1edb21efecc6b2b148b39cafe5611e2e0b90e437
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/mm.h>
19 #include <linux/vmacache.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/fdtable.h>
27 #include <linux/iocontext.h>
28 #include <linux/key.h>
29 #include <linux/binfmts.h>
30 #include <linux/mman.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/fs.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76
77 #include <asm/pgtable.h>
78 #include <asm/pgalloc.h>
79 #include <asm/uaccess.h>
80 #include <asm/mmu_context.h>
81 #include <asm/cacheflush.h>
82 #include <asm/tlbflush.h>
83
84 #include <trace/events/sched.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/task.h>
88
89 /*
90 * Protected counters by write_lock_irq(&tasklist_lock)
91 */
92 unsigned long total_forks; /* Handle normal Linux uptimes. */
93 int nr_threads; /* The idle threads do not count.. */
94
95 int max_threads; /* tunable limit on nr_threads */
96
97 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
98
99 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
100
101 #ifdef CONFIG_PROVE_RCU
102 int lockdep_tasklist_lock_is_held(void)
103 {
104 return lockdep_is_held(&tasklist_lock);
105 }
106 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
107 #endif /* #ifdef CONFIG_PROVE_RCU */
108
109 int nr_processes(void)
110 {
111 int cpu;
112 int total = 0;
113
114 for_each_possible_cpu(cpu)
115 total += per_cpu(process_counts, cpu);
116
117 return total;
118 }
119
120 void __weak arch_release_task_struct(struct task_struct *tsk)
121 {
122 }
123
124 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
125 static struct kmem_cache *task_struct_cachep;
126
127 static inline struct task_struct *alloc_task_struct_node(int node)
128 {
129 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
130 }
131
132 static inline void free_task_struct(struct task_struct *tsk)
133 {
134 kmem_cache_free(task_struct_cachep, tsk);
135 }
136 #endif
137
138 void __weak arch_release_thread_info(struct thread_info *ti)
139 {
140 }
141
142 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
143
144 /*
145 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
146 * kmemcache based allocator.
147 */
148 # if THREAD_SIZE >= PAGE_SIZE
149 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
150 int node)
151 {
152 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
153 THREAD_SIZE_ORDER);
154
155 return page ? page_address(page) : NULL;
156 }
157
158 static inline void free_thread_info(struct thread_info *ti)
159 {
160 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
161 }
162 # else
163 static struct kmem_cache *thread_info_cache;
164
165 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
166 int node)
167 {
168 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
169 }
170
171 static void free_thread_info(struct thread_info *ti)
172 {
173 kmem_cache_free(thread_info_cache, ti);
174 }
175
176 void thread_info_cache_init(void)
177 {
178 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
179 THREAD_SIZE, 0, NULL);
180 BUG_ON(thread_info_cache == NULL);
181 }
182 # endif
183 #endif
184
185 /* SLAB cache for signal_struct structures (tsk->signal) */
186 static struct kmem_cache *signal_cachep;
187
188 /* SLAB cache for sighand_struct structures (tsk->sighand) */
189 struct kmem_cache *sighand_cachep;
190
191 /* SLAB cache for files_struct structures (tsk->files) */
192 struct kmem_cache *files_cachep;
193
194 /* SLAB cache for fs_struct structures (tsk->fs) */
195 struct kmem_cache *fs_cachep;
196
197 /* SLAB cache for vm_area_struct structures */
198 struct kmem_cache *vm_area_cachep;
199
200 /* SLAB cache for mm_struct structures (tsk->mm) */
201 static struct kmem_cache *mm_cachep;
202
203 /* Notifier list called when a task struct is freed */
204 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
205
206 static void account_kernel_stack(struct thread_info *ti, int account)
207 {
208 struct zone *zone = page_zone(virt_to_page(ti));
209
210 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
211 }
212
213 void free_task(struct task_struct *tsk)
214 {
215 account_kernel_stack(tsk->stack, -1);
216 arch_release_thread_info(tsk->stack);
217 free_thread_info(tsk->stack);
218 rt_mutex_debug_task_free(tsk);
219 ftrace_graph_exit_task(tsk);
220 put_seccomp_filter(tsk);
221 arch_release_task_struct(tsk);
222 free_task_struct(tsk);
223 }
224 EXPORT_SYMBOL(free_task);
225
226 static inline void free_signal_struct(struct signal_struct *sig)
227 {
228 taskstats_tgid_free(sig);
229 sched_autogroup_exit(sig);
230 kmem_cache_free(signal_cachep, sig);
231 }
232
233 static inline void put_signal_struct(struct signal_struct *sig)
234 {
235 if (atomic_dec_and_test(&sig->sigcnt))
236 free_signal_struct(sig);
237 }
238
239 int task_free_register(struct notifier_block *n)
240 {
241 return atomic_notifier_chain_register(&task_free_notifier, n);
242 }
243 EXPORT_SYMBOL(task_free_register);
244
245 int task_free_unregister(struct notifier_block *n)
246 {
247 return atomic_notifier_chain_unregister(&task_free_notifier, n);
248 }
249 EXPORT_SYMBOL(task_free_unregister);
250
251 void __put_task_struct(struct task_struct *tsk)
252 {
253 WARN_ON(!tsk->exit_state);
254 WARN_ON(atomic_read(&tsk->usage));
255 WARN_ON(tsk == current);
256
257 security_task_free(tsk);
258 exit_creds(tsk);
259 delayacct_tsk_free(tsk);
260 put_signal_struct(tsk->signal);
261
262 atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
263 if (!profile_handoff_task(tsk))
264 free_task(tsk);
265 }
266 EXPORT_SYMBOL_GPL(__put_task_struct);
267
268 void __init __weak arch_task_cache_init(void) { }
269
270 void __init fork_init(unsigned long mempages)
271 {
272 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
273 #ifndef ARCH_MIN_TASKALIGN
274 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
275 #endif
276 /* create a slab on which task_structs can be allocated */
277 task_struct_cachep =
278 kmem_cache_create("task_struct", sizeof(struct task_struct),
279 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
280 #endif
281
282 /* do the arch specific task caches init */
283 arch_task_cache_init();
284
285 /*
286 * The default maximum number of threads is set to a safe
287 * value: the thread structures can take up at most half
288 * of memory.
289 */
290 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
291
292 /*
293 * we need to allow at least 20 threads to boot a system
294 */
295 if (max_threads < 20)
296 max_threads = 20;
297
298 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
299 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
300 init_task.signal->rlim[RLIMIT_SIGPENDING] =
301 init_task.signal->rlim[RLIMIT_NPROC];
302 }
303
304 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
305 struct task_struct *src)
306 {
307 *dst = *src;
308 return 0;
309 }
310
311 static struct task_struct *dup_task_struct(struct task_struct *orig)
312 {
313 struct task_struct *tsk;
314 struct thread_info *ti;
315 unsigned long *stackend;
316 int node = tsk_fork_get_node(orig);
317 int err;
318
319 tsk = alloc_task_struct_node(node);
320 if (!tsk)
321 return NULL;
322
323 ti = alloc_thread_info_node(tsk, node);
324 if (!ti)
325 goto free_tsk;
326
327 err = arch_dup_task_struct(tsk, orig);
328 if (err)
329 goto free_ti;
330
331 tsk->flags &= ~PF_SU;
332
333 tsk->stack = ti;
334 #ifdef CONFIG_SECCOMP
335 /*
336 * We must handle setting up seccomp filters once we're under
337 * the sighand lock in case orig has changed between now and
338 * then. Until then, filter must be NULL to avoid messing up
339 * the usage counts on the error path calling free_task.
