * deliberately sending larger packets. This discovers routing
1681 * changes resulting in larger path MTUs.
1682 *
1683 * Returns 0 if we should wait to probe (no cwnd available),
1684 * 1 if a probe was sent,
1685 * -1 otherwise
1686 */
1687 static int tcp_mtu_probe(struct sock *sk)
1688 {
1689 struct tcp_sock *tp = tcp_sk(sk);
1690 struct inet_connection_sock *icsk = inet_csk(sk);
1691 struct sk_buff *skb, *nskb, *next;
1692 int len;
1693 int probe_size;
1694 int size_needed;
1695 int copy;
1696 int mss_now;
1697
1698 /* Not currently probing/verifying,
1699 * not in recovery,
1700 * have enough cwnd, and
1701 * not SACKing (the variable headers throw things off) */
1702 if (!icsk->icsk_mtup.enabled ||
1703 icsk->icsk_mtup.probe_size ||
1704 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1705 tp->snd_cwnd < 11 ||
1706 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1707 return -1;
1708
1709 /* Very simple search strategy: just double the MSS. */
1710 mss_now = tcp_current_mss(sk);
1711 probe_size = 2 * tp->mss_cache;
1712 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1713 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1714 /* TODO: set timer for probe_converge_event */
1715 return -1;
1716 }
1717
1718 /* Have enough data in the send queue to probe? */
1719 if (tp->write_seq - tp->snd_nxt < size_needed)
1720 return -1;
1721
1722 if (tp->snd_wnd < size_needed)
1723 return -1;
1724 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1725 return 0;
1726
1727 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1728 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1729 if (!tcp_packets_in_flight(tp))
1730 return -1;
1731 else
1732 return 0;
1733 }
1734
1735 /* We're allowed to probe. Build it now. */
1736 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1737 return -1;
1738 sk->sk_wmem_queued += nskb->truesize;
1739 sk_mem_charge(sk, nskb->truesize);
1740
1741 skb = tcp_send_head(sk);
1742
1743 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1744 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1745 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1746 TCP_SKB_CB(nskb)->sacked = 0;
1747 nskb->csum = 0;
1748 nskb->ip_summed = skb->ip_summed;
1749
1750 tcp_insert_write_queue_before(nskb, skb, sk);
1751
1752 len = 0;
1753 tcp_for_write_queue_from_safe(skb, next, sk) {
1754 copy = min_t(int, skb->len, probe_size - len);
1755 if (nskb->ip_summed) {
1756 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1757 } else {
1758 __wsum csum = skb_copy_and_csum_bits(skb, 0,
1759 skb_put(nskb, copy),
1760 copy, 0);
1761 nskb->csum = csum_block_add(nskb->csum, csum, len);
1762 }
1763
1764 if (skb->len <= copy) {
1765 /* We've eaten all the data from this skb.
1766 * Throw it away. */
1767 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1768 tcp_unlink_write_queue(skb, sk);
1769 sk_wmem_free_skb(sk, skb);
1770 } else {
1771 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1772 ~(TCPHDR_FIN|TCPHDR_PSH);
1773 if (!skb_shinfo(skb)->nr_frags) {
1774 skb_pull(skb, copy);
1775 if (skb->ip_summed != CHECKSUM_PARTIAL)
1776 skb->csum = csum_partial(skb->data,
1777 skb->len, 0);
1778 } else {
1779 __pskb_trim_head(skb, copy);
1780 tcp_set_skb_tso_segs(sk, skb, mss_now);
1781 }
1782 TCP_SKB_CB(skb)->seq += copy;
1783 }
1784
1785 len += copy;
1786
1787 if (len >= probe_size)
1788 break;
1789 }
1790 tcp_init_tso_segs(sk, nskb, nskb->len);
1791
1792 /* We're ready to send. If this fails, the probe will
1793 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1794 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1795 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1796 /* Decrement cwnd here because we are sending
1797 * effectively two packets. */
1798 tp->snd_cwnd--;
1799 tcp_event_new_data_sent(sk, nskb);
1800
1801 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1802 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1803 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1804
1805 return 1;
1806 }
1807
1808 return -1;
1809 }
1810
1811 /* This routine writes packets to the network. It advances the
1812 * send_head. This happens as incoming acks open up the remote
1813 * window for us.
1814 *
1815 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1816 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1817 * account rare use of URG, this is not a big flaw.
1818 *
1819 * Send at most one packet when push_one > 0. Temporarily ignore
1820 * cwnd limit to force at most one packet out when push_one == 2.
1821
1822 * Returns true, if no segments are in flight and we have queued segments,
1823 * but cannot send anything now because of SWS or another problem.
1824 */
1825 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1826 int push_one, gfp_t gfp)
1827 {
1828 struct tcp_sock *tp = tcp_sk(sk);
1829 struct sk_buff *skb;
1830 unsigned int tso_segs, sent_pkts;
1831 int cwnd_quota;
1832 int result;
1833
1834 sent_pkts = 0;
1835
1836 if (!push_one) {
1837 /* Do MTU probing. */
1838 result = tcp_mtu_probe(sk);
1839 if (!result) {
1840 return false;
1841 } else if (result > 0) {
1842 sent_pkts = 1;
1843 }
1844 }
1845
1846 while ((skb = tcp_send_head(sk))) {
1847 unsigned int limit;
1848
1849 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1850 BUG_ON(!tso_segs);
1851
1852 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1853 goto repair; /* Skip network transmission */
1854
1855 cwnd_quota = tcp_cwnd_test(tp, skb);
1856 if (!cwnd_quota) {
1857 if (push_one == 2)
1858 /* Force out a loss probe pkt. */
1859 cwnd_quota = 1;
1860 else
1861 break;
1862 }
1863
1864 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1865 break;
1866
1867 if (tso_segs == 1 || !sk->sk_gso_max_segs) {
1868 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1869 (tcp_skb_is_last(sk, skb) ?
1870 nonagle : TCP_NAGLE_PUSH))))
1871 break;
1872 } else {
1873 if (!push_one && tcp_tso_should_defer(sk, skb))
1874 break;
1875 }
1876
1877 /* TCP Small Queues :
1878 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1879 * This allows for :
1880 * - better RTT estimation and ACK scheduling
1881 * - faster recovery
1882 * - high rates
1883 * Alas, some drivers / subsystems require a fair amount
1884 * of queued bytes to ensure line rate.
