ipv4: sendto/hdrincl: don't use destination address found in header
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <trace/events/writeback.h>
40 #include <linux/version.h>
41
42 /*
43 * Sleep at most 200ms at a time in balance_dirty_pages().
44 */
45 #define MAX_PAUSE max(HZ/5, 1)
46
47 /*
48 * Try to keep balance_dirty_pages() call intervals higher than this many pages
49 * by raising pause time to max_pause when falls below it.
50 */
51 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
52
53 /*
54 * Estimate write bandwidth at 200ms intervals.
55 */
56 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
57
58 #define RATELIMIT_CALC_SHIFT 10
59
60 /*
61 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
62 * will look to see if it needs to force writeback or throttling.
63 */
64 static long ratelimit_pages = 32;
65
66 /* The following parameters are exported via /proc/sys/vm */
67
68 /*
69 * Start background writeback (via writeback threads) at this percentage
70 */
71 int dirty_background_ratio;
72
73 /*
74 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
75 * dirty_background_ratio * the amount of dirtyable memory
76 */
77 unsigned long dirty_background_bytes = 25 * 1024 * 1024;
78
79 /*
80 * free highmem will not be subtracted from the total free memory
81 * for calculating free ratios if vm_highmem_is_dirtyable is true
82 */
83 int vm_highmem_is_dirtyable;
84
85 /*
86 * The generator of dirty data starts writeback at this percentage
87 */
88 int vm_dirty_ratio;
89
90 /*
91 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
92 * vm_dirty_ratio * the amount of dirtyable memory
93 */
94 unsigned long vm_dirty_bytes = 50 * 1024 * 1024;
95
96 /*
97 * The interval between `kupdate'-style writebacks
98 */
99 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
100
101 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
102
103 /*
104 * The longest time for which data is allowed to remain dirty
105 */
106 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
107
108 /*
109 * Flag that makes the machine dump writes/reads and block dirtyings.
110 */
111 int block_dump;
112
113 /*
114 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
115 * a full sync is triggered after this time elapses without any disk activity.
116 */
117 int laptop_mode;
118
119 EXPORT_SYMBOL(laptop_mode);
120
121 /* End of sysctl-exported parameters */
122
123 unsigned long global_dirty_limit;
124
125 /*
126 * Scale the writeback cache size proportional to the relative writeout speeds.
127 *
128 * We do this by keeping a floating proportion between BDIs, based on page
129 * writeback completions [end_page_writeback()]. Those devices that write out
130 * pages fastest will get the larger share, while the slower will get a smaller
131 * share.
132 *
133 * We use page writeout completions because we are interested in getting rid of
134 * dirty pages. Having them written out is the primary goal.
135 *
136 * We introduce a concept of time, a period over which we measure these events,
137 * because demand can/will vary over time. The length of this period itself is
138 * measured in page writeback completions.
139 *
140 */
141 static struct fprop_global writeout_completions;
142
143 static void writeout_period(unsigned long t);
144 /* Timer for aging of writeout_completions */
145 static struct timer_list writeout_period_timer =
146 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
147 static unsigned long writeout_period_time = 0;
148
149 /*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155
156 /*
157 * Work out the current dirty-memory clamping and background writeout
158 * thresholds.
159 *
160 * The main aim here is to lower them aggressively if there is a lot of mapped
161 * memory around. To avoid stressing page reclaim with lots of unreclaimable
162 * pages. It is better to clamp down on writers than to start swapping, and
163 * performing lots of scanning.
164 *
165 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
166 *
167 * We don't permit the clamping level to fall below 5% - that is getting rather
168 * excessive.
169 *
170 * We make sure that the background writeout level is below the adjusted
171 * clamping level.
172 */
173
174 /*
175 * In a memory zone, there is a certain amount of pages we consider
176 * available for the page cache, which is essentially the number of
177 * free and reclaimable pages, minus some zone reserves to protect
178 * lowmem and the ability to uphold the zone's watermarks without
179 * requiring writeback.
180 *
181 * This number of dirtyable pages is the base value of which the
182 * user-configurable dirty ratio is the effictive number of pages that
183 * are allowed to be actually dirtied. Per individual zone, or
184 * globally by using the sum of dirtyable pages over all zones.
185 *
186 * Because the user is allowed to specify the dirty limit globally as
187 * absolute number of bytes, calculating the per-zone dirty limit can
188 * require translating the configured limit into a percentage of
189 * global dirtyable memory first.
190 */
191
192 /**
193 * zone_dirtyable_memory - number of dirtyable pages in a zone
194 * @zone: the zone
195 *
196 * Returns the zone's number of pages potentially available for dirty
197 * page cache. This is the base value for the per-zone dirty limits.
198 */
199 static unsigned long zone_dirtyable_memory(struct zone *zone)
200 {
201 unsigned long nr_pages;
202
203 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
204 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
205
206 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
207 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
208
209 return nr_pages;
210 }
211
212 static unsigned long highmem_dirtyable_memory(unsigned long total)
213 {
214 #ifdef CONFIG_HIGHMEM
215 int node;
216 unsigned long x = 0;
217
218 for_each_node_state(node, N_HIGH_MEMORY) {
219 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
220
221 x += zone_dirtyable_memory(z);
222 }
223 /*
224 * Unreclaimable memory (kernel memory or anonymous memory
225 * without swap) can bring down the dirtyable pages below
226 * the zone's dirty balance reserve and the above calculation
227 * will underflow. However we still want to add in nodes
228 * which are below threshold (negative values) to get a more
229 * accurate calculation but make sure that the total never
230 * underflows.
231 */
232 if ((long)x < 0)
233 x = 0;
234
235 /*
236 * Make sure that the number of highmem pages is never larger
237 * than the number of the total dirtyable memory. This can only
238 * occur in very strange VM situations but we want to make sure
239 * that this does not occur.
240 */
241 return min(x, total);
242 #else
243 return 0;
244 #endif
245 }
246
247 /**
248 * global_dirtyable_memory - number of globally dirtyable pages
249 *
250 * Returns the global number of pages potentially available for dirty
251 * page cache. This is the base value for the global dirty limits.
252 */
253 static unsigned long global_dirtyable_memory(void)
254 {
255 unsigned long x;
256
257 x = global_page_state(NR_FREE_PAGES);
258 x -= min(x, dirty_balance_reserve);
259
260 x += global_page_state(NR_INACTIVE_FILE);
261 x += global_page_state(NR_ACTIVE_FILE);
262
263 if (!vm_highmem_is_dirtyable)
264 x -= highmem_dirtyable_memory(x);
265
266 /* Subtract min_free_kbytes */
267 x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10));
268
269 return x + 1; /* Ensure that we never return 0 */
270 }
271
272 /*
273 * global_dirty_limits - background-writeback and dirty-throttling thresholds
274 *
275 * Calculate the dirty thresholds based on sysctl parameters
276 * - vm.dirty_background_ratio or vm.dirty_background_bytes
277 * - vm.dirty_ratio or vm.dirty_bytes
278 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
279 * real-time tasks.
280 */
281 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
282 {
283 unsigned long background;
284 unsigned long dirty;
285 unsigned long uninitialized_var(available_memory);
286 struct task_struct *tsk;
287
288 if (!vm_dirty_bytes || !dirty_background_bytes)
289 available_memory = global_dirtyable_memory();
290
291 if (vm_dirty_bytes)
292 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
293 else
294 dirty = (vm_dirty_ratio * available_memory) / 100;
295
296 if (dirty_background_bytes)
297 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
298 else
299 background = (dirty_background_ratio * available_memory) / 100;
300
301 if (background >= dirty)
302 background = dirty / 2;
303 tsk = current;
304 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
305 background += background / 4;
306 dirty += dirty / 4;
307 }
308 *pbackground = background;
309 *pdirty = dirty;
310 trace_global_dirty_state(background, dirty);
311 }
312
313 /**
314 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
315 * @zone: the zone
316 *
317 * Returns the maximum number of dirty pages allowed in a zone, based
318 * on the zone's dirtyable memory.
319 */
320 static unsigned long zone_dirty_limit(struct zone *zone)
321 {
322 unsigned long zone_memory = zone_dirtyable_memory(zone);
323 struct task_struct *tsk = current;
324 unsigned long dirty;
325
326 if (vm_dirty_bytes)
327 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
328 zone_memory / global_dirtyable_memory();
329 else
330 dirty = vm_dirty_ratio * zone_memory / 100;
331
332 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
333 dirty += dirty / 4;
334
335 return dirty;
336 }
337
338 /**
339 * zone_dirty_ok - tells whether a zone is within its dirty limits
340 * @zone: the zone to check
341 *
342 * Returns %true when the dirty pages in @zone are within the zone's
343 * dirty limit, %false if the limit is exceeded.
