FROMLIST: binder: fix an ret value override
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/timer.h>
50 #include <linux/freezer.h>
51
52 #include <asm/uaccess.h>
53
54 #include <trace/events/timer.h>
55
56 /*
57 * The timer bases:
58 *
59 * There are more clockids then hrtimer bases. Thus, we index
60 * into the timer bases by the hrtimer_base_type enum. When trying
61 * to reach a base using a clockid, hrtimer_clockid_to_base()
62 * is used to convert from clockid to the proper hrtimer_base_type.
63 */
64 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
65 {
66
67 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
68 .clock_base =
69 {
70 {
71 .index = HRTIMER_BASE_MONOTONIC,
72 .clockid = CLOCK_MONOTONIC,
73 .get_time = &ktime_get,
74 .resolution = KTIME_LOW_RES,
75 },
76 {
77 .index = HRTIMER_BASE_REALTIME,
78 .clockid = CLOCK_REALTIME,
79 .get_time = &ktime_get_real,
80 .resolution = KTIME_LOW_RES,
81 },
82 {
83 .index = HRTIMER_BASE_BOOTTIME,
84 .clockid = CLOCK_BOOTTIME,
85 .get_time = &ktime_get_boottime,
86 .resolution = KTIME_LOW_RES,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 .resolution = KTIME_LOW_RES,
93 },
94 }
95 };
96
97 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
98 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
99 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
100 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
101 [CLOCK_TAI] = HRTIMER_BASE_TAI,
102 };
103
104 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
105 {
106 return hrtimer_clock_to_base_table[clock_id];
107 }
108
109
110 /*
111 * Get the coarse grained time at the softirq based on xtime and
112 * wall_to_monotonic.
113 */
114 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
115 {
116 ktime_t xtim, mono, boot;
117 struct timespec xts, tom, slp;
118 s32 tai_offset;
119
120 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
121 tai_offset = timekeeping_get_tai_offset();
122
123 xtim = timespec_to_ktime(xts);
124 mono = ktime_add(xtim, timespec_to_ktime(tom));
125 boot = ktime_add(mono, timespec_to_ktime(slp));
126 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
127 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
128 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
129 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
130 ktime_add(xtim, ktime_set(tai_offset, 0));
131 }
132
133 /*
134 * Functions and macros which are different for UP/SMP systems are kept in a
135 * single place
136 */
137 #ifdef CONFIG_SMP
138
139 /*
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
143 *
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
146 *
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
149 * locked.
150 */
151 static
152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 unsigned long *flags)
154 {
155 struct hrtimer_clock_base *base;
156
157 for (;;) {
158 base = timer->base;
159 if (likely(base != NULL)) {
160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 if (likely(base == timer->base))
162 return base;
163 /* The timer has migrated to another CPU: */
164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 }
166 cpu_relax();
167 }
168 }
169
170
171 /*
172 * Get the preferred target CPU for NOHZ
173 */
174 static int hrtimer_get_target(int this_cpu, int pinned)
175 {
176 #ifdef CONFIG_NO_HZ_COMMON
177 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
178 return get_nohz_timer_target();
179 #endif
180 return this_cpu;
181 }
182
183 /*
184 * With HIGHRES=y we do not migrate the timer when it is expiring
185 * before the next event on the target cpu because we cannot reprogram
186 * the target cpu hardware and we would cause it to fire late.
187 *
188 * Called with cpu_base->lock of target cpu held.
189 */
190 static int
191 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
192 {
193 #ifdef CONFIG_HIGH_RES_TIMERS
194 ktime_t expires;
195
196 if (!new_base->cpu_base->hres_active)
197 return 0;
198
199 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
200 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
201 #else
202 return 0;
203 #endif
204 }
205
206 /*
207 * Switch the timer base to the current CPU when possible.
208 */
209 static inline struct hrtimer_clock_base *
210 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
211 int pinned)
212 {
213 struct hrtimer_clock_base *new_base;
214 struct hrtimer_cpu_base *new_cpu_base;
215 int this_cpu = smp_processor_id();
216 int cpu = hrtimer_get_target(this_cpu, pinned);
217 int basenum = base->index;
218
219 again:
220 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
221 new_base = &new_cpu_base->clock_base[basenum];
222
223 if (base != new_base) {
224 /*
225 * We are trying to move timer to new_base.
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
232 */
233 if (unlikely(hrtimer_callback_running(timer)))
234 return base;
235
236 /* See the comment in lock_timer_base() */
237 timer->base = NULL;
238 raw_spin_unlock(&base->cpu_base->lock);
239 raw_spin_lock(&new_base->cpu_base->lock);
240
241 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
242 cpu = this_cpu;
243 raw_spin_unlock(&new_base->cpu_base->lock);
244 raw_spin_lock(&base->cpu_base->lock);
245 timer->base = base;
246 goto again;
247 }
248 timer->base = new_base;
249 } else {
250 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
251 cpu = this_cpu;
252 goto again;
253 }
254 }
255 return new_base;
256 }
257
258 #else /* CONFIG_SMP */
259
260 static inline struct hrtimer_clock_base *
261 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
262 {
263 struct hrtimer_clock_base *base = timer->base;
264
265 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
266
267 return base;
268 }
269
270 # define switch_hrtimer_base(t, b, p) (b)
271
272 #endif /* !CONFIG_SMP */
273
274 /*
275 * Functions for the union type storage format of ktime_t which are
276 * too large for inlining:
277 */
278 #if BITS_PER_LONG < 64
279 # ifndef CONFIG_KTIME_SCALAR
280 /**
281 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
282 * @kt: addend
283 * @nsec: the scalar nsec value to add
284 *
285 * Returns the sum of kt and nsec in ktime_t format
286 */
287 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
288 {
289 ktime_t tmp;
290
291 if (likely(nsec < NSEC_PER_SEC)) {
292 tmp.tv64 = nsec;
293 } else {
294 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
295
296 /* Make sure nsec fits into long */
297 if (unlikely(nsec > KTIME_SEC_MAX))
298 return (ktime_t){ .tv64 = KTIME_MAX };
299
300 tmp = ktime_set((long)nsec, rem);
301 }
302
303 return ktime_add(kt, tmp);
304 }
305
306 EXPORT_SYMBOL_GPL(ktime_add_ns);
307
308 /**
309 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
310 * @kt: minuend
311 * @nsec: the scalar nsec value to subtract
312 *
313 * Returns the subtraction of @nsec from @kt in ktime_t format
314 */
315 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
316 {
317 ktime_t tmp;
318
319 if (likely(nsec < NSEC_PER_SEC)) {
320 tmp.tv64 = nsec;
321 } else {
322 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
