net: add sk_fullsock() helper
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / include / net / sock.h
1 /* Copyright (c) 2015 Samsung Electronics Co., Ltd. */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 *
35 *
36 * This program is free software; you can redistribute it and/or
37 * modify it under the terms of the GNU General Public License
38 * as published by the Free Software Foundation; either version
39 * 2 of the License, or (at your option) any later version.
40 */
41 /*
42 * Changes:
43 * KwnagHyun Kim <kh0304.kim@samsung.com> 2015/07/08
44 * Baesung Park <baesung.park@samsung.com> 2015/07/08
45 * Vignesh Saravanaperumal <vignesh1.s@samsung.com> 2015/07/08
46 * Add codes to share UID/PID information
47 *
48 */
49
50 #ifndef _SOCK_H
51 #define _SOCK_H
52
53 #include <linux/hardirq.h>
54 #include <linux/kernel.h>
55 #include <linux/list.h>
56 #include <linux/list_nulls.h>
57 #include <linux/timer.h>
58 #include <linux/cache.h>
59 #include <linux/bitops.h>
60 #include <linux/lockdep.h>
61 #include <linux/netdevice.h>
62 #include <linux/skbuff.h> /* struct sk_buff */
63 #include <linux/mm.h>
64 #include <linux/security.h>
65 #include <linux/slab.h>
66 #include <linux/uaccess.h>
67 #include <linux/memcontrol.h>
68 #include <linux/res_counter.h>
69 #include <linux/static_key.h>
70 #include <linux/aio.h>
71 #include <linux/sched.h>
72
73 #include <linux/filter.h>
74 #include <linux/rculist_nulls.h>
75 #include <linux/poll.h>
76
77 #include <linux/atomic.h>
78 #include <net/dst.h>
79 #include <net/checksum.h>
80 #include <net/tcp_states.h>
81
82 #define TCP_BACKLOG_SCALE 4
83
84 struct cgroup;
85 struct cgroup_subsys;
86 #ifdef CONFIG_NET
87 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
88 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
89 #else
90 static inline
91 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
92 {
93 return 0;
94 }
95 static inline
96 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
97 {
98 }
99 #endif
100 /*
101 * This structure really needs to be cleaned up.
102 * Most of it is for TCP, and not used by any of
103 * the other protocols.
104 */
105
106 /* Define this to get the SOCK_DBG debugging facility. */
107 #define SOCK_DEBUGGING
108 #ifdef SOCK_DEBUGGING
109 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
110 printk(KERN_DEBUG msg); } while (0)
111 #else
112 /* Validate arguments and do nothing */
113 static inline __printf(2, 3)
114 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
115 {
116 }
117 #endif
118
119 /* This is the per-socket lock. The spinlock provides a synchronization
120 * between user contexts and software interrupt processing, whereas the
121 * mini-semaphore synchronizes multiple users amongst themselves.
122 */
123 typedef struct {
124 spinlock_t slock;
125 int owned;
126 wait_queue_head_t wq;
127 /*
128 * We express the mutex-alike socket_lock semantics
129 * to the lock validator by explicitly managing
130 * the slock as a lock variant (in addition to
131 * the slock itself):
132 */
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 struct lockdep_map dep_map;
135 #endif
136 } socket_lock_t;
137
138 struct sock;
139 struct proto;
140 struct net;
141
142 typedef __u32 __bitwise __portpair;
143 typedef __u64 __bitwise __addrpair;
144
145 /**
146 * struct sock_common - minimal network layer representation of sockets
147 * @skc_daddr: Foreign IPv4 addr
148 * @skc_rcv_saddr: Bound local IPv4 addr
149 * @skc_hash: hash value used with various protocol lookup tables
150 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
151 * @skc_dport: placeholder for inet_dport/tw_dport
152 * @skc_num: placeholder for inet_num/tw_num
153 * @skc_family: network address family
154 * @skc_state: Connection state
155 * @skc_reuse: %SO_REUSEADDR setting
156 * @skc_reuseport: %SO_REUSEPORT setting
157 * @skc_bound_dev_if: bound device index if != 0
158 * @skc_bind_node: bind hash linkage for various protocol lookup tables
159 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
160 * @skc_prot: protocol handlers inside a network family
161 * @skc_net: reference to the network namespace of this socket
162 * @skc_node: main hash linkage for various protocol lookup tables
163 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
164 * @skc_tx_queue_mapping: tx queue number for this connection
165 * @skc_refcnt: reference count
166 *
167 * This is the minimal network layer representation of sockets, the header
168 * for struct sock and struct inet_timewait_sock.
169 */
170 struct sock_common {
171 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
172 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
173 */
174 union {
175 __addrpair skc_addrpair;
176 struct {
177 __be32 skc_daddr;
178 __be32 skc_rcv_saddr;
179 };
180 };
181 union {
182 unsigned int skc_hash;
183 __u16 skc_u16hashes[2];
184 };
185 /* skc_dport && skc_num must be grouped as well */
186 union {
187 __portpair skc_portpair;
188 struct {
189 __be16 skc_dport;
190 __u16 skc_num;
191 };
192 };
193
194 unsigned short skc_family;
195 volatile unsigned char skc_state;
196 unsigned char skc_reuse:4;
197 unsigned char skc_reuseport:4;
198 int skc_bound_dev_if;
199 union {
200 struct hlist_node skc_bind_node;
201 struct hlist_nulls_node skc_portaddr_node;
202 };
203 struct proto *skc_prot;
204 #ifdef CONFIG_NET_NS
205 struct net *skc_net;
206 #endif
207 /*
208 * fields between dontcopy_begin/dontcopy_end
209 * are not copied in sock_copy()
210 */
211 /* private: */
212 int skc_dontcopy_begin[0];
213 /* public: */
214 union {
215 struct hlist_node skc_node;
216 struct hlist_nulls_node skc_nulls_node;
217 };
218 int skc_tx_queue_mapping;
219 atomic_t skc_refcnt;
220 /* private: */
221 int skc_dontcopy_end[0];
222 /* public: */
223 };
224
225 struct cg_proto;
226 /**
227 * struct sock - network layer representation of sockets
228 * @__sk_common: shared layout with inet_timewait_sock
229 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
230 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
231 * @sk_lock: synchronizer
232 * @sk_rcvbuf: size of receive buffer in bytes
233 * @sk_wq: sock wait queue and async head
234 * @sk_rx_dst: receive input route used by early tcp demux
235 * @sk_dst_cache: destination cache
236 * @sk_dst_lock: destination cache lock
237 * @sk_policy: flow policy
238 * @sk_receive_queue: incoming packets
239 * @sk_wmem_alloc: transmit queue bytes committed
240 * @sk_write_queue: Packet sending queue
241 * @sk_async_wait_queue: DMA copied packets
242 * @sk_omem_alloc: "o" is "option" or "other"
243 * @sk_wmem_queued: persistent queue size
244 * @sk_forward_alloc: space allocated forward
245 * @sk_allocation: allocation mode
246 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
247 * @sk_sndbuf: size of send buffer in bytes
248 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
249 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
250 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
251 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
252 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
253 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
254 * @sk_gso_max_size: Maximum GSO segment size to build
255 * @sk_gso_max_segs: Maximum number of GSO segments
256 * @sk_lingertime: %SO_LINGER l_linger setting
257 * @sk_backlog: always used with the per-socket spinlock held
258 * @sk_callback_lock: used with the callbacks in the end of this struct
259 * @sk_error_queue: rarely used
260 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
261 * IPV6_ADDRFORM for instance)
262 * @sk_err: last error
263 * @sk_err_soft: errors that don't cause failure but are the cause of a
264 * persistent failure not just 'timed out'
265 * @sk_drops: raw/udp drops counter
266 * @sk_ack_backlog: current listen backlog
267 * @sk_max_ack_backlog: listen backlog set in listen()
268 * @sk_priority: %SO_PRIORITY setting
269 * @sk_cgrp_prioidx: socket group's priority map index
270 * @sk_type: socket type (%SOCK_STREAM, etc)
271 * @sk_protocol: which protocol this socket belongs in this network family
272 * @sk_peer_pid: &struct pid for this socket's peer
273 * @sk_peer_cred: %SO_PEERCRED setting
274 * @sk_rcvlowat: %SO_RCVLOWAT setting
275 * @sk_rcvtimeo: %SO_RCVTIMEO setting
276 * @sk_sndtimeo: %SO_SNDTIMEO setting
277 * @sk_rxhash: flow hash received from netif layer
278 * @sk_filter: socket filtering instructions
279 * @sk_protinfo: private area, net family specific, when not using slab
280 * @sk_timer: sock cleanup timer
281 * @sk_stamp: time stamp of last packet received
282 * @sk_socket: Identd and reporting IO signals
283 * @sk_user_data: RPC layer private data
284 * @sk_frag: cached page frag
285 * @sk_peek_off: current peek_offset value
286 * @sk_send_head: front of stuff to transmit
287 * @sk_security: used by security modules
288 * @sk_mark: generic packet mark
289 * @sk_classid: this socket's cgroup classid
290 * @sk_cgrp: this socket's cgroup-specific proto data
291 * @sk_write_pending: a write to stream socket waits to start
292 * @sk_state_change: callback to indicate change in the state of the sock
293 * @sk_data_ready: callback to indicate there is data to be processed
294 * @sk_write_space: callback to indicate there is bf sending space available
295 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
296 * @sk_backlog_rcv: callback to process the backlog
297 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
298 */
299 struct sock {
300 /*
301 * Now struct inet_timewait_sock also uses sock_common, so please just
302 * don't add nothing before this first member (__sk_common) --acme
303 */
304 struct sock_common __sk_common;
305 #define sk_node __sk_common.skc_node
306 #define sk_nulls_node __sk_common.skc_nulls_node
307 #define sk_refcnt __sk_common.skc_refcnt
308 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
309
310 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
311 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
312 #define sk_hash __sk_common.skc_hash
313 #define sk_family __sk_common.skc_family
314 #define sk_state __sk_common.skc_state
315 #define sk_reuse __sk_common.skc_reuse
316 #define sk_reuseport __sk_common.skc_reuseport
317 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
318 #define sk_bind_node __sk_common.skc_bind_node
319 #define sk_prot __sk_common.skc_prot
320 #define sk_net __sk_common.skc_net
321 socket_lock_t sk_lock;
322 struct sk_buff_head sk_receive_queue;
323 /*
324 * The backlog queue is special, it is always used with
325 * the per-socket spinlock held and requires low latency
326 * access. Therefore we special case it's implementation.