344 */
345 bool zone_dirty_ok(struct zone *zone)
346 {
347 unsigned long limit = zone_dirty_limit(zone);
348
349 return zone_page_state(zone, NR_FILE_DIRTY) +
350 zone_page_state(zone, NR_UNSTABLE_NFS) +
351 zone_page_state(zone, NR_WRITEBACK) <= limit;
352 }
353
354 int dirty_background_ratio_handler(struct ctl_table *table, int write,
355 void __user *buffer, size_t *lenp,
356 loff_t *ppos)
357 {
358 int ret;
359
360 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
361 if (ret == 0 && write)
362 dirty_background_bytes = 0;
363 return ret;
364 }
365
366 int dirty_background_bytes_handler(struct ctl_table *table, int write,
367 void __user *buffer, size_t *lenp,
368 loff_t *ppos)
369 {
370 int ret;
371
372 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
373 if (ret == 0 && write)
374 dirty_background_ratio = 0;
375 return ret;
376 }
377
378 int dirty_ratio_handler(struct ctl_table *table, int write,
379 void __user *buffer, size_t *lenp,
380 loff_t *ppos)
381 {
382 int old_ratio = vm_dirty_ratio;
383 int ret;
384
385 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
386 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
387 writeback_set_ratelimit();
388 vm_dirty_bytes = 0;
389 }
390 return ret;
391 }
392
393 int dirty_bytes_handler(struct ctl_table *table, int write,
394 void __user *buffer, size_t *lenp,
395 loff_t *ppos)
396 {
397 unsigned long old_bytes = vm_dirty_bytes;
398 int ret;
399
400 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
401 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
402 writeback_set_ratelimit();
403 vm_dirty_ratio = 0;
404 }
405 return ret;
406 }
407
408 static unsigned long wp_next_time(unsigned long cur_time)
409 {
410 cur_time += VM_COMPLETIONS_PERIOD_LEN;
411 /* 0 has a special meaning... */
412 if (!cur_time)
413 return 1;
414 return cur_time;
415 }
416
417 /*
418 * Increment the BDI's writeout completion count and the global writeout
419 * completion count. Called from test_clear_page_writeback().
420 */
421 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
422 {
423 __inc_bdi_stat(bdi, BDI_WRITTEN);
424 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
425 bdi->max_prop_frac);
426 /* First event after period switching was turned off? */
427 if (!unlikely(writeout_period_time)) {
428 /*
429 * We can race with other __bdi_writeout_inc calls here but
430 * it does not cause any harm since the resulting time when
431 * timer will fire and what is in writeout_period_time will be
432 * roughly the same.
433 */
434 writeout_period_time = wp_next_time(jiffies);
435 mod_timer(&writeout_period_timer, writeout_period_time);
436 }
437 }
438
439 void bdi_writeout_inc(struct backing_dev_info *bdi)
440 {
441 unsigned long flags;
442
443 local_irq_save(flags);
444 __bdi_writeout_inc(bdi);
445 local_irq_restore(flags);
446 }
447 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
448
449 /*
450 * Obtain an accurate fraction of the BDI's portion.
451 */
452 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
453 long *numerator, long *denominator)
454 {
455 fprop_fraction_percpu(&writeout_completions, &bdi->completions,
456 numerator, denominator);
457 }
458
459 /*
460 * On idle system, we can be called long after we scheduled because we use
461 * deferred timers so count with missed periods.
462 */
463 static void writeout_period(unsigned long t)
464 {
465 int miss_periods = (jiffies - writeout_period_time) /
466 VM_COMPLETIONS_PERIOD_LEN;
467
468 if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
469 writeout_period_time = wp_next_time(writeout_period_time +
470 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
471 mod_timer(&writeout_period_timer, writeout_period_time);
472 } else {
473 /*
474 * Aging has zeroed all fractions. Stop wasting CPU on period
475 * updates.
476 */
477 writeout_period_time = 0;
478 }
479 }
480
481 /*
482 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
483 * registered backing devices, which, for obvious reasons, can not
484 * exceed 100%.
485 */
486 static unsigned int bdi_min_ratio;
487
488 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
489 {
490 int ret = 0;
491
492 spin_lock_bh(&bdi_lock);
493 if (min_ratio > bdi->max_ratio) {
494 ret = -EINVAL;
495 } else {
496 min_ratio -= bdi->min_ratio;
497 if (bdi_min_ratio + min_ratio < 100) {
498 bdi_min_ratio += min_ratio;
499 bdi->min_ratio += min_ratio;
500 } else {
501 ret = -EINVAL;
502 }
503 }
504 spin_unlock_bh(&bdi_lock);
505
506 return ret;
507 }
508
509 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
510 {
511 int ret = 0;
512
513 if (max_ratio > 100)
514 return -EINVAL;
515
516 spin_lock_bh(&bdi_lock);
517 if (bdi->min_ratio > max_ratio) {
518 ret = -EINVAL;
519 } else {
520 bdi->max_ratio = max_ratio;
521 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
522 }
523 spin_unlock_bh(&bdi_lock);
524
525 return ret;
526 }
527 EXPORT_SYMBOL(bdi_set_max_ratio);
528
529 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
530 unsigned long bg_thresh)
531 {
532 return (thresh + bg_thresh) / 2;
533 }
534
535 static unsigned long hard_dirty_limit(unsigned long thresh)
536 {
537 return max(thresh, global_dirty_limit);
538 }
539
540 /**
541 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
542 * @bdi: the backing_dev_info to query
543 * @dirty: global dirty limit in pages
544 *
545 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
546 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
547 *
548 * Note that balance_dirty_pages() will only seriously take it as a hard limit
549 * when sleeping max_pause per page is not enough to keep the dirty pages under
550 * control. For example, when the device is completely stalled due to some error
551 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
552 * In the other normal situations, it acts more gently by throttling the tasks
553 * more (rather than completely block them) when the bdi dirty pages go high.
554 *
555 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
556 * - starving fast devices
557 * - piling up dirty pages (that will take long time to sync) on slow devices
558 *
559 * The bdi's share of dirty limit will be adapting to its throughput and
560 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
561 */
562 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
563 {
564 u64 bdi_dirty;
565 long numerator, denominator;
566
567 /*
568 * Calculate this BDI's share of the dirty ratio.
569 */
570 bdi_writeout_fraction(bdi, &numerator, &denominator);
571
572 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
573 bdi_dirty *= numerator;
574 do_div(bdi_dirty, denominator);
575
576 bdi_dirty += (dirty * bdi->min_ratio) / 100;
577 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
578 bdi_dirty = dirty * bdi->max_ratio / 100;
579
580 return bdi_dirty;
581 }
582
583 /*
584 * Dirty position control.
585 *
586 * (o) global/bdi setpoints
587 *
588 * We want the dirty pages be balanced around the global/bdi setpoints.
589 * When the number of dirty pages is higher/lower than the setpoint, the
590 * dirty position control ratio (and hence task dirty ratelimit) will be
591 * decreased/increased to bring the dirty pages back to the setpoint.
592 *
593 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
594 *
595 * if (dirty < setpoint) scale up pos_ratio
596 * if (dirty > setpoint) scale down pos_ratio
597 *
598 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
599 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
600 *
601 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
602 *
603 * (o) global control line
604 *
605 * ^ pos_ratio
606 * |
607 * | |<===== global dirty control scope ======>|
608 * 2.0 .............*
609 * | .*
610 * | . *
611 * | . *
612 * | . *
613 * | . *
614 * | . *
615 * 1.0 ................................*
616 * | . . *
617 * | . . *
618 * | . . *
619 * | . . *
620 * | . . *
621 * 0 +------------.------------------.----------------------*------------->
622 * freerun^ setpoint^ limit^ dirty pages
623 *
624 * (o) bdi control line
625 *
626 * ^ pos_ratio
627 * |
628 * | *
629 * | *
630 * | *
631 * | *
632 * | * |<=========== span ============>|
633 * 1.0 .......................*
634 * | . *
635 * | . *
636 * | . *
637 * | . *
638 * | . *
639 * | . *
640 * | . *
641 * | . *
642 * | . *
643 * | . *
644 * | . *
645 * 1/4 ...............................................* * * * * * * * * * * *
646 * | . .
647 * | . .
648 * | . .
649 * 0 +----------------------.-------------------------------.------------->
650 * bdi_setpoint^ x_intercept^
651 *
652 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
653 * be smoothly throttled down to normal if it starts high in situations like
654 * - start writing to a slow SD card and a fast disk at the same time. The SD
655 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
656 * - the bdi dirty thresh drops quickly due to change of JBOD workload
657 */
658 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
659 unsigned long thresh,
660 unsigned long bg_thresh,
661 unsigned long dirty,
662 unsigned long bdi_thresh,
663 unsigned long bdi_dirty)
664 {
665 unsigned long write_bw = bdi->avg_write_bandwidth;
666 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
667 unsigned long limit = hard_dirty_limit(thresh);
668 unsigned long x_intercept;
669 unsigned long setpoint; /* dirty pages' target balance point */
670 unsigned long bdi_setpoint;
671 unsigned long span;
672 long long pos_ratio; /* for scaling up/down the rate limit */
673 long x;
674
675 if (unlikely(dirty >= limit))
676 return 0;
677
678 /*
679 * global setpoint
680 *
681 * setpoint - dirty 3
682 * f(dirty) := 1.0 + (----------------)
683 * limit - setpoint
684 *
685 * it's a 3rd order polynomial that subjects to
686 *
687 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
688 * (2) f(setpoint) = 1.0 => the balance point
689 * (3) f(limit) = 0 => the hard limit
690 * (4) df/dx <= 0 => negative feedback control
691 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
692 * => fast response on large errors; small oscillation near setpoint
693 */
694 setpoint = (freerun + limit) / 2;
695 x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
696 limit - setpoint + 1);
697 pos_ratio = x;
698 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
699 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
700 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
701
702 /*
703 * We have computed basic pos_ratio above based on global situation. If
704 * the bdi is over/under its share of dirty pages, we want to scale
705 * pos_ratio further down/up. That is done by the following mechanism.
