UPSTREAM: binder: fix race that allows malicious free of live buffer
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / kernel / ptrace.c
1 /*
2 * linux/kernel/ptrace.c
3 *
4 * (C) Copyright 1999 Linus Torvalds
5 *
6 * Common interfaces for "ptrace()" which we do not want
7 * to continually duplicate across every architecture.
8 */
9
10 #include <linux/capability.h>
11 #include <linux/export.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/highmem.h>
16 #include <linux/pagemap.h>
17 #include <linux/ptrace.h>
18 #include <linux/security.h>
19 #include <linux/signal.h>
20 #include <linux/uio.h>
21 #include <linux/audit.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/user_namespace.h>
24 #include <linux/syscalls.h>
25 #include <linux/uaccess.h>
26 #include <linux/regset.h>
27 #include <linux/hw_breakpoint.h>
28 #include <linux/cn_proc.h>
29 #include <linux/compat.h>
30
31
32 static int ptrace_trapping_sleep_fn(void *flags)
33 {
34 schedule();
35 return 0;
36 }
37
38 /*
39 * ptrace a task: make the debugger its new parent and
40 * move it to the ptrace list.
41 *
42 * Must be called with the tasklist lock write-held.
43 */
44 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
45 {
46 BUG_ON(!list_empty(&child->ptrace_entry));
47 list_add(&child->ptrace_entry, &new_parent->ptraced);
48 child->parent = new_parent;
49 }
50
51 /**
52 * __ptrace_unlink - unlink ptracee and restore its execution state
53 * @child: ptracee to be unlinked
54 *
55 * Remove @child from the ptrace list, move it back to the original parent,
56 * and restore the execution state so that it conforms to the group stop
57 * state.
58 *
59 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
60 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
61 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
62 * If the ptracer is exiting, the ptracee can be in any state.
63 *
64 * After detach, the ptracee should be in a state which conforms to the
65 * group stop. If the group is stopped or in the process of stopping, the
66 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
67 * up from TASK_TRACED.
68 *
69 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
70 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
71 * to but in the opposite direction of what happens while attaching to a
72 * stopped task. However, in this direction, the intermediate RUNNING
73 * state is not hidden even from the current ptracer and if it immediately
74 * re-attaches and performs a WNOHANG wait(2), it may fail.
75 *
76 * CONTEXT:
77 * write_lock_irq(tasklist_lock)
78 */
79 void __ptrace_unlink(struct task_struct *child)
80 {
81 BUG_ON(!child->ptrace);
82
83 child->ptrace = 0;
84 child->parent = child->real_parent;
85 list_del_init(&child->ptrace_entry);
86
87 spin_lock(&child->sighand->siglock);
88
89 /*
90 * Clear all pending traps and TRAPPING. TRAPPING should be
91 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
92 */
93 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
94 task_clear_jobctl_trapping(child);
95
96 /*
97 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
98 * @child isn't dead.
99 */
100 if (!(child->flags & PF_EXITING) &&
101 (child->signal->flags & SIGNAL_STOP_STOPPED ||
102 child->signal->group_stop_count)) {
103 child->jobctl |= JOBCTL_STOP_PENDING;
104
105 /*
106 * This is only possible if this thread was cloned by the
107 * traced task running in the stopped group, set the signal
108 * for the future reports.
109 * FIXME: we should change ptrace_init_task() to handle this
110 * case.
111 */
112 if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
113 child->jobctl |= SIGSTOP;
114 }
115
116 /*
117 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
118 * @child in the butt. Note that @resume should be used iff @child
119 * is in TASK_TRACED; otherwise, we might unduly disrupt
120 * TASK_KILLABLE sleeps.
121 */
122 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
123 ptrace_signal_wake_up(child, true);
124
125 spin_unlock(&child->sighand->siglock);
126 }
127
128 /* Ensure that nothing can wake it up, even SIGKILL */
129 static bool ptrace_freeze_traced(struct task_struct *task)
130 {
131 bool ret = false;
132
133 /* Lockless, nobody but us can set this flag */
134 if (task->jobctl & JOBCTL_LISTENING)
135 return ret;
136
137 spin_lock_irq(&task->sighand->siglock);
138 if (task_is_traced(task) && !__fatal_signal_pending(task)) {
139 task->state = __TASK_TRACED;
140 ret = true;
141 }
142 spin_unlock_irq(&task->sighand->siglock);
143
144 return ret;
145 }
146
147 static void ptrace_unfreeze_traced(struct task_struct *task)
148 {
149 if (task->state != __TASK_TRACED)
150 return;
151
152 WARN_ON(!task->ptrace || task->parent != current);
153
154 /*
155 * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely.
156 * Recheck state under the lock to close this race.