1885 * One example is wifi aggregation (802.11 AMPDU)
1886 */
1887 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1888 sk->sk_pacing_rate >> 10);
1889
1890 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1891 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1892 /* It is possible TX completion already happened
1893 * before we set TSQ_THROTTLED, so we must
1894 * test again the condition.
1895 * We abuse smp_mb__after_atomic() because
1896 * there is no smp_mb__after_set_bit() yet
1897 */
1898 smp_mb__after_atomic();
1899 if (atomic_read(&sk->sk_wmem_alloc) > limit)
1900 break;
1901 }
1902
1903 limit = mss_now;
1904 if (tso_segs > 1 && sk->sk_gso_max_segs && !tcp_urg_mode(tp))
1905 limit = tcp_mss_split_point(sk, skb, mss_now,
1906 min_t(unsigned int,
1907 cwnd_quota,
1908 sk->sk_gso_max_segs));
1909
1910 if (skb->len > limit &&
1911 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1912 break;
1913
1914 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1915
1916 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1917 break;
1918
1919 repair:
1920 /* Advance the send_head. This one is sent out.
1921 * This call will increment packets_out.
1922 */
1923 tcp_event_new_data_sent(sk, skb);
1924
1925 tcp_minshall_update(tp, mss_now, skb);
1926 sent_pkts += tcp_skb_pcount(skb);
1927
1928 if (push_one)
1929 break;
1930 }
1931
1932 if (likely(sent_pkts)) {
1933 if (tcp_in_cwnd_reduction(sk))
1934 tp->prr_out += sent_pkts;
1935
1936 /* Send one loss probe per tail loss episode. */
1937 if (push_one != 2)
1938 tcp_schedule_loss_probe(sk);
1939 tcp_cwnd_validate(sk);
1940 return false;
1941 }
1942 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1943 }
1944
1945 bool tcp_schedule_loss_probe(struct sock *sk)
1946 {
1947 struct tcp_sock *tp = tcp_sk(sk);
1948 u32 rtt = tp->srtt >> 3;
1949 u32 timeout, rto_delta;
1950
1951 /* Don't do any loss probe on a Fast Open connection before 3WHS
1952 * finishes.
1953 */
1954 if (sk->sk_state == TCP_SYN_RECV)
1955 return false;
1956
1957 /* Schedule a loss probe in 2*RTT for SACK capable connections
1958 * in Open state, that are either limited by cwnd or application.
1959 */
1960 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1961 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1962 return false;
1963
1964 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1965 tcp_send_head(sk))
1966 return false;
1967
1968 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1969 * for delayed ack when there's one outstanding packet.
1970 */
1971 timeout = rtt << 1;
1972 if (tp->packets_out == 1)
1973 timeout = max_t(u32, timeout,
1974 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
1975 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1976
1977 /* If the RTO formula yields an earlier time, then use that time. */
1978 rto_delta = tcp_rto_delta(sk); /* How far in future is RTO? */
1979 if (rto_delta > 0)
1980 timeout = min_t(u32, timeout, rto_delta);
1981
1982 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
1983 TCP_RTO_MAX);
1984 return true;
1985 }
1986
1987 /* When probe timeout (PTO) fires, send a new segment if one exists, else
1988 * retransmit the last segment.
1989 */
1990 void tcp_send_loss_probe(struct sock *sk)
1991 {
1992 struct tcp_sock *tp = tcp_sk(sk);
1993 struct sk_buff *skb;
1994 int pcount;
1995 int mss = tcp_current_mss(sk);
1996 int err = -1;
1997
1998 if (tcp_send_head(sk) != NULL) {
1999 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2000 goto rearm_timer;
2001 }
2002
2003 /* At most one outstanding TLP retransmission. */
2004 if (tp->tlp_high_seq)
2005 goto rearm_timer;
2006
2007 /* Retransmit last segment. */
2008 skb = tcp_write_queue_tail(sk);
2009 if (WARN_ON(!skb))
2010 goto rearm_timer;
2011
2012 pcount = tcp_skb_pcount(skb);
2013 if (WARN_ON(!pcount))
2014 goto rearm_timer;
2015
2016 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2017 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2018 goto rearm_timer;
2019 skb = tcp_write_queue_tail(sk);
2020 }
2021
2022 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2023 goto rearm_timer;
2024
2025 err = __tcp_retransmit_skb(sk, skb);
2026
2027 /* Record snd_nxt for loss detection. */
2028 if (likely(!err))
2029 tp->tlp_high_seq = tp->snd_nxt;
2030
2031 rearm_timer:
2032 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2033 inet_csk(sk)->icsk_rto,
2034 TCP_RTO_MAX);
2035
2036 if (likely(!err))
2037 NET_INC_STATS_BH(sock_net(sk),
2038 LINUX_MIB_TCPLOSSPROBES);
2039 return;
2040 }
2041
2042 /* Push out any pending frames which were held back due to
2043 * TCP_CORK or attempt at coalescing tiny packets.
2044 * The socket must be locked by the caller.
2045 */
2046 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2047 int nonagle)
2048 {
2049 /* If we are closed, the bytes will have to remain here.
2050 * In time closedown will finish, we empty the write queue and
2051 * all will be happy.
2052 */
2053 if (unlikely(sk->sk_state == TCP_CLOSE))
2054 return;
2055
2056 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2057 sk_gfp_atomic(sk, GFP_ATOMIC)))
2058 tcp_check_probe_timer(sk);
2059 }
2060
2061 /* Send _single_ skb sitting at the send head. This function requires
2062 * true push pending frames to setup probe timer etc.
2063 */
2064 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2065 {
2066 struct sk_buff *skb = tcp_send_head(sk);
2067
2068 BUG_ON(!skb || skb->len < mss_now);
2069
2070 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2071 }
2072
2073 /* This function returns the amount that we can raise the
2074 * usable window based on the following constraints
2075 *
2076 * 1. The window can never be shrunk once it is offered (RFC 793)
2077 * 2. We limit memory per socket
2078 *
2079 * RFC 1122:
2080 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2081 * RECV.NEXT + RCV.WIN fixed until:
2082 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2083 *
2084 * i.e. don't raise the right edge of the window until you can raise
2085 * it at least MSS bytes.
