25001eeba4996a596ca8da55aa8da12324114069
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / include / net / sock.h
1 /* Copyright (c) 2015 Samsung Electronics Co., Ltd. */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 *
35 *
36 * This program is free software; you can redistribute it and/or
37 * modify it under the terms of the GNU General Public License
38 * as published by the Free Software Foundation; either version
39 * 2 of the License, or (at your option) any later version.
40 */
41 /*
42 * Changes:
43 * KwnagHyun Kim <kh0304.kim@samsung.com> 2015/07/08
44 * Baesung Park <baesung.park@samsung.com> 2015/07/08
45 * Vignesh Saravanaperumal <vignesh1.s@samsung.com> 2015/07/08
46 * Add codes to share UID/PID information
47 *
48 */
49
50 #ifndef _SOCK_H
51 #define _SOCK_H
52
53 #include <linux/hardirq.h>
54 #include <linux/kernel.h>
55 #include <linux/list.h>
56 #include <linux/list_nulls.h>
57 #include <linux/timer.h>
58 #include <linux/cache.h>
59 #include <linux/bitops.h>
60 #include <linux/lockdep.h>
61 #include <linux/netdevice.h>
62 #include <linux/skbuff.h> /* struct sk_buff */
63 #include <linux/mm.h>
64 #include <linux/security.h>
65 #include <linux/slab.h>
66 #include <linux/uaccess.h>
67 #include <linux/memcontrol.h>
68 #include <linux/res_counter.h>
69 #include <linux/static_key.h>
70 #include <linux/aio.h>
71 #include <linux/sched.h>
72
73 #include <linux/filter.h>
74 #include <linux/rculist_nulls.h>
75 #include <linux/poll.h>
76
77 #include <linux/atomic.h>
78 #include <net/dst.h>
79 #include <net/checksum.h>
80
81 #define TCP_BACKLOG_SCALE 4
82
83 struct cgroup;
84 struct cgroup_subsys;
85 #ifdef CONFIG_NET
86 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
87 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
88 #else
89 static inline
90 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
91 {
92 return 0;
93 }
94 static inline
95 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
96 {
97 }
98 #endif
99 /*
100 * This structure really needs to be cleaned up.
101 * Most of it is for TCP, and not used by any of
102 * the other protocols.
103 */
104
105 /* Define this to get the SOCK_DBG debugging facility. */
106 #define SOCK_DEBUGGING
107 #ifdef SOCK_DEBUGGING
108 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
109 printk(KERN_DEBUG msg); } while (0)
110 #else
111 /* Validate arguments and do nothing */
112 static inline __printf(2, 3)
113 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
114 {
115 }
116 #endif
117
118 /* This is the per-socket lock. The spinlock provides a synchronization
119 * between user contexts and software interrupt processing, whereas the
120 * mini-semaphore synchronizes multiple users amongst themselves.
121 */
122 typedef struct {
123 spinlock_t slock;
124 int owned;
125 wait_queue_head_t wq;
126 /*
127 * We express the mutex-alike socket_lock semantics
128 * to the lock validator by explicitly managing
129 * the slock as a lock variant (in addition to
130 * the slock itself):
131 */
132 #ifdef CONFIG_DEBUG_LOCK_ALLOC
133 struct lockdep_map dep_map;
134 #endif
135 } socket_lock_t;
136
137 struct sock;
138 struct proto;
139 struct net;
140
141 typedef __u32 __bitwise __portpair;
142 typedef __u64 __bitwise __addrpair;
143
144 /**
145 * struct sock_common - minimal network layer representation of sockets
146 * @skc_daddr: Foreign IPv4 addr
147 * @skc_rcv_saddr: Bound local IPv4 addr
148 * @skc_hash: hash value used with various protocol lookup tables
149 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
150 * @skc_dport: placeholder for inet_dport/tw_dport
151 * @skc_num: placeholder for inet_num/tw_num
152 * @skc_family: network address family
153 * @skc_state: Connection state
154 * @skc_reuse: %SO_REUSEADDR setting
155 * @skc_reuseport: %SO_REUSEPORT setting
156 * @skc_bound_dev_if: bound device index if != 0
157 * @skc_bind_node: bind hash linkage for various protocol lookup tables
158 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
159 * @skc_prot: protocol handlers inside a network family
160 * @skc_net: reference to the network namespace of this socket
161 * @skc_node: main hash linkage for various protocol lookup tables
162 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
163 * @skc_tx_queue_mapping: tx queue number for this connection
164 * @skc_refcnt: reference count
165 *
166 * This is the minimal network layer representation of sockets, the header
167 * for struct sock and struct inet_timewait_sock.
