4bb28c9bd0fdd18f50ed39971f6fe5cb7dd76bc2
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/generic_acl.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 return sb->s_fs_info;
132 }
133
134 /*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 return (flags & VM_NORESERVE) ?
143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 if (!(flags & VM_NORESERVE))
149 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160 return (flags & VM_NORESERVE) ?
161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166 if (flags & VM_NORESERVE)
167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
179 .ra_pages = 0, /* No readahead */
180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 if (sbinfo->max_inodes) {
190 spin_lock(&sbinfo->stat_lock);
191 if (!sbinfo->free_inodes) {
192 spin_unlock(&sbinfo->stat_lock);
193 return -ENOSPC;
194 }
195 sbinfo->free_inodes--;
196 spin_unlock(&sbinfo->stat_lock);
197 }
198 return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 if (sbinfo->max_inodes) {
205 spin_lock(&sbinfo->stat_lock);
206 sbinfo->free_inodes++;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209 }
210
211 /**
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 long freed;
227
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 if (freed > 0) {
230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 if (sbinfo->max_blocks)
232 percpu_counter_add(&sbinfo->used_blocks, -freed);
233 info->alloced -= freed;
234 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235 shmem_unacct_blocks(info->flags, freed);
236 }
237 }
238
239 /*
240 * Replace item expected in radix tree by a new item, while holding tree lock.
241 */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243 pgoff_t index, void *expected, void *replacement)
244 {
245 void **pslot;
246 void *item = NULL;
247
248 VM_BUG_ON(!expected);
249 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250 if (pslot)
251 item = radix_tree_deref_slot_protected(pslot,
252 &mapping->tree_lock);
253 if (item != expected)
254 return -ENOENT;
255 if (replacement)
256 radix_tree_replace_slot(pslot, replacement);
257 else
258 radix_tree_delete(&mapping->page_tree, index);
259 return 0;
260 }
261
262 /*
263 * Sometimes, before we decide whether to proceed or to fail, we must check
264 * that an entry was not already brought back from swap by a racing thread.
265 *
266 * Checking page is not enough: by the time a SwapCache page is locked, it
267 * might be reused, and again be SwapCache, using the same swap as before.
268 */
269 static bool shmem_confirm_swap(struct address_space *mapping,
270 pgoff_t index, swp_entry_t swap)
271 {
272 void *item;
273
274 rcu_read_lock();
275 item = radix_tree_lookup(&mapping->page_tree, index);
276 rcu_read_unlock();
277 return item == swp_to_radix_entry(swap);
278 }
279
280 /*
281 * Like add_to_page_cache_locked, but error if expected item has gone.
282 */
283 static int shmem_add_to_page_cache(struct page *page,
284 struct address_space *mapping,
285 pgoff_t index, gfp_t gfp, void *expected)
286 {
287 int error;
288
289 VM_BUG_ON(!PageLocked(page));
290 VM_BUG_ON(!PageSwapBacked(page));
291
292 page_cache_get(page);
293 page->mapping = mapping;
294 page->index = index;
295
296 spin_lock_irq(&mapping->tree_lock);
297 if (!expected)
298 error = radix_tree_insert(&mapping->page_tree, index, page);
299 else
300 error = shmem_radix_tree_replace(mapping, index, expected,
301 page);
302 if (!error) {
303 mapping->nrpages++;
304 __inc_zone_page_state(page, NR_FILE_PAGES);
305 __inc_zone_page_state(page, NR_SHMEM);
306 spin_unlock_irq(&mapping->tree_lock);
307 } else {
308 page->mapping = NULL;
309 spin_unlock_irq(&mapping->tree_lock);
310 page_cache_release(page);
311 }
312 return error;
313 }
314
315 /*
316 * Like delete_from_page_cache, but substitutes swap for page.
317 */
318 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
319 {
320 struct address_space *mapping = page->mapping;
321 int error;
322
323 spin_lock_irq(&mapping->tree_lock);
324 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
325 page->mapping = NULL;
326 mapping->nrpages--;
327 __dec_zone_page_state(page, NR_FILE_PAGES);
328 __dec_zone_page_state(page, NR_SHMEM);
329 spin_unlock_irq(&mapping->tree_lock);
330 page_cache_release(page);
331 BUG_ON(error);
332 }
333
334 /*
335 * Like find_get_pages, but collecting swap entries as well as pages.
336 */
337 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
338 pgoff_t start, unsigned int nr_pages,
339 struct page **pages, pgoff_t *indices)
340 {
341 void **slot;
342 unsigned int ret = 0;
343 struct radix_tree_iter iter;
344
345 if (!nr_pages)
346 return 0;
347
348 rcu_read_lock();
349 restart:
350 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
351 struct page *page;
352 repeat:
353 page = radix_tree_deref_slot(slot);
354 if (unlikely(!page))
355 continue;
356 if (radix_tree_exception(page)) {
357 if (radix_tree_deref_retry(page))
358 goto restart;
359 /*
360 * Otherwise, we must be storing a swap entry
361 * here as an exceptional entry: so return it
362 * without attempting to raise page count.
363 */
364 goto export;
365 }
366 if (!page_cache_get_speculative(page))
367 goto repeat;
368
369 /* Has the page moved? */
370 if (unlikely(page != *slot)) {
371 page_cache_release(page);
372 goto repeat;
373 }
374 export:
375 indices[ret] = iter.index;
376 pages[ret] = page;
377 if (++ret == nr_pages)
378 break;
379 }
380 rcu_read_unlock();
381 return ret;
382 }
383
384 /*
385 * Remove swap entry from radix tree, free the swap and its page cache.
386 */
387 static int shmem_free_swap(struct address_space *mapping,
388 pgoff_t index, void *radswap)
389 {
390 int error;
391
392 spin_lock_irq(&mapping->tree_lock);
393 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
394 spin_unlock_irq(&mapping->tree_lock);
395 if (!error)
396 free_swap_and_cache(radix_to_swp_entry(radswap));
397 return error;
398 }
399
400 /*
401 * Pagevec may contain swap entries, so shuffle up pages before releasing.
402 */
403 static void shmem_deswap_pagevec(struct pagevec *pvec)
404 {
405 int i, j;
406
407 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
408 struct page *page = pvec->pages[i];
409 if (!radix_tree_exceptional_entry(page))
410 pvec->pages[j++] = page;
411 }
412 pvec->nr = j;
413 }
414
415 /*
416 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
417 */
418 void shmem_unlock_mapping(struct address_space *mapping)
419 {
420 struct pagevec pvec;
421 pgoff_t indices[PAGEVEC_SIZE];
422 pgoff_t index = 0;
423
424 pagevec_init(&pvec, 0);
425 /*
426 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
427 */
428 while (!mapping_unevictable(mapping)) {
429 /*
430 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
432 */
433 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
434 PAGEVEC_SIZE, pvec.pages, indices);
435 if (!pvec.nr)
436 break;
437 index = indices[pvec.nr - 1] + 1;
438 shmem_deswap_pagevec(&pvec);
439 check_move_unevictable_pages(pvec.pages, pvec.nr);
440 pagevec_release(&pvec);
441 cond_resched();
442 }
443 }
444
445 /*
446 * Remove range of pages and swap entries from radix tree, and free them.
447 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
448 */
449 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
450 bool unfalloc)
451 {
452 struct address_space *mapping = inode->i_mapping;
453 struct shmem_inode_info *info = SHMEM_I(inode);
454 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
455 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
456 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
457 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
458 struct pagevec pvec;
459 pgoff_t indices[PAGEVEC_SIZE];
460 long nr_swaps_freed = 0;
461 pgoff_t index;
462 int i;
463
464 if (lend == -1)
465 end = -1; /* unsigned, so actually very big */
466
467 pagevec_init(&pvec, 0);
468 index = start;
469 while (index < end) {
470 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
471 min(end - index, (pgoff_t)PAGEVEC_SIZE),
472 pvec.pages, indices);
473 if (!pvec.nr)
474 break;
475 mem_cgroup_uncharge_start();
476 for (i = 0; i < pagevec_count(&pvec); i++) {
477 struct page *page = pvec.pages[i];
478
479 index = indices[i];
480 if (index >= end)
481 break;
482
483 if (radix_tree_exceptional_entry(page)) {
484 if (unfalloc)
485 continue;
486 if (shmem_free_swap(mapping, index, page)) {
487 /* Swap was replaced by page: retry */
488 index--;
489 break;
490 }
491 nr_swaps_freed++;
492 continue;
493 }
494
495 if (!trylock_page(page))
496 continue;
497 if (!unfalloc || !PageUptodate(page)) {
498 if (page->mapping == mapping) {
499 VM_BUG_ON(PageWriteback(page));
500 truncate_inode_page(mapping, page);
501 } else {
502 /* Page was replaced by swap: retry */
503 unlock_page(page);
504 index--;
505 break;
506 }
507 }
508 unlock_page(page);
509 }
510 shmem_deswap_pagevec(&pvec);
511 pagevec_release(&pvec);
512 mem_cgroup_uncharge_end();
513 cond_resched();
514 index++;
515 }
516
517 if (partial_start) {
518 struct page *page = NULL;
519 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
520 if (page) {
521 unsigned int top = PAGE_CACHE_SIZE;
522 if (start > end) {
523 top = partial_end;
524 partial_end = 0;
525 }
526 zero_user_segment(page, partial_start, top);
527 set_page_dirty(page);
528 unlock_page(page);
529 page_cache_release(page);
530 }
531 }
532 if (partial_end) {
533 struct page *page = NULL;
534 shmem_getpage(inode, end, &page, SGP_READ, NULL);
535 if (page) {
536 zero_user_segment(page, 0, partial_end);
537 set_page_dirty(page);
538 unlock_page(page);
539 page_cache_release(page);
540 }
541 }
542 if (start >= end)
543 return;
544
545 index = start;
546 while (index < end) {
547 cond_resched();
548 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
549 min(end - index, (pgoff_t)PAGEVEC_SIZE),
550 pvec.pages, indices);
551 if (!pvec.nr) {
552 /* If all gone or hole-punch or unfalloc, we're done */
553 if (index == start || end != -1)
554 break;
555 /* But if truncating, restart to make sure all gone */
556 index = start;
557 continue;
558 }
559 mem_cgroup_uncharge_start();
560 for (i = 0; i < pagevec_count(&pvec); i++) {
561 struct page *page = pvec.pages[i];
562
563 index = indices[i];
564 if (index >= end)
565 break;
566
567 if (radix_tree_exceptional_entry(page)) {
568 if (unfalloc)
569 continue;
570 if (shmem_free_swap(mapping, index, page)) {
571 /* Swap was replaced by page: retry */
572 index--;
573 break;
574 }
575 nr_swaps_freed++;
576 continue;
577 }
578
579 lock_page(page);
580 if (!unfalloc || !PageUptodate(page)) {
581 if (page->mapping == mapping) {
582 VM_BUG_ON(PageWriteback(page));
583 truncate_inode_page(mapping, page);
584 } else {
585 /* Page was replaced by swap: retry */
586 unlock_page(page);
587 index--;
588 break;
589 }
590 }
591 unlock_page(page);
592 }
593 shmem_deswap_pagevec(&pvec);
594 pagevec_release(&pvec);
595 mem_cgroup_uncharge_end();
596 index++;
597 }
598
599 spin_lock(&info->lock);
600 info->swapped -= nr_swaps_freed;
601 shmem_recalc_inode(inode);
602 spin_unlock(&info->lock);
603 }
604
605 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
606 {
607 shmem_undo_range(inode, lstart, lend, false);
608 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
609 }
610 EXPORT_SYMBOL_GPL(shmem_truncate_range);
611
612 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
613 {
614 struct inode *inode = dentry->d_inode;
615 int error;
616
617 error = inode_change_ok(inode, attr);
618 if (error)
619 return error;
620
621 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
622 loff_t oldsize = inode->i_size;
623 loff_t newsize = attr->ia_size;
624
625 if (newsize != oldsize) {
626 i_size_write(inode, newsize);
627 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
628 }
629 if (newsize < oldsize) {
630 loff_t holebegin = round_up(newsize, PAGE_SIZE);
631 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
632 shmem_truncate_range(inode, newsize, (loff_t)-1);
633 /* unmap again to remove racily COWed private pages */
634 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
635 }
636 }
637
638 setattr_copy(inode, attr);
639 #ifdef CONFIG_TMPFS_POSIX_ACL
640 if (attr->ia_valid & ATTR_MODE)
641 error = generic_acl_chmod(inode);
642 #endif
643 return error;
644 }
645
646 static void shmem_evict_inode(struct inode *inode)
647 {
648 struct shmem_inode_info *info = SHMEM_I(inode);
649
650 if (inode->i_mapping->a_ops == &shmem_aops) {
651 shmem_unacct_size(info->flags, inode->i_size);
652 inode->i_size = 0;
653 shmem_truncate_range(inode, 0, (loff_t)-1);
654 if (!list_empty(&info->swaplist)) {
655 mutex_lock(&shmem_swaplist_mutex);
656 list_del_init(&info->swaplist);
657 mutex_unlock(&shmem_swaplist_mutex);
658 }
659 } else
660 kfree(info->symlink);
661
662 simple_xattrs_free(&info->xattrs);
663 WARN_ON(inode->i_blocks);
664 shmem_free_inode(inode->i_sb);
665 clear_inode(inode);
666 }
667
668 /*
669 * If swap found in inode, free it and move page from swapcache to filecache.