2086 *
2087 * Unfortunately, the recommended algorithm breaks header prediction,
2088 * since header prediction assumes th->window stays fixed.
2089 *
2090 * Strictly speaking, keeping th->window fixed violates the receiver
2091 * side SWS prevention criteria. The problem is that under this rule
2092 * a stream of single byte packets will cause the right side of the
2093 * window to always advance by a single byte.
2094 *
2095 * Of course, if the sender implements sender side SWS prevention
2096 * then this will not be a problem.
2097 *
2098 * BSD seems to make the following compromise:
2099 *
2100 * If the free space is less than the 1/4 of the maximum
2101 * space available and the free space is less than 1/2 mss,
2102 * then set the window to 0.
2103 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2104 * Otherwise, just prevent the window from shrinking
2105 * and from being larger than the largest representable value.
2106 *
2107 * This prevents incremental opening of the window in the regime
2108 * where TCP is limited by the speed of the reader side taking
2109 * data out of the TCP receive queue. It does nothing about
2110 * those cases where the window is constrained on the sender side
2111 * because the pipeline is full.
2112 *
2113 * BSD also seems to "accidentally" limit itself to windows that are a
2114 * multiple of MSS, at least until the free space gets quite small.
2115 * This would appear to be a side effect of the mbuf implementation.
2116 * Combining these two algorithms results in the observed behavior
2117 * of having a fixed window size at almost all times.
2118 *
2119 * Below we obtain similar behavior by forcing the offered window to
2120 * a multiple of the mss when it is feasible to do so.
2121 *
2122 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2123 * Regular options like TIMESTAMP are taken into account.
2124 */
2125 u32 __tcp_select_window(struct sock *sk)
2126 {
2127 struct inet_connection_sock *icsk = inet_csk(sk);
2128 struct tcp_sock *tp = tcp_sk(sk);
2129 /* MSS for the peer's data. Previous versions used mss_clamp
2130 * here. I don't know if the value based on our guesses
2131 * of peer's MSS is better for the performance. It's more correct
2132 * but may be worse for the performance because of rcv_mss
2133 * fluctuations. --SAW 1998/11/1
2134 */
2135 int mss = icsk->icsk_ack.rcv_mss;
2136 int free_space = tcp_space(sk);
2137 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2138 int window;
2139
2140 if (unlikely(mss > full_space)) {
2141 mss = full_space;
2142 if (mss <= 0)
2143 return 0;
2144 }
2145 if (free_space < (full_space >> 1)) {
2146 icsk->icsk_ack.quick = 0;
2147
2148 if (sk_under_memory_pressure(sk))
2149 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2150 4U * tp->advmss);
2151
2152 if (free_space < mss)
2153 return 0;
2154 }
2155
2156 if (free_space > tp->rcv_ssthresh)
2157 free_space = tp->rcv_ssthresh;
2158
2159 /* Don't do rounding if we are using window scaling, since the
2160 * scaled window will not line up with the MSS boundary anyway.
2161 */
2162 window = tp->rcv_wnd;
2163 if (tp->rx_opt.rcv_wscale) {
2164 window = free_space;
2165
2166 /* Advertise enough space so that it won't get scaled away.
2167 * Import case: prevent zero window announcement if
2168 * 1<<rcv_wscale > mss.
2169 */
2170 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2171 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2172 << tp->rx_opt.rcv_wscale);
2173 } else {
2174 /* Get the largest window that is a nice multiple of mss.
2175 * Window clamp already applied above.
2176 * If our current window offering is within 1 mss of the
2177 * free space we just keep it. This prevents the divide
2178 * and multiply from happening most of the time.
2179 * We also don't do any window rounding when the free space
2180 * is too small.
2181 */
2182 if (window <= free_space - mss || window > free_space)
2183 window = (free_space / mss) * mss;
2184 else if (mss == full_space &&
2185 free_space > window + (full_space >> 1))
2186 window = free_space;
2187 }
2188
2189 return window;
2190 }
2191
2192 /* Collapses two adjacent SKB's during retransmission. */
2193 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2194 {
2195 struct tcp_sock *tp = tcp_sk(sk);
2196 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2197 int skb_size, next_skb_size;
2198
2199 skb_size = skb->len;
2200 next_skb_size = next_skb->len;
2201
2202 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2203
2204 tcp_highest_sack_combine(sk, next_skb, skb);
2205
2206 tcp_unlink_write_queue(next_skb, sk);
2207
2208 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2209 next_skb_size);
2210
2211 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2212 skb->ip_summed = CHECKSUM_PARTIAL;
2213
2214 if (skb->ip_summed != CHECKSUM_PARTIAL)
2215 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2216
2217 /* Update sequence range on original skb. */
2218 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2219
2220 /* Merge over control information. This moves PSH/FIN etc. over */
2221 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2222
2223 /* All done, get rid of second SKB and account for it so
2224 * packet counting does not break.
2225 */
2226 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2227
2228 /* changed transmit queue under us so clear hints */
2229 tcp_clear_retrans_hints_partial(tp);
2230 if (next_skb == tp->retransmit_skb_hint)
2231 tp->retransmit_skb_hint = skb;
2232
2233 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2234
2235 sk_wmem_free_skb(sk, next_skb);
2236 }
2237
2238 /* Check if coalescing SKBs is legal. */
2239 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2240 {
2241 if (tcp_skb_pcount(skb) > 1)
2242 return false;
2243 /* TODO: SACK collapsing could be used to remove this condition */
2244 if (skb_shinfo(skb)->nr_frags != 0)
2245 return false;
2246 if (skb_cloned(skb))
2247 return false;
2248 if (skb == tcp_send_head(sk))
2249 return false;
2250 /* Some heurestics for collapsing over SACK'd could be invented */
2251 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2252 return false;
2253
2254 return true;
2255 }
2256
2257 /* Collapse packets in the retransmit queue to make to create
2258 * less packets on the wire. This is only done on retransmission.