327 * Note : rmem_alloc is in this structure to fill a hole
328 * on 64bit arches, not because its logically part of
329 * backlog.
330 */
331 struct {
332 atomic_t rmem_alloc;
333 int len;
334 struct sk_buff *head;
335 struct sk_buff *tail;
336 } sk_backlog;
337 #define sk_rmem_alloc sk_backlog.rmem_alloc
338 int sk_forward_alloc;
339 #ifdef CONFIG_RPS
340 __u32 sk_rxhash;
341 #endif
342 atomic_t sk_drops;
343 int sk_rcvbuf;
344
345 struct sk_filter __rcu *sk_filter;
346 struct socket_wq __rcu *sk_wq;
347
348 #ifdef CONFIG_NET_DMA
349 struct sk_buff_head sk_async_wait_queue;
350 #endif
351
352 #ifdef CONFIG_XFRM
353 struct xfrm_policy *sk_policy[2];
354 #endif
355 unsigned long sk_flags;
356 struct dst_entry *sk_rx_dst;
357 struct dst_entry __rcu *sk_dst_cache;
358 spinlock_t sk_dst_lock;
359 atomic_t sk_wmem_alloc;
360 atomic_t sk_omem_alloc;
361 int sk_sndbuf;
362 struct sk_buff_head sk_write_queue;
363 kmemcheck_bitfield_begin(flags);
364 unsigned int sk_shutdown : 2,
365 sk_no_check : 2,
366 sk_userlocks : 4,
367 sk_protocol : 8,
368 #define SK_PROTOCOL_MAX U8_MAX
369 sk_type : 16;
370 kmemcheck_bitfield_end(flags);
371 int sk_wmem_queued;
372 gfp_t sk_allocation;
373 u32 sk_pacing_rate; /* bytes per second */
374 netdev_features_t sk_route_caps;
375 netdev_features_t sk_route_nocaps;
376 int sk_gso_type;
377 unsigned int sk_gso_max_size;
378 u16 sk_gso_max_segs;
379 int sk_rcvlowat;
380 unsigned long sk_lingertime;
381 struct sk_buff_head sk_error_queue;
382 struct proto *sk_prot_creator;
383 rwlock_t sk_callback_lock;
384 int sk_err,
385 sk_err_soft;
386 unsigned short sk_ack_backlog;
387 unsigned short sk_max_ack_backlog;
388 __u32 sk_priority;
389 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
390 __u32 sk_cgrp_prioidx;
391 #endif
392 struct pid *sk_peer_pid;
393 const struct cred *sk_peer_cred;
394 long sk_rcvtimeo;
395 long sk_sndtimeo;
396 void *sk_protinfo;
397 struct timer_list sk_timer;
398 ktime_t sk_stamp;
399 struct socket *sk_socket;
400 void *sk_user_data;
401 struct page_frag sk_frag;
402 struct sk_buff *sk_send_head;
403 __s32 sk_peek_off;
404 int sk_write_pending;
405 #ifdef CONFIG_SECURITY
406 void *sk_security;
407 #endif
408 __u32 sk_mark;
409 kuid_t sk_uid;
410 u32 sk_classid;
411 struct cg_proto *sk_cgrp;
412 uid_t knox_uid;
413 pid_t knox_pid;
414 void (*sk_state_change)(struct sock *sk);
415 void (*sk_data_ready)(struct sock *sk, int bytes);
416 void (*sk_write_space)(struct sock *sk);
417 void (*sk_error_report)(struct sock *sk);
418 int (*sk_backlog_rcv)(struct sock *sk,
419 struct sk_buff *skb);
420 void (*sk_destruct)(struct sock *sk);
421 };
422
423 /*
424 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
425 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
426 * on a socket means that the socket will reuse everybody else's port
427 * without looking at the other's sk_reuse value.
428 */
429
430 #define SK_NO_REUSE 0
431 #define SK_CAN_REUSE 1
432 #define SK_FORCE_REUSE 2
433
434 static inline int sk_peek_offset(struct sock *sk, int flags)
435 {
436 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
437 return sk->sk_peek_off;
438 else
439 return 0;
440 }
441
442 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
443 {
444 if (sk->sk_peek_off >= 0) {
445 if (sk->sk_peek_off >= val)
446 sk->sk_peek_off -= val;
447 else
448 sk->sk_peek_off = 0;
449 }
450 }
451
452 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
453 {
454 if (sk->sk_peek_off >= 0)
455 sk->sk_peek_off += val;
456 }
457
458 /*
459 * Hashed lists helper routines
460 */
461 static inline struct sock *sk_entry(const struct hlist_node *node)
462 {
463 return hlist_entry(node, struct sock, sk_node);
464 }
465
466 static inline struct sock *__sk_head(const struct hlist_head *head)
467 {
468 return hlist_entry(head->first, struct sock, sk_node);
469 }
470
471 static inline struct sock *sk_head(const struct hlist_head *head)
472 {
473 return hlist_empty(head) ? NULL : __sk_head(head);
474 }
475
476 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
477 {
478 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
479 }
480
481 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
482 {
483 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
484 }
485
486 static inline struct sock *sk_next(const struct sock *sk)
487 {
488 return sk->sk_node.next ?
489 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
490 }
491
492 static inline struct sock *sk_nulls_next(const struct sock *sk)
493 {
494 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
495 hlist_nulls_entry(sk->sk_nulls_node.next,
496 struct sock, sk_nulls_node) :
497 NULL;
498 }
499
500 static inline bool sk_unhashed(const struct sock *sk)
501 {
502 return hlist_unhashed(&sk->sk_node);
503 }
504
505 static inline bool sk_hashed(const struct sock *sk)
506 {
507 return !sk_unhashed(sk);
508 }
509
510 static inline void sk_node_init(struct hlist_node *node)
511 {
512 node->pprev = NULL;
513 }
514
515 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
516 {
517 node->pprev = NULL;
518 }
519
520 static inline void __sk_del_node(struct sock *sk)
521 {
522 __hlist_del(&sk->sk_node);
523 }
524
525 /* NB: equivalent to hlist_del_init_rcu */
526 static inline bool __sk_del_node_init(struct sock *sk)
527 {
528 if (sk_hashed(sk)) {
529 __sk_del_node(sk);
530 sk_node_init(&sk->sk_node);
531 return true;
532 }
533 return false;
534 }
535
536 /* Grab socket reference count. This operation is valid only
537 when sk is ALREADY grabbed f.e. it is found in hash table
538 or a list and the lookup is made under lock preventing hash table
539 modifications.