670 */
671 static int shmem_unuse_inode(struct shmem_inode_info *info,
672 swp_entry_t swap, struct page **pagep)
673 {
674 struct address_space *mapping = info->vfs_inode.i_mapping;
675 void *radswap;
676 pgoff_t index;
677 gfp_t gfp;
678 int error = 0;
679
680 radswap = swp_to_radix_entry(swap);
681 index = radix_tree_locate_item(&mapping->page_tree, radswap);
682 if (index == -1)
683 return 0;
684
685 /*
686 * Move _head_ to start search for next from here.
687 * But be careful: shmem_evict_inode checks list_empty without taking
688 * mutex, and there's an instant in list_move_tail when info->swaplist
689 * would appear empty, if it were the only one on shmem_swaplist.
690 */
691 if (shmem_swaplist.next != &info->swaplist)
692 list_move_tail(&shmem_swaplist, &info->swaplist);
693
694 gfp = mapping_gfp_mask(mapping);
695 if (shmem_should_replace_page(*pagep, gfp)) {
696 mutex_unlock(&shmem_swaplist_mutex);
697 error = shmem_replace_page(pagep, gfp, info, index);
698 mutex_lock(&shmem_swaplist_mutex);
699 /*
700 * We needed to drop mutex to make that restrictive page
701 * allocation, but the inode might have been freed while we
702 * dropped it: although a racing shmem_evict_inode() cannot
703 * complete without emptying the radix_tree, our page lock
704 * on this swapcache page is not enough to prevent that -
705 * free_swap_and_cache() of our swap entry will only
706 * trylock_page(), removing swap from radix_tree whatever.
707 *
708 * We must not proceed to shmem_add_to_page_cache() if the
709 * inode has been freed, but of course we cannot rely on
710 * inode or mapping or info to check that. However, we can
711 * safely check if our swap entry is still in use (and here
712 * it can't have got reused for another page): if it's still
713 * in use, then the inode cannot have been freed yet, and we
714 * can safely proceed (if it's no longer in use, that tells
715 * nothing about the inode, but we don't need to unuse swap).
716 */
717 if (!page_swapcount(*pagep))
718 error = -ENOENT;
719 }
720
721 /*
722 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
723 * but also to hold up shmem_evict_inode(): so inode cannot be freed
724 * beneath us (pagelock doesn't help until the page is in pagecache).
725 */
726 if (!error)
727 error = shmem_add_to_page_cache(*pagep, mapping, index,
728 GFP_NOWAIT, radswap);
729 if (error != -ENOMEM) {
730 /*
731 * Truncation and eviction use free_swap_and_cache(), which
732 * only does trylock page: if we raced, best clean up here.
733 */
734 delete_from_swap_cache(*pagep);
735 set_page_dirty(*pagep);
736 if (!error) {
737 spin_lock(&info->lock);
738 info->swapped--;
739 spin_unlock(&info->lock);
740 swap_free(swap);
741 }
742 error = 1; /* not an error, but entry was found */
743 }
744 return error;
745 }
746
747 /*
748 * Search through swapped inodes to find and replace swap by page.
749 */
750 int shmem_unuse(swp_entry_t swap, struct page *page)
751 {
752 struct list_head *this, *next;
753 struct shmem_inode_info *info;
754 int found = 0;
755 int error = 0;
756
757 /*
758 * There's a faint possibility that swap page was replaced before
759 * caller locked it: caller will come back later with the right page.
760 */
761 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
762 goto out;
763
764 /*
765 * Charge page using GFP_KERNEL while we can wait, before taking
766 * the shmem_swaplist_mutex which might hold up shmem_writepage().
767 * Charged back to the user (not to caller) when swap account is used.
768 */
769 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
770 if (error)
771 goto out;
772 /* No radix_tree_preload: swap entry keeps a place for page in tree */
773
774 mutex_lock(&shmem_swaplist_mutex);
775 list_for_each_safe(this, next, &shmem_swaplist) {
776 info = list_entry(this, struct shmem_inode_info, swaplist);
777 if (info->swapped)
778 found = shmem_unuse_inode(info, swap, &page);
779 else
780 list_del_init(&info->swaplist);
781 cond_resched();
782 if (found)
783 break;
784 }
785 mutex_unlock(&shmem_swaplist_mutex);
786
787 if (found < 0)
788 error = found;
789 out:
790 unlock_page(page);
791 page_cache_release(page);
792 return error;
793 }
794
795 /*
796 * Move the page from the page cache to the swap cache.
797 */
798 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
799 {
800 struct shmem_inode_info *info;
801 struct address_space *mapping;
802 struct inode *inode;
803 swp_entry_t swap;
804 pgoff_t index;
805
806 BUG_ON(!PageLocked(page));
807 mapping = page->mapping;
808 index = page->index;
809 inode = mapping->host;
810 info = SHMEM_I(inode);
811 if (info->flags & VM_LOCKED)
812 goto redirty;
813 if (!total_swap_pages)
814 goto redirty;
815
816 /*
817 * shmem_backing_dev_info's capabilities prevent regular writeback or
818 * sync from ever calling shmem_writepage; but a stacking filesystem
819 * might use ->writepage of its underlying filesystem, in which case
820 * tmpfs should write out to swap only in response to memory pressure,
821 * and not for the writeback threads or sync.
822 */
823 if (!wbc->for_reclaim) {
824 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
825 goto redirty;
826 }
827
828 /*
829 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
830 * value into swapfile.c, the only way we can correctly account for a
831 * fallocated page arriving here is now to initialize it and write it.
832 *
833 * That's okay for a page already fallocated earlier, but if we have
834 * not yet completed the fallocation, then (a) we want to keep track
835 * of this page in case we have to undo it, and (b) it may not be a
836 * good idea to continue anyway, once we're pushing into swap. So
837 * reactivate the page, and let shmem_fallocate() quit when too many.
838 */
839 if (!PageUptodate(page)) {
840 if (inode->i_private) {
841 struct shmem_falloc *shmem_falloc;
842 spin_lock(&inode->i_lock);
843 shmem_falloc = inode->i_private;
844 if (shmem_falloc &&
845 !shmem_falloc->waitq &&
846 index >= shmem_falloc->start &&
847 index < shmem_falloc->next)
848 shmem_falloc->nr_unswapped++;
849 else
850 shmem_falloc = NULL;
851 spin_unlock(&inode->i_lock);
852 if (shmem_falloc)
853 goto redirty;
854 }
855 clear_highpage(page);
856 flush_dcache_page(page);
857 SetPageUptodate(page);
858 }
859
860 swap = get_swap_page();
861 if (!swap.val)
862 goto redirty;
863
864 /*
865 * Add inode to shmem_unuse()'s list of swapped-out inodes,
866 * if it's not already there. Do it now before the page is
867 * moved to swap cache, when its pagelock no longer protects
868 * the inode from eviction. But don't unlock the mutex until
869 * we've incremented swapped, because shmem_unuse_inode() will
870 * prune a !swapped inode from the swaplist under this mutex.
871 */
872 mutex_lock(&shmem_swaplist_mutex);
873 if (list_empty(&info->swaplist))
874 list_add_tail(&info->swaplist, &shmem_swaplist);
875
876 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
877 swap_shmem_alloc(swap);
878 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
879
880 spin_lock(&info->lock);
881 info->swapped++;
882 shmem_recalc_inode(inode);
883 spin_unlock(&info->lock);
884
885 mutex_unlock(&shmem_swaplist_mutex);
886 BUG_ON(page_mapped(page));
887 swap_writepage(page, wbc);
888 return 0;
889 }
890
891 mutex_unlock(&shmem_swaplist_mutex);
892 swapcache_free(swap, NULL);
893 redirty:
894 set_page_dirty(page);
895 if (wbc->for_reclaim)
896 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
897 unlock_page(page);
898 return 0;
899 }
900
901 #ifdef CONFIG_NUMA
902 #ifdef CONFIG_TMPFS
903 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
904 {
905 char buffer[64];
906
907 if (!mpol || mpol->mode == MPOL_DEFAULT)
908 return; /* show nothing */
909
910 mpol_to_str(buffer, sizeof(buffer), mpol);
911
912 seq_printf(seq, ",mpol=%s", buffer);
913 }
914
915 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
916 {
917 struct mempolicy *mpol = NULL;
918 if (sbinfo->mpol) {
919 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
920 mpol = sbinfo->mpol;
921 mpol_get(mpol);
922 spin_unlock(&sbinfo->stat_lock);
923 }
924 return mpol;
925 }
926 #endif /* CONFIG_TMPFS */
927
928 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
929 struct shmem_inode_info *info, pgoff_t index)
930 {
931 struct vm_area_struct pvma;
932 struct page *page;
933
934 /* Create a pseudo vma that just contains the policy */
935 pvma.vm_start = 0;
936 /* Bias interleave by inode number to distribute better across nodes */
937 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
938 pvma.vm_ops = NULL;
939 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
940
941 page = swapin_readahead(swap, gfp, &pvma, 0);
942
943 /* Drop reference taken by mpol_shared_policy_lookup() */
944 mpol_cond_put(pvma.vm_policy);
945
946 return page;
947 }
948
949 static struct page *shmem_alloc_page(gfp_t gfp,
950 struct shmem_inode_info *info, pgoff_t index)
951 {
952 struct vm_area_struct pvma;
953 struct page *page;
954
955 /* Create a pseudo vma that just contains the policy */
956 pvma.vm_start = 0;
957 /* Bias interleave by inode number to distribute better across nodes */
958 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
959 pvma.vm_ops = NULL;
960 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
961
962 page = alloc_page_vma(gfp, &pvma, 0);
963 if (page && is_cma_pageblock(page)) {
964 __free_page(page);
965 page = alloc_pages(gfp & ~__GFP_MOVABLE, 0);
966 }
967
968 /* Drop reference taken by mpol_shared_policy_lookup() */
969 mpol_cond_put(pvma.vm_policy);
970
971 return page;
972 }
973 #else /* !CONFIG_NUMA */
974 #ifdef CONFIG_TMPFS
975 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
976 {
977 }
978 #endif /* CONFIG_TMPFS */
979
980 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
981 struct shmem_inode_info *info, pgoff_t index)
982 {
983 return swapin_readahead(swap, gfp, NULL, 0);
984 }
985
986 static inline struct page *shmem_alloc_page(gfp_t gfp,
987 struct shmem_inode_info *info, pgoff_t index)
988 {
989 return alloc_page(gfp);
990 }
991 #endif /* CONFIG_NUMA */
992
993 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
994 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
995 {
996 return NULL;
997 }
998 #endif
999
1000 /*
1001 * When a page is moved from swapcache to shmem filecache (either by the
1002 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1003 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1004 * ignorance of the mapping it belongs to. If that mapping has special
1005 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1006 * we may need to copy to a suitable page before moving to filecache.