157 */
158 spin_lock_irq(&task->sighand->siglock);
159 if (task->state == __TASK_TRACED) {
160 if (__fatal_signal_pending(task))
161 wake_up_state(task, __TASK_TRACED);
162 else
163 task->state = TASK_TRACED;
164 }
165 spin_unlock_irq(&task->sighand->siglock);
166 }
167
168 /**
169 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
170 * @child: ptracee to check for
171 * @ignore_state: don't check whether @child is currently %TASK_TRACED
172 *
173 * Check whether @child is being ptraced by %current and ready for further
174 * ptrace operations. If @ignore_state is %false, @child also should be in
175 * %TASK_TRACED state and on return the child is guaranteed to be traced
176 * and not executing. If @ignore_state is %true, @child can be in any
177 * state.
178 *
179 * CONTEXT:
180 * Grabs and releases tasklist_lock and @child->sighand->siglock.
181 *
182 * RETURNS:
183 * 0 on success, -ESRCH if %child is not ready.
184 */
185 static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
186 {
187 int ret = -ESRCH;
188
189 /*
190 * We take the read lock around doing both checks to close a
191 * possible race where someone else was tracing our child and
192 * detached between these two checks. After this locked check,
193 * we are sure that this is our traced child and that can only
194 * be changed by us so it's not changing right after this.
195 */
196 read_lock(&tasklist_lock);
197 if (child->ptrace && child->parent == current) {
198 WARN_ON(child->state == __TASK_TRACED);
199 /*
200 * child->sighand can't be NULL, release_task()
201 * does ptrace_unlink() before __exit_signal().
202 */
203 if (ignore_state || ptrace_freeze_traced(child))
204 ret = 0;
205 }
206 read_unlock(&tasklist_lock);
207
208 if (!ret && !ignore_state) {
209 if (!wait_task_inactive(child, __TASK_TRACED)) {
210 /*
211 * This can only happen if may_ptrace_stop() fails and
212 * ptrace_stop() changes ->state back to TASK_RUNNING,
213 * so we should not worry about leaking __TASK_TRACED.
214 */
215 WARN_ON(child->state == __TASK_TRACED);
216 ret = -ESRCH;
217 }
218 }
219
220 return ret;
221 }
222
223 static bool ptrace_has_cap(const struct cred *tcred, unsigned int mode)
224 {
225 struct user_namespace *tns = tcred->user_ns;
226 /* When a root-owned process enters a user namespace created by a
227 * malicious user, the user shouldn't be able to execute code under
228 * uid 0 by attaching to the root-owned process via ptrace.
229 * Therefore, similar to the capable_wrt_inode_uidgid() check,
230 * verify that all the uids and gids of the target process are
231 * mapped into a namespace below the current one in which the caller
232 * is capable.+ * No fsuid/fsgid check because __ptrace_may_access doesn't do it
233 * either.
234 */
235 while (
236 !kuid_has_mapping(tns, tcred->euid) ||
237 !kuid_has_mapping(tns, tcred->suid) ||
238 !kuid_has_mapping(tns, tcred->uid) ||
239 !kgid_has_mapping(tns, tcred->egid) ||
240 !kgid_has_mapping(tns, tcred->sgid) ||
241 !kgid_has_mapping(tns, tcred->gid)) {
242 tns = tns->parent;
243 }
244
245 if (mode & PTRACE_MODE_NOAUDIT)
246 return has_ns_capability_noaudit(current, tns, CAP_SYS_PTRACE);
247 else
248 return has_ns_capability(current, tns, CAP_SYS_PTRACE);
249 }
250
251 /* Returns 0 on success, -errno on denial. */
252 static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
253 {
254 const struct cred *cred = current_cred(), *tcred;
255 int dumpable = 0;
256 kuid_t caller_uid;
257 kgid_t caller_gid;
258
259 if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
260 WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
261 return -EPERM;
262 }
263
264 /* May we inspect the given task?
265 * This check is used both for attaching with ptrace
266 * and for allowing access to sensitive information in /proc.
267 *
268 * ptrace_attach denies several cases that /proc allows
269 * because setting up the necessary parent/child relationship
270 * or halting the specified task is impossible.
271 */
272
273 /* Don't let security modules deny introspection */
274 if (same_thread_group(task, current))
275 return 0;
276 rcu_read_lock();
277 if (mode & PTRACE_MODE_FSCREDS) {
278 caller_uid = cred->fsuid;
279 caller_gid = cred->fsgid;
280 } else {
281 /*
282 * Using the euid would make more sense here, but something
283 * in userland might rely on the old behavior, and this
284 * shouldn't be a security problem since
285 * PTRACE_MODE_REALCREDS implies that the caller explicitly
286 * used a syscall that requests access to another process
287 * (and not a filesystem syscall to procfs).