540 */
541
542 static inline void sock_hold(struct sock *sk)
543 {
544 atomic_inc(&sk->sk_refcnt);
545 }
546
547 /* Ungrab socket in the context, which assumes that socket refcnt
548 cannot hit zero, f.e. it is true in context of any socketcall.
549 */
550 static inline void __sock_put(struct sock *sk)
551 {
552 atomic_dec(&sk->sk_refcnt);
553 }
554
555 static inline bool sk_del_node_init(struct sock *sk)
556 {
557 bool rc = __sk_del_node_init(sk);
558
559 if (rc) {
560 /* paranoid for a while -acme */
561 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
562 __sock_put(sk);
563 }
564 return rc;
565 }
566 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
567
568 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
569 {
570 if (sk_hashed(sk)) {
571 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
572 return true;
573 }
574 return false;
575 }
576
577 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
578 {
579 bool rc = __sk_nulls_del_node_init_rcu(sk);
580
581 if (rc) {
582 /* paranoid for a while -acme */
583 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
584 __sock_put(sk);
585 }
586 return rc;
587 }
588
589 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
590 {
591 hlist_add_head(&sk->sk_node, list);
592 }
593
594 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
595 {
596 sock_hold(sk);
597 __sk_add_node(sk, list);
598 }
599
600 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
601 {
602 sock_hold(sk);
603 hlist_add_head_rcu(&sk->sk_node, list);
604 }
605
606 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
607 {
608 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
609 }
610
611 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
612 {
613 sock_hold(sk);
614 __sk_nulls_add_node_rcu(sk, list);
615 }
616
617 static inline void __sk_del_bind_node(struct sock *sk)
618 {
619 __hlist_del(&sk->sk_bind_node);
620 }
621
622 static inline void sk_add_bind_node(struct sock *sk,
623 struct hlist_head *list)
624 {
625 hlist_add_head(&sk->sk_bind_node, list);
626 }
627
628 #define sk_for_each(__sk, list) \
629 hlist_for_each_entry(__sk, list, sk_node)
630 #define sk_for_each_rcu(__sk, list) \
631 hlist_for_each_entry_rcu(__sk, list, sk_node)
632 #define sk_nulls_for_each(__sk, node, list) \
633 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
634 #define sk_nulls_for_each_rcu(__sk, node, list) \
635 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
636 #define sk_for_each_from(__sk) \
637 hlist_for_each_entry_from(__sk, sk_node)
638 #define sk_nulls_for_each_from(__sk, node) \
639 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
640 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
641 #define sk_for_each_safe(__sk, tmp, list) \
642 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
643 #define sk_for_each_bound(__sk, list) \
644 hlist_for_each_entry(__sk, list, sk_bind_node)
645
646 static inline struct user_namespace *sk_user_ns(struct sock *sk)
647 {
648 /* Careful only use this in a context where these parameters
649 * can not change and must all be valid, such as recvmsg from
650 * userspace.
651 */
652 return sk->sk_socket->file->f_cred->user_ns;
653 }
654
655 /* Sock flags */
656 enum sock_flags {
657 SOCK_DEAD,
658 SOCK_DONE,
659 SOCK_URGINLINE,
660 SOCK_KEEPOPEN,
661 SOCK_LINGER,
662 SOCK_DESTROY,
663 SOCK_BROADCAST,
664 SOCK_TIMESTAMP,
665 SOCK_ZAPPED,
666 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
667 SOCK_DBG, /* %SO_DEBUG setting */
668 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
669 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
670 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
671 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
672 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
673 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
674 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
675 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
676 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
677 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
678 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
679 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
680 SOCK_FASYNC, /* fasync() active */
681 SOCK_RXQ_OVFL,
682 SOCK_ZEROCOPY, /* buffers from userspace */
683 SOCK_WIFI_STATUS, /* push wifi status to userspace */
684 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
685 * Will use last 4 bytes of packet sent from
686 * user-space instead.
687 */
688 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
689 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
690 };
691
692 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
693
694 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
695 {
696 nsk->sk_flags = osk->sk_flags;
697 }
698
699 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
700 {
701 __set_bit(flag, &sk->sk_flags);
702 }
703
704 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
705 {
706 __clear_bit(flag, &sk->sk_flags);
707 }
708
709 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
710 {
711 return test_bit(flag, &sk->sk_flags);
712 }
713
714 #ifdef CONFIG_NET
715 extern struct static_key memalloc_socks;
716 static inline int sk_memalloc_socks(void)
717 {
718 return static_key_false(&memalloc_socks);
719 }
720 #else
721
722 static inline int sk_memalloc_socks(void)
723 {
724 return 0;
725 }
726
727 #endif
728
729 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
730 {
731 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
732 }
733
734 static inline void sk_acceptq_removed(struct sock *sk)
735 {
736 sk->sk_ack_backlog--;
737 }
738
739 static inline void sk_acceptq_added(struct sock *sk)
740 {
741 sk->sk_ack_backlog++;
742 }
743
744 static inline bool sk_acceptq_is_full(const struct sock *sk)
745 {
746 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
747 }
748
749 /*
750 * Compute minimal free write space needed to queue new packets.
751 */
752 static inline int sk_stream_min_wspace(const struct sock *sk)
753 {
754 return sk->sk_wmem_queued >> 1;
755 }
756
757 static inline int sk_stream_wspace(const struct sock *sk)
758 {
759 return sk->sk_sndbuf - sk->sk_wmem_queued;
760 }
761
762 extern void sk_stream_write_space(struct sock *sk);
763
764 static inline bool sk_stream_memory_free(const struct sock *sk)
765 {
766 return sk->sk_wmem_queued < sk->sk_sndbuf;
767 }
768
769 /* OOB backlog add */
770 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
771 {
772 /* dont let skb dst not refcounted, we are going to leave rcu lock */
773 skb_dst_force(skb);
774
775 if (!sk->sk_backlog.tail)
776 sk->sk_backlog.head = skb;
777 else
778 sk->sk_backlog.tail->next = skb;
779
780 sk->sk_backlog.tail = skb;
781 skb->next = NULL;
782 }
783
784 /*
785 * Take into account size of receive queue and backlog queue
786 * Do not take into account this skb truesize,
787 * to allow even a single big packet to come.
788 */
789 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
790 unsigned int limit)
791 {
792 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
793
794 return qsize > limit;
795 }
796
797 /* The per-socket spinlock must be held here. */
798 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
799 unsigned int limit)
800 {
801 if (sk_rcvqueues_full(sk, skb, limit * TCP_BACKLOG_SCALE))
802 return -ENOBUFS;
803
804 /*
805 * If the skb was allocated from pfmemalloc reserves, only
806 * allow SOCK_MEMALLOC sockets to use it as this socket is
807 * helping free memory
808 */
809 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
810 return -ENOMEM;
811
812 __sk_add_backlog(sk, skb);
813 sk->sk_backlog.len += skb->truesize;
814 return 0;
815 }
816
817 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
818
819 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
820 {
821 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
822 return __sk_backlog_rcv(sk, skb);
823
824 return sk->sk_backlog_rcv(sk, skb);
825 }
826
827 static inline void sock_rps_record_flow(const struct sock *sk)
828 {
829 #ifdef CONFIG_RPS
830 struct rps_sock_flow_table *sock_flow_table;
831
832 rcu_read_lock();
833 sock_flow_table = rcu_dereference(rps_sock_flow_table);
834 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
835 rcu_read_unlock();
836 #endif
837 }
838
839 static inline void sock_rps_reset_flow(const struct sock *sk)
840 {
841 #ifdef CONFIG_RPS
842 struct rps_sock_flow_table *sock_flow_table;
843
844 rcu_read_lock();
845 sock_flow_table = rcu_dereference(rps_sock_flow_table);
846 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
847 rcu_read_unlock();
848 #endif
849 }
850
851 static inline void sock_rps_save_rxhash(struct sock *sk,
852 const struct sk_buff *skb)
853 {
854 #ifdef CONFIG_RPS
855 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
856 sock_rps_reset_flow(sk);
857 sk->sk_rxhash = skb->rxhash;
858 }
859 #endif
860 }
861
862 static inline void sock_rps_reset_rxhash(struct sock *sk)
863 {
864 #ifdef CONFIG_RPS
865 sock_rps_reset_flow(sk);
866 sk->sk_rxhash = 0;
867 #endif
868 }
869
870 #define sk_wait_event(__sk, __timeo, __condition) \
871 ({ int __rc; \
872 release_sock(__sk); \
873 __rc = __condition; \
874 if (!__rc) { \
875 *(__timeo) = schedule_timeout(*(__timeo)); \
876 } \
877 lock_sock(__sk); \
878 __rc = __condition; \
879 __rc; \
880 })
881
882 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
883 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
884 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
885 extern int sk_stream_error(struct sock *sk, int flags, int err);
886 extern void sk_stream_kill_queues(struct sock *sk);
887 extern void sk_set_memalloc(struct sock *sk);
888 extern void sk_clear_memalloc(struct sock *sk);
889
890 extern int sk_wait_data(struct sock *sk, long *timeo);
891
892 struct request_sock_ops;
893 struct timewait_sock_ops;
894 struct inet_hashinfo;
895 struct raw_hashinfo;
896 struct module;
897
898 /*
899 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
900 * un-modified. Special care is taken when initializing object to zero.