1007 *
1008 * In a future release, this may well be extended to respect cpuset and
1009 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1010 * but for now it is a simple matter of zone.
1011 */
1012 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1013 {
1014 return page_zonenum(page) > gfp_zone(gfp);
1015 }
1016
1017 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1018 struct shmem_inode_info *info, pgoff_t index)
1019 {
1020 struct page *oldpage, *newpage;
1021 struct address_space *swap_mapping;
1022 pgoff_t swap_index;
1023 int error;
1024
1025 oldpage = *pagep;
1026 swap_index = page_private(oldpage);
1027 swap_mapping = page_mapping(oldpage);
1028
1029 /*
1030 * We have arrived here because our zones are constrained, so don't
1031 * limit chance of success by further cpuset and node constraints.
1032 */
1033 gfp &= ~GFP_CONSTRAINT_MASK;
1034 newpage = shmem_alloc_page(gfp, info, index);
1035 if (!newpage)
1036 return -ENOMEM;
1037
1038 page_cache_get(newpage);
1039 copy_highpage(newpage, oldpage);
1040 flush_dcache_page(newpage);
1041
1042 __set_page_locked(newpage);
1043 SetPageUptodate(newpage);
1044 SetPageSwapBacked(newpage);
1045 set_page_private(newpage, swap_index);
1046 SetPageSwapCache(newpage);
1047
1048 /*
1049 * Our caller will very soon move newpage out of swapcache, but it's
1050 * a nice clean interface for us to replace oldpage by newpage there.
1051 */
1052 spin_lock_irq(&swap_mapping->tree_lock);
1053 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1054 newpage);
1055 if (!error) {
1056 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1057 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1058 }
1059 spin_unlock_irq(&swap_mapping->tree_lock);
1060
1061 if (unlikely(error)) {
1062 /*
1063 * Is this possible? I think not, now that our callers check
1064 * both PageSwapCache and page_private after getting page lock;
1065 * but be defensive. Reverse old to newpage for clear and free.
1066 */
1067 oldpage = newpage;
1068 } else {
1069 mem_cgroup_replace_page_cache(oldpage, newpage);
1070 lru_cache_add_anon(newpage);
1071 *pagep = newpage;
1072 }
1073
1074 ClearPageSwapCache(oldpage);
1075 set_page_private(oldpage, 0);
1076
1077 unlock_page(oldpage);
1078 page_cache_release(oldpage);
1079 page_cache_release(oldpage);
1080 return error;
1081 }
1082
1083 /*
1084 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1085 *
1086 * If we allocate a new one we do not mark it dirty. That's up to the
1087 * vm. If we swap it in we mark it dirty since we also free the swap
1088 * entry since a page cannot live in both the swap and page cache
1089 */
1090 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1091 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1092 {
1093 struct address_space *mapping = inode->i_mapping;
1094 struct shmem_inode_info *info;
1095 struct shmem_sb_info *sbinfo;
1096 struct page *page;
1097 swp_entry_t swap;
1098 int error;
1099 int once = 0;
1100 int alloced = 0;
1101
1102 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1103 return -EFBIG;
1104 repeat:
1105 swap.val = 0;
1106 page = find_lock_page(mapping, index);
1107 if (radix_tree_exceptional_entry(page)) {
1108 swap = radix_to_swp_entry(page);
1109 page = NULL;
1110 }
1111
1112 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1113 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1114 error = -EINVAL;
1115 goto failed;
1116 }
1117
1118 /* fallocated page? */
1119 if (page && !PageUptodate(page)) {
1120 if (sgp != SGP_READ)
1121 goto clear;
1122 unlock_page(page);
1123 page_cache_release(page);
1124 page = NULL;
1125 }
1126 if (page || (sgp == SGP_READ && !swap.val)) {
1127 *pagep = page;
1128 return 0;
1129 }
1130
1131 /*
1132 * Fast cache lookup did not find it:
1133 * bring it back from swap or allocate.
1134 */
1135 info = SHMEM_I(inode);
1136 sbinfo = SHMEM_SB(inode->i_sb);
1137
1138 if (swap.val) {
1139 /* Look it up and read it in.. */
1140 page = lookup_swap_cache(swap);
1141 if (!page) {
1142 /* here we actually do the io */
1143 if (fault_type)
1144 *fault_type |= VM_FAULT_MAJOR;
1145 page = shmem_swapin(swap, gfp, info, index);
1146 if (!page) {
1147 error = -ENOMEM;
1148 goto failed;
1149 }
1150 }
1151
1152 /* We have to do this with page locked to prevent races */
1153 lock_page(page);
1154 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1155 !shmem_confirm_swap(mapping, index, swap)) {
1156 error = -EEXIST; /* try again */
1157 goto unlock;
1158 }
1159 if (!PageUptodate(page)) {
1160 error = -EIO;
1161 goto failed;
1162 }
1163 wait_on_page_writeback(page);
1164
1165 if (shmem_should_replace_page(page, gfp)) {
1166 error = shmem_replace_page(&page, gfp, info, index);
1167 if (error)
1168 goto failed;
1169 }
1170
1171 error = mem_cgroup_cache_charge(page, current->mm,
1172 gfp & GFP_RECLAIM_MASK);
1173 if (!error) {
1174 error = shmem_add_to_page_cache(page, mapping, index,
1175 gfp, swp_to_radix_entry(swap));
1176 /*
1177 * We already confirmed swap under page lock, and make
1178 * no memory allocation here, so usually no possibility
1179 * of error; but free_swap_and_cache() only trylocks a
1180 * page, so it is just possible that the entry has been
1181 * truncated or holepunched since swap was confirmed.
1182 * shmem_undo_range() will have done some of the
1183 * unaccounting, now delete_from_swap_cache() will do
1184 * the rest (including mem_cgroup_uncharge_swapcache).
1185 * Reset swap.val? No, leave it so "failed" goes back to
1186 * "repeat": reading a hole and writing should succeed.
1187 */
1188 if (error)
1189 delete_from_swap_cache(page);
1190 }
1191 if (error)
1192 goto failed;
1193
1194 spin_lock(&info->lock);
1195 info->swapped--;
1196 shmem_recalc_inode(inode);
1197 spin_unlock(&info->lock);
1198
1199 delete_from_swap_cache(page);
1200 set_page_dirty(page);
1201 swap_free(swap);
1202
1203 } else {
1204 if (shmem_acct_block(info->flags)) {
1205 error = -ENOSPC;
1206 goto failed;
1207 }
1208 if (sbinfo->max_blocks) {
1209 if (percpu_counter_compare(&sbinfo->used_blocks,
1210 sbinfo->max_blocks) >= 0) {
1211 error = -ENOSPC;
1212 goto unacct;
1213 }
1214 percpu_counter_inc(&sbinfo->used_blocks);
1215 }
1216
1217 page = shmem_alloc_page(gfp, info, index);
1218 if (!page) {
1219 error = -ENOMEM;
1220 goto decused;
1221 }
1222
1223 SetPageSwapBacked(page);
1224 __set_page_locked(page);
1225 error = mem_cgroup_cache_charge(page, current->mm,
1226 gfp & GFP_RECLAIM_MASK);
1227 if (error)
1228 goto decused;
1229 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1230 if (!error) {
1231 error = shmem_add_to_page_cache(page, mapping, index,
1232 gfp, NULL);
1233 radix_tree_preload_end();
1234 }
1235 if (error) {
1236 mem_cgroup_uncharge_cache_page(page);
1237 goto decused;
1238 }
1239 lru_cache_add_anon(page);
1240
1241 spin_lock(&info->lock);
1242 info->alloced++;
1243 inode->i_blocks += BLOCKS_PER_PAGE;
1244 shmem_recalc_inode(inode);
1245 spin_unlock(&info->lock);
1246 alloced = true;
1247
1248 /*
1249 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1250 */
1251 if (sgp == SGP_FALLOC)
1252 sgp = SGP_WRITE;
1253 clear:
1254 /*
1255 * Let SGP_WRITE caller clear ends if write does not fill page;
1256 * but SGP_FALLOC on a page fallocated earlier must initialize
1257 * it now, lest undo on failure cancel our earlier guarantee.
1258 */
1259 if (sgp != SGP_WRITE) {
1260 clear_highpage(page);
1261 flush_dcache_page(page);
1262 SetPageUptodate(page);
1263 }
1264 if (sgp == SGP_DIRTY)
1265 set_page_dirty(page);
1266 }
1267
1268 /* Perhaps the file has been truncated since we checked */
1269 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1270 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1271 error = -EINVAL;
1272 if (alloced)
1273 goto trunc;
1274 else
1275 goto failed;
1276 }
1277 *pagep = page;
1278 return 0;
1279
1280 /*
1281 * Error recovery.