2259 */
2260 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2261 int space)
2262 {
2263 struct tcp_sock *tp = tcp_sk(sk);
2264 struct sk_buff *skb = to, *tmp;
2265 bool first = true;
2266
2267 if (!sysctl_tcp_retrans_collapse)
2268 return;
2269 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2270 return;
2271
2272 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2273 if (!tcp_can_collapse(sk, skb))
2274 break;
2275
2276 space -= skb->len;
2277
2278 if (first) {
2279 first = false;
2280 continue;
2281 }
2282
2283 if (space < 0)
2284 break;
2285 /* Punt if not enough space exists in the first SKB for
2286 * the data in the second
2287 */
2288 if (skb->len > skb_availroom(to))
2289 break;
2290
2291 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2292 break;
2293
2294 tcp_collapse_retrans(sk, to);
2295 }
2296 }
2297
2298 /* This retransmits one SKB. Policy decisions and retransmit queue
2299 * state updates are done by the caller. Returns non-zero if an
2300 * error occurred which prevented the send.
2301 */
2302 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2303 {
2304 struct tcp_sock *tp = tcp_sk(sk);
2305 struct inet_connection_sock *icsk = inet_csk(sk);
2306 unsigned int cur_mss;
2307
2308 /* Inconslusive MTU probe */
2309 if (icsk->icsk_mtup.probe_size) {
2310 icsk->icsk_mtup.probe_size = 0;
2311 }
2312
2313 /* Do not sent more than we queued. 1/4 is reserved for possible
2314 * copying overhead: fragmentation, tunneling, mangling etc.
2315 */
2316 if (atomic_read(&sk->sk_wmem_alloc) >
2317 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2318 sk->sk_sndbuf))
2319 return -EAGAIN;
2320
2321 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2322 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2323 BUG();
2324 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2325 return -ENOMEM;
2326 }
2327
2328 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2329 return -EHOSTUNREACH; /* Routing failure or similar. */
2330
2331 cur_mss = tcp_current_mss(sk);
2332
2333 /* If receiver has shrunk his window, and skb is out of
2334 * new window, do not retransmit it. The exception is the
2335 * case, when window is shrunk to zero. In this case
2336 * our retransmit serves as a zero window probe.
2337 */
2338 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2339 TCP_SKB_CB(skb)->seq != tp->snd_una)
2340 return -EAGAIN;
2341
2342 if (skb->len > cur_mss) {
2343 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2344 return -ENOMEM; /* We'll try again later. */
2345 } else {
2346 int oldpcount = tcp_skb_pcount(skb);
2347
2348 if (unlikely(oldpcount > 1)) {
2349 if (skb_unclone(skb, GFP_ATOMIC))
2350 return -ENOMEM;
2351 tcp_init_tso_segs(sk, skb, cur_mss);
2352 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2353 }
2354 }
2355
2356 tcp_retrans_try_collapse(sk, skb, cur_mss);
2357
2358 /* Some Solaris stacks overoptimize and ignore the FIN on a
2359 * retransmit when old data is attached. So strip it off
2360 * since it is cheap to do so and saves bytes on the network.
2361 */
2362 if (skb->len > 0 &&
2363 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2364 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2365 if (!pskb_trim(skb, 0)) {
2366 /* Reuse, even though it does some unnecessary work */
2367 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2368 TCP_SKB_CB(skb)->tcp_flags);
2369 skb->ip_summed = CHECKSUM_NONE;
2370 }
2371 }
2372
2373 /* Make a copy, if the first transmission SKB clone we made
2374 * is still in somebody's hands, else make a clone.
2375 */
2376 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2377
2378 /* make sure skb->data is aligned on arches that require it
2379 * and check if ack-trimming & collapsing extended the headroom
2380 * beyond what csum_start can cover.
2381 */
2382 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2383 skb_headroom(skb) >= 0xFFFF)) {
2384 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2385 GFP_ATOMIC);
2386 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2387 -ENOBUFS;
2388 } else {
2389 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2390 }
2391 }
2392
2393 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2394 {
2395 struct tcp_sock *tp = tcp_sk(sk);
2396 int err = __tcp_retransmit_skb(sk, skb);
2397
2398 if (err == 0) {
2399 /* Update global TCP statistics. */
2400 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2401
2402 tp->total_retrans++;
2403
2404 #if FASTRETRANS_DEBUG > 0
2405 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2406 net_dbg_ratelimited("retrans_out leaked\n");
2407 }
2408 #endif
2409 if (!tp->retrans_out)
2410 tp->lost_retrans_low = tp->snd_nxt;
2411 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2412 tp->retrans_out += tcp_skb_pcount(skb);
2413
2414 /* Save stamp of the first retransmit. */
2415 if (!tp->retrans_stamp)
2416 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2417
2418 /* snd_nxt is stored to detect loss of retransmitted segment,
2419 * see tcp_input.c tcp_sacktag_write_queue().
2420 */
2421 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2422 }
2423
2424 if (tp->undo_retrans < 0)
2425 tp->undo_retrans = 0;
2426 tp->undo_retrans += tcp_skb_pcount(skb);
2427 return err;
2428 }
2429
2430 /* Check if we forward retransmits are possible in the current
2431 * window/congestion state.
2432 */
2433 static bool tcp_can_forward_retransmit(struct sock *sk)
2434 {
2435 const struct inet_connection_sock *icsk = inet_csk(sk);
2436 const struct tcp_sock *tp = tcp_sk(sk);
2437
2438 /* Forward retransmissions are possible only during Recovery. */
2439 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2440 return false;
2441
2442 /* No forward retransmissions in Reno are possible. */
2443 if (tcp_is_reno(tp))
2444 return false;
2445
2446 /* Yeah, we have to make difficult choice between forward transmission
2447 * and retransmission... Both ways have their merits...
2448 *
2449 * For now we do not retransmit anything, while we have some new
2450 * segments to send. In the other cases, follow rule 3 for
2451 * NextSeg() specified in RFC3517.
2452 */
2453
2454 if (tcp_may_send_now(sk))
2455 return false;
2456
2457 return true;
2458 }
2459
2460 /* This gets called after a retransmit timeout, and the initially
2461 * retransmitted data is acknowledged. It tries to continue
2462 * resending the rest of the retransmit queue, until either
2463 * we've sent it all or the congestion window limit is reached.