323
324 tmp = ktime_set((long)nsec, rem);
325 }
326
327 return ktime_sub(kt, tmp);
328 }
329
330 EXPORT_SYMBOL_GPL(ktime_sub_ns);
331 # endif /* !CONFIG_KTIME_SCALAR */
332
333 /*
334 * Divide a ktime value by a nanosecond value
335 */
336 u64 ktime_divns(const ktime_t kt, s64 div)
337 {
338 u64 dclc;
339 int sft = 0;
340
341 dclc = ktime_to_ns(kt);
342 /* Make sure the divisor is less than 2^32: */
343 while (div >> 32) {
344 sft++;
345 div >>= 1;
346 }
347 dclc >>= sft;
348 do_div(dclc, (unsigned long) div);
349
350 return dclc;
351 }
352 #endif /* BITS_PER_LONG >= 64 */
353
354 /*
355 * Add two ktime values and do a safety check for overflow:
356 */
357 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
358 {
359 ktime_t res = ktime_add(lhs, rhs);
360
361 /*
362 * We use KTIME_SEC_MAX here, the maximum timeout which we can
363 * return to user space in a timespec:
364 */
365 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
366 res = ktime_set(KTIME_SEC_MAX, 0);
367
368 return res;
369 }
370
371 EXPORT_SYMBOL_GPL(ktime_add_safe);
372
373 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
374
375 static struct debug_obj_descr hrtimer_debug_descr;
376
377 static void *hrtimer_debug_hint(void *addr)
378 {
379 return ((struct hrtimer *) addr)->function;
380 }
381
382 /*
383 * fixup_init is called when:
384 * - an active object is initialized
385 */
386 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
387 {
388 struct hrtimer *timer = addr;
389
390 switch (state) {
391 case ODEBUG_STATE_ACTIVE:
392 hrtimer_cancel(timer);
393 debug_object_init(timer, &hrtimer_debug_descr);
394 return 1;
395 default:
396 return 0;
397 }
398 }
399
400 /*
401 * fixup_activate is called when:
402 * - an active object is activated
403 * - an unknown object is activated (might be a statically initialized object)
404 */
405 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
406 {
407 switch (state) {
408
409 case ODEBUG_STATE_NOTAVAILABLE:
410 WARN_ON_ONCE(1);
411 return 0;
412
413 case ODEBUG_STATE_ACTIVE:
414 WARN_ON(1);
415
416 default:
417 return 0;
418 }
419 }
420
421 /*
422 * fixup_free is called when:
423 * - an active object is freed
424 */
425 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
426 {
427 struct hrtimer *timer = addr;
428
429 switch (state) {
430 case ODEBUG_STATE_ACTIVE:
431 hrtimer_cancel(timer);
432 debug_object_free(timer, &hrtimer_debug_descr);
433 return 1;
434 default:
435 return 0;
436 }
437 }
438
439 static struct debug_obj_descr hrtimer_debug_descr = {
440 .name = "hrtimer",
441 .debug_hint = hrtimer_debug_hint,
442 .fixup_init = hrtimer_fixup_init,
443 .fixup_activate = hrtimer_fixup_activate,
444 .fixup_free = hrtimer_fixup_free,
445 };
446
447 static inline void debug_hrtimer_init(struct hrtimer *timer)
448 {
449 debug_object_init(timer, &hrtimer_debug_descr);
450 }
451
452 static inline void debug_hrtimer_activate(struct hrtimer *timer)
453 {
454 debug_object_activate(timer, &hrtimer_debug_descr);
455 }
456
457 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
458 {
459 debug_object_deactivate(timer, &hrtimer_debug_descr);
460 }
461
462 static inline void debug_hrtimer_free(struct hrtimer *timer)
463 {
464 debug_object_free(timer, &hrtimer_debug_descr);
465 }
466
467 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
468 enum hrtimer_mode mode);
469
470 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
471 enum hrtimer_mode mode)
472 {
473 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
474 __hrtimer_init(timer, clock_id, mode);
475 }
476 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
477
478 void destroy_hrtimer_on_stack(struct hrtimer *timer)
479 {
480 debug_object_free(timer, &hrtimer_debug_descr);
481 }
482
483 #else
484 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
485 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
486 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
487 #endif
488
489 static inline void
490 debug_init(struct hrtimer *timer, clockid_t clockid,
491 enum hrtimer_mode mode)
492 {
493 debug_hrtimer_init(timer);
494 trace_hrtimer_init(timer, clockid, mode);
495 }
496
497 static inline void debug_activate(struct hrtimer *timer)
498 {
499 debug_hrtimer_activate(timer);
500 trace_hrtimer_start(timer);
501 }
502
503 static inline void debug_deactivate(struct hrtimer *timer)
504 {
505 debug_hrtimer_deactivate(timer);
506 trace_hrtimer_cancel(timer);
507 }
508
509 /* High resolution timer related functions */
510 #ifdef CONFIG_HIGH_RES_TIMERS
511
512 /*
513 * High resolution timer enabled ?
514 */
515 static int hrtimer_hres_enabled __read_mostly = 1;
516
517 /*
518 * Enable / Disable high resolution mode
519 */
520 static int __init setup_hrtimer_hres(char *str)
521 {
522 if (!strcmp(str, "off"))
523 hrtimer_hres_enabled = 0;
524 else if (!strcmp(str, "on"))
525 hrtimer_hres_enabled = 1;
526 else
527 return 0;
528 return 1;
529 }
530
531 __setup("highres=", setup_hrtimer_hres);
532
533 /*
534 * hrtimer_high_res_enabled - query, if the highres mode is enabled
535 */
536 static inline int hrtimer_is_hres_enabled(void)
537 {
538 return hrtimer_hres_enabled;
539 }
540
541 /*
542 * Is the high resolution mode active ?
543 */
544 static inline int hrtimer_hres_active(void)
545 {
546 return __this_cpu_read(hrtimer_bases.hres_active);
547 }
548
549 /*
550 * Reprogram the event source with checking both queues for the
551 * next event
552 * Called with interrupts disabled and base->lock held
553 */
554 static void
555 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
556 {
557 int i;
558 struct hrtimer_clock_base *base = cpu_base->clock_base;
559 ktime_t expires, expires_next;
560
561 expires_next.tv64 = KTIME_MAX;
562
563 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
564 struct hrtimer *timer;
565 struct timerqueue_node *next;
566
567 next = timerqueue_getnext(&base->active);
568 if (!next)
569 continue;
570 timer = container_of(next, struct hrtimer, node);
571
572 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
573 /*
574 * clock_was_set() has changed base->offset so the
575 * result might be negative. Fix it up to prevent a
576 * false positive in clockevents_program_event()
577 */
578 if (expires.tv64 < 0)
579 expires.tv64 = 0;
580 if (expires.tv64 < expires_next.tv64)
581 expires_next = expires;
582 }
583
584 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
585 return;
586
587 cpu_base->expires_next.tv64 = expires_next.tv64;
588
589 /*
590 * If a hang was detected in the last timer interrupt then we
591 * leave the hang delay active in the hardware. We want the
592 * system to make progress. That also prevents the following
593 * scenario:
594 * T1 expires 50ms from now
595 * T2 expires 5s from now
596 *
597 * T1 is removed, so this code is called and would reprogram
598 * the hardware to 5s from now. Any hrtimer_start after that
599 * will not reprogram the hardware due to hang_detected being
600 * set. So we'd effectivly block all timers until the T2 event
601 * fires.