1282 */
1283 trunc:
1284 info = SHMEM_I(inode);
1285 ClearPageDirty(page);
1286 delete_from_page_cache(page);
1287 spin_lock(&info->lock);
1288 info->alloced--;
1289 inode->i_blocks -= BLOCKS_PER_PAGE;
1290 spin_unlock(&info->lock);
1291 decused:
1292 sbinfo = SHMEM_SB(inode->i_sb);
1293 if (sbinfo->max_blocks)
1294 percpu_counter_add(&sbinfo->used_blocks, -1);
1295 unacct:
1296 shmem_unacct_blocks(info->flags, 1);
1297 failed:
1298 if (swap.val && error != -EINVAL &&
1299 !shmem_confirm_swap(mapping, index, swap))
1300 error = -EEXIST;
1301 unlock:
1302 if (page) {
1303 unlock_page(page);
1304 page_cache_release(page);
1305 }
1306 if (error == -ENOSPC && !once++) {
1307 info = SHMEM_I(inode);
1308 spin_lock(&info->lock);
1309 shmem_recalc_inode(inode);
1310 spin_unlock(&info->lock);
1311 goto repeat;
1312 }
1313 if (error == -EEXIST) /* from above or from radix_tree_insert */
1314 goto repeat;
1315 return error;
1316 }
1317
1318 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1319 {
1320 struct inode *inode = file_inode(vma->vm_file);
1321 int error;
1322 int ret = VM_FAULT_LOCKED;
1323
1324 /*
1325 * Trinity finds that probing a hole which tmpfs is punching can
1326 * prevent the hole-punch from ever completing: which in turn
1327 * locks writers out with its hold on i_mutex. So refrain from
1328 * faulting pages into the hole while it's being punched. Although
1329 * shmem_undo_range() does remove the additions, it may be unable to
1330 * keep up, as each new page needs its own unmap_mapping_range() call,
1331 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1332 *
1333 * It does not matter if we sometimes reach this check just before the
1334 * hole-punch begins, so that one fault then races with the punch:
1335 * we just need to make racing faults a rare case.
1336 *
1337 * The implementation below would be much simpler if we just used a
1338 * standard mutex or completion: but we cannot take i_mutex in fault,
1339 * and bloating every shmem inode for this unlikely case would be sad.
1340 */
1341 if (unlikely(inode->i_private)) {
1342 struct shmem_falloc *shmem_falloc;
1343
1344 spin_lock(&inode->i_lock);
1345 shmem_falloc = inode->i_private;
1346 if (shmem_falloc &&
1347 shmem_falloc->waitq &&
1348 vmf->pgoff >= shmem_falloc->start &&
1349 vmf->pgoff < shmem_falloc->next) {
1350 wait_queue_head_t *shmem_falloc_waitq;
1351 DEFINE_WAIT(shmem_fault_wait);
1352
1353 ret = VM_FAULT_NOPAGE;
1354 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1355 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1356 /* It's polite to up mmap_sem if we can */
1357 up_read(&vma->vm_mm->mmap_sem);
1358 ret = VM_FAULT_RETRY;
1359 }
1360
1361 shmem_falloc_waitq = shmem_falloc->waitq;
1362 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1363 TASK_UNINTERRUPTIBLE);
1364 spin_unlock(&inode->i_lock);
1365 schedule();
1366
1367 /*
1368 * shmem_falloc_waitq points into the shmem_fallocate()
1369 * stack of the hole-punching task: shmem_falloc_waitq
1370 * is usually invalid by the time we reach here, but
1371 * finish_wait() does not dereference it in that case;
1372 * though i_lock needed lest racing with wake_up_all().
1373 */
1374 spin_lock(&inode->i_lock);
1375 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1376 spin_unlock(&inode->i_lock);
1377 return ret;
1378 }
1379 spin_unlock(&inode->i_lock);
1380 }
1381
1382 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1383 if (error)
1384 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1385
1386 if (ret & VM_FAULT_MAJOR) {
1387 count_vm_event(PGMAJFAULT);
1388 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1389 }
1390 return ret;
1391 }
1392
1393 #ifdef CONFIG_NUMA
1394 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1395 {
1396 struct inode *inode = file_inode(vma->vm_file);
1397 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1398 }
1399
1400 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1401 unsigned long addr)
1402 {
1403 struct inode *inode = file_inode(vma->vm_file);
1404 pgoff_t index;
1405
1406 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1407 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1408 }
1409 #endif
1410
1411 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1412 {
1413 struct inode *inode = file_inode(file);
1414 struct shmem_inode_info *info = SHMEM_I(inode);
1415 int retval = -ENOMEM;
1416
1417 spin_lock(&info->lock);
1418 if (lock && !(info->flags & VM_LOCKED)) {
1419 if (!user_shm_lock(inode->i_size, user))
1420 goto out_nomem;
1421 info->flags |= VM_LOCKED;
1422 mapping_set_unevictable(file->f_mapping);
1423 }
1424 if (!lock && (info->flags & VM_LOCKED) && user) {
1425 user_shm_unlock(inode->i_size, user);
1426 info->flags &= ~VM_LOCKED;
1427 mapping_clear_unevictable(file->f_mapping);
1428 }
1429 retval = 0;
1430
1431 out_nomem:
1432 spin_unlock(&info->lock);
1433 return retval;
1434 }
1435
1436 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1437 {
1438 file_accessed(file);
1439 vma->vm_ops = &shmem_vm_ops;
1440 return 0;
1441 }
1442
1443 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1444 umode_t mode, dev_t dev, unsigned long flags)
1445 {
1446 struct inode *inode;
1447 struct shmem_inode_info *info;
1448 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1449
1450 if (shmem_reserve_inode(sb))
1451 return NULL;
1452
1453 inode = new_inode(sb);
1454 if (inode) {
1455 inode->i_ino = get_next_ino();
1456 inode_init_owner(inode, dir, mode);
1457 inode->i_blocks = 0;
1458 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1459 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1460 inode->i_generation = get_seconds();
1461 info = SHMEM_I(inode);
1462 memset(info, 0, (char *)inode - (char *)info);
1463 spin_lock_init(&info->lock);
1464 info->flags = flags & VM_NORESERVE;
1465 INIT_LIST_HEAD(&info->swaplist);
1466 simple_xattrs_init(&info->xattrs);
1467 cache_no_acl(inode);
1468
1469 switch (mode & S_IFMT) {
1470 default:
1471 inode->i_op = &shmem_special_inode_operations;
1472 init_special_inode(inode, mode, dev);
1473 break;
1474 case S_IFREG:
1475 inode->i_mapping->a_ops = &shmem_aops;
1476 inode->i_op = &shmem_inode_operations;
1477 inode->i_fop = &shmem_file_operations;
1478 mpol_shared_policy_init(&info->policy,
1479 shmem_get_sbmpol(sbinfo));
1480 break;
1481 case S_IFDIR:
1482 inc_nlink(inode);
1483 /* Some things misbehave if size == 0 on a directory */
1484 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1485 inode->i_op = &shmem_dir_inode_operations;
1486 inode->i_fop = &simple_dir_operations;
1487 break;
1488 case S_IFLNK:
1489 /*
1490 * Must not load anything in the rbtree,
1491 * mpol_free_shared_policy will not be called.
1492 */
1493 mpol_shared_policy_init(&info->policy, NULL);
1494 break;
1495 }
1496 } else
1497 shmem_free_inode(sb);
1498 return inode;
1499 }
1500
1501 #ifdef CONFIG_TMPFS
1502 static const struct inode_operations shmem_symlink_inode_operations;
1503 static const struct inode_operations shmem_short_symlink_operations;
1504
1505 #ifdef CONFIG_TMPFS_XATTR
1506 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1507 #else
1508 #define shmem_initxattrs NULL
1509 #endif
1510
1511 static int
1512 shmem_write_begin(struct file *file, struct address_space *mapping,
1513 loff_t pos, unsigned len, unsigned flags,
1514 struct page **pagep, void **fsdata)
1515 {
1516 struct inode *inode = mapping->host;
1517 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1518 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1519 }
1520
1521 static int
1522 shmem_write_end(struct file *file, struct address_space *mapping,
1523 loff_t pos, unsigned len, unsigned copied,
1524 struct page *page, void *fsdata)
1525 {
1526 struct inode *inode = mapping->host;
1527
1528 if (pos + copied > inode->i_size)
1529 i_size_write(inode, pos + copied);
1530
1531 if (!PageUptodate(page)) {
1532 if (copied < PAGE_CACHE_SIZE) {
1533 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1534 zero_user_segments(page, 0, from,
1535 from + copied, PAGE_CACHE_SIZE);
1536 }
1537 SetPageUptodate(page);
1538 }
1539 set_page_dirty(page);
1540 unlock_page(page);
1541 page_cache_release(page);
1542
1543 return copied;
1544 }
1545
1546 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1547 {
1548 struct inode *inode = file_inode(filp);
1549 struct address_space *mapping = inode->i_mapping;
1550 pgoff_t index;
1551 unsigned long offset;
1552 enum sgp_type sgp = SGP_READ;
1553
1554 /*
1555 * Might this read be for a stacking filesystem? Then when reading
1556 * holes of a sparse file, we actually need to allocate those pages,
1557 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1558 */
1559 if (segment_eq(get_fs(), KERNEL_DS))
1560 sgp = SGP_DIRTY;
1561
1562 index = *ppos >> PAGE_CACHE_SHIFT;
1563 offset = *ppos & ~PAGE_CACHE_MASK;
1564
1565 for (;;) {
1566 struct page *page = NULL;
1567 pgoff_t end_index;
1568 unsigned long nr, ret;
1569 loff_t i_size = i_size_read(inode);
1570
1571 end_index = i_size >> PAGE_CACHE_SHIFT;
1572 if (index > end_index)
1573 break;
1574 if (index == end_index) {
1575 nr = i_size & ~PAGE_CACHE_MASK;
1576 if (nr <= offset)
1577 break;
1578 }
1579
1580 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1581 if (desc->error) {
1582 if (desc->error == -EINVAL)
1583 desc->error = 0;
1584 break;
1585 }
1586 if (page)
1587 unlock_page(page);
1588
1589 /*
1590 * We must evaluate after, since reads (unlike writes)
1591 * are called without i_mutex protection against truncate
1592 */
1593 nr = PAGE_CACHE_SIZE;
1594 i_size = i_size_read(inode);
1595 end_index = i_size >> PAGE_CACHE_SHIFT;
1596 if (index == end_index) {
1597 nr = i_size & ~PAGE_CACHE_MASK;
1598 if (nr <= offset) {
1599 if (page)
1600 page_cache_release(page);
1601 break;
1602 }
1603 }
1604 nr -= offset;
1605
1606 if (page) {
1607 /*
1608 * If users can be writing to this page using arbitrary
1609 * virtual addresses, take care about potential aliasing
1610 * before reading the page on the kernel side.
1611 */
1612 if (mapping_writably_mapped(mapping))
1613 flush_dcache_page(page);
1614 /*
1615 * Mark the page accessed if we read the beginning.
1616 */
1617 if (!offset)
1618 mark_page_accessed(page);
1619 } else {
1620 page = ZERO_PAGE(0);
1621 page_cache_get(page);
1622 }
1623
1624 /*
1625 * Ok, we have the page, and it's up-to-date, so
1626 * now we can copy it to user space...
1627 *
1628 * The actor routine returns how many bytes were actually used..
1629 * NOTE! This may not be the same as how much of a user buffer
1630 * we filled up (we may be padding etc), so we can only update
1631 * "pos" here (the actor routine has to update the user buffer
1632 * pointers and the remaining count).