340 */
341 tsk->seccomp.filter = NULL;
342 #endif
343
344 setup_thread_stack(tsk, orig);
345 clear_user_return_notifier(tsk);
346 clear_tsk_need_resched(tsk);
347 stackend = end_of_stack(tsk);
348 *stackend = STACK_END_MAGIC; /* for overflow detection */
349
350 #ifdef CONFIG_CC_STACKPROTECTOR
351 tsk->stack_canary = get_random_int();
352 #endif
353
354 /*
355 * One for us, one for whoever does the "release_task()" (usually
356 * parent)
357 */
358 atomic_set(&tsk->usage, 2);
359 #ifdef CONFIG_BLK_DEV_IO_TRACE
360 tsk->btrace_seq = 0;
361 #endif
362 tsk->splice_pipe = NULL;
363 tsk->task_frag.page = NULL;
364
365 account_kernel_stack(ti, 1);
366
367 return tsk;
368
369 free_ti:
370 free_thread_info(ti);
371 free_tsk:
372 free_task_struct(tsk);
373 return NULL;
374 }
375
376 #ifdef CONFIG_MMU
377 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
378 {
379 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
380 struct rb_node **rb_link, *rb_parent;
381 int retval;
382 unsigned long charge;
383 struct mempolicy *pol;
384
385 uprobe_start_dup_mmap();
386 down_write(&oldmm->mmap_sem);
387 flush_cache_dup_mm(oldmm);
388 uprobe_dup_mmap(oldmm, mm);
389 /*
390 * Not linked in yet - no deadlock potential:
391 */
392 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
393
394 mm->locked_vm = 0;
395 mm->mmap = NULL;
396 vmacache_invalidate(mm);
397 mm->free_area_cache = oldmm->mmap_base;
398 mm->cached_hole_size = ~0UL;
399 mm->map_count = 0;
400 cpumask_clear(mm_cpumask(mm));
401 mm->mm_rb = RB_ROOT;
402 rb_link = &mm->mm_rb.rb_node;
403 rb_parent = NULL;
404 pprev = &mm->mmap;
405 retval = ksm_fork(mm, oldmm);
406 if (retval)
407 goto out;
408 retval = khugepaged_fork(mm, oldmm);
409 if (retval)
410 goto out;
411
412 prev = NULL;
413 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
414 struct file *file;
415
416 if (mpnt->vm_flags & VM_DONTCOPY) {
417 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
418 -vma_pages(mpnt));
419 continue;
420 }
421 charge = 0;
422 if (mpnt->vm_flags & VM_ACCOUNT) {
423 unsigned long len = vma_pages(mpnt);
424
425 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
426 goto fail_nomem;
427 charge = len;
428 }
429 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
430 if (!tmp)
431 goto fail_nomem;
432 *tmp = *mpnt;
433 INIT_LIST_HEAD(&tmp->anon_vma_chain);
434 pol = mpol_dup(vma_policy(mpnt));
435 retval = PTR_ERR(pol);
436 if (IS_ERR(pol))
437 goto fail_nomem_policy;
438 vma_set_policy(tmp, pol);
439 tmp->vm_mm = mm;
440 if (anon_vma_fork(tmp, mpnt))
441 goto fail_nomem_anon_vma_fork;
442 tmp->vm_flags &= ~VM_LOCKED;
443 tmp->vm_next = tmp->vm_prev = NULL;
444 file = tmp->vm_file;
445 if (file) {
446 struct inode *inode = file_inode(file);
447 struct address_space *mapping = file->f_mapping;
448
449 get_file(file);
450 if (tmp->vm_flags & VM_DENYWRITE)
451 atomic_dec(&inode->i_writecount);
452 mutex_lock(&mapping->i_mmap_mutex);
453 if (tmp->vm_flags & VM_SHARED)
454 mapping->i_mmap_writable++;
455 flush_dcache_mmap_lock(mapping);
456 /* insert tmp into the share list, just after mpnt */
457 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
458 vma_nonlinear_insert(tmp,
459 &mapping->i_mmap_nonlinear);
460 else
461 vma_interval_tree_insert_after(tmp, mpnt,
462 &mapping->i_mmap);
463 flush_dcache_mmap_unlock(mapping);
464 mutex_unlock(&mapping->i_mmap_mutex);
465 }
466
467 /*
468 * Clear hugetlb-related page reserves for children. This only
469 * affects MAP_PRIVATE mappings. Faults generated by the child
470 * are not guaranteed to succeed, even if read-only
471 */
472 if (is_vm_hugetlb_page(tmp))
473 reset_vma_resv_huge_pages(tmp);
474
475 /*
476 * Link in the new vma and copy the page table entries.
477 */
478 *pprev = tmp;
479 pprev = &tmp->vm_next;
480 tmp->vm_prev = prev;
481 prev = tmp;
482
483 __vma_link_rb(mm, tmp, rb_link, rb_parent);
484 rb_link = &tmp->vm_rb.rb_right;
485 rb_parent = &tmp->vm_rb;
486
487 mm->map_count++;
488 retval = copy_page_range(mm, oldmm, mpnt);
489
490 if (tmp->vm_ops && tmp->vm_ops->open)
491 tmp->vm_ops->open(tmp);
492
493 if (retval)
494 goto out;
495 }
496 /* a new mm has just been created */
497 arch_dup_mmap(oldmm, mm);
498 retval = 0;
499 out:
500 up_write(&mm->mmap_sem);
501 flush_tlb_mm(oldmm);
502 up_write(&oldmm->mmap_sem);
503 uprobe_end_dup_mmap();
504 return retval;
505 fail_nomem_anon_vma_fork:
506 mpol_put(pol);
507 fail_nomem_policy:
508 kmem_cache_free(vm_area_cachep, tmp);
509 fail_nomem:
510 retval = -ENOMEM;
511 vm_unacct_memory(charge);
512 goto out;
513 }
514
515 static inline int mm_alloc_pgd(struct mm_struct *mm)
516 {
517 mm->pgd = pgd_alloc(mm);
518 if (unlikely(!mm->pgd))
519 return -ENOMEM;
520 return 0;
521 }
522
523 static inline void mm_free_pgd(struct mm_struct *mm)
524 {
525 pgd_free(mm, mm->pgd);
526 }
527 #else
528 #define dup_mmap(mm, oldmm) (0)
529 #define mm_alloc_pgd(mm) (0)
530 #define mm_free_pgd(mm)
531 #endif /* CONFIG_MMU */
532
533 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
534
535 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
536 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
537
538 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
539
540 static int __init coredump_filter_setup(char *s)
541 {
542 default_dump_filter =
543 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
544 MMF_DUMP_FILTER_MASK;
545 return 1;
546 }
547
548 __setup("coredump_filter=", coredump_filter_setup);
549
550 #include <linux/init_task.h>
551
552 static void mm_init_aio(struct mm_struct *mm)
553 {
554 #ifdef CONFIG_AIO
555 spin_lock_init(&mm->ioctx_lock);
556 INIT_HLIST_HEAD(&mm->ioctx_list);
557 #endif
558 }
559
560 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
561 {
562 atomic_set(&mm->mm_users, 1);
563 atomic_set(&mm->mm_count, 1);
564 init_rwsem(&mm->mmap_sem);
565 INIT_LIST_HEAD(&mm->mmlist);
566 mm->flags = (current->mm) ?