602 */
603 if (cpu_base->hang_detected)
604 return;
605
606 if (cpu_base->expires_next.tv64 != KTIME_MAX)
607 tick_program_event(cpu_base->expires_next, 1);
608 }
609
610 /*
611 * Shared reprogramming for clock_realtime and clock_monotonic
612 *
613 * When a timer is enqueued and expires earlier than the already enqueued
614 * timers, we have to check, whether it expires earlier than the timer for
615 * which the clock event device was armed.
616 *
617 * Called with interrupts disabled and base->cpu_base.lock held
618 */
619 static int hrtimer_reprogram(struct hrtimer *timer,
620 struct hrtimer_clock_base *base)
621 {
622 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
623 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
624 int res;
625
626 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
627
628 /*
629 * When the callback is running, we do not reprogram the clock event
630 * device. The timer callback is either running on a different CPU or
631 * the callback is executed in the hrtimer_interrupt context. The
632 * reprogramming is handled either by the softirq, which called the
633 * callback or at the end of the hrtimer_interrupt.
634 */
635 if (hrtimer_callback_running(timer))
636 return 0;
637
638 /*
639 * CLOCK_REALTIME timer might be requested with an absolute
640 * expiry time which is less than base->offset. Nothing wrong
641 * about that, just avoid to call into the tick code, which
642 * has now objections against negative expiry values.
643 */
644 if (expires.tv64 < 0)
645 return -ETIME;
646
647 if (expires.tv64 >= cpu_base->expires_next.tv64)
648 return 0;
649
650 /*
651 * If a hang was detected in the last timer interrupt then we
652 * do not schedule a timer which is earlier than the expiry
653 * which we enforced in the hang detection. We want the system
654 * to make progress.
655 */
656 if (cpu_base->hang_detected)
657 return 0;
658
659 /*
660 * Clockevents returns -ETIME, when the event was in the past.
661 */
662 res = tick_program_event(expires, 0);
663 if (!IS_ERR_VALUE(res))
664 cpu_base->expires_next = expires;
665 return res;
666 }
667
668 /*
669 * Initialize the high resolution related parts of cpu_base
670 */
671 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
672 {
673 base->expires_next.tv64 = KTIME_MAX;
674 base->hres_active = 0;
675 }
676
677 /*
678 * When High resolution timers are active, try to reprogram. Note, that in case
679 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
680 * check happens. The timer gets enqueued into the rbtree. The reprogramming
681 * and expiry check is done in the hrtimer_interrupt or in the softirq.
682 */
683 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
684 struct hrtimer_clock_base *base)
685 {
686 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
687 }
688
689 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
690 {
691 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
692 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
693 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
694
695 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
696 }
697
698 /*
699 * Retrigger next event is called after clock was set
700 *
701 * Called with interrupts disabled via on_each_cpu()
702 */
703 static void retrigger_next_event(void *arg)
704 {
705 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
706
707 if (!hrtimer_hres_active())
708 return;
709
710 raw_spin_lock(&base->lock);
711 hrtimer_update_base(base);
712 hrtimer_force_reprogram(base, 0);
713 raw_spin_unlock(&base->lock);
714 }
715
716 /*
717 * Switch to high resolution mode
718 */
719 static int hrtimer_switch_to_hres(void)
720 {
721 int i, cpu = smp_processor_id();
722 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
723 unsigned long flags;
724
725 if (base->hres_active)
726 return 1;
727
728 local_irq_save(flags);
729
730 if (tick_init_highres()) {
731 local_irq_restore(flags);
732 printk(KERN_WARNING "Could not switch to high resolution "
733 "mode on CPU %d\n", cpu);
734 return 0;
735 }
736 base->hres_active = 1;
737 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
738 base->clock_base[i].resolution = KTIME_HIGH_RES;
739
740 tick_setup_sched_timer();
741 /* "Retrigger" the interrupt to get things going */
742 retrigger_next_event(NULL);
743 local_irq_restore(flags);
744 return 1;
745 }
746
747 static void clock_was_set_work(struct work_struct *work)
748 {
749 clock_was_set();
750 }
751
752 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
753
754 /*
755 * Called from timekeeping and resume code to reprogramm the hrtimer
756 * interrupt device on all cpus.
757 */
758 void clock_was_set_delayed(void)
759 {
760 schedule_work(&hrtimer_work);
761 }
762
763 #else
764
765 static inline int hrtimer_hres_active(void) { return 0; }
766 static inline int hrtimer_is_hres_enabled(void) { return 0; }
767 static inline int hrtimer_switch_to_hres(void) { return 0; }
768 static inline void
769 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
770 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
771 struct hrtimer_clock_base *base)
772 {
773 return 0;
774 }
775 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
776 static inline void retrigger_next_event(void *arg) { }
777
778 #endif /* CONFIG_HIGH_RES_TIMERS */
779
780 /*
781 * Clock realtime was set
782 *
783 * Change the offset of the realtime clock vs. the monotonic
784 * clock.
785 *
786 * We might have to reprogram the high resolution timer interrupt. On
787 * SMP we call the architecture specific code to retrigger _all_ high
788 * resolution timer interrupts. On UP we just disable interrupts and
789 * call the high resolution interrupt code.