2464 * If doing SACK, the first ACK which comes back for a timeout
2465 * based retransmit packet might feed us FACK information again.
2466 * If so, we use it to avoid unnecessarily retransmissions.
2467 */
2468 void tcp_xmit_retransmit_queue(struct sock *sk)
2469 {
2470 const struct inet_connection_sock *icsk = inet_csk(sk);
2471 struct tcp_sock *tp = tcp_sk(sk);
2472 struct sk_buff *skb;
2473 struct sk_buff *hole = NULL;
2474 u32 last_lost;
2475 int mib_idx;
2476 int fwd_rexmitting = 0;
2477
2478 if (!tp->packets_out)
2479 return;
2480
2481 if (!tp->lost_out)
2482 tp->retransmit_high = tp->snd_una;
2483
2484 if (tp->retransmit_skb_hint) {
2485 skb = tp->retransmit_skb_hint;
2486 last_lost = TCP_SKB_CB(skb)->end_seq;
2487 if (after(last_lost, tp->retransmit_high))
2488 last_lost = tp->retransmit_high;
2489 } else {
2490 skb = tcp_write_queue_head(sk);
2491 last_lost = tp->snd_una;
2492 }
2493
2494 tcp_for_write_queue_from(skb, sk) {
2495 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2496
2497 if (skb == tcp_send_head(sk))
2498 break;
2499 /* we could do better than to assign each time */
2500 if (hole == NULL)
2501 tp->retransmit_skb_hint = skb;
2502
2503 /* Assume this retransmit will generate
2504 * only one packet for congestion window
2505 * calculation purposes. This works because
2506 * tcp_retransmit_skb() will chop up the
2507 * packet to be MSS sized and all the
2508 * packet counting works out.
2509 */
2510 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2511 return;
2512
2513 if (fwd_rexmitting) {
2514 begin_fwd:
2515 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2516 break;
2517 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2518
2519 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2520 tp->retransmit_high = last_lost;
2521 if (!tcp_can_forward_retransmit(sk))
2522 break;
2523 /* Backtrack if necessary to non-L'ed skb */
2524 if (hole != NULL) {
2525 skb = hole;
2526 hole = NULL;
2527 }
2528 fwd_rexmitting = 1;
2529 goto begin_fwd;
2530
2531 } else if (!(sacked & TCPCB_LOST)) {
2532 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2533 hole = skb;
2534 continue;
2535
2536 } else {
2537 last_lost = TCP_SKB_CB(skb)->end_seq;
2538 if (icsk->icsk_ca_state != TCP_CA_Loss)
2539 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2540 else
2541 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2542 }
2543
2544 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2545 continue;
2546
2547 if (tcp_retransmit_skb(sk, skb)) {
2548 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2549 return;
2550 }
2551 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2552
2553 if (tcp_in_cwnd_reduction(sk))
2554 tp->prr_out += tcp_skb_pcount(skb);
2555
2556 if (skb == tcp_write_queue_head(sk))
2557 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2558 inet_csk(sk)->icsk_rto,
2559 TCP_RTO_MAX);
2560 }
2561 }
2562
2563 /* We allow to exceed memory limits for FIN packets to expedite
2564 * connection tear down and (memory) recovery.
2565 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2566 * or even be forced to close flow without any FIN.
2567 */
2568 static void sk_forced_wmem_schedule(struct sock *sk, int size)
2569 {
2570 int amt, status;
2571
2572 if (size <= sk->sk_forward_alloc)
2573 return;
2574 amt = sk_mem_pages(size);
2575 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2576 sk_memory_allocated_add(sk, amt, &status);
2577 }
2578
2579 /* Send a FIN. The caller locks the socket for us.
2580 * We should try to send a FIN packet really hard, but eventually give up.
2581 */
2582 void tcp_send_fin(struct sock *sk)
2583 {
2584 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2585 struct tcp_sock *tp = tcp_sk(sk);
2586
2587 /* Optimization, tack on the FIN if we have one skb in write queue and
2588 * this skb was not yet sent, or we are under memory pressure.
2589 * Note: in the latter case, FIN packet will be sent after a timeout,
2590 * as TCP stack thinks it has already been transmitted.
2591 */
2592 if (tskb && (tcp_send_head(sk) || sk_under_memory_pressure(sk))) {
2593 coalesce:
2594 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2595 TCP_SKB_CB(tskb)->end_seq++;
2596 tp->write_seq++;
2597 if (!tcp_send_head(sk)) {
2598 /* This means tskb was already sent.
2599 * Pretend we included the FIN on previous transmit.
2600 * We need to set tp->snd_nxt to the value it would have
2601 * if FIN had been sent. This is because retransmit path
2602 * does not change tp->snd_nxt.
2603 */
2604 tp->snd_nxt++;
2605 return;
2606 }
2607 } else {
2608 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2609 if (unlikely(!skb)) {
2610 if (tskb)
2611 goto coalesce;
2612 return;
2613 }
2614 skb_reserve(skb, MAX_TCP_HEADER);
2615 sk_forced_wmem_schedule(sk, skb->truesize);
2616 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2617 tcp_init_nondata_skb(skb, tp->write_seq,
2618 TCPHDR_ACK | TCPHDR_FIN);
2619 tcp_queue_skb(sk, skb);
2620 }
2621 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2622 }
2623
2624 /* We get here when a process closes a file descriptor (either due to
2625 * an explicit close() or as a byproduct of exit()'ing) and there
2626 * was unread data in the receive queue. This behavior is recommended
2627 * by RFC 2525, section 2.17. -DaveM
2628 */
2629 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2630 {
2631 struct sk_buff *skb;
2632
2633 /* NOTE: No TCP options attached and we never retransmit this. */
2634 skb = alloc_skb(MAX_TCP_HEADER, priority);
2635 if (!skb) {
2636 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2637 return;
2638 }
2639
2640 /* Reserve space for headers and prepare control bits. */
2641 skb_reserve(skb, MAX_TCP_HEADER);
2642 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2643 TCPHDR_ACK | TCPHDR_RST);
2644 /* Send it off. */
2645 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2646 if (tcp_transmit_skb(sk, skb, 0, priority))
2647 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2648
2649 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2650 }
2651
2652 /* Send a crossed SYN-ACK during socket establishment.