706 */
707
708 /*
709 * bdi setpoint
710 *
711 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
712 *
713 * x_intercept - bdi_dirty
714 * := --------------------------
715 * x_intercept - bdi_setpoint
716 *
717 * The main bdi control line is a linear function that subjects to
718 *
719 * (1) f(bdi_setpoint) = 1.0
720 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
721 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
722 *
723 * For single bdi case, the dirty pages are observed to fluctuate
724 * regularly within range
725 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
726 * for various filesystems, where (2) can yield in a reasonable 12.5%
727 * fluctuation range for pos_ratio.
728 *
729 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
730 * own size, so move the slope over accordingly and choose a slope that
731 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
732 */
733 if (unlikely(bdi_thresh > thresh))
734 bdi_thresh = thresh;
735 /*
736 * It's very possible that bdi_thresh is close to 0 not because the
737 * device is slow, but that it has remained inactive for long time.
738 * Honour such devices a reasonable good (hopefully IO efficient)
739 * threshold, so that the occasional writes won't be blocked and active
740 * writes can rampup the threshold quickly.
741 */
742 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
743 /*
744 * scale global setpoint to bdi's:
745 * bdi_setpoint = setpoint * bdi_thresh / thresh
746 */
747 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
748 bdi_setpoint = setpoint * (u64)x >> 16;
749 /*
750 * Use span=(8*write_bw) in single bdi case as indicated by
751 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
752 *
753 * bdi_thresh thresh - bdi_thresh
754 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
755 * thresh thresh
756 */
757 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
758 x_intercept = bdi_setpoint + span;
759
760 if (bdi_dirty < x_intercept - span / 4) {
761 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
762 x_intercept - bdi_setpoint + 1);
763 } else
764 pos_ratio /= 4;
765
766 /*
767 * bdi reserve area, safeguard against dirty pool underrun and disk idle
768 * It may push the desired control point of global dirty pages higher
769 * than setpoint.
770 */
771 x_intercept = bdi_thresh / 2;
772 if (bdi_dirty < x_intercept) {
773 if (bdi_dirty > x_intercept / 8)
774 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
775 else
776 pos_ratio *= 8;
777 }
778
779 return pos_ratio;
780 }
781
782 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
783 unsigned long elapsed,
784 unsigned long written)
785 {
786 const unsigned long period = roundup_pow_of_two(3 * HZ);
787 unsigned long avg = bdi->avg_write_bandwidth;
788 unsigned long old = bdi->write_bandwidth;
789 u64 bw;
790
791 /*
792 * bw = written * HZ / elapsed
793 *
794 * bw * elapsed + write_bandwidth * (period - elapsed)
795 * write_bandwidth = ---------------------------------------------------
796 * period
797 *
798 * @written may have decreased due to account_page_redirty().
799 * Avoid underflowing @bw calculation.
800 */
801 bw = written - min(written, bdi->written_stamp);
802 bw *= HZ;
803 if (unlikely(elapsed > period)) {
804 do_div(bw, elapsed);
805 avg = bw;
806 goto out;
807 }
808 bw += (u64)bdi->write_bandwidth * (period - elapsed);
809 bw >>= ilog2(period);
810
811 /*
812 * one more level of smoothing, for filtering out sudden spikes
813 */
814 if (avg > old && old >= (unsigned long)bw)
815 avg -= (avg - old) >> 3;
816
817 if (avg < old && old <= (unsigned long)bw)
818 avg += (old - avg) >> 3;
819
820 out:
821 bdi->write_bandwidth = bw;
822 bdi->avg_write_bandwidth = avg;
823 }
824
825 /*
826 * The global dirtyable memory and dirty threshold could be suddenly knocked
827 * down by a large amount (eg. on the startup of KVM in a swapless system).
828 * This may throw the system into deep dirty exceeded state and throttle
829 * heavy/light dirtiers alike. To retain good responsiveness, maintain
830 * global_dirty_limit for tracking slowly down to the knocked down dirty
831 * threshold.
832 */
833 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
834 {
835 unsigned long limit = global_dirty_limit;
836
837 /*
838 * Follow up in one step.
839 */
840 if (limit < thresh) {
841 limit = thresh;
842 goto update;
843 }
844
845 /*
846 * Follow down slowly. Use the higher one as the target, because thresh
847 * may drop below dirty. This is exactly the reason to introduce
848 * global_dirty_limit which is guaranteed to lie above the dirty pages.
849 */
850 thresh = max(thresh, dirty);
851 if (limit > thresh) {
852 limit -= (limit - thresh) >> 5;
853 goto update;
854 }
855 return;
856 update:
857 global_dirty_limit = limit;
858 }
859
860 static void global_update_bandwidth(unsigned long thresh,
861 unsigned long dirty,
862 unsigned long now)
863 {
864 static DEFINE_SPINLOCK(dirty_lock);
865 static unsigned long update_time = INITIAL_JIFFIES;
866
867 /*
868 * check locklessly first to optimize away locking for the most time
869 */
870 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
871 return;
872
873 spin_lock(&dirty_lock);
874 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
875 update_dirty_limit(thresh, dirty);
876 update_time = now;
877 }
878 spin_unlock(&dirty_lock);
879 }
880
881 /*
882 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
883 *
884 * Normal bdi tasks will be curbed at or below it in long term.
885 * Obviously it should be around (write_bw / N) when there are N dd tasks.
886 */
887 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
888 unsigned long thresh,
889 unsigned long bg_thresh,
890 unsigned long dirty,
891 unsigned long bdi_thresh,
892 unsigned long bdi_dirty,
893 unsigned long dirtied,
894 unsigned long elapsed)
895 {
896 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
897 unsigned long limit = hard_dirty_limit(thresh);
898 unsigned long setpoint = (freerun + limit) / 2;
899 unsigned long write_bw = bdi->avg_write_bandwidth;
900 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
901 unsigned long dirty_rate;
902 unsigned long task_ratelimit;
903 unsigned long balanced_dirty_ratelimit;
904 unsigned long pos_ratio;
905 unsigned long step;
906 unsigned long x;
907
908 /*
909 * The dirty rate will match the writeout rate in long term, except
910 * when dirty pages are truncated by userspace or re-dirtied by FS.
911 */
912 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
913
914 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
915 bdi_thresh, bdi_dirty);
916 /*
917 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
918 */
919 task_ratelimit = (u64)dirty_ratelimit *
920 pos_ratio >> RATELIMIT_CALC_SHIFT;
921 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
922
923 /*
924 * A linear estimation of the "balanced" throttle rate. The theory is,
925 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
926 * dirty_rate will be measured to be (N * task_ratelimit). So the below
927 * formula will yield the balanced rate limit (write_bw / N).
928 *
929 * Note that the expanded form is not a pure rate feedback:
930 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
931 * but also takes pos_ratio into account:
932 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
933 *
934 * (1) is not realistic because pos_ratio also takes part in balancing
935 * the dirty rate. Consider the state
936 * pos_ratio = 0.5 (3)
937 * rate = 2 * (write_bw / N) (4)
938 * If (1) is used, it will stuck in that state! Because each dd will
939 * be throttled at
940 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
941 * yielding
942 * dirty_rate = N * task_ratelimit = write_bw (6)
943 * put (6) into (1) we get
944 * rate_(i+1) = rate_(i) (7)
945 *
946 * So we end up using (2) to always keep
947 * rate_(i+1) ~= (write_bw / N) (8)
948 * regardless of the value of pos_ratio. As long as (8) is satisfied,
949 * pos_ratio is able to drive itself to 1.0, which is not only where
950 * the dirty count meet the setpoint, but also where the slope of
951 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
952 */
953 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
954 dirty_rate | 1);
955 /*
956 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
957 */
958 if (unlikely(balanced_dirty_ratelimit > write_bw))
959 balanced_dirty_ratelimit = write_bw;
960
961 /*
962 * We could safely do this and return immediately:
963 *
964 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
965 *
966 * However to get a more stable dirty_ratelimit, the below elaborated
967 * code makes use of task_ratelimit to filter out singular points and
968 * limit the step size.