288 */
289 caller_uid = cred->uid;
290 caller_gid = cred->gid;
291 }
292 tcred = __task_cred(task);
293 if (uid_eq(caller_uid, tcred->euid) &&
294 uid_eq(caller_uid, tcred->suid) &&
295 uid_eq(caller_uid, tcred->uid) &&
296 gid_eq(caller_gid, tcred->egid) &&
297 gid_eq(caller_gid, tcred->sgid) &&
298 gid_eq(caller_gid, tcred->gid))
299 goto ok;
300 if (ptrace_has_cap(tcred, mode))
301 goto ok;
302 rcu_read_unlock();
303 return -EPERM;
304 ok:
305 rcu_read_unlock();
306 smp_rmb();
307 if (task->mm)
308 dumpable = get_dumpable(task->mm);
309 rcu_read_lock();
310 if (dumpable != SUID_DUMP_USER &&
311 !ptrace_has_cap(__task_cred(task), mode)) {
312 rcu_read_unlock();
313 return -EPERM;
314 }
315 rcu_read_unlock();
316
317 return security_ptrace_access_check(task, mode);
318 }
319
320 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
321 {
322 int err;
323 task_lock(task);
324 err = __ptrace_may_access(task, mode);
325 task_unlock(task);
326 return !err;
327 }
328
329 static int ptrace_attach(struct task_struct *task, long request,
330 unsigned long addr,
331 unsigned long flags)
332 {
333 bool seize = (request == PTRACE_SEIZE);
334 int retval;
335
336 retval = -EIO;
337 if (seize) {
338 if (addr != 0)
339 goto out;
340 if (flags & ~(unsigned long)PTRACE_O_MASK)
341 goto out;
342 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
343 } else {
344 flags = PT_PTRACED;
345 }
346
347 audit_ptrace(task);
348
349 retval = -EPERM;
350 if (unlikely(task->flags & PF_KTHREAD))
351 goto out;
352 if (same_thread_group(task, current))
353 goto out;
354
355 /*
356 * Protect exec's credential calculations against our interference;
357 * SUID, SGID and LSM creds get determined differently
358 * under ptrace.
359 */
360 retval = -ERESTARTNOINTR;
361 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
362 goto out;
363
364 task_lock(task);
365 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
366 task_unlock(task);
367 if (retval)
368 goto unlock_creds;
369
370 write_lock_irq(&tasklist_lock);
371 retval = -EPERM;
372 if (unlikely(task->exit_state))
373 goto unlock_tasklist;
374 if (task->ptrace)
375 goto unlock_tasklist;
376
377 if (seize)
378 flags |= PT_SEIZED;
379 rcu_read_lock();
380 if (ns_capable(__task_cred(task)->user_ns, CAP_SYS_PTRACE))
381 flags |= PT_PTRACE_CAP;
382 rcu_read_unlock();
383 task->ptrace = flags;
384
385 __ptrace_link(task, current);
386
387 /* SEIZE doesn't trap tracee on attach */
388 if (!seize)
389 send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
390
391 spin_lock(&task->sighand->siglock);
392
393 /*
394 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
395 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
396 * will be cleared if the child completes the transition or any
397 * event which clears the group stop states happens. We'll wait
398 * for the transition to complete before returning from this
399 * function.
400 *
401 * This hides STOPPED -> RUNNING -> TRACED transition from the
402 * attaching thread but a different thread in the same group can
403 * still observe the transient RUNNING state. IOW, if another
404 * thread's WNOHANG wait(2) on the stopped tracee races against
405 * ATTACH, the wait(2) may fail due to the transient RUNNING.
406 *
407 * The following task_is_stopped() test is safe as both transitions
408 * in and out of STOPPED are protected by siglock.
409 */
410 if (task_is_stopped(task) &&
411 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
412 signal_wake_up_state(task, __TASK_STOPPED);
413
414 spin_unlock(&task->sighand->siglock);
415
416 retval = 0;
417 unlock_tasklist:
418 write_unlock_irq(&tasklist_lock);
419 unlock_creds:
420 mutex_unlock(&task->signal->cred_guard_mutex);
421 out:
422 if (!retval) {
423 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT,
424 ptrace_trapping_sleep_fn, TASK_UNINTERRUPTIBLE);
425 proc_ptrace_connector(task, PTRACE_ATTACH);
426 }
427
428 return retval;
429 }
430
431 /**
432 * ptrace_traceme -- helper for PTRACE_TRACEME
433 *
434 * Performs checks and sets PT_PTRACED.
435 * Should be used by all ptrace implementations for PTRACE_TRACEME.
436 */
437 static int ptrace_traceme(void)
438 {
439 int ret = -EPERM;
440
441 write_lock_irq(&tasklist_lock);
442 /* Are we already being traced? */
443 if (!current->ptrace) {
444 ret = security_ptrace_traceme(current->parent);
445 /*
446 * Check PF_EXITING to ensure ->real_parent has not passed
447 * exit_ptrace(). Otherwise we don't report the error but
448 * pretend ->real_parent untraces us right after return.