1633 */
1634 ret = actor(desc, page, offset, nr);
1635 offset += ret;
1636 index += offset >> PAGE_CACHE_SHIFT;
1637 offset &= ~PAGE_CACHE_MASK;
1638
1639 page_cache_release(page);
1640 if (ret != nr || !desc->count)
1641 break;
1642
1643 cond_resched();
1644 }
1645
1646 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1647 file_accessed(filp);
1648 }
1649
1650 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1651 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1652 {
1653 struct file *filp = iocb->ki_filp;
1654 ssize_t retval;
1655 unsigned long seg;
1656 size_t count;
1657 loff_t *ppos = &iocb->ki_pos;
1658
1659 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1660 if (retval)
1661 return retval;
1662
1663 for (seg = 0; seg < nr_segs; seg++) {
1664 read_descriptor_t desc;
1665
1666 desc.written = 0;
1667 desc.arg.buf = iov[seg].iov_base;
1668 desc.count = iov[seg].iov_len;
1669 if (desc.count == 0)
1670 continue;
1671 desc.error = 0;
1672 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1673 retval += desc.written;
1674 if (desc.error) {
1675 retval = retval ?: desc.error;
1676 break;
1677 }
1678 if (desc.count > 0)
1679 break;
1680 }
1681 return retval;
1682 }
1683
1684 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1685 struct pipe_inode_info *pipe, size_t len,
1686 unsigned int flags)
1687 {
1688 struct address_space *mapping = in->f_mapping;
1689 struct inode *inode = mapping->host;
1690 unsigned int loff, nr_pages, req_pages;
1691 struct page *pages[PIPE_DEF_BUFFERS];
1692 struct partial_page partial[PIPE_DEF_BUFFERS];
1693 struct page *page;
1694 pgoff_t index, end_index;
1695 loff_t isize, left;
1696 int error, page_nr;
1697 struct splice_pipe_desc spd = {
1698 .pages = pages,
1699 .partial = partial,
1700 .nr_pages_max = PIPE_DEF_BUFFERS,
1701 .flags = flags,
1702 .ops = &page_cache_pipe_buf_ops,
1703 .spd_release = spd_release_page,
1704 };
1705
1706 isize = i_size_read(inode);
1707 if (unlikely(*ppos >= isize))
1708 return 0;
1709
1710 left = isize - *ppos;
1711 if (unlikely(left < len))
1712 len = left;
1713
1714 if (splice_grow_spd(pipe, &spd))
1715 return -ENOMEM;
1716
1717 index = *ppos >> PAGE_CACHE_SHIFT;
1718 loff = *ppos & ~PAGE_CACHE_MASK;
1719 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1720 nr_pages = min(req_pages, pipe->buffers);
1721
1722 spd.nr_pages = find_get_pages_contig(mapping, index,
1723 nr_pages, spd.pages);
1724 index += spd.nr_pages;
1725 error = 0;
1726
1727 while (spd.nr_pages < nr_pages) {
1728 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1729 if (error)
1730 break;
1731 unlock_page(page);
1732 spd.pages[spd.nr_pages++] = page;
1733 index++;
1734 }
1735
1736 index = *ppos >> PAGE_CACHE_SHIFT;
1737 nr_pages = spd.nr_pages;
1738 spd.nr_pages = 0;
1739
1740 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1741 unsigned int this_len;
1742
1743 if (!len)
1744 break;
1745
1746 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1747 page = spd.pages[page_nr];
1748
1749 if (!PageUptodate(page) || page->mapping != mapping) {
1750 error = shmem_getpage(inode, index, &page,
1751 SGP_CACHE, NULL);
1752 if (error)
1753 break;
1754 unlock_page(page);
1755 page_cache_release(spd.pages[page_nr]);
1756 spd.pages[page_nr] = page;
1757 }
1758
1759 isize = i_size_read(inode);
1760 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1761 if (unlikely(!isize || index > end_index))
1762 break;
1763
1764 if (end_index == index) {
1765 unsigned int plen;
1766
1767 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1768 if (plen <= loff)
1769 break;
1770
1771 this_len = min(this_len, plen - loff);
1772 len = this_len;
1773 }
1774
1775 spd.partial[page_nr].offset = loff;
1776 spd.partial[page_nr].len = this_len;
1777 len -= this_len;
1778 loff = 0;
1779 spd.nr_pages++;
1780 index++;
1781 }
1782
1783 while (page_nr < nr_pages)
1784 page_cache_release(spd.pages[page_nr++]);
1785
1786 if (spd.nr_pages)
1787 error = splice_to_pipe(pipe, &spd);
1788
1789 splice_shrink_spd(&spd);
1790
1791 if (error > 0) {
1792 *ppos += error;
1793 file_accessed(in);
1794 }
1795 return error;
1796 }
1797
1798 /*
1799 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1800 */
1801 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1802 pgoff_t index, pgoff_t end, int whence)
1803 {
1804 struct page *page;
1805 struct pagevec pvec;
1806 pgoff_t indices[PAGEVEC_SIZE];
1807 bool done = false;
1808 int i;
1809
1810 pagevec_init(&pvec, 0);
1811 pvec.nr = 1; /* start small: we may be there already */
1812 while (!done) {
1813 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1814 pvec.nr, pvec.pages, indices);
1815 if (!pvec.nr) {
1816 if (whence == SEEK_DATA)
1817 index = end;
1818 break;
1819 }
1820 for (i = 0; i < pvec.nr; i++, index++) {
1821 if (index < indices[i]) {
1822 if (whence == SEEK_HOLE) {
1823 done = true;
1824 break;
1825 }
1826 index = indices[i];
1827 }
1828 page = pvec.pages[i];
1829 if (page && !radix_tree_exceptional_entry(page)) {
1830 if (!PageUptodate(page))
1831 page = NULL;
1832 }
1833 if (index >= end ||
1834 (page && whence == SEEK_DATA) ||
1835 (!page && whence == SEEK_HOLE)) {
1836 done = true;
1837 break;
1838 }
1839 }
1840 shmem_deswap_pagevec(&pvec);
1841 pagevec_release(&pvec);
1842 pvec.nr = PAGEVEC_SIZE;
1843 cond_resched();
1844 }
1845 return index;
1846 }
1847
1848 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1849 {
1850 struct address_space *mapping = file->f_mapping;
1851 struct inode *inode = mapping->host;
1852 pgoff_t start, end;
1853 loff_t new_offset;
1854
1855 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1856 return generic_file_llseek_size(file, offset, whence,
1857 MAX_LFS_FILESIZE, i_size_read(inode));
1858 mutex_lock(&inode->i_mutex);
1859 /* We're holding i_mutex so we can access i_size directly */
1860
1861 if (offset < 0)
1862 offset = -EINVAL;
1863 else if (offset >= inode->i_size)
1864 offset = -ENXIO;
1865 else {
1866 start = offset >> PAGE_CACHE_SHIFT;
1867 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1868 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1869 new_offset <<= PAGE_CACHE_SHIFT;
1870 if (new_offset > offset) {
1871 if (new_offset < inode->i_size)
1872 offset = new_offset;
1873 else if (whence == SEEK_DATA)
1874 offset = -ENXIO;
1875 else
1876 offset = inode->i_size;
1877 }
1878 }
1879
1880 if (offset >= 0 && offset != file->f_pos) {
1881 file->f_pos = offset;
1882 file->f_version = 0;
1883 }
1884 mutex_unlock(&inode->i_mutex);
1885 return offset;
1886 }
1887
1888 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1889 loff_t len)
1890 {
1891 struct inode *inode = file_inode(file);
1892 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1893 struct shmem_falloc shmem_falloc;
1894 pgoff_t start, index, end;
1895 int error;
1896
1897 mutex_lock(&inode->i_mutex);
1898
1899 if (mode & FALLOC_FL_PUNCH_HOLE) {
1900 struct address_space *mapping = file->f_mapping;
1901 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1902 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1903 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1904
1905 shmem_falloc.waitq = &shmem_falloc_waitq;
1906 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1907 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1908 spin_lock(&inode->i_lock);
1909 inode->i_private = &shmem_falloc;
1910 spin_unlock(&inode->i_lock);
1911
1912 if ((u64)unmap_end > (u64)unmap_start)
1913 unmap_mapping_range(mapping, unmap_start,
1914 1 + unmap_end - unmap_start, 0);
1915 shmem_truncate_range(inode, offset, offset + len - 1);
1916 /* No need to unmap again: hole-punching leaves COWed pages */
1917
1918 spin_lock(&inode->i_lock);
1919 inode->i_private = NULL;
1920 wake_up_all(&shmem_falloc_waitq);
1921 spin_unlock(&inode->i_lock);
1922 error = 0;
1923 goto out;
1924 }
1925
1926 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1927 error = inode_newsize_ok(inode, offset + len);
1928 if (error)
1929 goto out;
1930
1931 start = offset >> PAGE_CACHE_SHIFT;
1932 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1933 /* Try to avoid a swapstorm if len is impossible to satisfy */
1934 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1935 error = -ENOSPC;
1936 goto out;
1937 }
1938
1939 shmem_falloc.waitq = NULL;
1940 shmem_falloc.start = start;
1941 shmem_falloc.next = start;
1942 shmem_falloc.nr_falloced = 0;
1943 shmem_falloc.nr_unswapped = 0;
1944 spin_lock(&inode->i_lock);
1945 inode->i_private = &shmem_falloc;
1946 spin_unlock(&inode->i_lock);
1947
1948 for (index = start; index < end; index++) {
1949 struct page *page;
1950
1951 /*
1952 * Good, the fallocate(2) manpage permits EINTR: we may have
1953 * been interrupted because we are using up too much memory.
1954 */
1955 if (signal_pending(current))
1956 error = -EINTR;
1957 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1958 error = -ENOMEM;
1959 else
1960 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1961 NULL);
1962 if (error) {
1963 /* Remove the !PageUptodate pages we added */
1964 if (index > start) {
1965 shmem_undo_range(inode,
1966 (loff_t)start << PAGE_CACHE_SHIFT,
1967 ((loff_t)index << PAGE_CACHE_SHIFT) - 1, true);
1968 }
1969 goto undone;
1970 }
1971
1972 /*
1973 * Inform shmem_writepage() how far we have reached.
1974 * No need for lock or barrier: we have the page lock.
1975 */
1976 shmem_falloc.next++;
1977 if (!PageUptodate(page))
1978 shmem_falloc.nr_falloced++;
1979
1980 /*
1981 * If !PageUptodate, leave it that way so that freeable pages
1982 * can be recognized if we need to rollback on error later.
1983 * But set_page_dirty so that memory pressure will swap rather
1984 * than free the pages we are allocating (and SGP_CACHE pages
1985 * might still be clean: we now need to mark those dirty too).
1986 */
1987 set_page_dirty(page);
1988 unlock_page(page);
1989 page_cache_release(page);
1990 cond_resched();
1991 }
1992
1993 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1994 i_size_write(inode, offset + len);
1995 inode->i_ctime = CURRENT_TIME;
1996 undone:
1997 spin_lock(&inode->i_lock);
1998 inode->i_private = NULL;
1999 spin_unlock(&inode->i_lock);
2000 out:
2001 mutex_unlock(&inode->i_mutex);
2002 return error;
2003 }
2004
2005 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2006 {
2007 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2008
2009 buf->f_type = TMPFS_MAGIC;
2010 buf->f_bsize = PAGE_CACHE_SIZE;
2011 buf->f_namelen = NAME_MAX;
2012 if (sbinfo->max_blocks) {
2013 buf->f_blocks = sbinfo->max_blocks;
2014 buf->f_bavail =
2015 buf->f_bfree = sbinfo->max_blocks -
2016 percpu_counter_sum(&sbinfo->used_blocks);
2017 }
2018 if (sbinfo->max_inodes) {
2019 buf->f_files = sbinfo->max_inodes;
2020 buf->f_ffree = sbinfo->free_inodes;
2021 }
2022 /* else leave those fields 0 like simple_statfs */
2023 return 0;
2024 }
2025
2026 /*
2027 * File creation. Allocate an inode, and we're done..