567 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
568 mm->core_state = NULL;
569 mm->nr_ptes = 0;
570 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
571 spin_lock_init(&mm->page_table_lock);
572 mm->free_area_cache = TASK_UNMAPPED_BASE;
573 mm->cached_hole_size = ~0UL;
574 mm_init_aio(mm);
575 mm_init_owner(mm, p);
576 clear_tlb_flush_pending(mm);
577
578 if (likely(!mm_alloc_pgd(mm))) {
579 mm->def_flags = 0;
580 mmu_notifier_mm_init(mm);
581 return mm;
582 }
583
584 free_mm(mm);
585 return NULL;
586 }
587
588 static void check_mm(struct mm_struct *mm)
589 {
590 int i;
591
592 for (i = 0; i < NR_MM_COUNTERS; i++) {
593 long x = atomic_long_read(&mm->rss_stat.count[i]);
594
595 if (unlikely(x))
596 printk(KERN_ALERT "BUG: Bad rss-counter state "
597 "mm:%p idx:%d val:%ld\n", mm, i, x);
598 }
599
600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
601 VM_BUG_ON(mm->pmd_huge_pte);
602 #endif
603 }
604
605 /*
606 * Allocate and initialize an mm_struct.
607 */
608 struct mm_struct *mm_alloc(void)
609 {
610 struct mm_struct *mm;
611
612 mm = allocate_mm();
613 if (!mm)
614 return NULL;
615
616 memset(mm, 0, sizeof(*mm));
617 mm_init_cpumask(mm);
618 return mm_init(mm, current);
619 }
620
621 /*
622 * Called when the last reference to the mm
623 * is dropped: either by a lazy thread or by
624 * mmput. Free the page directory and the mm.
625 */
626 void __mmdrop(struct mm_struct *mm)
627 {
628 BUG_ON(mm == &init_mm);
629 mm_free_pgd(mm);
630 destroy_context(mm);
631 mmu_notifier_mm_destroy(mm);
632 check_mm(mm);
633 free_mm(mm);
634 }
635 EXPORT_SYMBOL_GPL(__mmdrop);
636
637 /*
638 * Decrement the use count and release all resources for an mm.
639 */
640 int mmput(struct mm_struct *mm)
641 {
642 int mm_freed = 0;
643 might_sleep();
644
645 if (atomic_dec_and_test(&mm->mm_users)) {
646 uprobe_clear_state(mm);
647 exit_aio(mm);
648 ksm_exit(mm);
649 khugepaged_exit(mm); /* must run before exit_mmap */
650 exit_mmap(mm);
651 set_mm_exe_file(mm, NULL);
652 if (!list_empty(&mm->mmlist)) {
653 spin_lock(&mmlist_lock);
654 list_del(&mm->mmlist);
655 spin_unlock(&mmlist_lock);
656 }
657 if (mm->binfmt)
658 module_put(mm->binfmt->module);
659 mmdrop(mm);
660 mm_freed = 1;
661 }
662 return mm_freed;
663 }
664 EXPORT_SYMBOL_GPL(mmput);
665
666 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
667 {
668 if (new_exe_file)
669 get_file(new_exe_file);
670 if (mm->exe_file)
671 fput(mm->exe_file);
672 mm->exe_file = new_exe_file;
673 }
674
675 struct file *get_mm_exe_file(struct mm_struct *mm)
676 {
677 struct file *exe_file;
678
679 /* We need mmap_sem to protect against races with removal of exe_file */
680 down_read(&mm->mmap_sem);
681 exe_file = mm->exe_file;
682 if (exe_file)
683 get_file(exe_file);
684 up_read(&mm->mmap_sem);
685 return exe_file;
686 }
687
688 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
689 {
690 /* It's safe to write the exe_file pointer without exe_file_lock because
691 * this is called during fork when the task is not yet in /proc */
692 newmm->exe_file = get_mm_exe_file(oldmm);
693 }
694
695 /**
696 * get_task_mm - acquire a reference to the task's mm
697 *
698 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
699 * this kernel workthread has transiently adopted a user mm with use_mm,
700 * to do its AIO) is not set and if so returns a reference to it, after
701 * bumping up the use count. User must release the mm via mmput()
702 * after use. Typically used by /proc and ptrace.
703 */
704 struct mm_struct *get_task_mm(struct task_struct *task)
705 {
706 struct mm_struct *mm;
707
708 task_lock(task);
709 mm = task->mm;
710 if (mm) {
711 if (task->flags & PF_KTHREAD)
712 mm = NULL;
713 else
714 atomic_inc(&mm->mm_users);
715 }
716 task_unlock(task);
717 return mm;
718 }
719 EXPORT_SYMBOL_GPL(get_task_mm);
720
721 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
722 {
723 struct mm_struct *mm;
724 int err;
725
726 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
727 if (err)
728 return ERR_PTR(err);
729
730 mm = get_task_mm(task);
731 if (mm && mm != current->mm &&
732 !ptrace_may_access(task, mode) &&
733 !capable(CAP_SYS_RESOURCE)) {
734 mmput(mm);
735 mm = ERR_PTR(-EACCES);
736 }
737 mutex_unlock(&task->signal->cred_guard_mutex);
738
739 return mm;
740 }
741
742 static void complete_vfork_done(struct task_struct *tsk)
743 {
744 struct completion *vfork;
745
746 task_lock(tsk);
747 vfork = tsk->vfork_done;
748 if (likely(vfork)) {
749 tsk->vfork_done = NULL;
750 complete(vfork);
751 }
752 task_unlock(tsk);
753 }
754
755 static int wait_for_vfork_done(struct task_struct *child,
756 struct completion *vfork)
757 {
758 int killed;
759
760 freezer_do_not_count();
761 killed = wait_for_completion_killable(vfork);
762 freezer_count();
763
764 if (killed) {
765 task_lock(child);
766 child->vfork_done = NULL;
767 task_unlock(child);
768 }
769
770 put_task_struct(child);
771 return killed;
772 }
773
774 /* Please note the differences between mmput and mm_release.
775 * mmput is called whenever we stop holding onto a mm_struct,
776 * error success whatever.
777 *
778 * mm_release is called after a mm_struct has been removed
779 * from the current process.
780 *
781 * This difference is important for error handling, when we
782 * only half set up a mm_struct for a new process and need to restore
783 * the old one. Because we mmput the new mm_struct before
784 * restoring the old one. . .
785 * Eric Biederman 10 January 1998
786 */
787 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
788 {
789 /* Get rid of any futexes when releasing the mm */
790 #ifdef CONFIG_FUTEX
791 if (unlikely(tsk->robust_list)) {
792 exit_robust_list(tsk);
793 tsk->robust_list = NULL;
794 }
795 #ifdef CONFIG_COMPAT
796 if (unlikely(tsk->compat_robust_list)) {
797 compat_exit_robust_list(tsk);
798 tsk->compat_robust_list = NULL;
799 }
800 #endif
801 if (unlikely(!list_empty(&tsk->pi_state_list)))
802 exit_pi_state_list(tsk);
803 #endif
804
805 uprobe_free_utask(tsk);
806
807 /* Get rid of any cached register state */
808 deactivate_mm(tsk, mm);
809
810 /*
811 * Signal userspace if we're not exiting with a core dump
812 * because we want to leave the value intact for debugging
813 * purposes.
814 */
815 if (tsk->clear_child_tid) {
816 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
817 atomic_read(&mm->mm_users) > 1) {
818 /*
819 * We don't check the error code - if userspace has
820 * not set up a proper pointer then tough luck.
821 */
822 put_user(0, tsk->clear_child_tid);
823 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
824 1, NULL, NULL, 0);
825 }
826 tsk->clear_child_tid = NULL;
827 }
828
829 /*
830 * All done, finally we can wake up parent and return this mm to him.
831 * Also kthread_stop() uses this completion for synchronization.