790 */
791 void clock_was_set(void)
792 {
793 #ifdef CONFIG_HIGH_RES_TIMERS
794 /* Retrigger the CPU local events everywhere */
795 on_each_cpu(retrigger_next_event, NULL, 1);
796 #endif
797 timerfd_clock_was_set();
798 }
799
800 /*
801 * During resume we might have to reprogram the high resolution timer
802 * interrupt (on the local CPU):
803 */
804 void hrtimers_resume(void)
805 {
806 WARN_ONCE(!irqs_disabled(),
807 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
808
809 /* Retrigger on the local CPU */
810 retrigger_next_event(NULL);
811 /* And schedule a retrigger for all others */
812 clock_was_set_delayed();
813 }
814
815 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
816 {
817 #ifdef CONFIG_TIMER_STATS
818 if (timer->start_site)
819 return;
820 timer->start_site = __builtin_return_address(0);
821 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
822 timer->start_pid = current->pid;
823 #endif
824 }
825
826 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
827 {
828 #ifdef CONFIG_TIMER_STATS
829 timer->start_site = NULL;
830 #endif
831 }
832
833 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
834 {
835 #ifdef CONFIG_TIMER_STATS
836 if (likely(!timer_stats_active))
837 return;
838 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
839 timer->function, timer->start_comm, 0);
840 #endif
841 }
842
843 /*
844 * Counterpart to lock_hrtimer_base above:
845 */
846 static inline
847 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
848 {
849 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
850 }
851
852 /**
853 * hrtimer_forward - forward the timer expiry
854 * @timer: hrtimer to forward
855 * @now: forward past this time
856 * @interval: the interval to forward
857 *
858 * Forward the timer expiry so it will expire in the future.
859 * Returns the number of overruns.
860 */
861 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
862 {
863 u64 orun = 1;
864 ktime_t delta;
865
866 delta = ktime_sub(now, hrtimer_get_expires(timer));
867
868 if (delta.tv64 < 0)
869 return 0;
870
871 if (interval.tv64 < timer->base->resolution.tv64)
872 interval.tv64 = timer->base->resolution.tv64;
873
874 if (unlikely(delta.tv64 >= interval.tv64)) {
875 s64 incr = ktime_to_ns(interval);
876
877 orun = ktime_divns(delta, incr);
878 hrtimer_add_expires_ns(timer, incr * orun);
879 if (hrtimer_get_expires_tv64(timer) > now.tv64)
880 return orun;
881 /*
882 * This (and the ktime_add() below) is the
883 * correction for exact:
884 */
885 orun++;
886 }
887 hrtimer_add_expires(timer, interval);
888
889 return orun;
890 }
891 EXPORT_SYMBOL_GPL(hrtimer_forward);
892
893 /*
894 * enqueue_hrtimer - internal function to (re)start a timer
895 *
896 * The timer is inserted in expiry order. Insertion into the
897 * red black tree is O(log(n)). Must hold the base lock.
898 *
899 * Returns 1 when the new timer is the leftmost timer in the tree.
900 */
901 static int enqueue_hrtimer(struct hrtimer *timer,
902 struct hrtimer_clock_base *base)
903 {
904 debug_activate(timer);
905
906 timerqueue_add(&base->active, &timer->node);
907 base->cpu_base->active_bases |= 1 << base->index;
908
909 /*
910 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
911 * state of a possibly running callback.
912 */
913 timer->state |= HRTIMER_STATE_ENQUEUED;
914
915 return (&timer->node == base->active.next);
916 }
917
918 /*
919 * __remove_hrtimer - internal function to remove a timer
920 *
921 * Caller must hold the base lock.
922 *
923 * High resolution timer mode reprograms the clock event device when the
924 * timer is the one which expires next. The caller can disable this by setting
925 * reprogram to zero. This is useful, when the context does a reprogramming
926 * anyway (e.g. timer interrupt)
927 */
928 static void __remove_hrtimer(struct hrtimer *timer,
929 struct hrtimer_clock_base *base,
930 unsigned long newstate, int reprogram)
931 {
932 struct timerqueue_node *next_timer;
933 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
934 goto out;
935
936 next_timer = timerqueue_getnext(&base->active);
937 timerqueue_del(&base->active, &timer->node);
938 if (&timer->node == next_timer) {
939 #ifdef CONFIG_HIGH_RES_TIMERS
940 /* Reprogram the clock event device. if enabled */
941 if (reprogram && hrtimer_hres_active()) {
942 ktime_t expires;
943
944 expires = ktime_sub(hrtimer_get_expires(timer),
945 base->offset);
946 if (base->cpu_base->expires_next.tv64 == expires.tv64)
947 hrtimer_force_reprogram(base->cpu_base, 1);
948 }
949 #endif
950 }
951 if (!timerqueue_getnext(&base->active))
952 base->cpu_base->active_bases &= ~(1 << base->index);
953 out:
954 timer->state = newstate;
955 }
956
957 /*
958 * remove hrtimer, called with base lock held
959 */
960 static inline int
961 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
962 {
963 if (hrtimer_is_queued(timer)) {
964 unsigned long state;
965 int reprogram;
966
967 /*
968 * Remove the timer and force reprogramming when high
969 * resolution mode is active and the timer is on the current
970 * CPU. If we remove a timer on another CPU, reprogramming is
971 * skipped. The interrupt event on this CPU is fired and
972 * reprogramming happens in the interrupt handler. This is a
973 * rare case and less expensive than a smp call.
974 */
975 debug_deactivate(timer);
976 timer_stats_hrtimer_clear_start_info(timer);
977 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
978 /*
979 * We must preserve the CALLBACK state flag here,
980 * otherwise we could move the timer base in
981 * switch_hrtimer_base.
982 */
983 state = timer->state & HRTIMER_STATE_CALLBACK;
984 __remove_hrtimer(timer, base, state, reprogram);
985 return 1;
986 }
987 return 0;
988 }
989
990 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
991 unsigned long delta_ns, const enum hrtimer_mode mode,
992 int wakeup)
993 {
994 struct hrtimer_clock_base *base, *new_base;
995 unsigned long flags;
996 int ret, leftmost;
997
998 base = lock_hrtimer_base(timer, &flags);
999
1000 /* Remove an active timer from the queue: */
1001 ret = remove_hrtimer(timer, base);
1002
1003 if (mode & HRTIMER_MODE_REL) {
1004 tim = ktime_add_safe(tim, base->get_time());
1005 /*
1006 * CONFIG_TIME_LOW_RES is a temporary way for architectures
1007 * to signal that they simply return xtime in
1008 * do_gettimeoffset(). In this case we want to round up by
1009 * resolution when starting a relative timer, to avoid short
1010 * timeouts. This will go away with the GTOD framework.
1011 */
1012 #ifdef CONFIG_TIME_LOW_RES
1013 tim = ktime_add_safe(tim, base->resolution);
1014 #endif
1015 }
1016
1017 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1018
1019 /* Switch the timer base, if necessary: */
1020 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1021
1022 timer_stats_hrtimer_set_start_info(timer);
1023
1024 leftmost = enqueue_hrtimer(timer, new_base);
1025
1026 /*
1027 * Only allow reprogramming if the new base is on this CPU.
1028 * (it might still be on another CPU if the timer was pending)
1029 *
1030 * XXX send_remote_softirq() ?
1031 */
1032 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1033 && hrtimer_enqueue_reprogram(timer, new_base)) {
1034 if (wakeup) {
1035 /*
1036 * We need to drop cpu_base->lock to avoid a
1037 * lock ordering issue vs. rq->lock.