901 */
902 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
903 {
904 if (offsetof(struct sock, sk_node.next) != 0)
905 memset(sk, 0, offsetof(struct sock, sk_node.next));
906 memset(&sk->sk_node.pprev, 0,
907 size - offsetof(struct sock, sk_node.pprev));
908 }
909
910 /* Networking protocol blocks we attach to sockets.
911 * socket layer -> transport layer interface
912 * transport -> network interface is defined by struct inet_proto
913 */
914 struct proto {
915 void (*close)(struct sock *sk,
916 long timeout);
917 int (*connect)(struct sock *sk,
918 struct sockaddr *uaddr,
919 int addr_len);
920 int (*disconnect)(struct sock *sk, int flags);
921
922 struct sock * (*accept)(struct sock *sk, int flags, int *err);
923
924 int (*ioctl)(struct sock *sk, int cmd,
925 unsigned long arg);
926 int (*init)(struct sock *sk);
927 void (*destroy)(struct sock *sk);
928 void (*shutdown)(struct sock *sk, int how);
929 int (*setsockopt)(struct sock *sk, int level,
930 int optname, char __user *optval,
931 unsigned int optlen);
932 int (*getsockopt)(struct sock *sk, int level,
933 int optname, char __user *optval,
934 int __user *option);
935 #ifdef CONFIG_COMPAT
936 int (*compat_setsockopt)(struct sock *sk,
937 int level,
938 int optname, char __user *optval,
939 unsigned int optlen);
940 int (*compat_getsockopt)(struct sock *sk,
941 int level,
942 int optname, char __user *optval,
943 int __user *option);
944 int (*compat_ioctl)(struct sock *sk,
945 unsigned int cmd, unsigned long arg);
946 #endif
947 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
948 struct msghdr *msg, size_t len);
949 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
950 struct msghdr *msg,
951 size_t len, int noblock, int flags,
952 int *addr_len);
953 int (*sendpage)(struct sock *sk, struct page *page,
954 int offset, size_t size, int flags);
955 int (*bind)(struct sock *sk,
956 struct sockaddr *uaddr, int addr_len);
957
958 int (*backlog_rcv) (struct sock *sk,
959 struct sk_buff *skb);
960
961 void (*release_cb)(struct sock *sk);
962
963 /* Keeping track of sk's, looking them up, and port selection methods. */
964 void (*hash)(struct sock *sk);
965 void (*unhash)(struct sock *sk);
966 void (*rehash)(struct sock *sk);
967 int (*get_port)(struct sock *sk, unsigned short snum);
968 void (*clear_sk)(struct sock *sk, int size);
969
970 /* Keeping track of sockets in use */
971 #ifdef CONFIG_PROC_FS
972 unsigned int inuse_idx;
973 #endif
974
975 /* Memory pressure */
976 void (*enter_memory_pressure)(struct sock *sk);
977 atomic_long_t *memory_allocated; /* Current allocated memory. */
978 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
979 /*
980 * Pressure flag: try to collapse.
981 * Technical note: it is used by multiple contexts non atomically.
982 * All the __sk_mem_schedule() is of this nature: accounting
983 * is strict, actions are advisory and have some latency.
984 */
985 int *memory_pressure;
986 long *sysctl_mem;
987 int *sysctl_wmem;
988 int *sysctl_rmem;
989 int max_header;
990 bool no_autobind;
991
992 struct kmem_cache *slab;
993 unsigned int obj_size;
994 int slab_flags;
995
996 struct percpu_counter *orphan_count;
997
998 struct request_sock_ops *rsk_prot;
999 struct timewait_sock_ops *twsk_prot;
1000
1001 union {
1002 struct inet_hashinfo *hashinfo;
1003 struct udp_table *udp_table;
1004 struct raw_hashinfo *raw_hash;
1005 } h;
1006
1007 struct module *owner;
1008
1009 char name[32];
1010
1011 struct list_head node;
1012 #ifdef SOCK_REFCNT_DEBUG
1013 atomic_t socks;
1014 #endif
1015 #ifdef CONFIG_MEMCG_KMEM
1016 /*
1017 * cgroup specific init/deinit functions. Called once for all
1018 * protocols that implement it, from cgroups populate function.
1019 * This function has to setup any files the protocol want to
1020 * appear in the kmem cgroup filesystem.
1021 */
1022 int (*init_cgroup)(struct mem_cgroup *memcg,
1023 struct cgroup_subsys *ss);
1024 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1025 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1026 #endif
1027 int (*diag_destroy)(struct sock *sk, int err);
1028 };
1029
1030 /*
1031 * Bits in struct cg_proto.flags
1032 */
1033 enum cg_proto_flags {
1034 /* Currently active and new sockets should be assigned to cgroups */
1035 MEMCG_SOCK_ACTIVE,
1036 /* It was ever activated; we must disarm static keys on destruction */
1037 MEMCG_SOCK_ACTIVATED,
1038 };
1039
1040 struct cg_proto {
1041 void (*enter_memory_pressure)(struct sock *sk);
1042 struct res_counter *memory_allocated; /* Current allocated memory. */
1043 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1044 int *memory_pressure;
1045 long *sysctl_mem;
1046 unsigned long flags;
1047 /*
1048 * memcg field is used to find which memcg we belong directly
1049 * Each memcg struct can hold more than one cg_proto, so container_of
1050 * won't really cut.
1051 *
1052 * The elegant solution would be having an inverse function to
1053 * proto_cgroup in struct proto, but that means polluting the structure
1054 * for everybody, instead of just for memcg users.