832 */
833 if (tsk->vfork_done)
834 complete_vfork_done(tsk);
835 }
836
837 /*
838 * Allocate a new mm structure and copy contents from the
839 * mm structure of the passed in task structure.
840 */
841 struct mm_struct *dup_mm(struct task_struct *tsk)
842 {
843 struct mm_struct *mm, *oldmm = current->mm;
844 int err;
845
846 if (!oldmm)
847 return NULL;
848
849 mm = allocate_mm();
850 if (!mm)
851 goto fail_nomem;
852
853 memcpy(mm, oldmm, sizeof(*mm));
854 mm_init_cpumask(mm);
855
856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
857 mm->pmd_huge_pte = NULL;
858 #endif
859 #ifdef CONFIG_NUMA_BALANCING
860 mm->first_nid = NUMA_PTE_SCAN_INIT;
861 #endif
862 if (!mm_init(mm, tsk))
863 goto fail_nomem;
864
865 if (init_new_context(tsk, mm))
866 goto fail_nocontext;
867
868 dup_mm_exe_file(oldmm, mm);
869
870 err = dup_mmap(mm, oldmm);
871 if (err)
872 goto free_pt;
873
874 mm->hiwater_rss = get_mm_rss(mm);
875 mm->hiwater_vm = mm->total_vm;
876
877 if (mm->binfmt && !try_module_get(mm->binfmt->module))
878 goto free_pt;
879
880 return mm;
881
882 free_pt:
883 /* don't put binfmt in mmput, we haven't got module yet */
884 mm->binfmt = NULL;
885 mmput(mm);
886
887 fail_nomem:
888 return NULL;
889
890 fail_nocontext:
891 /*
892 * If init_new_context() failed, we cannot use mmput() to free the mm
893 * because it calls destroy_context()
894 */
895 mm_free_pgd(mm);
896 free_mm(mm);
897 return NULL;
898 }
899
900 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
901 {
902 struct mm_struct *mm, *oldmm;
903 int retval;
904
905 tsk->min_flt = tsk->maj_flt = 0;
906 tsk->nvcsw = tsk->nivcsw = 0;
907 #ifdef CONFIG_DETECT_HUNG_TASK
908 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
909 #endif
910
911 tsk->mm = NULL;
912 tsk->active_mm = NULL;
913
914 /*
915 * Are we cloning a kernel thread?
916 *
917 * We need to steal a active VM for that..
918 */
919 oldmm = current->mm;
920 if (!oldmm)
921 return 0;
922
923 if (clone_flags & CLONE_VM) {
924 atomic_inc(&oldmm->mm_users);
925 mm = oldmm;
926 goto good_mm;
927 }
928
929 retval = -ENOMEM;
930 mm = dup_mm(tsk);
931 if (!mm)
932 goto fail_nomem;
933
934 good_mm:
935 tsk->mm = mm;
936 tsk->active_mm = mm;
937 return 0;
938
939 fail_nomem:
940 return retval;
941 }
942
943 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
944 {
945 struct fs_struct *fs = current->fs;
946 if (clone_flags & CLONE_FS) {
947 /* tsk->fs is already what we want */
948 spin_lock(&fs->lock);
949 if (fs->in_exec) {
950 spin_unlock(&fs->lock);
951 return -EAGAIN;
952 }
953 fs->users++;
954 spin_unlock(&fs->lock);
955 return 0;
956 }
957 tsk->fs = copy_fs_struct(fs);
958 if (!tsk->fs)
959 return -ENOMEM;
960 return 0;
961 }
962
963 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
964 {
965 struct files_struct *oldf, *newf;
966 int error = 0;
967
968 /*
969 * A background process may not have any files ...
970 */
971 oldf = current->files;
972 if (!oldf)
973 goto out;
974
975 if (clone_flags & CLONE_FILES) {
976 atomic_inc(&oldf->count);
977 goto out;
978 }
979
980 newf = dup_fd(oldf, &error);
981 if (!newf)
982 goto out;
983
984 tsk->files = newf;
985 error = 0;
986 out:
987 return error;
988 }
989
990 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
991 {
992 #ifdef CONFIG_BLOCK
993 struct io_context *ioc = current->io_context;
994 struct io_context *new_ioc;
995
996 if (!ioc)
997 return 0;
998 /*
999 * Share io context with parent, if CLONE_IO is set
1000 */
1001 if (clone_flags & CLONE_IO) {
1002 ioc_task_link(ioc);
1003 tsk->io_context = ioc;
1004 } else if (ioprio_valid(ioc->ioprio)) {
1005 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1006 if (unlikely(!new_ioc))
1007 return -ENOMEM;
1008
1009 new_ioc->ioprio = ioc->ioprio;
1010 put_io_context(new_ioc);
1011 }
1012 #endif
1013 return 0;
1014 }
1015
1016 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1017 {
1018 struct sighand_struct *sig;
1019
1020 if (clone_flags & CLONE_SIGHAND) {
1021 atomic_inc(&current->sighand->count);
1022 return 0;
1023 }
1024 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1025 rcu_assign_pointer(tsk->sighand, sig);
1026 if (!sig)
1027 return -ENOMEM;
1028 atomic_set(&sig->count, 1);
1029 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1030 return 0;
1031 }
1032
1033 void __cleanup_sighand(struct sighand_struct *sighand)
1034 {
1035 if (atomic_dec_and_test(&sighand->count)) {
1036 signalfd_cleanup(sighand);
1037 kmem_cache_free(sighand_cachep, sighand);
1038 }
1039 }
1040
1041
1042 /*
1043 * Initialize POSIX timer handling for a thread group.
1044 */
1045 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1046 {
1047 unsigned long cpu_limit;
1048
1049 /* Thread group counters. */
1050 thread_group_cputime_init(sig);
1051
1052 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1053 if (cpu_limit != RLIM_INFINITY) {
1054 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1055 sig->cputimer.running = 1;
1056 }
1057
1058 /* The timer lists. */
1059 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1060 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1061 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1062 }
1063
1064 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1065 {
1066 struct signal_struct *sig;
1067
1068 if (clone_flags & CLONE_THREAD)
1069 return 0;
1070
1071 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1072 tsk->signal = sig;
1073 if (!sig)
1074 return -ENOMEM;
1075
1076 sig->nr_threads = 1;
1077 atomic_set(&sig->live, 1);
1078 atomic_set(&sig->sigcnt, 1);
1079
1080 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1081 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1082 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1083
1084 init_waitqueue_head(&sig->wait_chldexit);
1085 sig->curr_target = tsk;
1086 init_sigpending(&sig->shared_pending);
1087 INIT_LIST_HEAD(&sig->posix_timers);
1088
1089 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1090 sig->real_timer.function = it_real_fn;
1091
1092 task_lock(current->group_leader);
1093 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1094 task_unlock(current->group_leader);
1095
1096 posix_cpu_timers_init_group(sig);
1097
1098 tty_audit_fork(sig);
1099 sched_autogroup_fork(sig);
1100
1101 #ifdef CONFIG_CGROUPS
1102 init_rwsem(&sig->group_rwsem);
1103 #endif
1104
1105 sig->oom_score_adj = current->signal->oom_score_adj;
1106 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1107
1108 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1109 current->signal->is_child_subreaper;
1110
1111 mutex_init(&sig->cred_guard_mutex);
1112
1113 return 0;
1114 }
1115
1116 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1117 {
1118 unsigned long new_flags = p->flags;
1119
1120 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1121 new_flags |= PF_FORKNOEXEC;
1122 p->flags = new_flags;
1123 }
1124
1125 static void copy_seccomp(struct task_struct *p)
1126 {
1127 #ifdef CONFIG_SECCOMP
1128 /*
1129 * Must be called with sighand->lock held, which is common to
1130 * all threads in the group. Holding cred_guard_mutex is not
1131 * needed because this new task is not yet running and cannot
1132 * be racing exec.