969 *
970 * The below code essentially only uses the relative value of
971 *
972 * task_ratelimit - dirty_ratelimit
973 * = (pos_ratio - 1) * dirty_ratelimit
974 *
975 * which reflects the direction and size of dirty position error.
976 */
977
978 /*
979 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
980 * task_ratelimit is on the same side of dirty_ratelimit, too.
981 * For example, when
982 * - dirty_ratelimit > balanced_dirty_ratelimit
983 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
984 * lowering dirty_ratelimit will help meet both the position and rate
985 * control targets. Otherwise, don't update dirty_ratelimit if it will
986 * only help meet the rate target. After all, what the users ultimately
987 * feel and care are stable dirty rate and small position error.
988 *
989 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
990 * and filter out the singular points of balanced_dirty_ratelimit. Which
991 * keeps jumping around randomly and can even leap far away at times
992 * due to the small 200ms estimation period of dirty_rate (we want to
993 * keep that period small to reduce time lags).
994 */
995 step = 0;
996 if (dirty < setpoint) {
997 x = min(bdi->balanced_dirty_ratelimit,
998 min(balanced_dirty_ratelimit, task_ratelimit));
999 if (dirty_ratelimit < x)
1000 step = x - dirty_ratelimit;
1001 } else {
1002 x = max(bdi->balanced_dirty_ratelimit,
1003 max(balanced_dirty_ratelimit, task_ratelimit));
1004 if (dirty_ratelimit > x)
1005 step = dirty_ratelimit - x;
1006 }
1007
1008 /*
1009 * Don't pursue 100% rate matching. It's impossible since the balanced
1010 * rate itself is constantly fluctuating. So decrease the track speed
1011 * when it gets close to the target. Helps eliminate pointless tremors.
1012 */
1013 step >>= dirty_ratelimit / (2 * step + 1);
1014 /*
1015 * Limit the tracking speed to avoid overshooting.
1016 */
1017 step = (step + 7) / 8;
1018
1019 if (dirty_ratelimit < balanced_dirty_ratelimit)
1020 dirty_ratelimit += step;
1021 else
1022 dirty_ratelimit -= step;
1023
1024 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1025 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1026
1027 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1028 }
1029
1030 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1031 unsigned long thresh,
1032 unsigned long bg_thresh,
1033 unsigned long dirty,
1034 unsigned long bdi_thresh,
1035 unsigned long bdi_dirty,
1036 unsigned long start_time)
1037 {
1038 unsigned long now = jiffies;
1039 unsigned long elapsed = now - bdi->bw_time_stamp;
1040 unsigned long dirtied;
1041 unsigned long written;
1042
1043 /*
1044 * rate-limit, only update once every 200ms.
1045 */
1046 if (elapsed < BANDWIDTH_INTERVAL)
1047 return;
1048
1049 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1050 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1051
1052 /*
1053 * Skip quiet periods when disk bandwidth is under-utilized.
1054 * (at least 1s idle time between two flusher runs)
1055 */
1056 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1057 goto snapshot;
1058
1059 if (thresh) {
1060 global_update_bandwidth(thresh, dirty, now);
1061 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1062 bdi_thresh, bdi_dirty,
1063 dirtied, elapsed);
1064 }
1065 bdi_update_write_bandwidth(bdi, elapsed, written);
1066
1067 snapshot:
1068 bdi->dirtied_stamp = dirtied;
1069 bdi->written_stamp = written;
1070 bdi->bw_time_stamp = now;
1071 }
1072
1073 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1074 unsigned long thresh,
1075 unsigned long bg_thresh,
1076 unsigned long dirty,
1077 unsigned long bdi_thresh,
1078 unsigned long bdi_dirty,
1079 unsigned long start_time)
1080 {
1081 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1082 return;
1083 spin_lock(&bdi->wb.list_lock);
1084 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1085 bdi_thresh, bdi_dirty, start_time);
1086 spin_unlock(&bdi->wb.list_lock);
1087 }
1088
1089 /*
1090 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1091 * will look to see if it needs to start dirty throttling.
1092 *
1093 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1094 * global_page_state() too often. So scale it near-sqrt to the safety margin
1095 * (the number of pages we may dirty without exceeding the dirty limits).
1096 */
1097 static unsigned long dirty_poll_interval(unsigned long dirty,
1098 unsigned long thresh)
1099 {
1100 if (thresh > dirty)
1101 return 1UL << (ilog2(thresh - dirty) >> 1);
1102
1103 return 1;
1104 }
1105
1106 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1107 unsigned long bdi_dirty)
1108 {
1109 unsigned long bw = bdi->avg_write_bandwidth;
1110 unsigned long t;
1111
1112 /*
1113 * Limit pause time for small memory systems. If sleeping for too long
1114 * time, a small pool of dirty/writeback pages may go empty and disk go
1115 * idle.
1116 *
1117 * 8 serves as the safety ratio.
1118 */
1119 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1120 t++;
1121
1122 return min_t(unsigned long, t, MAX_PAUSE);
1123 }
1124
1125 static long bdi_min_pause(struct backing_dev_info *bdi,
1126 long max_pause,
1127 unsigned long task_ratelimit,
1128 unsigned long dirty_ratelimit,
1129 int *nr_dirtied_pause)
1130 {
1131 long hi = ilog2(bdi->avg_write_bandwidth);
1132 long lo = ilog2(bdi->dirty_ratelimit);
1133 long t; /* target pause */
1134 long pause; /* estimated next pause */
1135 int pages; /* target nr_dirtied_pause */
1136
1137 /* target for 10ms pause on 1-dd case */
1138 t = max(1, HZ / 100);
1139
1140 /*
1141 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1142 * overheads.
1143 *
1144 * (N * 10ms) on 2^N concurrent tasks.
1145 */
1146 if (hi > lo)
1147 t += (hi - lo) * (10 * HZ) / 1024;
1148
1149 /*
1150 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1151 * on the much more stable dirty_ratelimit. However the next pause time
1152 * will be computed based on task_ratelimit and the two rate limits may
1153 * depart considerably at some time. Especially if task_ratelimit goes
1154 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1155 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1156 * result task_ratelimit won't be executed faithfully, which could
1157 * eventually bring down dirty_ratelimit.
1158 *
1159 * We apply two rules to fix it up:
1160 * 1) try to estimate the next pause time and if necessary, use a lower
1161 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1162 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1163 * 2) limit the target pause time to max_pause/2, so that the normal
1164 * small fluctuations of task_ratelimit won't trigger rule (1) and
1165 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1166 */
1167 t = min(t, 1 + max_pause / 2);
1168 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1169
1170 /*
1171 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1172 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1173 * When the 16 consecutive reads are often interrupted by some dirty
1174 * throttling pause during the async writes, cfq will go into idles
1175 * (deadline is fine). So push nr_dirtied_pause as high as possible
1176 * until reaches DIRTY_POLL_THRESH=32 pages.
1177 */
1178 if (pages < DIRTY_POLL_THRESH) {
1179 t = max_pause;
1180 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1181 if (pages > DIRTY_POLL_THRESH) {
1182 pages = DIRTY_POLL_THRESH;
1183 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1184 }
1185 }
1186
1187 pause = HZ * pages / (task_ratelimit + 1);
1188 if (pause > max_pause) {
1189 t = max_pause;
1190 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1191 }
1192
1193 *nr_dirtied_pause = pages;
1194 /*
1195 * The minimal pause time will normally be half the target pause time.
1196 */
1197 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1198 }
1199
1200 /*
1201 * balance_dirty_pages() must be called by processes which are generating dirty
1202 * data. It looks at the number of dirty pages in the machine and will force
1203 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1204 * If we're over `background_thresh' then the writeback threads are woken to
1205 * perform some writeout.
1206 */
1207 static void balance_dirty_pages(struct address_space *mapping,
1208 unsigned long pages_dirtied)
1209 {
1210 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1211 unsigned long bdi_reclaimable;
1212 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1213 unsigned long bdi_dirty;
1214 unsigned long freerun;
1215 unsigned long background_thresh;
1216 unsigned long dirty_thresh;
1217 unsigned long bdi_thresh;
1218 long period;
1219 long pause;
1220 long max_pause;
1221 long min_pause;
1222 int nr_dirtied_pause;
1223 bool dirty_exceeded = false;
1224 unsigned long task_ratelimit;
1225 unsigned long dirty_ratelimit;
1226 unsigned long pos_ratio;
1227 struct backing_dev_info *bdi = mapping->backing_dev_info;
1228 unsigned long start_time = jiffies;
1229
1230 for (;;) {
1231 unsigned long now = jiffies;
1232
1233 /*
1234 * Unstable writes are a feature of certain networked
1235 * filesystems (i.e. NFS) in which data may have been
1236 * written to the server's write cache, but has not yet
1237 * been flushed to permanent storage.
1238 */
1239 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1240 global_page_state(NR_UNSTABLE_NFS);
1241 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1242
1243 global_dirty_limits(&background_thresh, &dirty_thresh);
1244
1245 /*
1246 * Throttle it only when the background writeback cannot
1247 * catch-up. This avoids (excessively) small writeouts
1248 * when the bdi limits are ramping up.