1055 */
1056 struct mem_cgroup *memcg;
1057 };
1058
1059 extern int proto_register(struct proto *prot, int alloc_slab);
1060 extern void proto_unregister(struct proto *prot);
1061
1062 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1063 {
1064 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1065 }
1066
1067 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1068 {
1069 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1070 }
1071
1072 #ifdef SOCK_REFCNT_DEBUG
1073 static inline void sk_refcnt_debug_inc(struct sock *sk)
1074 {
1075 atomic_inc(&sk->sk_prot->socks);
1076 }
1077
1078 static inline void sk_refcnt_debug_dec(struct sock *sk)
1079 {
1080 atomic_dec(&sk->sk_prot->socks);
1081 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1082 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1083 }
1084
1085 static inline void sk_refcnt_debug_release(const struct sock *sk)
1086 {
1087 if (atomic_read(&sk->sk_refcnt) != 1)
1088 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1089 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1090 }
1091 #else /* SOCK_REFCNT_DEBUG */
1092 #define sk_refcnt_debug_inc(sk) do { } while (0)
1093 #define sk_refcnt_debug_dec(sk) do { } while (0)
1094 #define sk_refcnt_debug_release(sk) do { } while (0)
1095 #endif /* SOCK_REFCNT_DEBUG */
1096
1097 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1098 extern struct static_key memcg_socket_limit_enabled;
1099 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1100 struct cg_proto *cg_proto)
1101 {
1102 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1103 }
1104 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1105 #else
1106 #define mem_cgroup_sockets_enabled 0
1107 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1108 struct cg_proto *cg_proto)
1109 {
1110 return NULL;
1111 }
1112 #endif
1113
1114
1115 static inline bool sk_has_memory_pressure(const struct sock *sk)
1116 {
1117 return sk->sk_prot->memory_pressure != NULL;
1118 }
1119
1120 static inline bool sk_under_memory_pressure(const struct sock *sk)
1121 {
1122 if (!sk->sk_prot->memory_pressure)
1123 return false;
1124
1125 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1126 return !!*sk->sk_cgrp->memory_pressure;
1127
1128 return !!*sk->sk_prot->memory_pressure;
1129 }
1130
1131 static inline void sk_leave_memory_pressure(struct sock *sk)
1132 {
1133 int *memory_pressure = sk->sk_prot->memory_pressure;
1134
1135 if (!memory_pressure)
1136 return;
1137
1138 if (*memory_pressure)
1139 *memory_pressure = 0;
1140
1141 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1142 struct cg_proto *cg_proto = sk->sk_cgrp;
1143 struct proto *prot = sk->sk_prot;
1144
1145 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1146 if (*cg_proto->memory_pressure)
1147 *cg_proto->memory_pressure = 0;
1148 }
1149
1150 }
1151
1152 static inline void sk_enter_memory_pressure(struct sock *sk)
1153 {
1154 if (!sk->sk_prot->enter_memory_pressure)
1155 return;
1156
1157 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1158 struct cg_proto *cg_proto = sk->sk_cgrp;
1159 struct proto *prot = sk->sk_prot;
1160
1161 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1162 cg_proto->enter_memory_pressure(sk);
1163 }
1164
1165 sk->sk_prot->enter_memory_pressure(sk);
1166 }
1167
1168 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1169 {
1170 long *prot = sk->sk_prot->sysctl_mem;
1171 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1172 prot = sk->sk_cgrp->sysctl_mem;
1173 return prot[index];
1174 }
1175
1176 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1177 unsigned long amt,
1178 int *parent_status)
1179 {
1180 struct res_counter *fail;
1181 int ret;
1182
1183 ret = res_counter_charge_nofail(prot->memory_allocated,
1184 amt << PAGE_SHIFT, &fail);
1185 if (ret < 0)
1186 *parent_status = OVER_LIMIT;
1187 }
1188
1189 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1190 unsigned long amt)
1191 {
1192 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1193 }
1194
1195 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1196 {
1197 u64 ret;
1198 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1199 return ret >> PAGE_SHIFT;
1200 }
1201
1202 static inline long
1203 sk_memory_allocated(const struct sock *sk)
1204 {
1205 struct proto *prot = sk->sk_prot;
1206 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1207 return memcg_memory_allocated_read(sk->sk_cgrp);
1208
1209 return atomic_long_read(prot->memory_allocated);
1210 }
1211
1212 static inline long
1213 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1214 {
1215 struct proto *prot = sk->sk_prot;
1216
1217 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1218 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1219 /* update the root cgroup regardless */
1220 atomic_long_add_return(amt, prot->memory_allocated);
1221 return memcg_memory_allocated_read(sk->sk_cgrp);
1222 }
1223
1224 return atomic_long_add_return(amt, prot->memory_allocated);
1225 }
1226
1227 static inline void
1228 sk_memory_allocated_sub(struct sock *sk, int amt)
1229 {
1230 struct proto *prot = sk->sk_prot;
1231
1232 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1233 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1234
1235 atomic_long_sub(amt, prot->memory_allocated);
1236 }
1237
1238 static inline void sk_sockets_allocated_dec(struct sock *sk)
1239 {
1240 struct proto *prot = sk->sk_prot;
1241
1242 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1243 struct cg_proto *cg_proto = sk->sk_cgrp;
1244
1245 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1246 percpu_counter_dec(cg_proto->sockets_allocated);
1247 }
1248
1249 percpu_counter_dec(prot->sockets_allocated);
1250 }
1251
1252 static inline void sk_sockets_allocated_inc(struct sock *sk)
1253 {
1254 struct proto *prot = sk->sk_prot;
1255
1256 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1257 struct cg_proto *cg_proto = sk->sk_cgrp;
1258
1259 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1260 percpu_counter_inc(cg_proto->sockets_allocated);
1261 }
1262
1263 percpu_counter_inc(prot->sockets_allocated);
1264 }
1265
1266 static inline int
1267 sk_sockets_allocated_read_positive(struct sock *sk)
1268 {
1269 struct proto *prot = sk->sk_prot;
1270
1271 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1272 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1273
1274 return percpu_counter_read_positive(prot->sockets_allocated);
1275 }
1276
1277 static inline int
1278 proto_sockets_allocated_sum_positive(struct proto *prot)
1279 {
1280 return percpu_counter_sum_positive(prot->sockets_allocated);
1281 }
1282
1283 static inline long
1284 proto_memory_allocated(struct proto *prot)
1285 {
1286 return atomic_long_read(prot->memory_allocated);
1287 }
1288
1289 static inline bool
1290 proto_memory_pressure(struct proto *prot)
1291 {
1292 if (!prot->memory_pressure)
1293 return false;
1294 return !!*prot->memory_pressure;
1295 }
1296
1297
1298 #ifdef CONFIG_PROC_FS
1299 /* Called with local bh disabled */
1300 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1301 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1302 #else
1303 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1304 int inc)
1305 {
1306 }
1307 #endif
1308
1309
1310 /* With per-bucket locks this operation is not-atomic, so that
1311 * this version is not worse.
1312 */
1313 static inline void __sk_prot_rehash(struct sock *sk)
1314 {
1315 sk->sk_prot->unhash(sk);
1316 sk->sk_prot->hash(sk);
1317 }
1318
1319 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1320
1321 /* About 10 seconds */
1322 #define SOCK_DESTROY_TIME (10*HZ)
1323
1324 /* Sockets 0-1023 can't be bound to unless you are superuser */
1325 #define PROT_SOCK 1024
1326
1327 #define SHUTDOWN_MASK 3
1328 #define RCV_SHUTDOWN 1
1329 #define SEND_SHUTDOWN 2
1330
1331 #define SOCK_SNDBUF_LOCK 1
1332 #define SOCK_RCVBUF_LOCK 2
1333 #define SOCK_BINDADDR_LOCK 4
1334 #define SOCK_BINDPORT_LOCK 8
1335
1336 /* sock_iocb: used to kick off async processing of socket ios */
1337 struct sock_iocb {
1338 struct list_head list;
1339
1340 int flags;
1341 int size;
1342 struct socket *sock;
1343 struct sock *sk;
1344 struct scm_cookie *scm;
1345 struct msghdr *msg, async_msg;
1346 struct kiocb *kiocb;
1347 };
1348
1349 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1350 {
1351 return (struct sock_iocb *)iocb->private;
1352 }
1353
1354 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1355 {
1356 return si->kiocb;
1357 }
1358
1359 struct socket_alloc {
1360 struct socket socket;
1361 struct inode vfs_inode;
1362 };
1363
1364 static inline struct socket *SOCKET_I(struct inode *inode)
1365 {
1366 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1367 }
1368
1369 static inline struct inode *SOCK_INODE(struct socket *socket)
1370 {
1371 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1372 }
1373
1374 /*
1375 * Functions for memory accounting
1376 */
1377 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1378 void __sk_mem_reclaim(struct sock *sk, int amount);
1379
1380 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1381 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1382 #define SK_MEM_SEND 0
1383 #define SK_MEM_RECV 1
1384
1385 static inline int sk_mem_pages(int amt)
1386 {
1387 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1388 }
1389
1390 static inline bool sk_has_account(struct sock *sk)
1391 {
1392 /* return true if protocol supports memory accounting */
1393 return !!sk->sk_prot->memory_allocated;
1394 }
1395
1396 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1397 {
1398 if (!sk_has_account(sk))
1399 return true;
1400 return size <= sk->sk_forward_alloc ||
1401 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1402 }
1403
1404 static inline bool
1405 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1406 {
1407 if (!sk_has_account(sk))
1408 return true;
1409 return size<= sk->sk_forward_alloc ||
1410 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1411 skb_pfmemalloc(skb);
1412 }
1413
1414 static inline void sk_mem_reclaim(struct sock *sk)
1415 {
1416 if (!sk_has_account(sk))
1417 return;
1418 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1419 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1420 }
1421
1422 static inline void sk_mem_reclaim_partial(struct sock *sk)
1423 {
1424 if (!sk_has_account(sk))
1425 return;
1426 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1427 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1428 }
1429
1430 static inline void sk_mem_charge(struct sock *sk, int size)
1431 {
1432 if (!sk_has_account(sk))
1433 return;
1434 sk->sk_forward_alloc -= size;
1435 }
1436
1437 static inline void sk_mem_uncharge(struct sock *sk, int size)
1438 {
1439 if (!sk_has_account(sk))
1440 return;
1441 sk->sk_forward_alloc += size;
1442
1443 /* Avoid a possible overflow.
1444 * TCP send queues can make this happen, if sk_mem_reclaim()
1445 * is not called and more than 2 GBytes are released at once.