2653 * WARNING: This routine must only be called when we have already sent
2654 * a SYN packet that crossed the incoming SYN that caused this routine
2655 * to get called. If this assumption fails then the initial rcv_wnd
2656 * and rcv_wscale values will not be correct.
2657 */
2658 int tcp_send_synack(struct sock *sk)
2659 {
2660 struct sk_buff *skb;
2661
2662 skb = tcp_write_queue_head(sk);
2663 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2664 pr_debug("%s: wrong queue state\n", __func__);
2665 return -EFAULT;
2666 }
2667 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2668 if (skb_cloned(skb)) {
2669 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2670 if (nskb == NULL)
2671 return -ENOMEM;
2672 tcp_unlink_write_queue(skb, sk);
2673 skb_header_release(nskb);
2674 __tcp_add_write_queue_head(sk, nskb);
2675 sk_wmem_free_skb(sk, skb);
2676 sk->sk_wmem_queued += nskb->truesize;
2677 sk_mem_charge(sk, nskb->truesize);
2678 skb = nskb;
2679 }
2680
2681 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2682 TCP_ECN_send_synack(tcp_sk(sk), skb);
2683 }
2684 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2685 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2686 }
2687
2688 /**
2689 * tcp_make_synack - Prepare a SYN-ACK.
2690 * sk: listener socket
2691 * dst: dst entry attached to the SYNACK
2692 * req: request_sock pointer
2693 *
2694 * Allocate one skb and build a SYNACK packet.
2695 * @dst is consumed : Caller should not use it again.
2696 */
2697 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2698 struct request_sock *req,
2699 struct tcp_fastopen_cookie *foc)
2700 {
2701 struct tcp_out_options opts;
2702 struct inet_request_sock *ireq = inet_rsk(req);
2703 struct tcp_sock *tp = tcp_sk(sk);
2704 struct tcphdr *th;
2705 struct sk_buff *skb;
2706 struct tcp_md5sig_key *md5;
2707 int tcp_header_size;
2708 int mss;
2709
2710 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2711 if (unlikely(!skb)) {
2712 dst_release(dst);
2713 return NULL;
2714 }
2715 /* Reserve space for headers. */
2716 skb_reserve(skb, MAX_TCP_HEADER);
2717
2718 skb_dst_set(skb, dst);
2719 security_skb_owned_by(skb, sk);
2720
2721 mss = dst_metric_advmss(dst);
2722 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2723 mss = tp->rx_opt.user_mss;
2724
2725 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2726 __u8 rcv_wscale;
2727 /* Set this up on the first call only */
2728 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2729
2730 /* limit the window selection if the user enforce a smaller rx buffer */
2731 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2732 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2733 req->window_clamp = tcp_full_space(sk);
2734
2735 /* tcp_full_space because it is guaranteed to be the first packet */
2736 tcp_select_initial_window(tcp_full_space(sk),
2737 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2738 &req->rcv_wnd,
2739 &req->window_clamp,
2740 ireq->wscale_ok,
2741 &rcv_wscale,
2742 dst_metric(dst, RTAX_INITRWND));
2743 ireq->rcv_wscale = rcv_wscale;
2744 }
2745
2746 memset(&opts, 0, sizeof(opts));
2747 #ifdef CONFIG_SYN_COOKIES
2748 if (unlikely(req->cookie_ts))
2749 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2750 else
2751 #endif
2752 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2753 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2754 foc) + sizeof(*th);
2755
2756 skb_push(skb, tcp_header_size);
2757 skb_reset_transport_header(skb);
2758
2759 th = tcp_hdr(skb);
2760 memset(th, 0, sizeof(struct tcphdr));
2761 th->syn = 1;
2762 th->ack = 1;
2763 TCP_ECN_make_synack(req, th);
2764 th->source = ireq->loc_port;
2765 th->dest = ireq->rmt_port;
2766 /* Setting of flags are superfluous here for callers (and ECE is
2767 * not even correctly set)
2768 */
2769 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2770 TCPHDR_SYN | TCPHDR_ACK);
2771
2772 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2773 /* XXX data is queued and acked as is. No buffer/window check */
2774 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2775
2776 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2777 th->window = htons(min(req->rcv_wnd, 65535U));
2778 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2779 th->doff = (tcp_header_size >> 2);
2780 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2781
2782 #ifdef CONFIG_TCP_MD5SIG
2783 /* Okay, we have all we need - do the md5 hash if needed */
2784 if (md5) {
2785 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2786 md5, NULL, req, skb);
2787 }
2788 #endif
2789
2790 /* Do not fool tcpdump (if any), clean our debris */
2791 skb->tstamp.tv64 = 0;
2792 return skb;
2793 }
2794 EXPORT_SYMBOL(tcp_make_synack);
2795
2796 /* Do all connect socket setups that can be done AF independent. */
2797 void tcp_connect_init(struct sock *sk)
2798 {
2799 const struct dst_entry *dst = __sk_dst_get(sk);
2800 struct tcp_sock *tp = tcp_sk(sk);
2801 __u8 rcv_wscale;
2802
2803 /* We'll fix this up when we get a response from the other end.