1038 */
1039 raw_spin_unlock(&new_base->cpu_base->lock);
1040 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1041 local_irq_restore(flags);
1042 return ret;
1043 } else {
1044 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1045 }
1046 }
1047
1048 unlock_hrtimer_base(timer, &flags);
1049
1050 return ret;
1051 }
1052
1053 /**
1054 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1055 * @timer: the timer to be added
1056 * @tim: expiry time
1057 * @delta_ns: "slack" range for the timer
1058 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1059 * relative (HRTIMER_MODE_REL)
1060 *
1061 * Returns:
1062 * 0 on success
1063 * 1 when the timer was active
1064 */
1065 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1066 unsigned long delta_ns, const enum hrtimer_mode mode)
1067 {
1068 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1069 }
1070 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1071
1072 /**
1073 * hrtimer_start - (re)start an hrtimer on the current CPU
1074 * @timer: the timer to be added
1075 * @tim: expiry time
1076 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1077 * relative (HRTIMER_MODE_REL)
1078 *
1079 * Returns:
1080 * 0 on success
1081 * 1 when the timer was active
1082 */
1083 int
1084 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1085 {
1086 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1087 }
1088 EXPORT_SYMBOL_GPL(hrtimer_start);
1089
1090
1091 /**
1092 * hrtimer_try_to_cancel - try to deactivate a timer
1093 * @timer: hrtimer to stop
1094 *
1095 * Returns:
1096 * 0 when the timer was not active
1097 * 1 when the timer was active
1098 * -1 when the timer is currently excuting the callback function and
1099 * cannot be stopped
1100 */
1101 int hrtimer_try_to_cancel(struct hrtimer *timer)
1102 {
1103 struct hrtimer_clock_base *base;
1104 unsigned long flags;
1105 int ret = -1;
1106
1107 base = lock_hrtimer_base(timer, &flags);
1108
1109 if (!hrtimer_callback_running(timer))
1110 ret = remove_hrtimer(timer, base);
1111
1112 unlock_hrtimer_base(timer, &flags);
1113
1114 return ret;
1115
1116 }
1117 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1118
1119 /**
1120 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1121 * @timer: the timer to be cancelled
1122 *
1123 * Returns:
1124 * 0 when the timer was not active
1125 * 1 when the timer was active
1126 */
1127 int hrtimer_cancel(struct hrtimer *timer)
1128 {
1129 for (;;) {
1130 int ret = hrtimer_try_to_cancel(timer);
1131
1132 if (ret >= 0)
1133 return ret;
1134 cpu_relax();
1135 }
1136 }
1137 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1138
1139 /**
1140 * hrtimer_get_remaining - get remaining time for the timer
1141 * @timer: the timer to read
1142 */
1143 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1144 {
1145 unsigned long flags;
1146 ktime_t rem;
1147
1148 lock_hrtimer_base(timer, &flags);
1149 rem = hrtimer_expires_remaining(timer);
1150 unlock_hrtimer_base(timer, &flags);
1151
1152 return rem;
1153 }
1154 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1155
1156 #ifdef CONFIG_NO_HZ_COMMON
1157 /**
1158 * hrtimer_get_next_event - get the time until next expiry event
1159 *
1160 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1161 * is pending.
1162 */
1163 ktime_t hrtimer_get_next_event(void)
1164 {
1165 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1166 struct hrtimer_clock_base *base = cpu_base->clock_base;
1167 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1168 unsigned long flags;
1169 int i;
1170
1171 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1172
1173 if (!hrtimer_hres_active()) {
1174 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1175 struct hrtimer *timer;
1176 struct timerqueue_node *next;
1177
1178 next = timerqueue_getnext(&base->active);
1179 if (!next)
1180 continue;
1181
1182 timer = container_of(next, struct hrtimer, node);
1183 delta.tv64 = hrtimer_get_expires_tv64(timer);
1184 delta = ktime_sub(delta, base->get_time());
1185 if (delta.tv64 < mindelta.tv64)
1186 mindelta.tv64 = delta.tv64;
1187 }
1188 }
1189
1190 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1191
1192 if (mindelta.tv64 < 0)
1193 mindelta.tv64 = 0;
1194 return mindelta;
1195 }
1196 #endif
1197
1198 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1199 enum hrtimer_mode mode)
1200 {
1201 struct hrtimer_cpu_base *cpu_base;
1202 int base;
1203
1204 memset(timer, 0, sizeof(struct hrtimer));
1205
1206 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1207
1208 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1209 clock_id = CLOCK_MONOTONIC;
1210
1211 base = hrtimer_clockid_to_base(clock_id);
1212 timer->base = &cpu_base->clock_base[base];
1213 timerqueue_init(&timer->node);
1214
1215 #ifdef CONFIG_TIMER_STATS
1216 timer->start_site = NULL;
1217 timer->start_pid = -1;
1218 memset(timer->start_comm, 0, TASK_COMM_LEN);
1219 #endif
1220 }
1221
1222 /**
1223 * hrtimer_init - initialize a timer to the given clock
1224 * @timer: the timer to be initialized
1225 * @clock_id: the clock to be used
1226 * @mode: timer mode abs/rel
1227 */
1228 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1229 enum hrtimer_mode mode)
1230 {
1231 debug_init(timer, clock_id, mode);
1232 __hrtimer_init(timer, clock_id, mode);
1233 }
1234 EXPORT_SYMBOL_GPL(hrtimer_init);
1235
1236 /**
1237 * hrtimer_get_res - get the timer resolution for a clock
1238 * @which_clock: which clock to query
1239 * @tp: pointer to timespec variable to store the resolution
1240 *
1241 * Store the resolution of the clock selected by @which_clock in the
1242 * variable pointed to by @tp.
1243 */
1244 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1245 {
1246 struct hrtimer_cpu_base *cpu_base;
1247 int base = hrtimer_clockid_to_base(which_clock);
1248
1249 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1250 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1251
1252 return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1255
1256 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1257 {
1258 struct hrtimer_clock_base *base = timer->base;
1259 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1260 enum hrtimer_restart (*fn)(struct hrtimer *);
1261 int restart;
1262
1263 WARN_ON(!irqs_disabled());
1264
1265 debug_deactivate(timer);
1266 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1267 timer_stats_account_hrtimer(timer);
1268 fn = timer->function;
1269
1270 /*
1271 * Because we run timers from hardirq context, there is no chance
1272 * they get migrated to another cpu, therefore its safe to unlock
1273 * the timer base.