449 */
450 if (!ret && !(current->real_parent->flags & PF_EXITING)) {
451 current->ptrace = PT_PTRACED;
452 __ptrace_link(current, current->real_parent);
453 }
454 }
455 write_unlock_irq(&tasklist_lock);
456
457 return ret;
458 }
459
460 /*
461 * Called with irqs disabled, returns true if childs should reap themselves.
462 */
463 static int ignoring_children(struct sighand_struct *sigh)
464 {
465 int ret;
466 spin_lock(&sigh->siglock);
467 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
468 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
469 spin_unlock(&sigh->siglock);
470 return ret;
471 }
472
473 /*
474 * Called with tasklist_lock held for writing.
475 * Unlink a traced task, and clean it up if it was a traced zombie.
476 * Return true if it needs to be reaped with release_task().
477 * (We can't call release_task() here because we already hold tasklist_lock.)
478 *
479 * If it's a zombie, our attachedness prevented normal parent notification
480 * or self-reaping. Do notification now if it would have happened earlier.
481 * If it should reap itself, return true.
482 *
483 * If it's our own child, there is no notification to do. But if our normal
484 * children self-reap, then this child was prevented by ptrace and we must
485 * reap it now, in that case we must also wake up sub-threads sleeping in
486 * do_wait().
487 */
488 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
489 {
490 bool dead;
491
492 __ptrace_unlink(p);
493
494 if (p->exit_state != EXIT_ZOMBIE)
495 return false;
496
497 dead = !thread_group_leader(p);
498
499 if (!dead && thread_group_empty(p)) {
500 if (!same_thread_group(p->real_parent, tracer))
501 dead = do_notify_parent(p, p->exit_signal);
502 else if (ignoring_children(tracer->sighand)) {
503 __wake_up_parent(p, tracer);
504 dead = true;
505 }
506 }
507 /* Mark it as in the process of being reaped. */
508 if (dead)
509 p->exit_state = EXIT_DEAD;
510 return dead;
511 }
512
513 static int ptrace_detach(struct task_struct *child, unsigned int data)
514 {
515 bool dead = false;
516
517 if (!valid_signal(data))
518 return -EIO;
519
520 /* Architecture-specific hardware disable .. */
521 ptrace_disable(child);
522 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
523
524 write_lock_irq(&tasklist_lock);
525 /*
526 * This child can be already killed. Make sure de_thread() or
527 * our sub-thread doing do_wait() didn't do release_task() yet.
528 */
529 if (child->ptrace) {
530 child->exit_code = data;
531 dead = __ptrace_detach(current, child);
532 }
533 write_unlock_irq(&tasklist_lock);
534
535 proc_ptrace_connector(child, PTRACE_DETACH);
536 if (unlikely(dead))
537 release_task(child);
538
539 return 0;
540 }
541
542 /*
543 * Detach all tasks we were using ptrace on. Called with tasklist held
544 * for writing, and returns with it held too. But note it can release
545 * and reacquire the lock.
546 */
547 void exit_ptrace(struct task_struct *tracer)
548 __releases(&tasklist_lock)
549 __acquires(&tasklist_lock)
550 {
551 struct task_struct *p, *n;
552 LIST_HEAD(ptrace_dead);
553
554 if (likely(list_empty(&tracer->ptraced)))
555 return;
556
557 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
558 if (unlikely(p->ptrace & PT_EXITKILL))
559 send_sig_info(SIGKILL, SEND_SIG_FORCED, p);
560
561 if (__ptrace_detach(tracer, p))
562 list_add(&p->ptrace_entry, &ptrace_dead);
563 }
564
565 write_unlock_irq(&tasklist_lock);
566 BUG_ON(!list_empty(&tracer->ptraced));
567
568 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) {
569 list_del_init(&p->ptrace_entry);
570 release_task(p);
571 }
572
573 write_lock_irq(&tasklist_lock);
574 }
575
576 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
577 {
578 int copied = 0;
579
580 while (len > 0) {
581 char buf[128];
582 int this_len, retval;
583
584 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
585 retval = access_process_vm(tsk, src, buf, this_len, 0);
586 if (!retval) {
587 if (copied)
588 break;
589 return -EIO;
590 }
591 if (copy_to_user(dst, buf, retval))
592 return -EFAULT;
593 copied += retval;
594 src += retval;
595 dst += retval;
596 len -= retval;
597 }
598 return copied;
599 }
600
601 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
602 {
603 int copied = 0;
604
605 while (len > 0) {
606 char buf[128];
607 int this_len, retval;
608
609 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
610 if (copy_from_user(buf, src, this_len))
611 return -EFAULT;
612 retval = access_process_vm(tsk, dst, buf, this_len, 1);
613 if (!retval) {
614 if (copied)