2804 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2805 */
2806 tp->tcp_header_len = sizeof(struct tcphdr) +
2807 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2808
2809 #ifdef CONFIG_TCP_MD5SIG
2810 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2811 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2812 #endif
2813
2814 /* If user gave his TCP_MAXSEG, record it to clamp */
2815 if (tp->rx_opt.user_mss)
2816 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2817 tp->max_window = 0;
2818 tcp_mtup_init(sk);
2819 tcp_sync_mss(sk, dst_mtu(dst));
2820
2821 if (!tp->window_clamp)
2822 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2823 tp->advmss = dst_metric_advmss(dst);
2824 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2825 tp->advmss = tp->rx_opt.user_mss;
2826
2827 tcp_initialize_rcv_mss(sk);
2828
2829 /* limit the window selection if the user enforce a smaller rx buffer */
2830 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2831 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2832 tp->window_clamp = tcp_full_space(sk);
2833
2834 tcp_select_initial_window(tcp_full_space(sk),
2835 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2836 &tp->rcv_wnd,
2837 &tp->window_clamp,
2838 sysctl_tcp_window_scaling,
2839 &rcv_wscale,
2840 dst_metric(dst, RTAX_INITRWND));
2841
2842 tp->rx_opt.rcv_wscale = rcv_wscale;
2843 tp->rcv_ssthresh = tp->rcv_wnd;
2844
2845 sk->sk_err = 0;
2846 sock_reset_flag(sk, SOCK_DONE);
2847 tp->snd_wnd = 0;
2848 tcp_init_wl(tp, 0);
2849 tp->snd_una = tp->write_seq;
2850 tp->snd_sml = tp->write_seq;
2851 tp->snd_up = tp->write_seq;
2852 tp->snd_nxt = tp->write_seq;
2853
2854 if (likely(!tp->repair))
2855 tp->rcv_nxt = 0;
2856 else
2857 tp->rcv_tstamp = tcp_time_stamp;
2858 tp->rcv_wup = tp->rcv_nxt;
2859 tp->copied_seq = tp->rcv_nxt;
2860
2861 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2862 inet_csk(sk)->icsk_retransmits = 0;
2863 tcp_clear_retrans(tp);
2864 }
2865
2866 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2867 {
2868 struct tcp_sock *tp = tcp_sk(sk);
2869 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2870
2871 tcb->end_seq += skb->len;
2872 skb_header_release(skb);
2873 __tcp_add_write_queue_tail(sk, skb);
2874 sk->sk_wmem_queued += skb->truesize;
2875 sk_mem_charge(sk, skb->truesize);
2876 tp->write_seq = tcb->end_seq;
2877 tp->packets_out += tcp_skb_pcount(skb);
2878 }
2879
2880 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2881 * queue a data-only packet after the regular SYN, such that regular SYNs
2882 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2883 * only the SYN sequence, the data are retransmitted in the first ACK.
2884 * If cookie is not cached or other error occurs, falls back to send a
2885 * regular SYN with Fast Open cookie request option.
2886 */
2887 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2888 {
2889 struct tcp_sock *tp = tcp_sk(sk);
2890 struct tcp_fastopen_request *fo = tp->fastopen_req;
2891 int syn_loss = 0, space, err = 0;
2892 unsigned long last_syn_loss = 0;
2893 struct sk_buff *syn_data;
2894
2895 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2896 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2897 &syn_loss, &last_syn_loss);
2898 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2899 if (syn_loss > 1 &&
2900 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2901 fo->cookie.len = -1;
2902 goto fallback;
2903 }
2904
2905 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2906 fo->cookie.len = -1;
2907 else if (fo->cookie.len <= 0)
2908 goto fallback;
2909
2910 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2911 * user-MSS. Reserve maximum option space for middleboxes that add
2912 * private TCP options. The cost is reduced data space in SYN :(
2913 */
2914 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2915 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2916 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2917 MAX_TCP_OPTION_SPACE;
2918
2919 space = min_t(size_t, space, fo->size);
2920
2921 /* limit to order-0 allocations */
2922 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2923
2924 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
2925 if (!syn_data)
2926 goto fallback;
2927 syn_data->ip_summed = CHECKSUM_PARTIAL;
2928 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
2929 skb_shinfo(syn_data)->gso_segs = 1;
2930 if (unlikely(memcpy_fromiovecend(skb_put(syn_data, space),
2931 fo->data->msg_iov, 0, space))) {
2932 kfree_skb(syn_data);
2933 goto fallback;
2934 }
2935
2936 /* No more data pending in inet_wait_for_connect() */
2937 if (space == fo->size)
2938 fo->data = NULL;
2939 fo->copied = space;
2940
2941 tcp_connect_queue_skb(sk, syn_data);
2942
2943 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
2944
2945 /* Now full SYN+DATA was cloned and sent (or not),
2946 * remove the SYN from the original skb (syn_data)
2947 * we keep in write queue in case of a retransmit, as we
2948 * also have the SYN packet (with no data) in the same queue.
2949 */
2950 TCP_SKB_CB(syn_data)->seq++;
2951 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
2952 if (!err) {
2953 tp->syn_data = (fo->copied > 0);
2954 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2955 goto done;
2956 }
2957
2958 /* data was not sent, this is our new send_head */
2959 sk->sk_send_head = syn_data;
2960 tp->packets_out -= tcp_skb_pcount(syn_data);
2961
2962 fallback:
2963 /* Send a regular SYN with Fast Open cookie request option */
2964 if (fo->cookie.len > 0)
2965 fo->cookie.len = 0;
2966 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2967 if (err)
2968 tp->syn_fastopen = 0;
2969 done:
2970 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2971 return err;
2972 }
2973
2974 /* Build a SYN and send it off. */
2975 int tcp_connect(struct sock *sk)
2976 {
2977 struct tcp_sock *tp = tcp_sk(sk);
2978 struct sk_buff *buff;
2979 int err;
2980
2981 tcp_connect_init(sk);
2982
2983 if (unlikely(tp->repair)) {
2984 tcp_finish_connect(sk, NULL);
2985 return 0;
2986 }
2987
2988 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
2989 if (unlikely(!buff))
2990 return -ENOBUFS;
2991
2992 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2993 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2994 tcp_connect_queue_skb(sk, buff);
2995 TCP_ECN_send_syn(sk, buff);
2996
2997 /* Send off SYN; include data in Fast Open. */
2998 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2999 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3000 if (err == -ECONNREFUSED)
3001 return err;
3002
3003 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3004 * in order to make this packet get counted in tcpOutSegs.
3005 */
3006 tp->snd_nxt = tp->write_seq;
3007 tp->pushed_seq = tp->write_seq;
3008 buff = tcp_send_head(sk);
3009 if (unlikely(buff)) {
3010 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3011 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3012 }
3013 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3014
3015 /* Timer for repeating the SYN until an answer. */
3016 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3017 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3018 return 0;
3019 }
3020 EXPORT_SYMBOL(tcp_connect);
3021
3022 /* Send out a delayed ack, the caller does the policy checking
3023 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3024 * for details.