1446 *
1447 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1448 * no need to hold that much forward allocation anyway.
1449 */
1450 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1451 __sk_mem_reclaim(sk, 1 << 20);
1452 }
1453
1454 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1455 {
1456 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1457 sk->sk_wmem_queued -= skb->truesize;
1458 sk_mem_uncharge(sk, skb->truesize);
1459 __kfree_skb(skb);
1460 }
1461
1462 /* Used by processes to "lock" a socket state, so that
1463 * interrupts and bottom half handlers won't change it
1464 * from under us. It essentially blocks any incoming
1465 * packets, so that we won't get any new data or any
1466 * packets that change the state of the socket.
1467 *
1468 * While locked, BH processing will add new packets to
1469 * the backlog queue. This queue is processed by the
1470 * owner of the socket lock right before it is released.
1471 *
1472 * Since ~2.3.5 it is also exclusive sleep lock serializing
1473 * accesses from user process context.
1474 */
1475 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1476
1477 static inline void sock_release_ownership(struct sock *sk)
1478 {
1479 sk->sk_lock.owned = 0;
1480 }
1481
1482 /*
1483 * Macro so as to not evaluate some arguments when
1484 * lockdep is not enabled.
1485 *
1486 * Mark both the sk_lock and the sk_lock.slock as a
1487 * per-address-family lock class.
1488 */
1489 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1490 do { \
1491 sk->sk_lock.owned = 0; \
1492 init_waitqueue_head(&sk->sk_lock.wq); \
1493 spin_lock_init(&(sk)->sk_lock.slock); \
1494 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1495 sizeof((sk)->sk_lock)); \
1496 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1497 (skey), (sname)); \
1498 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1499 } while (0)
1500
1501 extern void lock_sock_nested(struct sock *sk, int subclass);
1502
1503 static inline void lock_sock(struct sock *sk)
1504 {
1505 lock_sock_nested(sk, 0);
1506 }
1507
1508 extern void release_sock(struct sock *sk);
1509
1510 /* BH context may only use the following locking interface. */
1511 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1512 #define bh_lock_sock_nested(__sk) \
1513 spin_lock_nested(&((__sk)->sk_lock.slock), \
1514 SINGLE_DEPTH_NESTING)
1515 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1516
1517 extern bool lock_sock_fast(struct sock *sk);
1518 /**
1519 * unlock_sock_fast - complement of lock_sock_fast
1520 * @sk: socket
1521 * @slow: slow mode
1522 *
1523 * fast unlock socket for user context.
1524 * If slow mode is on, we call regular release_sock()
1525 */
1526 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1527 {
1528 if (slow)
1529 release_sock(sk);
1530 else
1531 spin_unlock_bh(&sk->sk_lock.slock);
1532 }
1533
1534
1535 extern struct sock *sk_alloc(struct net *net, int family,
1536 gfp_t priority,
1537 struct proto *prot);
1538 extern void sk_free(struct sock *sk);
1539 extern void sk_release_kernel(struct sock *sk);
1540 extern struct sock *sk_clone_lock(const struct sock *sk,
1541 const gfp_t priority);
1542
1543 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1544 unsigned long size, int force,
1545 gfp_t priority);
1546 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1547 unsigned long size, int force,
1548 gfp_t priority);
1549 extern void sock_wfree(struct sk_buff *skb);
1550 extern void sock_rfree(struct sk_buff *skb);
1551 extern void sock_edemux(struct sk_buff *skb);
1552
1553 extern int sock_setsockopt(struct socket *sock, int level,
1554 int op, char __user *optval,
1555 unsigned int optlen);
1556
1557 extern int sock_getsockopt(struct socket *sock, int level,
1558 int op, char __user *optval,
1559 int __user *optlen);
1560 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1561 unsigned long size,
1562 int noblock,
1563 int *errcode);
1564 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1565 unsigned long header_len,
1566 unsigned long data_len,
1567 int noblock,
1568 int *errcode);
1569 extern void *sock_kmalloc(struct sock *sk, int size,
1570 gfp_t priority);
1571 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1572 extern void sk_send_sigurg(struct sock *sk);
1573
1574 /*
1575 * Functions to fill in entries in struct proto_ops when a protocol
1576 * does not implement a particular function.
1577 */
1578 extern int sock_no_bind(struct socket *,
1579 struct sockaddr *, int);
1580 extern int sock_no_connect(struct socket *,
1581 struct sockaddr *, int, int);
1582 extern int sock_no_socketpair(struct socket *,
1583 struct socket *);
1584 extern int sock_no_accept(struct socket *,
1585 struct socket *, int);
1586 extern int sock_no_getname(struct socket *,
1587 struct sockaddr *, int *, int);
1588 extern unsigned int sock_no_poll(struct file *, struct socket *,
1589 struct poll_table_struct *);
1590 extern int sock_no_ioctl(struct socket *, unsigned int,
1591 unsigned long);
1592 extern int sock_no_listen(struct socket *, int);
1593 extern int sock_no_shutdown(struct socket *, int);
1594 extern int sock_no_getsockopt(struct socket *, int , int,
1595 char __user *, int __user *);
1596 extern int sock_no_setsockopt(struct socket *, int, int,
1597 char __user *, unsigned int);
1598 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1599 struct msghdr *, size_t);
1600 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1601 struct msghdr *, size_t, int);
1602 extern int sock_no_mmap(struct file *file,
1603 struct socket *sock,
1604 struct vm_area_struct *vma);
1605 extern ssize_t sock_no_sendpage(struct socket *sock,
1606 struct page *page,
1607 int offset, size_t size,
1608 int flags);
1609
1610 /*
1611 * Functions to fill in entries in struct proto_ops when a protocol
1612 * uses the inet style.
1613 */
1614 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1615 char __user *optval, int __user *optlen);
1616 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1617 struct msghdr *msg, size_t size, int flags);
1618 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1619 char __user *optval, unsigned int optlen);
1620 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1621 int optname, char __user *optval, int __user *optlen);
1622 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1623 int optname, char __user *optval, unsigned int optlen);
1624
1625 extern void sk_common_release(struct sock *sk);
1626
1627 /*
1628 * Default socket callbacks and setup code
1629 */
1630
1631 /* Initialise core socket variables */
1632 extern void sock_init_data(struct socket *sock, struct sock *sk);
1633
1634 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1635
1636 /**
1637 * sk_filter_release - release a socket filter
1638 * @fp: filter to remove
1639 *
1640 * Remove a filter from a socket and release its resources.
1641 */
1642
1643 static inline void sk_filter_release(struct sk_filter *fp)
1644 {
1645 if (atomic_dec_and_test(&fp->refcnt))
1646 call_rcu(&fp->rcu, sk_filter_release_rcu);
1647 }
1648
1649 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1650 {
1651 unsigned int size = sk_filter_len(fp);
1652
1653 atomic_sub(size, &sk->sk_omem_alloc);
1654 sk_filter_release(fp);
1655 }
1656
1657 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1658 {
1659 atomic_inc(&fp->refcnt);
1660 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1661 }
1662
1663 /*
1664 * Socket reference counting postulates.
1665 *
1666 * * Each user of socket SHOULD hold a reference count.
1667 * * Each access point to socket (an hash table bucket, reference from a list,
1668 * running timer, skb in flight MUST hold a reference count.
1669 * * When reference count hits 0, it means it will never increase back.
1670 * * When reference count hits 0, it means that no references from
1671 * outside exist to this socket and current process on current CPU
1672 * is last user and may/should destroy this socket.
1673 * * sk_free is called from any context: process, BH, IRQ. When
1674 * it is called, socket has no references from outside -> sk_free
1675 * may release descendant resources allocated by the socket, but
1676 * to the time when it is called, socket is NOT referenced by any
1677 * hash tables, lists etc.
1678 * * Packets, delivered from outside (from network or from another process)
1679 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1680 * when they sit in queue. Otherwise, packets will leak to hole, when
1681 * socket is looked up by one cpu and unhasing is made by another CPU.
1682 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1683 * (leak to backlog). Packet socket does all the processing inside
1684 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1685 * use separate SMP lock, so that they are prone too.