615 break;
616 return -EIO;
617 }
618 copied += retval;
619 src += retval;
620 dst += retval;
621 len -= retval;
622 }
623 return copied;
624 }
625
626 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
627 {
628 unsigned flags;
629
630 if (data & ~(unsigned long)PTRACE_O_MASK)
631 return -EINVAL;
632
633 /* Avoid intermediate state when all opts are cleared */
634 flags = child->ptrace;
635 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
636 flags |= (data << PT_OPT_FLAG_SHIFT);
637 child->ptrace = flags;
638
639 return 0;
640 }
641
642 static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
643 {
644 unsigned long flags;
645 int error = -ESRCH;
646
647 if (lock_task_sighand(child, &flags)) {
648 error = -EINVAL;
649 if (likely(child->last_siginfo != NULL)) {
650 *info = *child->last_siginfo;
651 error = 0;
652 }
653 unlock_task_sighand(child, &flags);
654 }
655 return error;
656 }
657
658 static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
659 {
660 unsigned long flags;
661 int error = -ESRCH;
662
663 if (lock_task_sighand(child, &flags)) {
664 error = -EINVAL;
665 if (likely(child->last_siginfo != NULL)) {
666 *child->last_siginfo = *info;
667 error = 0;
668 }
669 unlock_task_sighand(child, &flags);
670 }
671 return error;
672 }
673
674 static int ptrace_peek_siginfo(struct task_struct *child,
675 unsigned long addr,
676 unsigned long data)
677 {
678 struct ptrace_peeksiginfo_args arg;
679 struct sigpending *pending;
680 struct sigqueue *q;
681 int ret, i;
682
683 ret = copy_from_user(&arg, (void __user *) addr,
684 sizeof(struct ptrace_peeksiginfo_args));
685 if (ret)
686 return -EFAULT;
687
688 if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
689 return -EINVAL; /* unknown flags */
690
691 if (arg.nr < 0)
692 return -EINVAL;
693
694 if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
695 pending = &child->signal->shared_pending;
696 else
697 pending = &child->pending;
698
699 for (i = 0; i < arg.nr; ) {
700 siginfo_t info;
701 s32 off = arg.off + i;
702
703 spin_lock_irq(&child->sighand->siglock);
704 list_for_each_entry(q, &pending->list, list) {
705 if (!off--) {
706 copy_siginfo(&info, &q->info);
707 break;
708 }
709 }
710 spin_unlock_irq(&child->sighand->siglock);
711
712 if (off >= 0) /* beyond the end of the list */
713 break;
714
715 #ifdef CONFIG_COMPAT
716 if (unlikely(is_compat_task())) {
717 compat_siginfo_t __user *uinfo = compat_ptr(data);
718
719 if (copy_siginfo_to_user32(uinfo, &info) ||
720 __put_user(info.si_code, &uinfo->si_code)) {
721 ret = -EFAULT;
722 break;
723 }
724
725 } else
726 #endif
727 {
728 siginfo_t __user *uinfo = (siginfo_t __user *) data;
729
730 if (copy_siginfo_to_user(uinfo, &info) ||
731 __put_user(info.si_code, &uinfo->si_code)) {
732 ret = -EFAULT;
733 break;
734 }
735 }
736
737 data += sizeof(siginfo_t);
738 i++;
739
740 if (signal_pending(current))
741 break;
742
743 cond_resched();
744 }
745
746 if (i > 0)
747 return i;
748
749 return ret;
750 }
751
752 #ifdef PTRACE_SINGLESTEP
753 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
754 #else
755 #define is_singlestep(request) 0
756 #endif
757
758 #ifdef PTRACE_SINGLEBLOCK
759 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
760 #else
761 #define is_singleblock(request) 0
762 #endif
763
764 #ifdef PTRACE_SYSEMU
765 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
766 #else
767 #define is_sysemu_singlestep(request) 0
768 #endif
769
770 static int ptrace_resume(struct task_struct *child, long request,
771 unsigned long data)
772 {
773 bool need_siglock;
774
775 if (!valid_signal(data))
776 return -EIO;
777
778 if (request == PTRACE_SYSCALL)
779 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
780 else
781 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
782
783 #ifdef TIF_SYSCALL_EMU
784 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
785 set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
786 else
787 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
788 #endif
789
790 if (is_singleblock(request)) {
791 if (unlikely(!arch_has_block_step()))
792 return -EIO;
793 user_enable_block_step(child);
794 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
795 if (unlikely(!arch_has_single_step()))
796 return -EIO;
797 user_enable_single_step(child);
798 } else {
799 user_disable_single_step(child);
800 }
801
802 /*
803 * Change ->exit_code and ->state under siglock to avoid the race
804 * with wait_task_stopped() in between; a non-zero ->exit_code will
805 * wrongly look like another report from tracee.