3025 */
3026 void tcp_send_delayed_ack(struct sock *sk)
3027 {
3028 struct inet_connection_sock *icsk = inet_csk(sk);
3029 int ato = icsk->icsk_ack.ato;
3030 unsigned long timeout;
3031
3032 if (ato > TCP_DELACK_MIN) {
3033 const struct tcp_sock *tp = tcp_sk(sk);
3034 int max_ato = HZ / 2;
3035
3036 if (icsk->icsk_ack.pingpong ||
3037 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3038 max_ato = TCP_DELACK_MAX;
3039
3040 /* Slow path, intersegment interval is "high". */
3041
3042 /* If some rtt estimate is known, use it to bound delayed ack.
3043 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3044 * directly.
3045 */
3046 if (tp->srtt) {
3047 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3048
3049 if (rtt < max_ato)
3050 max_ato = rtt;
3051 }
3052
3053 ato = min(ato, max_ato);
3054 }
3055
3056 /* Stay within the limit we were given */
3057 timeout = jiffies + ato;
3058
3059 /* Use new timeout only if there wasn't a older one earlier. */
3060 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3061 /* If delack timer was blocked or is about to expire,
3062 * send ACK now.
3063 */
3064 if (icsk->icsk_ack.blocked ||
3065 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3066 tcp_send_ack(sk);
3067 return;
3068 }
3069
3070 if (!time_before(timeout, icsk->icsk_ack.timeout))
3071 timeout = icsk->icsk_ack.timeout;
3072 }
3073 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3074 icsk->icsk_ack.timeout = timeout;
3075 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3076 }
3077
3078 /* This routine sends an ack and also updates the window. */
3079 void tcp_send_ack(struct sock *sk)
3080 {
3081 struct sk_buff *buff;
3082
3083 /* If we have been reset, we may not send again. */
3084 if (sk->sk_state == TCP_CLOSE)
3085 return;
3086
3087 /* We are not putting this on the write queue, so
3088 * tcp_transmit_skb() will set the ownership to this
3089 * sock.
3090 */
3091 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3092 if (buff == NULL) {
3093 inet_csk_schedule_ack(sk);
3094 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3095 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3096 TCP_DELACK_MAX, TCP_RTO_MAX);
3097 return;
3098 }
3099
3100 /* Reserve space for headers and prepare control bits. */
3101 skb_reserve(buff, MAX_TCP_HEADER);
3102 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3103
3104 /* Send it off, this clears delayed acks for us. */
3105 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3106 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3107 }
3108
3109 /* This routine sends a packet with an out of date sequence
3110 * number. It assumes the other end will try to ack it.
3111 *
3112 * Question: what should we make while urgent mode?
3113 * 4.4BSD forces sending single byte of data. We cannot send
3114 * out of window data, because we have SND.NXT==SND.MAX...
3115 *
3116 * Current solution: to send TWO zero-length segments in urgent mode:
3117 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3118 * out-of-date with SND.UNA-1 to probe window.
3119 */
3120 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3121 {
3122 struct tcp_sock *tp = tcp_sk(sk);
3123 struct sk_buff *skb;
3124
3125 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3126 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3127 if (skb == NULL)
3128 return -1;
3129
3130 /* Reserve space for headers and set control bits. */
3131 skb_reserve(skb, MAX_TCP_HEADER);
3132 /* Use a previous sequence. This should cause the other
3133 * end to send an ack. Don't queue or clone SKB, just
3134 * send it.
3135 */
3136 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3137 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3138 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3139 }
3140
3141 void tcp_send_window_probe(struct sock *sk)
3142 {
3143 if (sk->sk_state == TCP_ESTABLISHED) {
3144 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3145 tcp_xmit_probe_skb(sk, 0);
3146 }
3147 }
3148
3149 /* Initiate keepalive or window probe from timer. */
3150 int tcp_write_wakeup(struct sock *sk)
3151 {
3152 struct tcp_sock *tp = tcp_sk(sk);
3153 struct sk_buff *skb;
3154
3155 if (sk->sk_state == TCP_CLOSE)
3156 return -1;
3157
3158 if ((skb = tcp_send_head(sk)) != NULL &&
3159 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3160 int err;
3161 unsigned int mss = tcp_current_mss(sk);
3162 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3163
3164 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3165 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3166
3167 /* We are probing the opening of a window
3168 * but the window size is != 0
3169 * must have been a result SWS avoidance ( sender )
3170 */
3171 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3172 skb->len > mss) {
3173 seg_size = min(seg_size, mss);
3174 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3175 if (tcp_fragment(sk, skb, seg_size, mss))
3176 return -1;
3177 } else if (!tcp_skb_pcount(skb))
3178 tcp_set_skb_tso_segs(sk, skb, mss);
3179
3180 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3181 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3182 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3183 if (!err)
3184 tcp_event_new_data_sent(sk, skb);
3185 return err;
3186 } else {
3187 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3188 tcp_xmit_probe_skb(sk, 1);
3189 return tcp_xmit_probe_skb(sk, 0);
3190 }
3191 }
3192
3193 /* A window probe timeout has occurred. If window is not closed send
3194 * a partial packet else a zero probe.
3195 */
3196 void tcp_send_probe0(struct sock *sk)
3197 {
3198 struct inet_connection_sock *icsk = inet_csk(sk);
3199 struct tcp_sock *tp = tcp_sk(sk);
3200 int err;
3201
3202 err = tcp_write_wakeup(sk);
3203
3204 if (tp->packets_out || !tcp_send_head(sk)) {
3205 /* Cancel probe timer, if it is not required. */
3206 icsk->icsk_probes_out = 0;
3207 icsk->icsk_backoff = 0;
3208 return;
3209 }
3210
3211 if (err <= 0) {
3212 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3213 icsk->icsk_backoff++;
3214 icsk->icsk_probes_out++;
3215 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3216 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3217 TCP_RTO_MAX);
3218 } else {
3219 /* If packet was not sent due to local congestion,
3220 * do not backoff and do not remember icsk_probes_out.
3221 * Let local senders to fight for local resources.
3222 *
3223 * Use accumulated backoff yet.
3224 */
3225 if (!icsk->icsk_probes_out)
3226 icsk->icsk_probes_out = 1;
3227 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3228 min(icsk->icsk_rto << icsk->icsk_backoff,
3229 TCP_RESOURCE_PROBE_INTERVAL),
3230 TCP_RTO_MAX);
3231 }
3232 }