1686 */
1687
1688 /* Ungrab socket and destroy it, if it was the last reference. */
1689 static inline void sock_put(struct sock *sk)
1690 {
1691 if (atomic_dec_and_test(&sk->sk_refcnt))
1692 sk_free(sk);
1693 }
1694
1695 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1696 const int nested);
1697
1698 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1699 {
1700 sk->sk_tx_queue_mapping = tx_queue;
1701 }
1702
1703 static inline void sk_tx_queue_clear(struct sock *sk)
1704 {
1705 sk->sk_tx_queue_mapping = -1;
1706 }
1707
1708 static inline int sk_tx_queue_get(const struct sock *sk)
1709 {
1710 return sk ? sk->sk_tx_queue_mapping : -1;
1711 }
1712
1713 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1714 {
1715 sk_tx_queue_clear(sk);
1716 sk->sk_socket = sock;
1717 }
1718
1719 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1720 {
1721 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1722 return &rcu_dereference_raw(sk->sk_wq)->wait;
1723 }
1724 /* Detach socket from process context.
1725 * Announce socket dead, detach it from wait queue and inode.
1726 * Note that parent inode held reference count on this struct sock,
1727 * we do not release it in this function, because protocol
1728 * probably wants some additional cleanups or even continuing
1729 * to work with this socket (TCP).
1730 */
1731 static inline void sock_orphan(struct sock *sk)
1732 {
1733 write_lock_bh(&sk->sk_callback_lock);
1734 sock_set_flag(sk, SOCK_DEAD);
1735 sk_set_socket(sk, NULL);
1736 sk->sk_wq = NULL;
1737 write_unlock_bh(&sk->sk_callback_lock);
1738 }
1739
1740 static inline void sock_graft(struct sock *sk, struct socket *parent)
1741 {
1742 write_lock_bh(&sk->sk_callback_lock);
1743 sk->sk_wq = parent->wq;
1744 parent->sk = sk;
1745 sk_set_socket(sk, parent);
1746 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1747 security_sock_graft(sk, parent);
1748 write_unlock_bh(&sk->sk_callback_lock);
1749 }
1750
1751 extern kuid_t sock_i_uid(struct sock *sk);
1752 extern unsigned long sock_i_ino(struct sock *sk);
1753
1754 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1755 {
1756 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1757 }
1758
1759 static inline struct dst_entry *
1760 __sk_dst_get(struct sock *sk)
1761 {
1762 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1763 lockdep_is_held(&sk->sk_lock.slock));
1764 }
1765
1766 static inline struct dst_entry *
1767 sk_dst_get(struct sock *sk)
1768 {
1769 struct dst_entry *dst;
1770
1771 rcu_read_lock();
1772 dst = rcu_dereference(sk->sk_dst_cache);
1773 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1774 dst = NULL;
1775 rcu_read_unlock();
1776 return dst;
1777 }
1778
1779 extern void sk_reset_txq(struct sock *sk);
1780
1781 static inline void dst_negative_advice(struct sock *sk)
1782 {
1783 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1784
1785 if (dst && dst->ops->negative_advice) {
1786 ndst = dst->ops->negative_advice(dst);
1787
1788 if (ndst != dst) {
1789 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1790 sk_reset_txq(sk);
1791 }
1792 }
1793 }
1794
1795 static inline void
1796 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1797 {
1798 struct dst_entry *old_dst;
1799
1800 sk_tx_queue_clear(sk);
1801 /*
1802 * This can be called while sk is owned by the caller only,
1803 * with no state that can be checked in a rcu_dereference_check() cond
1804 */
1805 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1806 rcu_assign_pointer(sk->sk_dst_cache, dst);
1807 dst_release(old_dst);
1808 }
1809
1810 static inline void
1811 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1812 {
1813 struct dst_entry *old_dst;
1814
1815 sk_tx_queue_clear(sk);
1816 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1817 dst_release(old_dst);
1818 }
1819
1820 static inline void
1821 __sk_dst_reset(struct sock *sk)
1822 {
1823 __sk_dst_set(sk, NULL);
1824 }
1825
1826 static inline void
1827 sk_dst_reset(struct sock *sk)
1828 {
1829 sk_dst_set(sk, NULL);
1830 }
1831
1832 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1833
1834 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1835
1836 static inline bool sk_can_gso(const struct sock *sk)
1837 {
1838 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1839 }
1840
1841 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1842
1843 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1844 {
1845 sk->sk_route_nocaps |= flags;
1846 sk->sk_route_caps &= ~flags;
1847 }
1848
1849 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1850 char __user *from, char *to,
1851 int copy, int offset)
1852 {
1853 if (skb->ip_summed == CHECKSUM_NONE) {
1854 int err = 0;
1855 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1856 if (err)
1857 return err;
1858 skb->csum = csum_block_add(skb->csum, csum, offset);
1859 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1860 if (!access_ok(VERIFY_READ, from, copy) ||
1861 __copy_from_user_nocache(to, from, copy))
1862 return -EFAULT;
1863 } else if (copy_from_user(to, from, copy))
1864 return -EFAULT;
1865
1866 return 0;
1867 }
1868
1869 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1870 char __user *from, int copy)
1871 {
1872 int err, offset = skb->len;
1873
1874 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1875 copy, offset);
1876 if (err)
1877 __skb_trim(skb, offset);
1878
1879 return err;
1880 }
1881
1882 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1883 struct sk_buff *skb,
1884 struct page *page,
1885 int off, int copy)
1886 {
1887 int err;
1888
1889 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1890 copy, skb->len);
1891 if (err)
1892 return err;
1893
1894 skb->len += copy;
1895 skb->data_len += copy;
1896 skb->truesize += copy;
1897 sk->sk_wmem_queued += copy;
1898 sk_mem_charge(sk, copy);
1899 return 0;
1900 }
1901
1902 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1903 struct sk_buff *skb, struct page *page,
1904 int off, int copy)
1905 {
1906 if (skb->ip_summed == CHECKSUM_NONE) {
1907 int err = 0;
1908 __wsum csum = csum_and_copy_from_user(from,
1909 page_address(page) + off,
1910 copy, 0, &err);
1911 if (err)
1912 return err;
1913 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1914 } else if (copy_from_user(page_address(page) + off, from, copy))
1915 return -EFAULT;
1916
1917 skb->len += copy;
1918 skb->data_len += copy;
1919 skb->truesize += copy;
1920 sk->sk_wmem_queued += copy;
1921 sk_mem_charge(sk, copy);
1922 return 0;
1923 }
1924
1925 /**
1926 * sk_wmem_alloc_get - returns write allocations
1927 * @sk: socket
1928 *
1929 * Returns sk_wmem_alloc minus initial offset of one
1930 */
1931 static inline int sk_wmem_alloc_get(const struct sock *sk)
1932 {
1933 return atomic_read(&sk->sk_wmem_alloc) - 1;
1934 }
1935
1936 /**
1937 * sk_rmem_alloc_get - returns read allocations
1938 * @sk: socket
1939 *
1940 * Returns sk_rmem_alloc
1941 */
1942 static inline int sk_rmem_alloc_get(const struct sock *sk)
1943 {
1944 return atomic_read(&sk->sk_rmem_alloc);
1945 }
1946
1947 /**
1948 * sk_has_allocations - check if allocations are outstanding
1949 * @sk: socket
1950 *
1951 * Returns true if socket has write or read allocations
1952 */
1953 static inline bool sk_has_allocations(const struct sock *sk)
1954 {
1955 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1956 }
1957
1958 /**
1959 * wq_has_sleeper - check if there are any waiting processes
1960 * @wq: struct socket_wq
1961 *
1962 * Returns true if socket_wq has waiting processes
1963 *
1964 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1965 * barrier call. They were added due to the race found within the tcp code.
1966 *
1967 * Consider following tcp code paths:
1968 *
1969 * CPU1 CPU2
1970 *
1971 * sys_select receive packet
1972 * ... ...
1973 * __add_wait_queue update tp->rcv_nxt
1974 * ... ...
1975 * tp->rcv_nxt check sock_def_readable
1976 * ... {
1977 * schedule rcu_read_lock();
1978 * wq = rcu_dereference(sk->sk_wq);
1979 * if (wq && waitqueue_active(&wq->wait))
1980 * wake_up_interruptible(&wq->wait)
1981 * ...
1982 * }
1983 *
1984 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1985 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1986 * could then endup calling schedule and sleep forever if there are no more
1987 * data on the socket.
1988 *
1989 */
1990 static inline bool wq_has_sleeper(struct socket_wq *wq)
1991 {
1992 /* We need to be sure we are in sync with the
1993 * add_wait_queue modifications to the wait queue.
1994 *
1995 * This memory barrier is paired in the sock_poll_wait.