1249 */
1250 freerun = dirty_freerun_ceiling(dirty_thresh,
1251 background_thresh);
1252 if (nr_dirty <= freerun) {
1253 current->dirty_paused_when = now;
1254 current->nr_dirtied = 0;
1255 current->nr_dirtied_pause =
1256 dirty_poll_interval(nr_dirty, dirty_thresh);
1257 break;
1258 }
1259
1260 if (unlikely(!writeback_in_progress(bdi)))
1261 bdi_start_background_writeback(bdi);
1262
1263 /*
1264 * bdi_thresh is not treated as some limiting factor as
1265 * dirty_thresh, due to reasons
1266 * - in JBOD setup, bdi_thresh can fluctuate a lot
1267 * - in a system with HDD and USB key, the USB key may somehow
1268 * go into state (bdi_dirty >> bdi_thresh) either because
1269 * bdi_dirty starts high, or because bdi_thresh drops low.
1270 * In this case we don't want to hard throttle the USB key
1271 * dirtiers for 100 seconds until bdi_dirty drops under
1272 * bdi_thresh. Instead the auxiliary bdi control line in
1273 * bdi_position_ratio() will let the dirtier task progress
1274 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1275 */
1276 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1277
1278 /*
1279 * In order to avoid the stacked BDI deadlock we need
1280 * to ensure we accurately count the 'dirty' pages when
1281 * the threshold is low.
1282 *
1283 * Otherwise it would be possible to get thresh+n pages
1284 * reported dirty, even though there are thresh-m pages
1285 * actually dirty; with m+n sitting in the percpu
1286 * deltas.
1287 */
1288 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1289 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1290 bdi_dirty = bdi_reclaimable +
1291 bdi_stat_sum(bdi, BDI_WRITEBACK);
1292 } else {
1293 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1294 bdi_dirty = bdi_reclaimable +
1295 bdi_stat(bdi, BDI_WRITEBACK);
1296 }
1297
1298 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1299 (nr_dirty > dirty_thresh);
1300 if (dirty_exceeded && !bdi->dirty_exceeded)
1301 bdi->dirty_exceeded = 1;
1302
1303 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1304 nr_dirty, bdi_thresh, bdi_dirty,
1305 start_time);
1306
1307 dirty_ratelimit = bdi->dirty_ratelimit;
1308 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1309 background_thresh, nr_dirty,
1310 bdi_thresh, bdi_dirty);
1311 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1312 RATELIMIT_CALC_SHIFT;
1313 max_pause = bdi_max_pause(bdi, bdi_dirty);
1314 min_pause = bdi_min_pause(bdi, max_pause,
1315 task_ratelimit, dirty_ratelimit,
1316 &nr_dirtied_pause);
1317
1318 if (unlikely(task_ratelimit == 0)) {
1319 period = max_pause;
1320 pause = max_pause;
1321 goto pause;
1322 }
1323 period = HZ * pages_dirtied / task_ratelimit;
1324 pause = period;
1325 if (current->dirty_paused_when)
1326 pause -= now - current->dirty_paused_when;
1327 /*
1328 * For less than 1s think time (ext3/4 may block the dirtier
1329 * for up to 800ms from time to time on 1-HDD; so does xfs,
1330 * however at much less frequency), try to compensate it in
1331 * future periods by updating the virtual time; otherwise just
1332 * do a reset, as it may be a light dirtier.
1333 */
1334 if (pause < min_pause) {
1335 trace_balance_dirty_pages(bdi,
1336 dirty_thresh,
1337 background_thresh,
1338 nr_dirty,
1339 bdi_thresh,
1340 bdi_dirty,
1341 dirty_ratelimit,
1342 task_ratelimit,
1343 pages_dirtied,
1344 period,
1345 min(pause, 0L),
1346 start_time);
1347 if (pause < -HZ) {
1348 current->dirty_paused_when = now;
1349 current->nr_dirtied = 0;
1350 } else if (period) {
1351 current->dirty_paused_when += period;
1352 current->nr_dirtied = 0;
1353 } else if (current->nr_dirtied_pause <= pages_dirtied)
1354 current->nr_dirtied_pause += pages_dirtied;
1355 break;
1356 }
1357 if (unlikely(pause > max_pause)) {
1358 /* for occasional dropped task_ratelimit */
1359 now += min(pause - max_pause, max_pause);
1360 pause = max_pause;
1361 }
1362
1363 pause:
1364 trace_balance_dirty_pages(bdi,
1365 dirty_thresh,
1366 background_thresh,
1367 nr_dirty,
1368 bdi_thresh,
1369 bdi_dirty,
1370 dirty_ratelimit,
1371 task_ratelimit,
1372 pages_dirtied,
1373 period,
1374 pause,
1375 start_time);
1376 /* Just collecting approximate value. No lock required. */
1377 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 18, 0))
1378 bdi->last_thresh = thresh;
1379 bdi->last_nr_dirty = dirty;
1380 #else
1381 bdi->last_thresh = dirty_thresh;
1382 bdi->last_nr_dirty = nr_dirty;
1383 #endif
1384 bdi->paused_total += pause;
1385
1386 __set_current_state(TASK_KILLABLE);
1387 io_schedule_timeout(pause);
1388
1389 current->dirty_paused_when = now + pause;
1390 current->nr_dirtied = 0;
1391 current->nr_dirtied_pause = nr_dirtied_pause;
1392
1393 /*
1394 * This is typically equal to (nr_dirty < dirty_thresh) and can
1395 * also keep "1000+ dd on a slow USB stick" under control.
1396 */
1397 if (task_ratelimit)
1398 break;
1399
1400 /*
1401 * In the case of an unresponding NFS server and the NFS dirty
1402 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1403 * to go through, so that tasks on them still remain responsive.
1404 *
1405 * In theory 1 page is enough to keep the comsumer-producer
1406 * pipe going: the flusher cleans 1 page => the task dirties 1
1407 * more page. However bdi_dirty has accounting errors. So use
1408 * the larger and more IO friendly bdi_stat_error.
1409 */
1410 if (bdi_dirty <= bdi_stat_error(bdi))
1411 break;
1412
1413 if (fatal_signal_pending(current))
1414 break;
1415 }
1416
1417 if (!dirty_exceeded && bdi->dirty_exceeded)
1418 bdi->dirty_exceeded = 0;
1419
1420 if (writeback_in_progress(bdi))
1421 return;
1422
1423 /*
1424 * In laptop mode, we wait until hitting the higher threshold before
1425 * starting background writeout, and then write out all the way down
1426 * to the lower threshold. So slow writers cause minimal disk activity.
1427 *
1428 * In normal mode, we start background writeout at the lower
1429 * background_thresh, to keep the amount of dirty memory low.
1430 */
1431 if (laptop_mode)
1432 return;
1433
1434 if (nr_reclaimable > background_thresh)
1435 bdi_start_background_writeback(bdi);
1436 }
1437
1438 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1439 {
1440 if (set_page_dirty(page) || page_mkwrite) {
1441 struct address_space *mapping = page_mapping(page);
1442
1443 if (mapping)
1444 balance_dirty_pages_ratelimited(mapping);
1445 }
1446 }
1447
1448 static DEFINE_PER_CPU(int, bdp_ratelimits);
1449
1450 /*
1451 * Normal tasks are throttled by
1452 * loop {
1453 * dirty tsk->nr_dirtied_pause pages;
1454 * take a snap in balance_dirty_pages();
1455 * }
1456 * However there is a worst case. If every task exit immediately when dirtied
1457 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1458 * called to throttle the page dirties. The solution is to save the not yet
1459 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1460 * randomly into the running tasks. This works well for the above worst case,
1461 * as the new task will pick up and accumulate the old task's leaked dirty
1462 * count and eventually get throttled.
1463 */
1464 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1465
1466 /**
1467 * balance_dirty_pages_ratelimited - balance dirty memory state
1468 * @mapping: address_space which was dirtied
1469 *
1470 * Processes which are dirtying memory should call in here once for each page
1471 * which was newly dirtied. The function will periodically check the system's
1472 * dirty state and will initiate writeback if needed.
1473 *
1474 * On really big machines, get_writeback_state is expensive, so try to avoid
1475 * calling it too often (ratelimiting). But once we're over the dirty memory
1476 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1477 * from overshooting the limit by (ratelimit_pages) each.
1478 */
1479 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1480 {
1481 struct backing_dev_info *bdi = mapping->backing_dev_info;
1482 int ratelimit;
1483 int *p;
1484
1485 if (!bdi_cap_account_dirty(bdi))
1486 return;
1487
1488 ratelimit = current->nr_dirtied_pause;
1489 if (bdi->dirty_exceeded)
1490 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1491
1492 preempt_disable();
1493 /*
1494 * This prevents one CPU to accumulate too many dirtied pages without
1495 * calling into balance_dirty_pages(), which can happen when there are
1496 * 1000+ tasks, all of them start dirtying pages at exactly the same
1497 * time, hence all honoured too large initial task->nr_dirtied_pause.