1133 */
1134 assert_spin_locked(&current->sighand->siglock);
1135
1136 /* Ref-count the new filter user, and assign it. */
1137 get_seccomp_filter(current);
1138 p->seccomp = current->seccomp;
1139
1140 /*
1141 * Explicitly enable no_new_privs here in case it got set
1142 * between the task_struct being duplicated and holding the
1143 * sighand lock. The seccomp state and nnp must be in sync.
1144 */
1145 if (task_no_new_privs(current))
1146 task_set_no_new_privs(p);
1147
1148 /*
1149 * If the parent gained a seccomp mode after copying thread
1150 * flags and between before we held the sighand lock, we have
1151 * to manually enable the seccomp thread flag here.
1152 */
1153 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1154 set_tsk_thread_flag(p, TIF_SECCOMP);
1155 #endif
1156 }
1157
1158 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1159 {
1160 current->clear_child_tid = tidptr;
1161
1162 return task_pid_vnr(current);
1163 }
1164
1165 static void rt_mutex_init_task(struct task_struct *p)
1166 {
1167 raw_spin_lock_init(&p->pi_lock);
1168 #ifdef CONFIG_RT_MUTEXES
1169 plist_head_init(&p->pi_waiters);
1170 p->pi_blocked_on = NULL;
1171 #endif
1172 }
1173
1174 #ifdef CONFIG_MM_OWNER
1175 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1176 {
1177 mm->owner = p;
1178 }
1179 #endif /* CONFIG_MM_OWNER */
1180
1181 /*
1182 * Initialize POSIX timer handling for a single task.
1183 */
1184 static void posix_cpu_timers_init(struct task_struct *tsk)
1185 {
1186 tsk->cputime_expires.prof_exp = 0;
1187 tsk->cputime_expires.virt_exp = 0;
1188 tsk->cputime_expires.sched_exp = 0;
1189 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1190 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1191 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1192 }
1193
1194 #ifdef CONFIG_RKP_KDP
1195 void rkp_assign_pgd(struct task_struct *p)
1196 {
1197 u64 pgd;
1198 pgd = (u64)(p->mm ? p->mm->pgd :swapper_pg_dir);
1199 rkp_call(RKP_CMDID(0x43),(u64)p->cred, (u64)pgd,0,0,0);
1200 }
1201 #endif /*CONFIG_RKP_KDP*/
1202 /*
1203 * This creates a new process as a copy of the old one,
1204 * but does not actually start it yet.
1205 *
1206 * It copies the registers, and all the appropriate
1207 * parts of the process environment (as per the clone
1208 * flags). The actual kick-off is left to the caller.
1209 */
1210 static struct task_struct *copy_process(unsigned long clone_flags,
1211 unsigned long stack_start,
1212 unsigned long stack_size,
1213 int __user *child_tidptr,
1214 struct pid *pid,
1215 int trace)
1216 {
1217 int retval;
1218 struct task_struct *p;
1219
1220 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1221 return ERR_PTR(-EINVAL);
1222
1223 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1224 return ERR_PTR(-EINVAL);
1225
1226 /*
1227 * Thread groups must share signals as well, and detached threads
1228 * can only be started up within the thread group.
1229 */
1230 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1231 return ERR_PTR(-EINVAL);
1232
1233 /*
1234 * Shared signal handlers imply shared VM. By way of the above,
1235 * thread groups also imply shared VM. Blocking this case allows
1236 * for various simplifications in other code.
1237 */
1238 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1239 return ERR_PTR(-EINVAL);
1240
1241 /*
1242 * Siblings of global init remain as zombies on exit since they are
1243 * not reaped by their parent (swapper). To solve this and to avoid
1244 * multi-rooted process trees, prevent global and container-inits
1245 * from creating siblings.
1246 */
1247 if ((clone_flags & CLONE_PARENT) &&
1248 current->signal->flags & SIGNAL_UNKILLABLE)
1249 return ERR_PTR(-EINVAL);
1250
1251 /*
1252 * If the new process will be in a different pid namespace don't
1253 * allow it to share a thread group or signal handlers with the
1254 * forking task.
1255 */
1256 if ((clone_flags & (CLONE_SIGHAND | CLONE_NEWPID)) &&
1257 (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1258 return ERR_PTR(-EINVAL);
1259
1260 retval = security_task_create(clone_flags);
1261 if (retval)
1262 goto fork_out;
1263
1264 retval = -ENOMEM;
1265 p = dup_task_struct(current);
1266 if (!p)
1267 goto fork_out;
1268
1269 ftrace_graph_init_task(p);
1270
1271 rt_mutex_init_task(p);
1272
1273 #ifdef CONFIG_PROVE_LOCKING
1274 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1275 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1276 #endif
1277 retval = -EAGAIN;
1278 if (atomic_read(&p->real_cred->user->processes) >=
1279 task_rlimit(p, RLIMIT_NPROC)) {
1280 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1281 p->real_cred->user != INIT_USER)
1282 goto bad_fork_free;
1283 }
1284 current->flags &= ~PF_NPROC_EXCEEDED;
1285
1286 retval = copy_creds(p, clone_flags);
1287 if (retval < 0)
1288 goto bad_fork_free;
1289
1290 /*
1291 * If multiple threads are within copy_process(), then this check
1292 * triggers too late. This doesn't hurt, the check is only there
1293 * to stop root fork bombs.