806 *
807 * Note that we need siglock even if ->exit_code == data and/or this
808 * status was not reported yet, the new status must not be cleared by
809 * wait_task_stopped() after resume.
810 *
811 * If data == 0 we do not care if wait_task_stopped() reports the old
812 * status and clears the code too; this can't race with the tracee, it
813 * takes siglock after resume.
814 */
815 need_siglock = data && !thread_group_empty(current);
816 if (need_siglock)
817 spin_lock_irq(&child->sighand->siglock);
818 child->exit_code = data;
819 wake_up_state(child, __TASK_TRACED);
820 if (need_siglock)
821 spin_unlock_irq(&child->sighand->siglock);
822
823 return 0;
824 }
825
826 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
827
828 static const struct user_regset *
829 find_regset(const struct user_regset_view *view, unsigned int type)
830 {
831 const struct user_regset *regset;
832 int n;
833
834 for (n = 0; n < view->n; ++n) {
835 regset = view->regsets + n;
836 if (regset->core_note_type == type)
837 return regset;
838 }
839
840 return NULL;
841 }
842
843 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
844 struct iovec *kiov)
845 {
846 const struct user_regset_view *view = task_user_regset_view(task);
847 const struct user_regset *regset = find_regset(view, type);
848 int regset_no;
849
850 if (!regset || (kiov->iov_len % regset->size) != 0)
851 return -EINVAL;
852
853 regset_no = regset - view->regsets;
854 kiov->iov_len = min(kiov->iov_len,
855 (__kernel_size_t) (regset->n * regset->size));
856
857 if (req == PTRACE_GETREGSET)
858 return copy_regset_to_user(task, view, regset_no, 0,
859 kiov->iov_len, kiov->iov_base);
860 else
861 return copy_regset_from_user(task, view, regset_no, 0,
862 kiov->iov_len, kiov->iov_base);
863 }
864
865 /*
866 * This is declared in linux/regset.h and defined in machine-dependent
867 * code. We put the export here, near the primary machine-neutral use,
868 * to ensure no machine forgets it.
869 */
870 EXPORT_SYMBOL_GPL(task_user_regset_view);
871 #endif
872
873 int ptrace_request(struct task_struct *child, long request,
874 unsigned long addr, unsigned long data)
875 {
876 bool seized = child->ptrace & PT_SEIZED;
877 int ret = -EIO;
878 siginfo_t siginfo, *si;
879 void __user *datavp = (void __user *) data;
880 unsigned long __user *datalp = datavp;
881 unsigned long flags;
882
883 switch (request) {
884 case PTRACE_PEEKTEXT:
885 case PTRACE_PEEKDATA:
886 return generic_ptrace_peekdata(child, addr, data);
887 case PTRACE_POKETEXT:
888 case PTRACE_POKEDATA:
889 return generic_ptrace_pokedata(child, addr, data);
890
891 #ifdef PTRACE_OLDSETOPTIONS
892 case PTRACE_OLDSETOPTIONS:
893 #endif
894 case PTRACE_SETOPTIONS:
895 ret = ptrace_setoptions(child, data);
896 break;
897 case PTRACE_GETEVENTMSG:
898 ret = put_user(child->ptrace_message, datalp);
899 break;
900
901 case PTRACE_PEEKSIGINFO:
902 ret = ptrace_peek_siginfo(child, addr, data);
903 break;
904
905 case PTRACE_GETSIGINFO:
906 ret = ptrace_getsiginfo(child, &siginfo);
907 if (!ret)
908 ret = copy_siginfo_to_user(datavp, &siginfo);
909 break;
910
911 case PTRACE_SETSIGINFO:
912 if (copy_from_user(&siginfo, datavp, sizeof siginfo))
913 ret = -EFAULT;
914 else
915 ret = ptrace_setsiginfo(child, &siginfo);
916 break;
917
918 case PTRACE_INTERRUPT:
919 /*
920 * Stop tracee without any side-effect on signal or job
921 * control. At least one trap is guaranteed to happen
922 * after this request. If @child is already trapped, the
923 * current trap is not disturbed and another trap will
924 * happen after the current trap is ended with PTRACE_CONT.
925 *
926 * The actual trap might not be PTRACE_EVENT_STOP trap but
927 * the pending condition is cleared regardless.
928 */
929 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
930 break;
931
932 /*
933 * INTERRUPT doesn't disturb existing trap sans one
934 * exception. If ptracer issued LISTEN for the current
935 * STOP, this INTERRUPT should clear LISTEN and re-trap
936 * tracee into STOP.
937 */
938 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
939 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
940
941 unlock_task_sighand(child, &flags);
942 ret = 0;
943 break;
944
945 case PTRACE_LISTEN:
946 /*
947 * Listen for events. Tracee must be in STOP. It's not
948 * resumed per-se but is not considered to be in TRACED by
949 * wait(2) or ptrace(2). If an async event (e.g. group
950 * stop state change) happens, tracee will enter STOP trap
951 * again. Alternatively, ptracer can issue INTERRUPT to
952 * finish listening and re-trap tracee into STOP.