1498 */
1499 p = &__get_cpu_var(bdp_ratelimits);
1500 if (unlikely(current->nr_dirtied >= ratelimit))
1501 *p = 0;
1502 else if (unlikely(*p >= ratelimit_pages)) {
1503 *p = 0;
1504 ratelimit = 0;
1505 }
1506 /*
1507 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1508 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1509 * the dirty throttling and livelock other long-run dirtiers.
1510 */
1511 p = &__get_cpu_var(dirty_throttle_leaks);
1512 if (*p > 0 && current->nr_dirtied < ratelimit) {
1513 unsigned long nr_pages_dirtied;
1514 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1515 *p -= nr_pages_dirtied;
1516 current->nr_dirtied += nr_pages_dirtied;
1517 }
1518 preempt_enable();
1519
1520 if (unlikely(current->nr_dirtied >= ratelimit))
1521 balance_dirty_pages(mapping, current->nr_dirtied);
1522 }
1523 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1524
1525 void throttle_vm_writeout(gfp_t gfp_mask)
1526 {
1527 unsigned long background_thresh;
1528 unsigned long dirty_thresh;
1529
1530 for ( ; ; ) {
1531 global_dirty_limits(&background_thresh, &dirty_thresh);
1532 dirty_thresh = hard_dirty_limit(dirty_thresh);
1533
1534 /*
1535 * Boost the allowable dirty threshold a bit for page
1536 * allocators so they don't get DoS'ed by heavy writers
1537 */
1538 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1539
1540 if (global_page_state(NR_UNSTABLE_NFS) +
1541 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1542 break;
1543 congestion_wait(BLK_RW_ASYNC, HZ/10);
1544
1545 /*
1546 * The caller might hold locks which can prevent IO completion
1547 * or progress in the filesystem. So we cannot just sit here
1548 * waiting for IO to complete.
1549 */
1550 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1551 break;
1552 }
1553 }
1554
1555 /*
1556 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1557 */
1558 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1559 void __user *buffer, size_t *length, loff_t *ppos)
1560 {
1561 proc_dointvec(table, write, buffer, length, ppos);
1562 return 0;
1563 }
1564
1565 #ifdef CONFIG_BLOCK
1566 void laptop_mode_timer_fn(unsigned long data)
1567 {
1568 struct request_queue *q = (struct request_queue *)data;
1569 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1570 global_page_state(NR_UNSTABLE_NFS);
1571
1572 /*
1573 * We want to write everything out, not just down to the dirty
1574 * threshold
1575 */
1576 if (bdi_has_dirty_io(&q->backing_dev_info))
1577 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1578 WB_REASON_LAPTOP_TIMER);
1579 }
1580
1581 /*
1582 * We've spun up the disk and we're in laptop mode: schedule writeback
1583 * of all dirty data a few seconds from now. If the flush is already scheduled
1584 * then push it back - the user is still using the disk.
1585 */
1586 void laptop_io_completion(struct backing_dev_info *info)
1587 {
1588 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1589 }
1590
1591 /*
1592 * We're in laptop mode and we've just synced. The sync's writes will have
1593 * caused another writeback to be scheduled by laptop_io_completion.
1594 * Nothing needs to be written back anymore, so we unschedule the writeback.
1595 */
1596 void laptop_sync_completion(void)
1597 {
1598 struct backing_dev_info *bdi;
1599
1600 rcu_read_lock();
1601
1602 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1603 del_timer(&bdi->laptop_mode_wb_timer);
1604
1605 rcu_read_unlock();
1606 }
1607 #endif
1608
1609 /*
1610 * If ratelimit_pages is too high then we can get into dirty-data overload
1611 * if a large number of processes all perform writes at the same time.
1612 * If it is too low then SMP machines will call the (expensive)
1613 * get_writeback_state too often.
1614 *
1615 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1616 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1617 * thresholds.
1618 */
1619
1620 void writeback_set_ratelimit(void)
1621 {
1622 unsigned long background_thresh;
1623 unsigned long dirty_thresh;
1624 global_dirty_limits(&background_thresh, &dirty_thresh);
1625 global_dirty_limit = dirty_thresh;
1626 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1627 if (ratelimit_pages < 16)
1628 ratelimit_pages = 16;
1629 }
1630
1631 static int __cpuinit
1632 ratelimit_handler(struct notifier_block *self, unsigned long action,
1633 void *hcpu)
1634 {
1635
1636 switch (action & ~CPU_TASKS_FROZEN) {
1637 case CPU_ONLINE:
1638 case CPU_DEAD:
1639 writeback_set_ratelimit();
1640 return NOTIFY_OK;
1641 default:
1642 return NOTIFY_DONE;
1643 }
1644 }
1645
1646 static struct notifier_block __cpuinitdata ratelimit_nb = {
1647 .notifier_call = ratelimit_handler,
1648 .next = NULL,
1649 };
1650
1651 /*
1652 * Called early on to tune the page writeback dirty limits.
1653 *
1654 * We used to scale dirty pages according to how total memory
1655 * related to pages that could be allocated for buffers (by
1656 * comparing nr_free_buffer_pages() to vm_total_pages.
1657 *
1658 * However, that was when we used "dirty_ratio" to scale with
1659 * all memory, and we don't do that any more. "dirty_ratio"
1660 * is now applied to total non-HIGHPAGE memory (by subtracting
1661 * totalhigh_pages from vm_total_pages), and as such we can't
1662 * get into the old insane situation any more where we had
1663 * large amounts of dirty pages compared to a small amount of
1664 * non-HIGHMEM memory.
1665 *
1666 * But we might still want to scale the dirty_ratio by how
1667 * much memory the box has..
1668 */
1669 void __init page_writeback_init(void)
1670 {
1671 writeback_set_ratelimit();
1672 register_cpu_notifier(&ratelimit_nb);
1673
1674 fprop_global_init(&writeout_completions);
1675 }
1676
1677 /**
1678 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1679 * @mapping: address space structure to write
1680 * @start: starting page index
1681 * @end: ending page index (inclusive)
1682 *
1683 * This function scans the page range from @start to @end (inclusive) and tags
1684 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1685 * that write_cache_pages (or whoever calls this function) will then use
1686 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1687 * used to avoid livelocking of writeback by a process steadily creating new
1688 * dirty pages in the file (thus it is important for this function to be quick
1689 * so that it can tag pages faster than a dirtying process can create them).
1690 */
1691 /*
1692 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1693 */
1694 void tag_pages_for_writeback(struct address_space *mapping,
1695 pgoff_t start, pgoff_t end)
1696 {
1697 #define WRITEBACK_TAG_BATCH 4096
1698 unsigned long tagged;
1699
1700 do {
1701 spin_lock_irq(&mapping->tree_lock);
1702 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1703 &start, end, WRITEBACK_TAG_BATCH,
1704 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1705 spin_unlock_irq(&mapping->tree_lock);
1706 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1707 cond_resched();
1708 /* We check 'start' to handle wrapping when end == ~0UL */
1709 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1710 }
1711 EXPORT_SYMBOL(tag_pages_for_writeback);
1712
1713 /**
1714 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1715 * @mapping: address space structure to write
1716 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1717 * @writepage: function called for each page
1718 * @data: data passed to writepage function
1719 *
1720 * If a page is already under I/O, write_cache_pages() skips it, even
1721 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1722 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1723 * and msync() need to guarantee that all the data which was dirty at the time
1724 * the call was made get new I/O started against them. If wbc->sync_mode is
1725 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1726 * existing IO to complete.
1727 *
1728 * To avoid livelocks (when other process dirties new pages), we first tag
1729 * pages which should be written back with TOWRITE tag and only then start
1730 * writing them. For data-integrity sync we have to be careful so that we do
1731 * not miss some pages (e.g., because some other process has cleared TOWRITE
1732 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1733 * by the process clearing the DIRTY tag (and submitting the page for IO).
1734 */
1735 int write_cache_pages(struct address_space *mapping,
1736 struct writeback_control *wbc, writepage_t writepage,
1737 void *data)
1738 {
1739 int ret = 0;
1740 int done = 0;
1741 struct pagevec pvec;
1742 int nr_pages;
1743 pgoff_t uninitialized_var(writeback_index);
1744 pgoff_t index;
1745 pgoff_t end; /* Inclusive */
1746 pgoff_t done_index;
1747 int cycled;
1748 int range_whole = 0;
1749 int tag;
1750
1751 pagevec_init(&pvec, 0);
1752 if (wbc->range_cyclic) {
1753 writeback_index = mapping->writeback_index; /* prev offset */
1754 index = writeback_index;
1755 if (index == 0)
1756 cycled = 1;
1757 else
1758 cycled = 0;
1759 end = -1;
1760 } else {
1761 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1762 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1763 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1764 range_whole = 1;
1765 cycled = 1; /* ignore range_cyclic tests */
1766 }
1767 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1768 tag = PAGECACHE_TAG_TOWRITE;
1769 else
1770 tag = PAGECACHE_TAG_DIRTY;
1771 retry:
1772 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1773 tag_pages_for_writeback(mapping, index, end);
1774 done_index = index;
1775 while (!done && (index <= end)) {
1776 int i;
1777
1778 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1779 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1780 if (nr_pages == 0)
1781 break;
1782
1783 for (i = 0; i < nr_pages; i++) {
1784 struct page *page = pvec.pages[i];
1785
1786 /*
1787 * At this point, the page may be truncated or
1788 * invalidated (changing page->mapping to NULL), or
1789 * even swizzled back from swapper_space to tmpfs file
1790 * mapping. However, page->index will not change
1791 * because we have a reference on the page.