1294 */
1295 retval = -EAGAIN;
1296 if (nr_threads >= max_threads)
1297 goto bad_fork_cleanup_count;
1298
1299 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1300 goto bad_fork_cleanup_count;
1301
1302 p->did_exec = 0;
1303 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1304 copy_flags(clone_flags, p);
1305 INIT_LIST_HEAD(&p->children);
1306 INIT_LIST_HEAD(&p->sibling);
1307 rcu_copy_process(p);
1308 p->vfork_done = NULL;
1309 spin_lock_init(&p->alloc_lock);
1310
1311 init_sigpending(&p->pending);
1312
1313 p->utime = p->stime = p->gtime = 0;
1314 p->utimescaled = p->stimescaled = 0;
1315 p->cpu_power = 0;
1316 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1317 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1318 #endif
1319 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1320 seqlock_init(&p->vtime_seqlock);
1321 p->vtime_snap = 0;
1322 p->vtime_snap_whence = VTIME_SLEEPING;
1323 #endif
1324
1325 #if defined(SPLIT_RSS_COUNTING)
1326 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1327 #endif
1328
1329 p->default_timer_slack_ns = current->timer_slack_ns;
1330
1331 task_io_accounting_init(&p->ioac);
1332 acct_clear_integrals(p);
1333
1334 posix_cpu_timers_init(p);
1335
1336 do_posix_clock_monotonic_gettime(&p->start_time);
1337 p->real_start_time = p->start_time;
1338 monotonic_to_bootbased(&p->real_start_time);
1339 p->io_context = NULL;
1340 p->audit_context = NULL;
1341 if (clone_flags & CLONE_THREAD)
1342 threadgroup_change_begin(current);
1343 cgroup_fork(p);
1344 #ifdef CONFIG_NUMA
1345 p->mempolicy = mpol_dup(p->mempolicy);
1346 if (IS_ERR(p->mempolicy)) {
1347 retval = PTR_ERR(p->mempolicy);
1348 p->mempolicy = NULL;
1349 goto bad_fork_cleanup_cgroup;
1350 }
1351 mpol_fix_fork_child_flag(p);
1352 #endif
1353 #ifdef CONFIG_CPUSETS
1354 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1355 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1356 seqcount_init(&p->mems_allowed_seq);
1357 #endif
1358 #ifdef CONFIG_TRACE_IRQFLAGS
1359 p->irq_events = 0;
1360 p->hardirqs_enabled = 0;
1361 p->hardirq_enable_ip = 0;
1362 p->hardirq_enable_event = 0;
1363 p->hardirq_disable_ip = _THIS_IP_;
1364 p->hardirq_disable_event = 0;
1365 p->softirqs_enabled = 1;
1366 p->softirq_enable_ip = _THIS_IP_;
1367 p->softirq_enable_event = 0;
1368 p->softirq_disable_ip = 0;
1369 p->softirq_disable_event = 0;
1370 p->hardirq_context = 0;
1371 p->softirq_context = 0;
1372 #endif
1373 #ifdef CONFIG_LOCKDEP
1374 p->lockdep_depth = 0; /* no locks held yet */
1375 p->curr_chain_key = 0;
1376 p->lockdep_recursion = 0;
1377 #endif
1378
1379 #ifdef CONFIG_DEBUG_MUTEXES
1380 p->blocked_on = NULL; /* not blocked yet */
1381 #endif
1382 #ifdef CONFIG_MEMCG
1383 p->memcg_batch.do_batch = 0;
1384 p->memcg_batch.memcg = NULL;
1385 #endif
1386 #ifdef CONFIG_BCACHE
1387 p->sequential_io = 0;
1388 p->sequential_io_avg = 0;
1389 #endif
1390
1391 /* Perform scheduler related setup. Assign this task to a CPU. */
1392 sched_fork(p);
1393
1394 retval = perf_event_init_task(p);
1395 if (retval)
1396 goto bad_fork_cleanup_policy;
1397 retval = audit_alloc(p);
1398 if (retval)
1399 goto bad_fork_cleanup_perf;
1400 /* copy all the process information */
1401 retval = copy_semundo(clone_flags, p);
1402 if (retval)
1403 goto bad_fork_cleanup_audit;
1404 retval = copy_files(clone_flags, p);
1405 if (retval)
1406 goto bad_fork_cleanup_semundo;
1407 retval = copy_fs(clone_flags, p);
1408 if (retval)
1409 goto bad_fork_cleanup_files;
1410 retval = copy_sighand(clone_flags, p);
1411 if (retval)
1412 goto bad_fork_cleanup_fs;
1413 retval = copy_signal(clone_flags, p);
1414 if (retval)
1415 goto bad_fork_cleanup_sighand;
1416 retval = copy_mm(clone_flags, p);
1417 if (retval)
1418 goto bad_fork_cleanup_signal;
1419 retval = copy_namespaces(clone_flags, p);
1420 if (retval)
1421 goto bad_fork_cleanup_mm;
1422 retval = copy_io(clone_flags, p);
1423 if (retval)
1424 goto bad_fork_cleanup_namespaces;
1425 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1426 if (retval)
1427 goto bad_fork_cleanup_io;
1428
1429 if (pid != &init_struct_pid) {
1430 retval = -ENOMEM;
1431 pid = alloc_pid(p->nsproxy->pid_ns);
1432 if (!pid)
1433 goto bad_fork_cleanup_io;
1434 }
1435
1436 p->pid = pid_nr(pid);
1437 p->tgid = p->pid;
1438 if (clone_flags & CLONE_THREAD)
1439 p->tgid = current->tgid;
1440
1441 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1442 /*
1443 * Clear TID on mm_release()?
1444 */
1445 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1446 #ifdef CONFIG_BLOCK
1447 p->plug = NULL;
1448 #endif
1449 #ifdef CONFIG_FUTEX
1450 p->robust_list = NULL;
1451 #ifdef CONFIG_COMPAT
1452 p->compat_robust_list = NULL;
1453 #endif
1454 INIT_LIST_HEAD(&p->pi_state_list);
1455 p->pi_state_cache = NULL;
1456 #endif
1457 uprobe_copy_process(p);
1458 /*
1459 * sigaltstack should be cleared when sharing the same VM
1460 */
1461 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1462 p->sas_ss_sp = p->sas_ss_size = 0;
1463
1464 /*
1465 * Syscall tracing and stepping should be turned off in the
1466 * child regardless of CLONE_PTRACE.
1467 */
1468 user_disable_single_step(p);
1469 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1470 #ifdef TIF_SYSCALL_EMU
1471 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1472 #endif
1473 clear_all_latency_tracing(p);
1474
1475 /* ok, now we should be set up.. */
1476 if (clone_flags & CLONE_THREAD)
1477 p->exit_signal = -1;
1478 else if (clone_flags & CLONE_PARENT)
1479 p->exit_signal = current->group_leader->exit_signal;
1480 else
1481 p->exit_signal = (clone_flags & CSIGNAL);
1482
1483 p->pdeath_signal = 0;
1484 p->exit_state = 0;
1485
1486 p->nr_dirtied = 0;
1487 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1488 p->dirty_paused_when = 0;
1489
1490 /*
1491 * Ok, make it visible to the rest of the system.
1492 * We dont wake it up yet.
1493 */
1494 p->group_leader = p;
1495 INIT_LIST_HEAD(&p->thread_group);
1496 p->task_works = NULL;
1497
1498 /* Need tasklist lock for parent etc handling! */
1499 write_lock_irq(&tasklist_lock);
1500
1501 /* CLONE_PARENT re-uses the old parent */
1502 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1503 p->real_parent = current->real_parent;
1504 p->parent_exec_id = current->parent_exec_id;
1505 } else {
1506 p->real_parent = current;
1507 p->parent_exec_id = current->self_exec_id;
1508 }
1509
1510 spin_lock(&current->sighand->siglock);
1511
1512 /*
1513 * Copy seccomp details explicitly here, in case they were changed
1514 * before holding sighand lock.
1515 */
1516 copy_seccomp(p);
1517
1518 /*
1519 * Process group and session signals need to be delivered to just the
1520 * parent before the fork or both the parent and the child after the
1521 * fork. Restart if a signal comes in before we add the new process to
1522 * it's process group.
1523 * A fatal signal pending means that current will exit, so the new
1524 * thread can't slip out of an OOM kill (or normal SIGKILL).