1274 */
1275 raw_spin_unlock(&cpu_base->lock);
1276 trace_hrtimer_expire_entry(timer, now);
1277 exynos_ss_hrtimer(timer, &now->tv64, fn, ESS_FLAG_IN);
1278 restart = fn(timer);
1279 exynos_ss_hrtimer(timer, &now->tv64, fn, ESS_FLAG_OUT);
1280 trace_hrtimer_expire_exit(timer);
1281 raw_spin_lock(&cpu_base->lock);
1282
1283 /*
1284 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1285 * we do not reprogramm the event hardware. Happens either in
1286 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1287 */
1288 if (restart != HRTIMER_NORESTART) {
1289 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1290 enqueue_hrtimer(timer, base);
1291 }
1292
1293 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1294
1295 timer->state &= ~HRTIMER_STATE_CALLBACK;
1296 }
1297
1298 #ifdef CONFIG_HIGH_RES_TIMERS
1299
1300 /*
1301 * High resolution timer interrupt
1302 * Called with interrupts disabled
1303 */
1304 void hrtimer_interrupt(struct clock_event_device *dev)
1305 {
1306 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1307 ktime_t expires_next, now, entry_time, delta;
1308 int i, retries = 0;
1309
1310 BUG_ON(!cpu_base->hres_active);
1311 cpu_base->nr_events++;
1312 dev->next_event.tv64 = KTIME_MAX;
1313
1314 raw_spin_lock(&cpu_base->lock);
1315 entry_time = now = hrtimer_update_base(cpu_base);
1316 retry:
1317 expires_next.tv64 = KTIME_MAX;
1318 /*
1319 * We set expires_next to KTIME_MAX here with cpu_base->lock
1320 * held to prevent that a timer is enqueued in our queue via
1321 * the migration code. This does not affect enqueueing of
1322 * timers which run their callback and need to be requeued on
1323 * this CPU.
1324 */
1325 cpu_base->expires_next.tv64 = KTIME_MAX;
1326
1327 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1328 struct hrtimer_clock_base *base;
1329 struct timerqueue_node *node;
1330 ktime_t basenow;
1331
1332 if (!(cpu_base->active_bases & (1 << i)))
1333 continue;
1334
1335 base = cpu_base->clock_base + i;
1336 basenow = ktime_add(now, base->offset);
1337
1338 while ((node = timerqueue_getnext(&base->active))) {
1339 struct hrtimer *timer;
1340
1341 timer = container_of(node, struct hrtimer, node);
1342
1343 /*
1344 * The immediate goal for using the softexpires is
1345 * minimizing wakeups, not running timers at the
1346 * earliest interrupt after their soft expiration.
1347 * This allows us to avoid using a Priority Search
1348 * Tree, which can answer a stabbing querry for
1349 * overlapping intervals and instead use the simple
1350 * BST we already have.
1351 * We don't add extra wakeups by delaying timers that
1352 * are right-of a not yet expired timer, because that
1353 * timer will have to trigger a wakeup anyway.
1354 */
1355
1356 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1357 ktime_t expires;
1358
1359 expires = ktime_sub(hrtimer_get_expires(timer),
1360 base->offset);
1361 if (expires.tv64 < 0)
1362 expires.tv64 = KTIME_MAX;
1363 if (expires.tv64 < expires_next.tv64)
1364 expires_next = expires;
1365 break;
1366 }
1367
1368 __run_hrtimer(timer, &basenow);
1369 }
1370 }
1371
1372 /*
1373 * Store the new expiry value so the migration code can verify
1374 * against it.
1375 */
1376 cpu_base->expires_next = expires_next;
1377 raw_spin_unlock(&cpu_base->lock);
1378
1379 /* Reprogramming necessary ? */
1380 if (expires_next.tv64 == KTIME_MAX ||
1381 !tick_program_event(expires_next, 0)) {
1382 cpu_base->hang_detected = 0;
1383 return;
1384 }
1385
1386 /*
1387 * The next timer was already expired due to:
1388 * - tracing
1389 * - long lasting callbacks
1390 * - being scheduled away when running in a VM
1391 *
1392 * We need to prevent that we loop forever in the hrtimer
1393 * interrupt routine. We give it 3 attempts to avoid
1394 * overreacting on some spurious event.
1395 *
1396 * Acquire base lock for updating the offsets and retrieving
1397 * the current time.
1398 */
1399 raw_spin_lock(&cpu_base->lock);
1400 now = hrtimer_update_base(cpu_base);
1401 cpu_base->nr_retries++;
1402 if (++retries < 3)
1403 goto retry;
1404 /*
1405 * Give the system a chance to do something else than looping
1406 * here. We stored the entry time, so we know exactly how long
1407 * we spent here. We schedule the next event this amount of
1408 * time away.
1409 */
1410 cpu_base->nr_hangs++;
1411 cpu_base->hang_detected = 1;
1412 raw_spin_unlock(&cpu_base->lock);
1413 delta = ktime_sub(now, entry_time);
1414 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1415 cpu_base->max_hang_time = delta;
1416 /*
1417 * Limit it to a sensible value as we enforce a longer
1418 * delay. Give the CPU at least 100ms to catch up.
1419 */
1420 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1421 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1422 else
1423 expires_next = ktime_add(now, delta);
1424 tick_program_event(expires_next, 1);
1425 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1426 ktime_to_ns(delta));
1427 }
1428
1429 /*
1430 * local version of hrtimer_peek_ahead_timers() called with interrupts
1431 * disabled.
1432 */
1433 static void __hrtimer_peek_ahead_timers(void)
1434 {
1435 struct tick_device *td;
1436
1437 if (!hrtimer_hres_active())
1438 return;
1439
1440 td = &__get_cpu_var(tick_cpu_device);
1441 if (td && td->evtdev)
1442 hrtimer_interrupt(td->evtdev);
1443 }
1444
1445 /**
1446 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1447 *
1448 * hrtimer_peek_ahead_timers will peek at the timer queue of
1449 * the current cpu and check if there are any timers for which
1450 * the soft expires time has passed. If any such timers exist,
1451 * they are run immediately and then removed from the timer queue.
1452 *
1453 */
1454 void hrtimer_peek_ahead_timers(void)
1455 {
1456 unsigned long flags;
1457
1458 local_irq_save(flags);
1459 __hrtimer_peek_ahead_timers();
1460 local_irq_restore(flags);
1461 }
1462
1463 static void run_hrtimer_softirq(struct softirq_action *h)
1464 {
1465 hrtimer_peek_ahead_timers();
1466 }
1467
1468 #else /* CONFIG_HIGH_RES_TIMERS */
1469
1470 static inline void __hrtimer_peek_ahead_timers(void) { }
1471
1472 #endif /* !CONFIG_HIGH_RES_TIMERS */
1473
1474 /*
1475 * Called from timer softirq every jiffy, expire hrtimers:
1476 *
1477 * For HRT its the fall back code to run the softirq in the timer
1478 * softirq context in case the hrtimer initialization failed or has
1479 * not been done yet.