2028 */
2029 static int
2030 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2031 {
2032 struct inode *inode;
2033 int error = -ENOSPC;
2034
2035 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2036 if (inode) {
2037 error = security_inode_init_security(inode, dir,
2038 &dentry->d_name,
2039 shmem_initxattrs, NULL);
2040 if (error) {
2041 if (error != -EOPNOTSUPP) {
2042 iput(inode);
2043 return error;
2044 }
2045 }
2046 #ifdef CONFIG_TMPFS_POSIX_ACL
2047 error = generic_acl_init(inode, dir);
2048 if (error) {
2049 iput(inode);
2050 return error;
2051 }
2052 #else
2053 error = 0;
2054 #endif
2055 dir->i_size += BOGO_DIRENT_SIZE;
2056 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2057 d_instantiate(dentry, inode);
2058 dget(dentry); /* Extra count - pin the dentry in core */
2059 }
2060 return error;
2061 }
2062
2063 static int
2064 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2065 {
2066 struct inode *inode;
2067 int error = -ENOSPC;
2068
2069 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2070 if (inode) {
2071 error = security_inode_init_security(inode, dir,
2072 NULL,
2073 shmem_initxattrs, NULL);
2074 if (error) {
2075 if (error != -EOPNOTSUPP) {
2076 iput(inode);
2077 return error;
2078 }
2079 }
2080 #ifdef CONFIG_TMPFS_POSIX_ACL
2081 error = generic_acl_init(inode, dir);
2082 if (error) {
2083 iput(inode);
2084 return error;
2085 }
2086 #else
2087 error = 0;
2088 #endif
2089 d_tmpfile(dentry, inode);
2090 }
2091 return error;
2092 }
2093
2094 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2095 {
2096 int error;
2097
2098 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2099 return error;
2100 inc_nlink(dir);
2101 return 0;
2102 }
2103
2104 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2105 bool excl)
2106 {
2107 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2108 }
2109
2110 /*
2111 * Link a file..
2112 */
2113 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2114 {
2115 struct inode *inode = old_dentry->d_inode;
2116 int ret;
2117
2118 /*
2119 * No ordinary (disk based) filesystem counts links as inodes;
2120 * but each new link needs a new dentry, pinning lowmem, and
2121 * tmpfs dentries cannot be pruned until they are unlinked.
2122 */
2123 ret = shmem_reserve_inode(inode->i_sb);
2124 if (ret)
2125 goto out;
2126
2127 dir->i_size += BOGO_DIRENT_SIZE;
2128 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2129 inc_nlink(inode);
2130 ihold(inode); /* New dentry reference */
2131 dget(dentry); /* Extra pinning count for the created dentry */
2132 d_instantiate(dentry, inode);
2133 out:
2134 return ret;
2135 }
2136
2137 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2138 {
2139 struct inode *inode = dentry->d_inode;
2140
2141 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2142 shmem_free_inode(inode->i_sb);
2143
2144 dir->i_size -= BOGO_DIRENT_SIZE;
2145 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2146 drop_nlink(inode);
2147 dput(dentry); /* Undo the count from "create" - this does all the work */
2148 return 0;
2149 }
2150
2151 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2152 {
2153 if (!simple_empty(dentry))
2154 return -ENOTEMPTY;
2155
2156 drop_nlink(dentry->d_inode);
2157 drop_nlink(dir);
2158 return shmem_unlink(dir, dentry);
2159 }
2160
2161 /*
2162 * The VFS layer already does all the dentry stuff for rename,
2163 * we just have to decrement the usage count for the target if
2164 * it exists so that the VFS layer correctly free's it when it
2165 * gets overwritten.
2166 */
2167 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2168 {
2169 struct inode *inode = old_dentry->d_inode;
2170 int they_are_dirs = S_ISDIR(inode->i_mode);
2171
2172 if (!simple_empty(new_dentry))
2173 return -ENOTEMPTY;
2174
2175 if (new_dentry->d_inode) {
2176 (void) shmem_unlink(new_dir, new_dentry);
2177 if (they_are_dirs) {
2178 drop_nlink(new_dentry->d_inode);
2179 drop_nlink(old_dir);
2180 }
2181 } else if (they_are_dirs) {
2182 drop_nlink(old_dir);
2183 inc_nlink(new_dir);
2184 }
2185
2186 old_dir->i_size -= BOGO_DIRENT_SIZE;
2187 new_dir->i_size += BOGO_DIRENT_SIZE;
2188 old_dir->i_ctime = old_dir->i_mtime =
2189 new_dir->i_ctime = new_dir->i_mtime =
2190 inode->i_ctime = CURRENT_TIME;
2191 return 0;
2192 }
2193
2194 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2195 {
2196 int error;
2197 int len;
2198 struct inode *inode;
2199 struct page *page;
2200 char *kaddr;
2201 struct shmem_inode_info *info;
2202
2203 len = strlen(symname) + 1;
2204 if (len > PAGE_CACHE_SIZE)
2205 return -ENAMETOOLONG;
2206
2207 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2208 if (!inode)
2209 return -ENOSPC;
2210
2211 error = security_inode_init_security(inode, dir, &dentry->d_name,
2212 shmem_initxattrs, NULL);
2213 if (error) {
2214 if (error != -EOPNOTSUPP) {
2215 iput(inode);
2216 return error;
2217 }
2218 error = 0;
2219 }
2220
2221 info = SHMEM_I(inode);
2222 inode->i_size = len-1;
2223 if (len <= SHORT_SYMLINK_LEN) {
2224 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2225 if (!info->symlink) {
2226 iput(inode);
2227 return -ENOMEM;
2228 }
2229 inode->i_op = &shmem_short_symlink_operations;
2230 } else {
2231 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2232 if (error) {
2233 iput(inode);
2234 return error;
2235 }
2236 inode->i_mapping->a_ops = &shmem_aops;
2237 inode->i_op = &shmem_symlink_inode_operations;
2238 kaddr = kmap_atomic(page);
2239 memcpy(kaddr, symname, len);
2240 kunmap_atomic(kaddr);
2241 SetPageUptodate(page);
2242 set_page_dirty(page);
2243 unlock_page(page);
2244 page_cache_release(page);
2245 }
2246 dir->i_size += BOGO_DIRENT_SIZE;
2247 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2248 d_instantiate(dentry, inode);
2249 dget(dentry);
2250 return 0;
2251 }
2252
2253 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2254 {
2255 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2256 return NULL;
2257 }
2258
2259 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2260 {
2261 struct page *page = NULL;
2262 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2263 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2264 if (page)
2265 unlock_page(page);
2266 return page;
2267 }
2268
2269 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2270 {
2271 if (!IS_ERR(nd_get_link(nd))) {
2272 struct page *page = cookie;
2273 kunmap(page);
2274 mark_page_accessed(page);
2275 page_cache_release(page);
2276 }
2277 }
2278
2279 #ifdef CONFIG_TMPFS_XATTR
2280 /*
2281 * Superblocks without xattr inode operations may get some security.* xattr
2282 * support from the LSM "for free". As soon as we have any other xattrs
2283 * like ACLs, we also need to implement the security.* handlers at
2284 * filesystem level, though.
2285 */
2286
2287 /*
2288 * Callback for security_inode_init_security() for acquiring xattrs.
2289 */
2290 static int shmem_initxattrs(struct inode *inode,
2291 const struct xattr *xattr_array,
2292 void *fs_info)
2293 {
2294 struct shmem_inode_info *info = SHMEM_I(inode);
2295 const struct xattr *xattr;
2296 struct simple_xattr *new_xattr;
2297 size_t len;
2298
2299 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2300 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2301 if (!new_xattr)
2302 return -ENOMEM;
2303
2304 len = strlen(xattr->name) + 1;
2305 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2306 GFP_KERNEL);
2307 if (!new_xattr->name) {
2308 kfree(new_xattr);
2309 return -ENOMEM;
2310 }
2311
2312 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2313 XATTR_SECURITY_PREFIX_LEN);
2314 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2315 xattr->name, len);
2316
2317 simple_xattr_list_add(&info->xattrs, new_xattr);
2318 }
2319
2320 return 0;
2321 }
2322
2323 static const struct xattr_handler *shmem_xattr_handlers[] = {
2324 #ifdef CONFIG_TMPFS_POSIX_ACL
2325 &generic_acl_access_handler,
2326 &generic_acl_default_handler,
2327 #endif
2328 NULL
2329 };
2330
2331 static int shmem_xattr_validate(const char *name)
2332 {
2333 struct { const char *prefix; size_t len; } arr[] = {
2334 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2335 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2336 };
2337 int i;
2338
2339 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2340 size_t preflen = arr[i].len;
2341 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2342 if (!name[preflen])
2343 return -EINVAL;
2344 return 0;
2345 }
2346 }
2347 return -EOPNOTSUPP;
2348 }
2349
2350 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2351 void *buffer, size_t size)
2352 {
2353 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2354 int err;
2355
2356 /*
2357 * If this is a request for a synthetic attribute in the system.*
2358 * namespace use the generic infrastructure to resolve a handler
2359 * for it via sb->s_xattr.
2360 */
2361 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2362 return generic_getxattr(dentry, name, buffer, size);
2363
2364 err = shmem_xattr_validate(name);
2365 if (err)
2366 return err;
2367
2368 return simple_xattr_get(&info->xattrs, name, buffer, size);
2369 }
2370
2371 static int shmem_setxattr(struct dentry *dentry, const char *name,
2372 const void *value, size_t size, int flags)
2373 {
2374 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2375 int err;
2376
2377 /*
2378 * If this is a request for a synthetic attribute in the system.*
2379 * namespace use the generic infrastructure to resolve a handler
2380 * for it via sb->s_xattr.
2381 */
2382 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2383 return generic_setxattr(dentry, name, value, size, flags);
2384
2385 err = shmem_xattr_validate(name);
2386 if (err)
2387 return err;
2388
2389 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2390 }
2391
2392 static int shmem_removexattr(struct dentry *dentry, const char *name)
2393 {
2394 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2395 int err;
2396
2397 /*
2398 * If this is a request for a synthetic attribute in the system.*
2399 * namespace use the generic infrastructure to resolve a handler
2400 * for it via sb->s_xattr.