953 */
954 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
955 break;
956
957 si = child->last_siginfo;
958 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
959 child->jobctl |= JOBCTL_LISTENING;
960 /*
961 * If NOTIFY is set, it means event happened between
962 * start of this trap and now. Trigger re-trap.
963 */
964 if (child->jobctl & JOBCTL_TRAP_NOTIFY)
965 ptrace_signal_wake_up(child, true);
966 ret = 0;
967 }
968 unlock_task_sighand(child, &flags);
969 break;
970
971 case PTRACE_DETACH: /* detach a process that was attached. */
972 ret = ptrace_detach(child, data);
973 break;
974
975 #ifdef CONFIG_BINFMT_ELF_FDPIC
976 case PTRACE_GETFDPIC: {
977 struct mm_struct *mm = get_task_mm(child);
978 unsigned long tmp = 0;
979
980 ret = -ESRCH;
981 if (!mm)
982 break;
983
984 switch (addr) {
985 case PTRACE_GETFDPIC_EXEC:
986 tmp = mm->context.exec_fdpic_loadmap;
987 break;
988 case PTRACE_GETFDPIC_INTERP:
989 tmp = mm->context.interp_fdpic_loadmap;
990 break;
991 default:
992 break;
993 }
994 mmput(mm);
995
996 ret = put_user(tmp, datalp);
997 break;
998 }
999 #endif
1000
1001 #ifdef PTRACE_SINGLESTEP
1002 case PTRACE_SINGLESTEP:
1003 #endif
1004 #ifdef PTRACE_SINGLEBLOCK
1005 case PTRACE_SINGLEBLOCK:
1006 #endif
1007 #ifdef PTRACE_SYSEMU
1008 case PTRACE_SYSEMU:
1009 case PTRACE_SYSEMU_SINGLESTEP:
1010 #endif
1011 case PTRACE_SYSCALL:
1012 case PTRACE_CONT:
1013 return ptrace_resume(child, request, data);
1014
1015 case PTRACE_KILL:
1016 if (child->exit_state) /* already dead */
1017 return 0;
1018 return ptrace_resume(child, request, SIGKILL);
1019
1020 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1021 case PTRACE_GETREGSET:
1022 case PTRACE_SETREGSET:
1023 {
1024 struct iovec kiov;
1025 struct iovec __user *uiov = datavp;
1026
1027 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1028 return -EFAULT;
1029
1030 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1031 __get_user(kiov.iov_len, &uiov->iov_len))
1032 return -EFAULT;
1033
1034 ret = ptrace_regset(child, request, addr, &kiov);
1035 if (!ret)
1036 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1037 break;
1038 }
1039 #endif
1040 default:
1041 break;
1042 }
1043
1044 return ret;
1045 }
1046
1047 static struct task_struct *ptrace_get_task_struct(pid_t pid)
1048 {
1049 struct task_struct *child;
1050
1051 rcu_read_lock();
1052 child = find_task_by_vpid(pid);
1053 if (child)
1054 get_task_struct(child);
1055 rcu_read_unlock();
1056
1057 if (!child)
1058 return ERR_PTR(-ESRCH);
1059 return child;
1060 }
1061
1062 #ifndef arch_ptrace_attach
1063 #define arch_ptrace_attach(child) do { } while (0)
1064 #endif
1065
1066 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1067 unsigned long, data)
1068 {
1069 struct task_struct *child;
1070 long ret;
1071
1072 if (request == PTRACE_TRACEME) {
1073 ret = ptrace_traceme();
1074 if (!ret)
1075 arch_ptrace_attach(current);
1076 goto out;
1077 }
1078
1079 child = ptrace_get_task_struct(pid);
1080 if (IS_ERR(child)) {
1081 ret = PTR_ERR(child);
1082 goto out;
1083 }
1084
1085 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1086 ret = ptrace_attach(child, request, addr, data);
1087 /*
1088 * Some architectures need to do book-keeping after
1089 * a ptrace attach.