1792 */
1793 if (page->index > end) {
1794 /*
1795 * can't be range_cyclic (1st pass) because
1796 * end == -1 in that case.
1797 */
1798 done = 1;
1799 break;
1800 }
1801
1802 done_index = page->index;
1803
1804 lock_page(page);
1805
1806 /*
1807 * Page truncated or invalidated. We can freely skip it
1808 * then, even for data integrity operations: the page
1809 * has disappeared concurrently, so there could be no
1810 * real expectation of this data interity operation
1811 * even if there is now a new, dirty page at the same
1812 * pagecache address.
1813 */
1814 if (unlikely(page->mapping != mapping)) {
1815 continue_unlock:
1816 unlock_page(page);
1817 continue;
1818 }
1819
1820 if (!PageDirty(page)) {
1821 /* someone wrote it for us */
1822 goto continue_unlock;
1823 }
1824
1825 if (PageWriteback(page)) {
1826 if (wbc->sync_mode != WB_SYNC_NONE)
1827 wait_on_page_writeback(page);
1828 else
1829 goto continue_unlock;
1830 }
1831
1832 BUG_ON(PageWriteback(page));
1833 if (!clear_page_dirty_for_io(page))
1834 goto continue_unlock;
1835
1836 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1837 ret = (*writepage)(page, wbc, data);
1838 if (unlikely(ret)) {
1839 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1840 unlock_page(page);
1841 ret = 0;
1842 } else {
1843 /*
1844 * done_index is set past this page,
1845 * so media errors will not choke
1846 * background writeout for the entire
1847 * file. This has consequences for
1848 * range_cyclic semantics (ie. it may
1849 * not be suitable for data integrity
1850 * writeout).
1851 */
1852 done_index = page->index + 1;
1853 done = 1;
1854 break;
1855 }
1856 }
1857
1858 /*
1859 * We stop writing back only if we are not doing
1860 * integrity sync. In case of integrity sync we have to
1861 * keep going until we have written all the pages
1862 * we tagged for writeback prior to entering this loop.
1863 */
1864 if (--wbc->nr_to_write <= 0 &&
1865 wbc->sync_mode == WB_SYNC_NONE) {
1866 done = 1;
1867 break;
1868 }
1869 }
1870 pagevec_release(&pvec);
1871 cond_resched();
1872 }
1873 if (!cycled && !done) {
1874 /*
1875 * range_cyclic:
1876 * We hit the last page and there is more work to be done: wrap
1877 * back to the start of the file
1878 */
1879 cycled = 1;
1880 index = 0;
1881 end = writeback_index - 1;
1882 goto retry;
1883 }
1884 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1885 mapping->writeback_index = done_index;
1886
1887 return ret;
1888 }
1889 EXPORT_SYMBOL(write_cache_pages);
1890
1891 /*
1892 * Function used by generic_writepages to call the real writepage
1893 * function and set the mapping flags on error
1894 */
1895 static int __writepage(struct page *page, struct writeback_control *wbc,
1896 void *data)
1897 {
1898 struct address_space *mapping = data;
1899 int ret = mapping->a_ops->writepage(page, wbc);
1900 mapping_set_error(mapping, ret);
1901 return ret;
1902 }
1903
1904 /**
1905 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1906 * @mapping: address space structure to write
1907 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1908 *
1909 * This is a library function, which implements the writepages()
1910 * address_space_operation.
1911 */
1912 int generic_writepages(struct address_space *mapping,
1913 struct writeback_control *wbc)
1914 {
1915 struct blk_plug plug;
1916 int ret;
1917
1918 /* deal with chardevs and other special file */
1919 if (!mapping->a_ops->writepage)
1920 return 0;
1921
1922 blk_start_plug(&plug);
1923 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1924 blk_finish_plug(&plug);
1925 return ret;
1926 }
1927
1928 EXPORT_SYMBOL(generic_writepages);
1929
1930 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1931 {
1932 int ret;
1933
1934 if (wbc->nr_to_write <= 0)
1935 return 0;
1936 if (mapping->a_ops->writepages)
1937 ret = mapping->a_ops->writepages(mapping, wbc);
1938 else
1939 ret = generic_writepages(mapping, wbc);
1940 return ret;
1941 }
1942
1943 /**
1944 * write_one_page - write out a single page and optionally wait on I/O
1945 * @page: the page to write
1946 * @wait: if true, wait on writeout
1947 *
1948 * The page must be locked by the caller and will be unlocked upon return.
1949 *
1950 * write_one_page() returns a negative error code if I/O failed.
1951 */
1952 int write_one_page(struct page *page, int wait)
1953 {
1954 struct address_space *mapping = page->mapping;
1955 int ret = 0;
1956 struct writeback_control wbc = {
1957 .sync_mode = WB_SYNC_ALL,
1958 .nr_to_write = 1,
1959 };
1960
1961 BUG_ON(!PageLocked(page));
1962
1963 if (wait)
1964 wait_on_page_writeback(page);
1965
1966 if (clear_page_dirty_for_io(page)) {
1967 page_cache_get(page);
1968 ret = mapping->a_ops->writepage(page, &wbc);
1969 if (ret == 0 && wait) {
1970 wait_on_page_writeback(page);
1971 if (PageError(page))
1972 ret = -EIO;
1973 }
1974 page_cache_release(page);
1975 } else {
1976 unlock_page(page);
1977 }
1978 return ret;
1979 }
1980 EXPORT_SYMBOL(write_one_page);
1981
1982 /*
1983 * For address_spaces which do not use buffers nor write back.
1984 */
1985 int __set_page_dirty_no_writeback(struct page *page)
1986 {
1987 if (!PageDirty(page))
1988 return !TestSetPageDirty(page);
1989 return 0;
1990 }
1991
1992 /*
1993 * Helper function for set_page_dirty family.
1994 * NOTE: This relies on being atomic wrt interrupts.
1995 */
1996 void account_page_dirtied(struct page *page, struct address_space *mapping)
1997 {
1998 trace_writeback_dirty_page(page, mapping);
1999
2000 if (mapping_cap_account_dirty(mapping)) {
2001 __inc_zone_page_state(page, NR_FILE_DIRTY);
2002 __inc_zone_page_state(page, NR_DIRTIED);
2003 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
2004 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2005 task_io_account_write(PAGE_CACHE_SIZE);
2006 current->nr_dirtied++;
2007 this_cpu_inc(bdp_ratelimits);
2008 }
2009 }
2010 EXPORT_SYMBOL(account_page_dirtied);
2011
2012 /*
2013 * Helper function for set_page_writeback family.
2014 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2015 * wrt interrupts.
2016 */
2017 void account_page_writeback(struct page *page)
2018 {
2019 inc_zone_page_state(page, NR_WRITEBACK);
2020 }
2021 EXPORT_SYMBOL(account_page_writeback);
2022
2023 /*
2024 * For address_spaces which do not use buffers. Just tag the page as dirty in
2025 * its radix tree.
2026 *
2027 * This is also used when a single buffer is being dirtied: we want to set the
2028 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2029 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2030 *
2031 * Most callers have locked the page, which pins the address_space in memory.
2032 * But zap_pte_range() does not lock the page, however in that case the
2033 * mapping is pinned by the vma's ->vm_file reference.
2034 *
2035 * We take care to handle the case where the page was truncated from the
2036 * mapping by re-checking page_mapping() inside tree_lock.
2037 */
2038 int __set_page_dirty_nobuffers(struct page *page)
2039 {
2040 if (!TestSetPageDirty(page)) {
2041 struct address_space *mapping = page_mapping(page);
2042 struct address_space *mapping2;
2043 unsigned long flags;
2044
2045 if (!mapping)
2046 return 1;
2047
2048 spin_lock_irqsave(&mapping->tree_lock, flags);
2049 mapping2 = page_mapping(page);
2050 if (mapping2) { /* Race with truncate? */
2051 BUG_ON(mapping2 != mapping);
2052 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2053 account_page_dirtied(page, mapping);
2054 radix_tree_tag_set(&mapping->page_tree,
2055 page_index(page), PAGECACHE_TAG_DIRTY);
2056 }
2057 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2058 if (mapping->host) {
2059 /* !PageAnon && !swapper_space */
2060 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2061 }
2062 return 1;
2063 }
2064 return 0;
2065 }
2066 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2067
2068 /*
2069 * Call this whenever redirtying a page, to de-account the dirty counters
2070 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2071 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2072 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2073 * control.