2401 */
2402 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2403 return generic_removexattr(dentry, name);
2404
2405 err = shmem_xattr_validate(name);
2406 if (err)
2407 return err;
2408
2409 return simple_xattr_remove(&info->xattrs, name);
2410 }
2411
2412 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2413 {
2414 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2415 return simple_xattr_list(&info->xattrs, buffer, size);
2416 }
2417 #endif /* CONFIG_TMPFS_XATTR */
2418
2419 static const struct inode_operations shmem_short_symlink_operations = {
2420 .readlink = generic_readlink,
2421 .follow_link = shmem_follow_short_symlink,
2422 #ifdef CONFIG_TMPFS_XATTR
2423 .setxattr = shmem_setxattr,
2424 .getxattr = shmem_getxattr,
2425 .listxattr = shmem_listxattr,
2426 .removexattr = shmem_removexattr,
2427 #endif
2428 };
2429
2430 static const struct inode_operations shmem_symlink_inode_operations = {
2431 .readlink = generic_readlink,
2432 .follow_link = shmem_follow_link,
2433 .put_link = shmem_put_link,
2434 #ifdef CONFIG_TMPFS_XATTR
2435 .setxattr = shmem_setxattr,
2436 .getxattr = shmem_getxattr,
2437 .listxattr = shmem_listxattr,
2438 .removexattr = shmem_removexattr,
2439 #endif
2440 };
2441
2442 static struct dentry *shmem_get_parent(struct dentry *child)
2443 {
2444 return ERR_PTR(-ESTALE);
2445 }
2446
2447 static int shmem_match(struct inode *ino, void *vfh)
2448 {
2449 __u32 *fh = vfh;
2450 __u64 inum = fh[2];
2451 inum = (inum << 32) | fh[1];
2452 return ino->i_ino == inum && fh[0] == ino->i_generation;
2453 }
2454
2455 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2456 struct fid *fid, int fh_len, int fh_type)
2457 {
2458 struct inode *inode;
2459 struct dentry *dentry = NULL;
2460 u64 inum;
2461
2462 if (fh_len < 3)
2463 return NULL;
2464
2465 inum = fid->raw[2];
2466 inum = (inum << 32) | fid->raw[1];
2467
2468 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2469 shmem_match, fid->raw);
2470 if (inode) {
2471 dentry = d_find_alias(inode);
2472 iput(inode);
2473 }
2474
2475 return dentry;
2476 }
2477
2478 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2479 struct inode *parent)
2480 {
2481 if (*len < 3) {
2482 *len = 3;
2483 return FILEID_INVALID;
2484 }
2485
2486 if (inode_unhashed(inode)) {
2487 /* Unfortunately insert_inode_hash is not idempotent,
2488 * so as we hash inodes here rather than at creation
2489 * time, we need a lock to ensure we only try
2490 * to do it once
2491 */
2492 static DEFINE_SPINLOCK(lock);
2493 spin_lock(&lock);
2494 if (inode_unhashed(inode))
2495 __insert_inode_hash(inode,
2496 inode->i_ino + inode->i_generation);
2497 spin_unlock(&lock);
2498 }
2499
2500 fh[0] = inode->i_generation;
2501 fh[1] = inode->i_ino;
2502 fh[2] = ((__u64)inode->i_ino) >> 32;
2503
2504 *len = 3;
2505 return 1;
2506 }
2507
2508 static const struct export_operations shmem_export_ops = {
2509 .get_parent = shmem_get_parent,
2510 .encode_fh = shmem_encode_fh,
2511 .fh_to_dentry = shmem_fh_to_dentry,
2512 };
2513
2514 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2515 bool remount)
2516 {
2517 char *this_char, *value, *rest;
2518 struct mempolicy *mpol = NULL;
2519 uid_t uid;
2520 gid_t gid;
2521
2522 while (options != NULL) {
2523 this_char = options;
2524 for (;;) {
2525 /*
2526 * NUL-terminate this option: unfortunately,
2527 * mount options form a comma-separated list,
2528 * but mpol's nodelist may also contain commas.
2529 */
2530 options = strchr(options, ',');
2531 if (options == NULL)
2532 break;
2533 options++;
2534 if (!isdigit(*options)) {
2535 options[-1] = '\0';
2536 break;
2537 }
2538 }
2539 if (!*this_char)
2540 continue;
2541 if ((value = strchr(this_char,'=')) != NULL) {
2542 *value++ = 0;
2543 } else {
2544 printk(KERN_ERR
2545 "tmpfs: No value for mount option '%s'\n",
2546 this_char);
2547 goto error;
2548 }
2549
2550 if (!strcmp(this_char,"size")) {
2551 unsigned long long size;
2552 size = memparse(value,&rest);
2553 if (*rest == '%') {
2554 size <<= PAGE_SHIFT;
2555 size *= totalram_pages;
2556 do_div(size, 100);
2557 rest++;
2558 }
2559 if (*rest)
2560 goto bad_val;
2561 sbinfo->max_blocks =
2562 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2563 } else if (!strcmp(this_char,"nr_blocks")) {
2564 sbinfo->max_blocks = memparse(value, &rest);
2565 if (*rest)
2566 goto bad_val;
2567 } else if (!strcmp(this_char,"nr_inodes")) {
2568 sbinfo->max_inodes = memparse(value, &rest);
2569 if (*rest)
2570 goto bad_val;
2571 } else if (!strcmp(this_char,"mode")) {
2572 if (remount)
2573 continue;
2574 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2575 if (*rest)
2576 goto bad_val;
2577 } else if (!strcmp(this_char,"uid")) {
2578 if (remount)
2579 continue;
2580 uid = simple_strtoul(value, &rest, 0);
2581 if (*rest)
2582 goto bad_val;
2583 sbinfo->uid = make_kuid(current_user_ns(), uid);
2584 if (!uid_valid(sbinfo->uid))
2585 goto bad_val;
2586 } else if (!strcmp(this_char,"gid")) {
2587 if (remount)
2588 continue;
2589 gid = simple_strtoul(value, &rest, 0);
2590 if (*rest)
2591 goto bad_val;
2592 sbinfo->gid = make_kgid(current_user_ns(), gid);
2593 if (!gid_valid(sbinfo->gid))
2594 goto bad_val;
2595 } else if (!strcmp(this_char,"mpol")) {
2596 mpol_put(mpol);
2597 mpol = NULL;
2598 if (mpol_parse_str(value, &mpol))
2599 goto bad_val;
2600 } else {
2601 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2602 this_char);
2603 goto error;
2604 }
2605 }
2606 sbinfo->mpol = mpol;
2607 return 0;
2608
2609 bad_val:
2610 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2611 value, this_char);
2612 error:
2613 mpol_put(mpol);
2614 return 1;
2615
2616 }
2617
2618 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2619 {
2620 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2621 struct shmem_sb_info config = *sbinfo;
2622 unsigned long inodes;
2623 int error = -EINVAL;
2624
2625 config.mpol = NULL;
2626 if (shmem_parse_options(data, &config, true))
2627 return error;
2628
2629 spin_lock(&sbinfo->stat_lock);
2630 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2631 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2632 goto out;
2633 if (config.max_inodes < inodes)
2634 goto out;
2635 /*
2636 * Those tests disallow limited->unlimited while any are in use;
2637 * but we must separately disallow unlimited->limited, because
2638 * in that case we have no record of how much is already in use.
2639 */
2640 if (config.max_blocks && !sbinfo->max_blocks)
2641 goto out;
2642 if (config.max_inodes && !sbinfo->max_inodes)
2643 goto out;
2644
2645 error = 0;
2646 sbinfo->max_blocks = config.max_blocks;
2647 sbinfo->max_inodes = config.max_inodes;
2648 sbinfo->free_inodes = config.max_inodes - inodes;
2649
2650 /*
2651 * Preserve previous mempolicy unless mpol remount option was specified.
2652 */
2653 if (config.mpol) {
2654 mpol_put(sbinfo->mpol);
2655 sbinfo->mpol = config.mpol; /* transfers initial ref */
2656 }
2657 out:
2658 spin_unlock(&sbinfo->stat_lock);
2659 return error;
2660 }
2661
2662 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2663 {
2664 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2665
2666 if (sbinfo->max_blocks != shmem_default_max_blocks())
2667 seq_printf(seq, ",size=%luk",
2668 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2669 if (sbinfo->max_inodes != shmem_default_max_inodes())
2670 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2671 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2672 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2673 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2674 seq_printf(seq, ",uid=%u",
2675 from_kuid_munged(&init_user_ns, sbinfo->uid));
2676 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2677 seq_printf(seq, ",gid=%u",
2678 from_kgid_munged(&init_user_ns, sbinfo->gid));
2679 shmem_show_mpol(seq, sbinfo->mpol);
2680 return 0;
2681 }
2682 #endif /* CONFIG_TMPFS */
2683
2684 static void shmem_put_super(struct super_block *sb)
2685 {
2686 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2687
2688 percpu_counter_destroy(&sbinfo->used_blocks);
2689 mpol_put(sbinfo->mpol);
2690 kfree(sbinfo);
2691 sb->s_fs_info = NULL;
2692 }
2693
2694 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2695 {
2696 struct inode *inode;
2697 struct shmem_sb_info *sbinfo;
2698 int err = -ENOMEM;
2699
2700 /* Round up to L1_CACHE_BYTES to resist false sharing */
2701 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2702 L1_CACHE_BYTES), GFP_KERNEL);
2703 if (!sbinfo)
2704 return -ENOMEM;
2705
2706 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2707 sbinfo->uid = current_fsuid();
2708 sbinfo->gid = current_fsgid();
2709 sb->s_fs_info = sbinfo;
2710
2711 #ifdef CONFIG_TMPFS
2712 /*
2713 * Per default we only allow half of the physical ram per
2714 * tmpfs instance, limiting inodes to one per page of lowmem;
2715 * but the internal instance is left unlimited.