1480 */
1481 void hrtimer_run_pending(void)
1482 {
1483 if (hrtimer_hres_active())
1484 return;
1485
1486 /*
1487 * This _is_ ugly: We have to check in the softirq context,
1488 * whether we can switch to highres and / or nohz mode. The
1489 * clocksource switch happens in the timer interrupt with
1490 * xtime_lock held. Notification from there only sets the
1491 * check bit in the tick_oneshot code, otherwise we might
1492 * deadlock vs. xtime_lock.
1493 */
1494 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1495 hrtimer_switch_to_hres();
1496 }
1497
1498 /*
1499 * Called from hardirq context every jiffy
1500 */
1501 void hrtimer_run_queues(void)
1502 {
1503 struct timerqueue_node *node;
1504 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1505 struct hrtimer_clock_base *base;
1506 int index, gettime = 1;
1507
1508 if (hrtimer_hres_active())
1509 return;
1510
1511 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1512 base = &cpu_base->clock_base[index];
1513 if (!timerqueue_getnext(&base->active))
1514 continue;
1515
1516 if (gettime) {
1517 hrtimer_get_softirq_time(cpu_base);
1518 gettime = 0;
1519 }
1520
1521 raw_spin_lock(&cpu_base->lock);
1522
1523 while ((node = timerqueue_getnext(&base->active))) {
1524 struct hrtimer *timer;
1525
1526 timer = container_of(node, struct hrtimer, node);
1527 if (base->softirq_time.tv64 <=
1528 hrtimer_get_expires_tv64(timer))
1529 break;
1530
1531 __run_hrtimer(timer, &base->softirq_time);
1532 }
1533 raw_spin_unlock(&cpu_base->lock);
1534 }
1535 }
1536
1537 /*
1538 * Sleep related functions:
1539 */
1540 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1541 {
1542 struct hrtimer_sleeper *t =
1543 container_of(timer, struct hrtimer_sleeper, timer);
1544 struct task_struct *task = t->task;
1545
1546 t->task = NULL;
1547 if (task)
1548 wake_up_process(task);
1549
1550 return HRTIMER_NORESTART;
1551 }
1552
1553 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1554 {
1555 sl->timer.function = hrtimer_wakeup;
1556 sl->task = task;
1557 }
1558 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1559
1560 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1561 {
1562 hrtimer_init_sleeper(t, current);
1563
1564 do {
1565 set_current_state(TASK_INTERRUPTIBLE);
1566 hrtimer_start_expires(&t->timer, mode);
1567 if (!hrtimer_active(&t->timer))
1568 t->task = NULL;
1569
1570 if (likely(t->task))
1571 freezable_schedule();
1572
1573 hrtimer_cancel(&t->timer);
1574 mode = HRTIMER_MODE_ABS;
1575
1576 } while (t->task && !signal_pending(current));
1577
1578 __set_current_state(TASK_RUNNING);
1579
1580 return t->task == NULL;
1581 }
1582
1583 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1584 {
1585 struct timespec rmt;
1586 ktime_t rem;
1587
1588 rem = hrtimer_expires_remaining(timer);
1589 if (rem.tv64 <= 0)
1590 return 0;
1591 rmt = ktime_to_timespec(rem);
1592
1593 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1594 return -EFAULT;
1595
1596 return 1;
1597 }
1598
1599 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1600 {
1601 struct hrtimer_sleeper t;
1602 struct timespec __user *rmtp;
1603 int ret = 0;
1604
1605 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1606 HRTIMER_MODE_ABS);
1607 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1608
1609 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1610 goto out;
1611
1612 rmtp = restart->nanosleep.rmtp;
1613 if (rmtp) {
1614 ret = update_rmtp(&t.timer, rmtp);
1615 if (ret <= 0)
1616 goto out;
1617 }
1618
1619 /* The other values in restart are already filled in */
1620 ret = -ERESTART_RESTARTBLOCK;
1621 out:
1622 destroy_hrtimer_on_stack(&t.timer);
1623 return ret;
1624 }
1625
1626 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1627 const enum hrtimer_mode mode, const clockid_t clockid)
1628 {
1629 struct restart_block *restart;
1630 struct hrtimer_sleeper t;
1631 int ret = 0;
1632 unsigned long slack;
1633
1634 slack = current->timer_slack_ns;
1635 if (rt_task(current))
1636 slack = 0;
1637
1638 hrtimer_init_on_stack(&t.timer, clockid, mode);
1639 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1640 if (do_nanosleep(&t, mode))
1641 goto out;
1642
1643 /* Absolute timers do not update the rmtp value and restart: */
1644 if (mode == HRTIMER_MODE_ABS) {
1645 ret = -ERESTARTNOHAND;
1646 goto out;
1647 }
1648
1649 if (rmtp) {
1650 ret = update_rmtp(&t.timer, rmtp);
1651 if (ret <= 0)
1652 goto out;
1653 }
1654
1655 restart = &current_thread_info()->restart_block;
1656 restart->fn = hrtimer_nanosleep_restart;
1657 restart->nanosleep.clockid = t.timer.base->clockid;
1658 restart->nanosleep.rmtp = rmtp;
1659 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1660
1661 ret = -ERESTART_RESTARTBLOCK;
1662 out:
1663 destroy_hrtimer_on_stack(&t.timer);
1664 return ret;
1665 }
1666
1667 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1668 struct timespec __user *, rmtp)
1669 {
1670 struct timespec tu;
1671
1672 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1673 return -EFAULT;
1674
1675 if (!timespec_valid(&tu))
1676 return -EINVAL;
1677
1678 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1679 }
1680
1681 /*
1682 * Functions related to boot-time initialization:
1683 */
1684 static void __cpuinit init_hrtimers_cpu(int cpu)
1685 {
1686 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1687 int i;
1688
1689 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1690 cpu_base->clock_base[i].cpu_base = cpu_base;
1691 timerqueue_init_head(&cpu_base->clock_base[i].active);
1692 }
1693
1694 hrtimer_init_hres(cpu_base);
1695 }
1696
1697 #ifdef CONFIG_HOTPLUG_CPU
1698
1699 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1700 struct hrtimer_clock_base *new_base)
1701 {
1702 struct hrtimer *timer;
1703 struct timerqueue_node *node;
1704
1705 while ((node = timerqueue_getnext(&old_base->active))) {
1706 timer = container_of(node, struct hrtimer, node);
1707 BUG_ON(hrtimer_callback_running(timer));
1708 debug_deactivate(timer);
1709
1710 /*
1711 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1712 * timer could be seen as !active and just vanish away
1713 * under us on another CPU
1714 */
1715 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1716 timer->base = new_base;
1717 /*
1718 * Enqueue the timers on the new cpu. This does not
1719 * reprogram the event device in case the timer
1720 * expires before the earliest on this CPU, but we run
1721 * hrtimer_interrupt after we migrated everything to
1722 * sort out already expired timers and reprogram the
1723 * event device.