1525 */
1526 recalc_sigpending();
1527 if (signal_pending(current)) {
1528 spin_unlock(&current->sighand->siglock);
1529 write_unlock_irq(&tasklist_lock);
1530 retval = -ERESTARTNOINTR;
1531 goto bad_fork_free_pid;
1532 }
1533
1534 if (likely(p->pid)) {
1535 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1536
1537 if (thread_group_leader(p)) {
1538 if (is_child_reaper(pid)) {
1539 ns_of_pid(pid)->child_reaper = p;
1540 p->signal->flags |= SIGNAL_UNKILLABLE;
1541 }
1542
1543 p->signal->leader_pid = pid;
1544 p->signal->tty = tty_kref_get(current->signal->tty);
1545 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1546 attach_pid(p, PIDTYPE_SID, task_session(current));
1547 list_add_tail(&p->sibling, &p->real_parent->children);
1548 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1549 __this_cpu_inc(process_counts);
1550 } else {
1551 current->signal->nr_threads++;
1552 atomic_inc(&current->signal->live);
1553 atomic_inc(&current->signal->sigcnt);
1554 p->group_leader = current->group_leader;
1555 list_add_tail_rcu(&p->thread_group,
1556 &p->group_leader->thread_group);
1557 list_add_tail_rcu(&p->thread_node,
1558 &p->signal->thread_head);
1559 }
1560 attach_pid(p, PIDTYPE_PID, pid);
1561 nr_threads++;
1562 }
1563
1564 total_forks++;
1565 spin_unlock(&current->sighand->siglock);
1566 syscall_tracepoint_update(p);
1567 write_unlock_irq(&tasklist_lock);
1568
1569 proc_fork_connector(p);
1570 cgroup_post_fork(p);
1571 if (clone_flags & CLONE_THREAD)
1572 threadgroup_change_end(current);
1573 perf_event_fork(p);
1574
1575 trace_task_newtask(p, clone_flags);
1576 #ifdef CONFIG_RKP_KDP
1577 if(rkp_cred_enable)
1578 rkp_assign_pgd(p);
1579 #endif/*CONFIG_RKP_KDP*/
1580
1581 return p;
1582
1583 bad_fork_free_pid:
1584 if (pid != &init_struct_pid)
1585 free_pid(pid);
1586 bad_fork_cleanup_io:
1587 if (p->io_context)
1588 exit_io_context(p);
1589 bad_fork_cleanup_namespaces:
1590 exit_task_namespaces(p);
1591 bad_fork_cleanup_mm:
1592 if (p->mm)
1593 mmput(p->mm);
1594 bad_fork_cleanup_signal:
1595 if (!(clone_flags & CLONE_THREAD))
1596 free_signal_struct(p->signal);
1597 bad_fork_cleanup_sighand:
1598 __cleanup_sighand(p->sighand);
1599 bad_fork_cleanup_fs:
1600 exit_fs(p); /* blocking */
1601 bad_fork_cleanup_files:
1602 exit_files(p); /* blocking */
1603 bad_fork_cleanup_semundo:
1604 exit_sem(p);
1605 bad_fork_cleanup_audit:
1606 audit_free(p);
1607 bad_fork_cleanup_perf:
1608 perf_event_free_task(p);
1609 bad_fork_cleanup_policy:
1610 #ifdef CONFIG_NUMA
1611 mpol_put(p->mempolicy);
1612 bad_fork_cleanup_cgroup:
1613 #endif
1614 if (clone_flags & CLONE_THREAD)
1615 threadgroup_change_end(current);
1616 cgroup_exit(p, 0);
1617 delayacct_tsk_free(p);
1618 module_put(task_thread_info(p)->exec_domain->module);
1619 bad_fork_cleanup_count:
1620 atomic_dec(&p->cred->user->processes);
1621 exit_creds(p);
1622 bad_fork_free:
1623 free_task(p);
1624 fork_out:
1625 return ERR_PTR(retval);
1626 }
1627
1628 static inline void init_idle_pids(struct pid_link *links)
1629 {
1630 enum pid_type type;
1631
1632 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1633 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1634 links[type].pid = &init_struct_pid;
1635 }
1636 }
1637
1638 struct task_struct * __cpuinit fork_idle(int cpu)
1639 {
1640 struct task_struct *task;
1641 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1642 if (!IS_ERR(task)) {
1643 init_idle_pids(task->pids);
1644 init_idle(task, cpu);
1645 }
1646
1647 return task;
1648 }
1649
1650 /*
1651 * Ok, this is the main fork-routine.
1652 *
1653 * It copies the process, and if successful kick-starts
1654 * it and waits for it to finish using the VM if required.
1655 */
1656 long do_fork(unsigned long clone_flags,
1657 unsigned long stack_start,
1658 unsigned long stack_size,
1659 int __user *parent_tidptr,
1660 int __user *child_tidptr)
1661 {
1662 struct task_struct *p;
1663 int trace = 0;
1664 long nr;
1665
1666 /*
1667 * Do some preliminary argument and permissions checking before we
1668 * actually start allocating stuff
1669 */
1670 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1671 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1672 return -EINVAL;
1673 }
1674
1675 /*
1676 * Determine whether and which event to report to ptracer. When
1677 * called from kernel_thread or CLONE_UNTRACED is explicitly
1678 * requested, no event is reported; otherwise, report if the event
1679 * for the type of forking is enabled.
1680 */
1681 if (!(clone_flags & CLONE_UNTRACED)) {
1682 if (clone_flags & CLONE_VFORK)
1683 trace = PTRACE_EVENT_VFORK;
1684 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1685 trace = PTRACE_EVENT_CLONE;
1686 else
1687 trace = PTRACE_EVENT_FORK;
1688
1689 if (likely(!ptrace_event_enabled(current, trace)))
1690 trace = 0;
1691 }
1692
1693 p = copy_process(clone_flags, stack_start, stack_size,
1694 child_tidptr, NULL, trace);
1695 /*
1696 * Do this prior waking up the new thread - the thread pointer
1697 * might get invalid after that point, if the thread exits quickly.
1698 */
1699 if (!IS_ERR(p)) {
1700 struct completion vfork;
1701 struct pid *pid;
1702
1703 trace_sched_process_fork(current, p);
1704
1705 pid = get_task_pid(p, PIDTYPE_PID);
1706 nr = pid_vnr(pid);
1707
1708 if (clone_flags & CLONE_PARENT_SETTID)
1709 put_user(nr, parent_tidptr);
1710
1711 if (clone_flags & CLONE_VFORK) {
1712 p->vfork_done = &vfork;
1713 init_completion(&vfork);
1714 get_task_struct(p);
1715 }
1716
1717 wake_up_new_task(p);
1718
1719 /* forking complete and child started to run, tell ptracer */
1720 if (unlikely(trace))
1721 ptrace_event_pid(trace, pid);
1722
1723 if (clone_flags & CLONE_VFORK) {
1724 if (!wait_for_vfork_done(p, &vfork))
1725 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1726 }
1727
1728 put_pid(pid);
1729 } else {
1730 nr = PTR_ERR(p);
1731 }
1732 return nr;
1733 }
1734
1735 /*
1736 * Create a kernel thread.
1737 */
1738 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1739 {
1740 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1741 (unsigned long)arg, NULL, NULL);
1742 }
1743
1744 #ifdef __ARCH_WANT_SYS_FORK
1745 SYSCALL_DEFINE0(fork)
1746 {
1747 #ifdef CONFIG_MMU
1748 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1749 #else
1750 /* can not support in nommu mode */
1751 return(-EINVAL);
1752 #endif
1753 }
1754 #endif
1755
1756 #ifdef __ARCH_WANT_SYS_VFORK
1757 SYSCALL_DEFINE0(vfork)
1758 {
1759 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1760 0, NULL, NULL);
1761 }
1762 #endif
1763
1764 #ifdef __ARCH_WANT_SYS_CLONE
1765 #ifdef CONFIG_CLONE_BACKWARDS
1766 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1767 int __user *, parent_tidptr,
1768 int, tls_val,
1769 int __user *, child_tidptr)
1770 #elif defined(CONFIG_CLONE_BACKWARDS2)
1771 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1772 int __user *, parent_tidptr,
1773 int __user *, child_tidptr,
1774 int, tls_val)
1775 #elif defined(CONFIG_CLONE_BACKWARDS3)
1776 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1777 int, stack_size,
1778 int __user *, parent_tidptr,
1779 int __user *, child_tidptr,
1780 int, tls_val)
1781 #else
1782 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1783 int __user *, parent_tidptr,
1784 int __user *, child_tidptr,
1785 int, tls_val)
1786 #endif
1787 {
1788 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1789 }
1790 #endif
1791
1792 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1793 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1794 #endif
1795
1796 static void sighand_ctor(void *data)
1797 {
1798 struct sighand_struct *sighand = data;
1799
1800 spin_lock_init(&sighand->siglock);
1801 init_waitqueue_head(&sighand->signalfd_wqh);
1802 }
1803
1804 void __init proc_caches_init(void)
1805 {
1806 sighand_cachep = kmem_cache_create("sighand_cache",
1807 sizeof(struct sighand_struct), 0,
1808 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1809 SLAB_NOTRACK, sighand_ctor);
1810 signal_cachep = kmem_cache_create("signal_cache",
1811 sizeof(struct signal_struct), 0,
1812 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1813 files_cachep = kmem_cache_create("files_cache",
1814 sizeof(struct files_struct), 0,
1815 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1816 fs_cachep = kmem_cache_create("fs_cache",
1817 sizeof(struct fs_struct), 0,
1818 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1819 /*
1820 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1821 * whole struct cpumask for the OFFSTACK case. We could change
1822 * this to *only* allocate as much of it as required by the
1823 * maximum number of CPU's we can ever have. The cpumask_allocation
1824 * is at the end of the structure, exactly for that reason.