1996 */
1997 smp_mb();
1998 return wq && waitqueue_active(&wq->wait);
1999 }
2000
2001 /**
2002 * sock_poll_wait - place memory barrier behind the poll_wait call.
2003 * @filp: file
2004 * @wait_address: socket wait queue
2005 * @p: poll_table
2006 *
2007 * See the comments in the wq_has_sleeper function.
2008 */
2009 static inline void sock_poll_wait(struct file *filp,
2010 wait_queue_head_t *wait_address, poll_table *p)
2011 {
2012 if (!poll_does_not_wait(p) && wait_address) {
2013 poll_wait(filp, wait_address, p);
2014 /* We need to be sure we are in sync with the
2015 * socket flags modification.
2016 *
2017 * This memory barrier is paired in the wq_has_sleeper.
2018 */
2019 smp_mb();
2020 }
2021 }
2022
2023 /*
2024 * Queue a received datagram if it will fit. Stream and sequenced
2025 * protocols can't normally use this as they need to fit buffers in
2026 * and play with them.
2027 *
2028 * Inlined as it's very short and called for pretty much every
2029 * packet ever received.
2030 */
2031
2032 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2033 {
2034 skb_orphan(skb);
2035 skb->sk = sk;
2036 skb->destructor = sock_wfree;
2037 /*
2038 * We used to take a refcount on sk, but following operation
2039 * is enough to guarantee sk_free() wont free this sock until
2040 * all in-flight packets are completed
2041 */
2042 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2043 }
2044
2045 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2046 {
2047 skb_orphan(skb);
2048 skb->sk = sk;
2049 skb->destructor = sock_rfree;
2050 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2051 sk_mem_charge(sk, skb->truesize);
2052 }
2053
2054 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2055 unsigned long expires);
2056
2057 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2058
2059 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2060
2061 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2062
2063 /*
2064 * Recover an error report and clear atomically
2065 */
2066
2067 static inline int sock_error(struct sock *sk)
2068 {
2069 int err;
2070 if (likely(!sk->sk_err))
2071 return 0;
2072 err = xchg(&sk->sk_err, 0);
2073 return -err;
2074 }
2075
2076 static inline unsigned long sock_wspace(struct sock *sk)
2077 {
2078 int amt = 0;
2079
2080 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2081 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2082 if (amt < 0)
2083 amt = 0;
2084 }
2085 return amt;
2086 }
2087
2088 static inline void sk_wake_async(struct sock *sk, int how, int band)
2089 {
2090 if (sock_flag(sk, SOCK_FASYNC))
2091 sock_wake_async(sk->sk_socket, how, band);
2092 }
2093
2094 #define SOCK_MIN_SNDBUF 2048
2095 /*
2096 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2097 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2098 */
2099 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2100
2101 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2102 {
2103 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2104 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2105 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2106 }
2107 }
2108
2109 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2110
2111 /**
2112 * sk_page_frag - return an appropriate page_frag
2113 * @sk: socket
2114 *
2115 * If socket allocation mode allows current thread to sleep, it means its
2116 * safe to use the per task page_frag instead of the per socket one.
2117 */
2118 static inline struct page_frag *sk_page_frag(struct sock *sk)
2119 {
2120 if (sk->sk_allocation & __GFP_WAIT)
2121 return &current->task_frag;
2122
2123 return &sk->sk_frag;
2124 }
2125
2126 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2127
2128 /*
2129 * Default write policy as shown to user space via poll/select/SIGIO
2130 */
2131 static inline bool sock_writeable(const struct sock *sk)
2132 {
2133 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2134 }
2135
2136 static inline gfp_t gfp_any(void)
2137 {
2138 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2139 }
2140
2141 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2142 {
2143 return noblock ? 0 : sk->sk_rcvtimeo;
2144 }
2145
2146 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2147 {
2148 return noblock ? 0 : sk->sk_sndtimeo;
2149 }
2150
2151 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2152 {
2153 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2154 }
2155
2156 /* Alas, with timeout socket operations are not restartable.
2157 * Compare this to poll().
2158 */
2159 static inline int sock_intr_errno(long timeo)
2160 {
2161 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2162 }
2163
2164 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2165 struct sk_buff *skb);
2166 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2167 struct sk_buff *skb);
2168
2169 static inline void
2170 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2171 {
2172 ktime_t kt = skb->tstamp;
2173 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2174
2175 /*
2176 * generate control messages if
2177 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2178 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2179 * - software time stamp available and wanted
2180 * (SOCK_TIMESTAMPING_SOFTWARE)
2181 * - hardware time stamps available and wanted
2182 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2183 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2184 */
2185 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2186 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2187 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2188 (hwtstamps->hwtstamp.tv64 &&
2189 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2190 (hwtstamps->syststamp.tv64 &&
2191 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2192 __sock_recv_timestamp(msg, sk, skb);
2193 else
2194 sk->sk_stamp = kt;
2195
2196 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2197 __sock_recv_wifi_status(msg, sk, skb);
2198 }
2199
2200 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2201 struct sk_buff *skb);
2202
2203 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2204 struct sk_buff *skb)
2205 {
2206 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2207 (1UL << SOCK_RCVTSTAMP) | \
2208 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2209 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2210 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2211 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2212
2213 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2214 __sock_recv_ts_and_drops(msg, sk, skb);
2215 else
2216 sk->sk_stamp = skb->tstamp;
2217 }
2218
2219 /**
2220 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2221 * @sk: socket sending this packet
2222 * @tx_flags: filled with instructions for time stamping
2223 *
2224 * Currently only depends on SOCK_TIMESTAMPING* flags.
2225 */
2226 extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2227
2228 /**
2229 * sk_eat_skb - Release a skb if it is no longer needed
2230 * @sk: socket to eat this skb from
2231 * @skb: socket buffer to eat
2232 * @copied_early: flag indicating whether DMA operations copied this data early
2233 *
2234 * This routine must be called with interrupts disabled or with the socket
2235 * locked so that the sk_buff queue operation is ok.
2236 */
2237 #ifdef CONFIG_NET_DMA
2238 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2239 {
2240 __skb_unlink(skb, &sk->sk_receive_queue);
2241 if (!copied_early)
2242 __kfree_skb(skb);
2243 else
2244 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2245 }
2246 #else
2247 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2248 {
2249 __skb_unlink(skb, &sk->sk_receive_queue);
2250 __kfree_skb(skb);
2251 }
2252 #endif
2253
2254 static inline
2255 struct net *sock_net(const struct sock *sk)
2256 {
2257 return read_pnet(&sk->sk_net);
2258 }
2259
2260 static inline
2261 void sock_net_set(struct sock *sk, struct net *net)
2262 {
2263 write_pnet(&sk->sk_net, net);
2264 }
2265
2266 /*
2267 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2268 * They should not hold a reference to a namespace in order to allow
2269 * to stop it.
2270 * Sockets after sk_change_net should be released using sk_release_kernel
2271 */
2272 static inline void sk_change_net(struct sock *sk, struct net *net)
2273 {
2274 put_net(sock_net(sk));
2275 sock_net_set(sk, hold_net(net));
2276 }
2277
2278 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2279 {
2280 if (skb->sk) {
2281 struct sock *sk = skb->sk;
2282
2283 skb->destructor = NULL;
2284 skb->sk = NULL;
2285 return sk;
2286 }
2287 return NULL;
2288 }
2289
2290 /* This helper checks if a socket is a full socket,
2291 * ie _not_ a timewait or request socket.
2292 * TODO: Check for TCPF_NEW_SYN_RECV when that starts to exist.
2293 */
2294 static inline bool sk_fullsock(const struct sock *sk)
2295 {
2296 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT);
2297 }
2298
2299 extern void sock_enable_timestamp(struct sock *sk, int flag);
2300 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2301 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2302
2303 bool sk_ns_capable(const struct sock *sk,
2304 struct user_namespace *user_ns, int cap);
2305 bool sk_capable(const struct sock *sk, int cap);
2306 bool sk_net_capable(const struct sock *sk, int cap);
2307
2308 /*
2309 * Enable debug/info messages
2310 */
2311 extern int net_msg_warn;
2312 #define NETDEBUG(fmt, args...) \
2313 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2314
2315 #define LIMIT_NETDEBUG(fmt, args...) \
2316 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2317
2318 extern __u32 sysctl_wmem_max;
2319 extern __u32 sysctl_rmem_max;
2320
2321 extern int sysctl_optmem_max;
2322
2323 extern __u32 sysctl_wmem_default;
2324 extern __u32 sysctl_rmem_default;
2325
2326 #endif /* _SOCK_H */