2716 */
2717 if (!(sb->s_flags & MS_NOUSER)) {
2718 sbinfo->max_blocks = shmem_default_max_blocks();
2719 sbinfo->max_inodes = shmem_default_max_inodes();
2720 if (shmem_parse_options(data, sbinfo, false)) {
2721 err = -EINVAL;
2722 goto failed;
2723 }
2724 }
2725 sb->s_export_op = &shmem_export_ops;
2726 sb->s_flags |= MS_NOSEC;
2727 #else
2728 sb->s_flags |= MS_NOUSER;
2729 #endif
2730
2731 spin_lock_init(&sbinfo->stat_lock);
2732 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2733 goto failed;
2734 sbinfo->free_inodes = sbinfo->max_inodes;
2735
2736 sb->s_maxbytes = MAX_LFS_FILESIZE;
2737 sb->s_blocksize = PAGE_CACHE_SIZE;
2738 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2739 sb->s_magic = TMPFS_MAGIC;
2740 sb->s_op = &shmem_ops;
2741 sb->s_time_gran = 1;
2742 #ifdef CONFIG_TMPFS_XATTR
2743 sb->s_xattr = shmem_xattr_handlers;
2744 #endif
2745 #ifdef CONFIG_TMPFS_POSIX_ACL
2746 sb->s_flags |= MS_POSIXACL;
2747 #endif
2748
2749 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2750 if (!inode)
2751 goto failed;
2752 inode->i_uid = sbinfo->uid;
2753 inode->i_gid = sbinfo->gid;
2754 sb->s_root = d_make_root(inode);
2755 if (!sb->s_root)
2756 goto failed;
2757 return 0;
2758
2759 failed:
2760 shmem_put_super(sb);
2761 return err;
2762 }
2763
2764 static struct kmem_cache *shmem_inode_cachep;
2765
2766 static struct inode *shmem_alloc_inode(struct super_block *sb)
2767 {
2768 struct shmem_inode_info *info;
2769 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2770 if (!info)
2771 return NULL;
2772 return &info->vfs_inode;
2773 }
2774
2775 static void shmem_destroy_callback(struct rcu_head *head)
2776 {
2777 struct inode *inode = container_of(head, struct inode, i_rcu);
2778 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2779 }
2780
2781 static void shmem_destroy_inode(struct inode *inode)
2782 {
2783 if (S_ISREG(inode->i_mode))
2784 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2785 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2786 }
2787
2788 static void shmem_init_inode(void *foo)
2789 {
2790 struct shmem_inode_info *info = foo;
2791 inode_init_once(&info->vfs_inode);
2792 }
2793
2794 static int shmem_init_inodecache(void)
2795 {
2796 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2797 sizeof(struct shmem_inode_info),
2798 0, SLAB_PANIC, shmem_init_inode);
2799 return 0;
2800 }
2801
2802 static void shmem_destroy_inodecache(void)
2803 {
2804 kmem_cache_destroy(shmem_inode_cachep);
2805 }
2806
2807 static const struct address_space_operations shmem_aops = {
2808 .writepage = shmem_writepage,
2809 .set_page_dirty = __set_page_dirty_no_writeback,
2810 #ifdef CONFIG_TMPFS
2811 .write_begin = shmem_write_begin,
2812 .write_end = shmem_write_end,
2813 #endif
2814 .migratepage = migrate_page,
2815 .error_remove_page = generic_error_remove_page,
2816 };
2817
2818 static const struct file_operations shmem_file_operations = {
2819 .mmap = shmem_mmap,
2820 #ifdef CONFIG_TMPFS
2821 .llseek = shmem_file_llseek,
2822 .read = do_sync_read,
2823 .write = do_sync_write,
2824 .aio_read = shmem_file_aio_read,
2825 .aio_write = generic_file_aio_write,
2826 .fsync = noop_fsync,
2827 .splice_read = shmem_file_splice_read,
2828 .splice_write = generic_file_splice_write,
2829 .fallocate = shmem_fallocate,
2830 #endif
2831 };
2832
2833 static const struct inode_operations shmem_inode_operations = {
2834 .setattr = shmem_setattr,
2835 #ifdef CONFIG_TMPFS_XATTR
2836 .setxattr = shmem_setxattr,
2837 .getxattr = shmem_getxattr,
2838 .listxattr = shmem_listxattr,
2839 .removexattr = shmem_removexattr,
2840 #endif
2841 };
2842
2843 static const struct inode_operations shmem_dir_inode_operations = {
2844 #ifdef CONFIG_TMPFS
2845 .create = shmem_create,
2846 .lookup = simple_lookup,
2847 .link = shmem_link,
2848 .unlink = shmem_unlink,
2849 .symlink = shmem_symlink,
2850 .mkdir = shmem_mkdir,
2851 .rmdir = shmem_rmdir,
2852 .mknod = shmem_mknod,
2853 .rename = shmem_rename,
2854 .tmpfile = shmem_tmpfile,
2855 #endif
2856 #ifdef CONFIG_TMPFS_XATTR
2857 .setxattr = shmem_setxattr,
2858 .getxattr = shmem_getxattr,
2859 .listxattr = shmem_listxattr,
2860 .removexattr = shmem_removexattr,
2861 #endif
2862 #ifdef CONFIG_TMPFS_POSIX_ACL
2863 .setattr = shmem_setattr,
2864 #endif
2865 };
2866
2867 static const struct inode_operations shmem_special_inode_operations = {
2868 #ifdef CONFIG_TMPFS_XATTR
2869 .setxattr = shmem_setxattr,
2870 .getxattr = shmem_getxattr,
2871 .listxattr = shmem_listxattr,
2872 .removexattr = shmem_removexattr,
2873 #endif
2874 #ifdef CONFIG_TMPFS_POSIX_ACL
2875 .setattr = shmem_setattr,
2876 #endif
2877 };
2878
2879 static const struct super_operations shmem_ops = {
2880 .alloc_inode = shmem_alloc_inode,
2881 .destroy_inode = shmem_destroy_inode,
2882 #ifdef CONFIG_TMPFS
2883 .statfs = shmem_statfs,
2884 .remount_fs = shmem_remount_fs,
2885 .show_options = shmem_show_options,
2886 #endif
2887 .evict_inode = shmem_evict_inode,
2888 .drop_inode = generic_delete_inode,
2889 .put_super = shmem_put_super,
2890 };
2891
2892 static const struct vm_operations_struct shmem_vm_ops = {
2893 .fault = shmem_fault,
2894 #ifdef CONFIG_NUMA
2895 .set_policy = shmem_set_policy,
2896 .get_policy = shmem_get_policy,
2897 #endif
2898 .remap_pages = generic_file_remap_pages,
2899 };
2900
2901 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2902 int flags, const char *dev_name, void *data)
2903 {
2904 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2905 }
2906
2907 static struct file_system_type shmem_fs_type = {
2908 .owner = THIS_MODULE,
2909 .name = "tmpfs",
2910 .mount = shmem_mount,
2911 .kill_sb = kill_litter_super,
2912 .fs_flags = FS_USERNS_MOUNT,
2913 };
2914
2915 int __init shmem_init(void)
2916 {
2917 int error;
2918
2919 error = bdi_init(&shmem_backing_dev_info);
2920 if (error)
2921 goto out4;
2922
2923 error = shmem_init_inodecache();
2924 if (error)
2925 goto out3;
2926
2927 error = register_filesystem(&shmem_fs_type);
2928 if (error) {
2929 printk(KERN_ERR "Could not register tmpfs\n");
2930 goto out2;
2931 }
2932
2933 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2934 shmem_fs_type.name, NULL);
2935 if (IS_ERR(shm_mnt)) {
2936 error = PTR_ERR(shm_mnt);
2937 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2938 goto out1;
2939 }
2940 return 0;
2941
2942 out1:
2943 unregister_filesystem(&shmem_fs_type);
2944 out2:
2945 shmem_destroy_inodecache();
2946 out3:
2947 bdi_destroy(&shmem_backing_dev_info);
2948 out4:
2949 shm_mnt = ERR_PTR(error);
2950 return error;
2951 }
2952
2953 #else /* !CONFIG_SHMEM */
2954
2955 /*
2956 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2957 *
2958 * This is intended for small system where the benefits of the full
2959 * shmem code (swap-backed and resource-limited) are outweighed by
2960 * their complexity. On systems without swap this code should be
2961 * effectively equivalent, but much lighter weight.
2962 */
2963
2964 static struct file_system_type shmem_fs_type = {
2965 .name = "tmpfs",
2966 .mount = ramfs_mount,
2967 .kill_sb = kill_litter_super,
2968 .fs_flags = FS_USERNS_MOUNT,
2969 };
2970
2971 int __init shmem_init(void)
2972 {
2973 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2974
2975 shm_mnt = kern_mount(&shmem_fs_type);
2976 BUG_ON(IS_ERR(shm_mnt));
2977
2978 return 0;
2979 }
2980
2981 int shmem_unuse(swp_entry_t swap, struct page *page)
2982 {
2983 return 0;
2984 }
2985
2986 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2987 {
2988 return 0;
2989 }
2990
2991 void shmem_unlock_mapping(struct address_space *mapping)
2992 {
2993 }
2994
2995 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2996 {
2997 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2998 }
2999 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3000
3001 #define shmem_vm_ops generic_file_vm_ops
3002 #define shmem_file_operations ramfs_file_operations
3003 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3004 #define shmem_acct_size(flags, size) 0
3005 #define shmem_unacct_size(flags, size) do {} while (0)
3006
3007 #endif /* CONFIG_SHMEM */
3008
3009 /* common code */
3010
3011 static struct dentry_operations anon_ops = {
3012 .d_dname = simple_dname
3013 };
3014
3015 /**
3016 * shmem_file_setup - get an unlinked file living in tmpfs
3017 * @name: name for dentry (to be seen in /proc/<pid>/maps
3018 * @size: size to be set for the file
3019 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3020 */
3021 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3022 {
3023 struct file *res;
3024 struct inode *inode;
3025 struct path path;
3026 struct super_block *sb;
3027 struct qstr this;
3028
3029 if (IS_ERR(shm_mnt))
3030 return ERR_CAST(shm_mnt);
3031
3032 if (size < 0 || size > MAX_LFS_FILESIZE)
3033 return ERR_PTR(-EINVAL);
3034
3035 if (shmem_acct_size(flags, size))
3036 return ERR_PTR(-ENOMEM);
3037
3038 res = ERR_PTR(-ENOMEM);
3039 this.name = name;
3040 this.len = strlen(name);
3041 this.hash = 0; /* will go */
3042 sb = shm_mnt->mnt_sb;
3043 path.dentry = d_alloc_pseudo(sb, &this);
3044 if (!path.dentry)
3045 goto put_memory;
3046 d_set_d_op(path.dentry, &anon_ops);
3047 path.mnt = mntget(shm_mnt);
3048
3049 res = ERR_PTR(-ENOSPC);
3050 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3051 if (!inode)
3052 goto put_dentry;
3053
3054 d_instantiate(path.dentry, inode);
3055 inode->i_size = size;
3056 clear_nlink(inode); /* It is unlinked */
3057 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3058 if (IS_ERR(res))
3059 goto put_dentry;
3060
3061 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3062 &shmem_file_operations);
3063 if (IS_ERR(res))
3064 goto put_dentry;
3065
3066 return res;
3067
3068 put_dentry:
3069 path_put(&path);
3070 put_memory:
3071 shmem_unacct_size(flags, size);
3072 return res;
3073 }
3074 EXPORT_SYMBOL_GPL(shmem_file_setup);
3075
3076 void shmem_set_file(struct vm_area_struct *vma, struct file *file)
3077 {
3078 if (vma->vm_file)
3079 fput(vma->vm_file);
3080 vma->vm_file = file;
3081 vma->vm_ops = &shmem_vm_ops;
3082 }
3083
3084 /**
3085 * shmem_zero_setup - setup a shared anonymous mapping
3086 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3087 */
3088 int shmem_zero_setup(struct vm_area_struct *vma)
3089 {
3090 struct file *file;
3091 loff_t size = vma->vm_end - vma->vm_start;
3092
3093 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3094 if (IS_ERR(file))
3095 return PTR_ERR(file);
3096
3097 shmem_set_file(vma, file);
3098 return 0;
3099 }
3100
3101 /**
3102 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3103 * @mapping: the page's address_space
3104 * @index: the page index
3105 * @gfp: the page allocator flags to use if allocating
3106 *
3107 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3108 * with any new page allocations done using the specified allocation flags.
3109 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3110 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3111 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3112 *
3113 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3114 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3115 */
3116 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3117 pgoff_t index, gfp_t gfp)
3118 {
3119 #ifdef CONFIG_SHMEM
3120 struct inode *inode = mapping->host;
3121 struct page *page;
3122 int error;
3123
3124 BUG_ON(mapping->a_ops != &shmem_aops);
3125 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3126 if (error)
3127 page = ERR_PTR(error);
3128 else
3129 unlock_page(page);
3130 return page;
3131 #else
3132 /*
3133 * The tiny !SHMEM case uses ramfs without swap
3134 */
3135 return read_cache_page_gfp(mapping, index, gfp);
3136 #endif
3137 }
3138 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);