1724 */
1725 enqueue_hrtimer(timer, new_base);
1726
1727 /* Clear the migration state bit */
1728 timer->state &= ~HRTIMER_STATE_MIGRATE;
1729 }
1730 }
1731
1732 static void migrate_hrtimers(int scpu)
1733 {
1734 struct hrtimer_cpu_base *old_base, *new_base;
1735 int i;
1736
1737 BUG_ON(cpu_online(scpu));
1738 tick_cancel_sched_timer(scpu);
1739
1740 local_irq_disable();
1741 old_base = &per_cpu(hrtimer_bases, scpu);
1742 new_base = &__get_cpu_var(hrtimer_bases);
1743 /*
1744 * The caller is globally serialized and nobody else
1745 * takes two locks at once, deadlock is not possible.
1746 */
1747 raw_spin_lock(&new_base->lock);
1748 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1749
1750 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1751 migrate_hrtimer_list(&old_base->clock_base[i],
1752 &new_base->clock_base[i]);
1753 }
1754
1755 raw_spin_unlock(&old_base->lock);
1756 raw_spin_unlock(&new_base->lock);
1757
1758 /* Check, if we got expired work to do */
1759 __hrtimer_peek_ahead_timers();
1760 local_irq_enable();
1761 }
1762
1763 #endif /* CONFIG_HOTPLUG_CPU */
1764
1765 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1766 unsigned long action, void *hcpu)
1767 {
1768 int scpu = (long)hcpu;
1769
1770 switch (action) {
1771
1772 case CPU_UP_PREPARE:
1773 case CPU_UP_PREPARE_FROZEN:
1774 init_hrtimers_cpu(scpu);
1775 break;
1776
1777 #ifdef CONFIG_HOTPLUG_CPU
1778 case CPU_DYING:
1779 case CPU_DYING_FROZEN:
1780 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1781 break;
1782 case CPU_DEAD:
1783 case CPU_DEAD_FROZEN:
1784 {
1785 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1786 migrate_hrtimers(scpu);
1787 break;
1788 }
1789 #endif
1790
1791 default:
1792 break;
1793 }
1794
1795 return NOTIFY_OK;
1796 }
1797
1798 static struct notifier_block __cpuinitdata hrtimers_nb = {
1799 .notifier_call = hrtimer_cpu_notify,
1800 };
1801
1802 void __init hrtimers_init(void)
1803 {
1804 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1805 (void *)(long)smp_processor_id());
1806 register_cpu_notifier(&hrtimers_nb);
1807 #ifdef CONFIG_HIGH_RES_TIMERS
1808 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1809 #endif
1810 }
1811
1812 /**
1813 * schedule_hrtimeout_range_clock - sleep until timeout
1814 * @expires: timeout value (ktime_t)
1815 * @delta: slack in expires timeout (ktime_t)
1816 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1817 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1818 */
1819 int __sched
1820 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1821 const enum hrtimer_mode mode, int clock)
1822 {
1823 struct hrtimer_sleeper t;
1824
1825 /*
1826 * Optimize when a zero timeout value is given. It does not
1827 * matter whether this is an absolute or a relative time.
1828 */
1829 if (expires && !expires->tv64) {
1830 __set_current_state(TASK_RUNNING);
1831 return 0;
1832 }
1833
1834 /*
1835 * A NULL parameter means "infinite"
1836 */
1837 if (!expires) {
1838 schedule();
1839 __set_current_state(TASK_RUNNING);
1840 return -EINTR;
1841 }
1842
1843 hrtimer_init_on_stack(&t.timer, clock, mode);
1844 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1845
1846 hrtimer_init_sleeper(&t, current);
1847
1848 hrtimer_start_expires(&t.timer, mode);
1849 if (!hrtimer_active(&t.timer))
1850 t.task = NULL;
1851
1852 if (likely(t.task))
1853 schedule();
1854
1855 hrtimer_cancel(&t.timer);
1856 destroy_hrtimer_on_stack(&t.timer);
1857
1858 __set_current_state(TASK_RUNNING);
1859
1860 return !t.task ? 0 : -EINTR;
1861 }
1862
1863 /**
1864 * schedule_hrtimeout_range - sleep until timeout
1865 * @expires: timeout value (ktime_t)
1866 * @delta: slack in expires timeout (ktime_t)
1867 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1868 *
1869 * Make the current task sleep until the given expiry time has
1870 * elapsed. The routine will return immediately unless
1871 * the current task state has been set (see set_current_state()).
1872 *
1873 * The @delta argument gives the kernel the freedom to schedule the
1874 * actual wakeup to a time that is both power and performance friendly.
1875 * The kernel give the normal best effort behavior for "@expires+@delta",
1876 * but may decide to fire the timer earlier, but no earlier than @expires.
1877 *
1878 * You can set the task state as follows -
1879 *
1880 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1881 * pass before the routine returns.
1882 *
1883 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1884 * delivered to the current task.
1885 *
1886 * The current task state is guaranteed to be TASK_RUNNING when this
1887 * routine returns.
1888 *
1889 * Returns 0 when the timer has expired otherwise -EINTR
1890 */
1891 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1892 const enum hrtimer_mode mode)
1893 {
1894 return schedule_hrtimeout_range_clock(expires, delta, mode,
1895 CLOCK_MONOTONIC);
1896 }
1897 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1898
1899 /**
1900 * schedule_hrtimeout - sleep until timeout
1901 * @expires: timeout value (ktime_t)
1902 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1903 *
1904 * Make the current task sleep until the given expiry time has
1905 * elapsed. The routine will return immediately unless
1906 * the current task state has been set (see set_current_state()).
1907 *
1908 * You can set the task state as follows -
1909 *
1910 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1911 * pass before the routine returns.
1912 *
1913 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1914 * delivered to the current task.
1915 *
1916 * The current task state is guaranteed to be TASK_RUNNING when this
1917 * routine returns.
1918 *
1919 * Returns 0 when the timer has expired otherwise -EINTR
1920 */
1921 int __sched schedule_hrtimeout(ktime_t *expires,
1922 const enum hrtimer_mode mode)
1923 {
1924 return schedule_hrtimeout_range(expires, 0, mode);
1925 }
1926 EXPORT_SYMBOL_GPL(schedule_hrtimeout);