2074 */
2075 void account_page_redirty(struct page *page)
2076 {
2077 struct address_space *mapping = page->mapping;
2078 if (mapping && mapping_cap_account_dirty(mapping)) {
2079 current->nr_dirtied--;
2080 dec_zone_page_state(page, NR_DIRTIED);
2081 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2082 }
2083 }
2084 EXPORT_SYMBOL(account_page_redirty);
2085
2086 /*
2087 * When a writepage implementation decides that it doesn't want to write this
2088 * page for some reason, it should redirty the locked page via
2089 * redirty_page_for_writepage() and it should then unlock the page and return 0
2090 */
2091 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2092 {
2093 wbc->pages_skipped++;
2094 account_page_redirty(page);
2095 return __set_page_dirty_nobuffers(page);
2096 }
2097 EXPORT_SYMBOL(redirty_page_for_writepage);
2098
2099 /*
2100 * Dirty a page.
2101 *
2102 * For pages with a mapping this should be done under the page lock
2103 * for the benefit of asynchronous memory errors who prefer a consistent
2104 * dirty state. This rule can be broken in some special cases,
2105 * but should be better not to.
2106 *
2107 * If the mapping doesn't provide a set_page_dirty a_op, then
2108 * just fall through and assume that it wants buffer_heads.
2109 */
2110 int set_page_dirty(struct page *page)
2111 {
2112 struct address_space *mapping = page_mapping(page);
2113
2114 if (likely(mapping)) {
2115 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2116 /*
2117 * readahead/lru_deactivate_page could remain
2118 * PG_readahead/PG_reclaim due to race with end_page_writeback
2119 * About readahead, if the page is written, the flags would be
2120 * reset. So no problem.
2121 * About lru_deactivate_page, if the page is redirty, the flag
2122 * will be reset. So no problem. but if the page is used by readahead
2123 * it will confuse readahead and make it restart the size rampup
2124 * process. But it's a trivial problem.
2125 */
2126 ClearPageReclaim(page);
2127 #ifdef CONFIG_BLOCK
2128 if (!spd)
2129 spd = __set_page_dirty_buffers;
2130 #endif
2131 return (*spd)(page);
2132 }
2133 if (!PageDirty(page)) {
2134 if (!TestSetPageDirty(page))
2135 return 1;
2136 }
2137 return 0;
2138 }
2139 EXPORT_SYMBOL(set_page_dirty);
2140
2141 /*
2142 * set_page_dirty() is racy if the caller has no reference against
2143 * page->mapping->host, and if the page is unlocked. This is because another
2144 * CPU could truncate the page off the mapping and then free the mapping.
2145 *
2146 * Usually, the page _is_ locked, or the caller is a user-space process which
2147 * holds a reference on the inode by having an open file.
2148 *
2149 * In other cases, the page should be locked before running set_page_dirty().
2150 */
2151 int set_page_dirty_lock(struct page *page)
2152 {
2153 int ret;
2154
2155 lock_page(page);
2156 ret = set_page_dirty(page);
2157 unlock_page(page);
2158 return ret;
2159 }
2160 EXPORT_SYMBOL(set_page_dirty_lock);
2161
2162 /*
2163 * Clear a page's dirty flag, while caring for dirty memory accounting.
2164 * Returns true if the page was previously dirty.
2165 *
2166 * This is for preparing to put the page under writeout. We leave the page
2167 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2168 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2169 * implementation will run either set_page_writeback() or set_page_dirty(),
2170 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2171 * back into sync.
2172 *
2173 * This incoherency between the page's dirty flag and radix-tree tag is
2174 * unfortunate, but it only exists while the page is locked.
2175 */
2176 int clear_page_dirty_for_io(struct page *page)
2177 {
2178 struct address_space *mapping = page_mapping(page);
2179
2180 BUG_ON(!PageLocked(page));
2181
2182 if (mapping && mapping_cap_account_dirty(mapping)) {
2183 /*
2184 * Yes, Virginia, this is indeed insane.
2185 *
2186 * We use this sequence to make sure that
2187 * (a) we account for dirty stats properly
2188 * (b) we tell the low-level filesystem to
2189 * mark the whole page dirty if it was
2190 * dirty in a pagetable. Only to then
2191 * (c) clean the page again and return 1 to
2192 * cause the writeback.
2193 *
2194 * This way we avoid all nasty races with the
2195 * dirty bit in multiple places and clearing
2196 * them concurrently from different threads.
2197 *
2198 * Note! Normally the "set_page_dirty(page)"
2199 * has no effect on the actual dirty bit - since
2200 * that will already usually be set. But we
2201 * need the side effects, and it can help us
2202 * avoid races.
2203 *
2204 * We basically use the page "master dirty bit"
2205 * as a serialization point for all the different
2206 * threads doing their things.
2207 */
2208 if (page_mkclean(page))
2209 set_page_dirty(page);
2210 /*
2211 * We carefully synchronise fault handlers against
2212 * installing a dirty pte and marking the page dirty
2213 * at this point. We do this by having them hold the
2214 * page lock at some point after installing their
2215 * pte, but before marking the page dirty.
2216 * Pages are always locked coming in here, so we get
2217 * the desired exclusion. See mm/memory.c:do_wp_page()
2218 * for more comments.
2219 */
2220 if (TestClearPageDirty(page)) {
2221 dec_zone_page_state(page, NR_FILE_DIRTY);
2222 dec_bdi_stat(mapping->backing_dev_info,
2223 BDI_RECLAIMABLE);
2224 return 1;
2225 }
2226 return 0;
2227 }
2228 return TestClearPageDirty(page);
2229 }
2230 EXPORT_SYMBOL(clear_page_dirty_for_io);
2231
2232 int test_clear_page_writeback(struct page *page)
2233 {
2234 struct address_space *mapping = page_mapping(page);
2235 int ret;
2236
2237 if (mapping) {
2238 struct backing_dev_info *bdi = mapping->backing_dev_info;
2239 unsigned long flags;
2240
2241 spin_lock_irqsave(&mapping->tree_lock, flags);
2242 ret = TestClearPageWriteback(page);
2243 if (ret) {
2244 radix_tree_tag_clear(&mapping->page_tree,
2245 page_index(page),
2246 PAGECACHE_TAG_WRITEBACK);
2247 if (bdi_cap_account_writeback(bdi)) {
2248 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2249 __bdi_writeout_inc(bdi);
2250 }
2251 }
2252 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2253 } else {
2254 ret = TestClearPageWriteback(page);
2255 }
2256 if (ret) {
2257 dec_zone_page_state(page, NR_WRITEBACK);
2258 inc_zone_page_state(page, NR_WRITTEN);
2259 }
2260 return ret;
2261 }
2262
2263 int test_set_page_writeback(struct page *page)
2264 {
2265 struct address_space *mapping = page_mapping(page);
2266 int ret;
2267
2268 if (mapping) {
2269 struct backing_dev_info *bdi = mapping->backing_dev_info;
2270 unsigned long flags;
2271
2272 spin_lock_irqsave(&mapping->tree_lock, flags);
2273 ret = TestSetPageWriteback(page);
2274 if (!ret) {
2275 radix_tree_tag_set(&mapping->page_tree,
2276 page_index(page),
2277 PAGECACHE_TAG_WRITEBACK);
2278 if (bdi_cap_account_writeback(bdi))
2279 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2280 }
2281 if (!PageDirty(page))
2282 radix_tree_tag_clear(&mapping->page_tree,
2283 page_index(page),
2284 PAGECACHE_TAG_DIRTY);
2285 radix_tree_tag_clear(&mapping->page_tree,
2286 page_index(page),
2287 PAGECACHE_TAG_TOWRITE);
2288 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2289 } else {
2290 ret = TestSetPageWriteback(page);
2291 }
2292 if (!ret)
2293 account_page_writeback(page);
2294 return ret;
2295
2296 }
2297 EXPORT_SYMBOL(test_set_page_writeback);
2298
2299 /*
2300 * Return true if any of the pages in the mapping are marked with the
2301 * passed tag.
2302 */
2303 int mapping_tagged(struct address_space *mapping, int tag)
2304 {
2305 return radix_tree_tagged(&mapping->page_tree, tag);
2306 }
2307 EXPORT_SYMBOL(mapping_tagged);
2308
2309 /**
2310 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2311 * @page: The page to wait on.
2312 *
2313 * This function determines if the given page is related to a backing device
2314 * that requires page contents to be held stable during writeback. If so, then
2315 * it will wait for any pending writeback to complete.
2316 */
2317 void wait_for_stable_page(struct page *page)
2318 {
2319 struct address_space *mapping = page_mapping(page);
2320 struct backing_dev_info *bdi = mapping->backing_dev_info;
2321
2322 if (!bdi_cap_stable_pages_required(bdi))
2323 return;
2324
2325 wait_on_page_writeback(page);
2326 }
2327 EXPORT_SYMBOL_GPL(wait_for_stable_page);