1090 */
1091 if (!ret)
1092 arch_ptrace_attach(child);
1093 goto out_put_task_struct;
1094 }
1095
1096 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1097 request == PTRACE_INTERRUPT);
1098 if (ret < 0)
1099 goto out_put_task_struct;
1100
1101 ret = arch_ptrace(child, request, addr, data);
1102 if (ret || request != PTRACE_DETACH)
1103 ptrace_unfreeze_traced(child);
1104
1105 out_put_task_struct:
1106 put_task_struct(child);
1107 out:
1108 return ret;
1109 }
1110
1111 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1112 unsigned long data)
1113 {
1114 unsigned long tmp;
1115 int copied;
1116
1117 copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
1118 if (copied != sizeof(tmp))
1119 return -EIO;
1120 return put_user(tmp, (unsigned long __user *)data);
1121 }
1122
1123 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1124 unsigned long data)
1125 {
1126 int copied;
1127
1128 copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
1129 return (copied == sizeof(data)) ? 0 : -EIO;
1130 }
1131
1132 #if defined CONFIG_COMPAT
1133 #include <linux/compat.h>
1134
1135 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1136 compat_ulong_t addr, compat_ulong_t data)
1137 {
1138 compat_ulong_t __user *datap = compat_ptr(data);
1139 compat_ulong_t word;
1140 siginfo_t siginfo;
1141 int ret;
1142
1143 switch (request) {
1144 case PTRACE_PEEKTEXT:
1145 case PTRACE_PEEKDATA:
1146 ret = access_process_vm(child, addr, &word, sizeof(word), 0);
1147 if (ret != sizeof(word))
1148 ret = -EIO;
1149 else
1150 ret = put_user(word, datap);
1151 break;
1152
1153 case PTRACE_POKETEXT:
1154 case PTRACE_POKEDATA:
1155 ret = access_process_vm(child, addr, &data, sizeof(data), 1);
1156 ret = (ret != sizeof(data) ? -EIO : 0);
1157 break;
1158
1159 case PTRACE_GETEVENTMSG:
1160 ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1161 break;
1162
1163 case PTRACE_GETSIGINFO:
1164 ret = ptrace_getsiginfo(child, &siginfo);
1165 if (!ret)
1166 ret = copy_siginfo_to_user32(
1167 (struct compat_siginfo __user *) datap,
1168 &siginfo);
1169 break;
1170
1171 case PTRACE_SETSIGINFO:
1172 memset(&siginfo, 0, sizeof siginfo);
1173 if (copy_siginfo_from_user32(
1174 &siginfo, (struct compat_siginfo __user *) datap))
1175 ret = -EFAULT;
1176 else
1177 ret = ptrace_setsiginfo(child, &siginfo);
1178 break;
1179 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1180 case PTRACE_GETREGSET:
1181 case PTRACE_SETREGSET:
1182 {
1183 struct iovec kiov;
1184 struct compat_iovec __user *uiov =
1185 (struct compat_iovec __user *) datap;
1186 compat_uptr_t ptr;
1187 compat_size_t len;
1188
1189 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1190 return -EFAULT;
1191
1192 if (__get_user(ptr, &uiov->iov_base) ||
1193 __get_user(len, &uiov->iov_len))
1194 return -EFAULT;
1195
1196 kiov.iov_base = compat_ptr(ptr);
1197 kiov.iov_len = len;
1198
1199 ret = ptrace_regset(child, request, addr, &kiov);
1200 if (!ret)
1201 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1202 break;
1203 }
1204 #endif
1205
1206 default:
1207 ret = ptrace_request(child, request, addr, data);
1208 }
1209
1210 return ret;
1211 }
1212
1213 asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
1214 compat_long_t addr, compat_long_t data)
1215 {
1216 struct task_struct *child;
1217 long ret;
1218
1219 if (request == PTRACE_TRACEME) {
1220 ret = ptrace_traceme();
1221 goto out;
1222 }
1223
1224 child = ptrace_get_task_struct(pid);
1225 if (IS_ERR(child)) {
1226 ret = PTR_ERR(child);
1227 goto out;
1228 }
1229
1230 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1231 ret = ptrace_attach(child, request, addr, data);
1232 /*
1233 * Some architectures need to do book-keeping after
1234 * a ptrace attach.
1235 */
1236 if (!ret)
1237 arch_ptrace_attach(child);
1238 goto out_put_task_struct;
1239 }
1240
1241 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1242 request == PTRACE_INTERRUPT);
1243 if (!ret) {
1244 ret = compat_arch_ptrace(child, request, addr, data);
1245 if (ret || request != PTRACE_DETACH)
1246 ptrace_unfreeze_traced(child);
1247 }
1248
1249 out_put_task_struct:
1250 put_task_struct(child);
1251 out:
1252 return ret;
1253 }
1254 #endif /* CONFIG_COMPAT */
1255
1256 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1257 int ptrace_get_breakpoints(struct task_struct *tsk)
1258 {
1259 if (atomic_inc_not_zero(&tsk->ptrace_bp_refcnt))
1260 return 0;
1261
1262 return -1;
1263 }
1264
1265 void ptrace_put_breakpoints(struct task_struct *tsk)
1266 {
1267 if (atomic_dec_and_test(&tsk->ptrace_bp_refcnt))
1268 flush_ptrace_hw_breakpoint(tsk);
1269 }
1270 #endif /* CONFIG_HAVE_HW_BREAKPOINT */