1825 */
1826 mm_cachep = kmem_cache_create("mm_struct",
1827 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1828 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1829 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1830 mmap_init();
1831 nsproxy_cache_init();
1832 }
1833
1834 /*
1835 * Check constraints on flags passed to the unshare system call.
1836 */
1837 static int check_unshare_flags(unsigned long unshare_flags)
1838 {
1839 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1840 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1841 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1842 CLONE_NEWUSER|CLONE_NEWPID))
1843 return -EINVAL;
1844 /*
1845 * Not implemented, but pretend it works if there is nothing
1846 * to unshare. Note that unsharing the address space or the
1847 * signal handlers also need to unshare the signal queues (aka
1848 * CLONE_THREAD).
1849 */
1850 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1851 if (!thread_group_empty(current))
1852 return -EINVAL;
1853 }
1854 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1855 if (atomic_read(&current->sighand->count) > 1)
1856 return -EINVAL;
1857 }
1858 if (unshare_flags & CLONE_VM) {
1859 if (!current_is_single_threaded())
1860 return -EINVAL;
1861 }
1862
1863 return 0;
1864 }
1865
1866 /*
1867 * Unshare the filesystem structure if it is being shared
1868 */
1869 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1870 {
1871 struct fs_struct *fs = current->fs;
1872
1873 if (!(unshare_flags & CLONE_FS) || !fs)
1874 return 0;
1875
1876 /* don't need lock here; in the worst case we'll do useless copy */
1877 if (fs->users == 1)
1878 return 0;
1879
1880 *new_fsp = copy_fs_struct(fs);
1881 if (!*new_fsp)
1882 return -ENOMEM;
1883
1884 return 0;
1885 }
1886
1887 /*
1888 * Unshare file descriptor table if it is being shared
1889 */
1890 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1891 {
1892 struct files_struct *fd = current->files;
1893 int error = 0;
1894
1895 if ((unshare_flags & CLONE_FILES) &&
1896 (fd && atomic_read(&fd->count) > 1)) {
1897 *new_fdp = dup_fd(fd, &error);
1898 if (!*new_fdp)
1899 return error;
1900 }
1901
1902 return 0;
1903 }
1904
1905 /*
1906 * unshare allows a process to 'unshare' part of the process
1907 * context which was originally shared using clone. copy_*
1908 * functions used by do_fork() cannot be used here directly
1909 * because they modify an inactive task_struct that is being
1910 * constructed. Here we are modifying the current, active,
1911 * task_struct.
1912 */
1913 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1914 {
1915 struct fs_struct *fs, *new_fs = NULL;
1916 struct files_struct *fd, *new_fd = NULL;
1917 struct cred *new_cred = NULL;
1918 struct nsproxy *new_nsproxy = NULL;
1919 int do_sysvsem = 0;
1920 int err;
1921
1922 /*
1923 * If unsharing a user namespace must also unshare the thread.
1924 */
1925 if (unshare_flags & CLONE_NEWUSER)
1926 unshare_flags |= CLONE_THREAD | CLONE_FS;
1927 /*
1928 * If unsharing a pid namespace must also unshare the thread.
1929 */
1930 if (unshare_flags & CLONE_NEWPID)
1931 unshare_flags |= CLONE_THREAD;
1932 /*
1933 * If unsharing vm, must also unshare signal handlers.
1934 */
1935 if (unshare_flags & CLONE_VM)
1936 unshare_flags |= CLONE_SIGHAND;
1937 /*
1938 * If unsharing a signal handlers, must also unshare the signal queues.
1939 */
1940 if (unshare_flags & CLONE_SIGHAND)
1941 unshare_flags |= CLONE_THREAD;
1942 /*
1943 * If unsharing namespace, must also unshare filesystem information.
1944 */
1945 if (unshare_flags & CLONE_NEWNS)
1946 unshare_flags |= CLONE_FS;
1947
1948 err = check_unshare_flags(unshare_flags);
1949 if (err)
1950 goto bad_unshare_out;
1951 /*
1952 * CLONE_NEWIPC must also detach from the undolist: after switching
1953 * to a new ipc namespace, the semaphore arrays from the old
1954 * namespace are unreachable.
1955 */
1956 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1957 do_sysvsem = 1;
1958 err = unshare_fs(unshare_flags, &new_fs);
1959 if (err)
1960 goto bad_unshare_out;
1961 err = unshare_fd(unshare_flags, &new_fd);
1962 if (err)
1963 goto bad_unshare_cleanup_fs;
1964 err = unshare_userns(unshare_flags, &new_cred);
1965 if (err)
1966 goto bad_unshare_cleanup_fd;
1967 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1968 new_cred, new_fs);
1969 if (err)
1970 goto bad_unshare_cleanup_cred;
1971
1972 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1973 if (do_sysvsem) {
1974 /*
1975 * CLONE_SYSVSEM is equivalent to sys_exit().
1976 */
1977 exit_sem(current);
1978 }
1979
1980 if (new_nsproxy)
1981 switch_task_namespaces(current, new_nsproxy);
1982
1983 task_lock(current);
1984
1985 if (new_fs) {
1986 fs = current->fs;
1987 spin_lock(&fs->lock);
1988 current->fs = new_fs;
1989 if (--fs->users)
1990 new_fs = NULL;
1991 else
1992 new_fs = fs;
1993 spin_unlock(&fs->lock);
1994 }
1995
1996 if (new_fd) {
1997 fd = current->files;
1998 current->files = new_fd;
1999 new_fd = fd;
2000 }
2001
2002 task_unlock(current);
2003
2004 if (new_cred) {
2005 /* Install the new user namespace */
2006 commit_creds(new_cred);
2007 new_cred = NULL;
2008 }
2009 }
2010
2011 bad_unshare_cleanup_cred:
2012 if (new_cred)
2013 put_cred(new_cred);
2014 bad_unshare_cleanup_fd:
2015 if (new_fd)
2016 put_files_struct(new_fd);
2017
2018 bad_unshare_cleanup_fs:
2019 if (new_fs)
2020 free_fs_struct(new_fs);
2021
2022 bad_unshare_out:
2023 return err;
2024 }
2025
2026 /*
2027 * Helper to unshare the files of the current task.
2028 * We don't want to expose copy_files internals to
2029 * the exec layer of the kernel.
2030 */
2031
2032 int unshare_files(struct files_struct **displaced)
2033 {
2034 struct task_struct *task = current;
2035 struct files_struct *copy = NULL;
2036 int error;
2037
2038 error = unshare_fd(CLONE_FILES, &copy);
2039 if (error || !copy) {
2040 *displaced = NULL;
2041 return error;
2042 }
2043 *displaced = task->files;
2044 task_lock(task);
2045 task->files = copy;
2046 task_unlock(task);
2047 return 0;
2048 }