168 */
169 struct sock_common {
170 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
171 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
172 */
173 union {
174 __addrpair skc_addrpair;
175 struct {
176 __be32 skc_daddr;
177 __be32 skc_rcv_saddr;
178 };
179 };
180 union {
181 unsigned int skc_hash;
182 __u16 skc_u16hashes[2];
183 };
184 /* skc_dport && skc_num must be grouped as well */
185 union {
186 __portpair skc_portpair;
187 struct {
188 __be16 skc_dport;
189 __u16 skc_num;
190 };
191 };
192
193 unsigned short skc_family;
194 volatile unsigned char skc_state;
195 unsigned char skc_reuse:4;
196 unsigned char skc_reuseport:4;
197 int skc_bound_dev_if;
198 union {
199 struct hlist_node skc_bind_node;
200 struct hlist_nulls_node skc_portaddr_node;
201 };
202 struct proto *skc_prot;
203 #ifdef CONFIG_NET_NS
204 struct net *skc_net;
205 #endif
206 /*
207 * fields between dontcopy_begin/dontcopy_end
208 * are not copied in sock_copy()
209 */
210 /* private: */
211 int skc_dontcopy_begin[0];
212 /* public: */
213 union {
214 struct hlist_node skc_node;
215 struct hlist_nulls_node skc_nulls_node;
216 };
217 int skc_tx_queue_mapping;
218 atomic_t skc_refcnt;
219 /* private: */
220 int skc_dontcopy_end[0];
221 /* public: */
222 };
223
224 struct cg_proto;
225 /**
226 * struct sock - network layer representation of sockets
227 * @__sk_common: shared layout with inet_timewait_sock
228 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
229 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
230 * @sk_lock: synchronizer
231 * @sk_rcvbuf: size of receive buffer in bytes
232 * @sk_wq: sock wait queue and async head
233 * @sk_rx_dst: receive input route used by early tcp demux
234 * @sk_dst_cache: destination cache
235 * @sk_dst_lock: destination cache lock
236 * @sk_policy: flow policy
237 * @sk_receive_queue: incoming packets
238 * @sk_wmem_alloc: transmit queue bytes committed
239 * @sk_write_queue: Packet sending queue
240 * @sk_async_wait_queue: DMA copied packets
241 * @sk_omem_alloc: "o" is "option" or "other"
242 * @sk_wmem_queued: persistent queue size
243 * @sk_forward_alloc: space allocated forward
244 * @sk_allocation: allocation mode
245 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
246 * @sk_sndbuf: size of send buffer in bytes
247 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
248 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
249 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
253 * @sk_gso_max_size: Maximum GSO segment size to build
254 * @sk_gso_max_segs: Maximum number of GSO segments
255 * @sk_lingertime: %SO_LINGER l_linger setting
256 * @sk_backlog: always used with the per-socket spinlock held
257 * @sk_callback_lock: used with the callbacks in the end of this struct
258 * @sk_error_queue: rarely used
259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
260 * IPV6_ADDRFORM for instance)
261 * @sk_err: last error
262 * @sk_err_soft: errors that don't cause failure but are the cause of a
263 * persistent failure not just 'timed out'
264 * @sk_drops: raw/udp drops counter
265 * @sk_ack_backlog: current listen backlog
266 * @sk_max_ack_backlog: listen backlog set in listen()
267 * @sk_priority: %SO_PRIORITY setting
268 * @sk_cgrp_prioidx: socket group's priority map index
269 * @sk_type: socket type (%SOCK_STREAM, etc)
270 * @sk_protocol: which protocol this socket belongs in this network family
271 * @sk_peer_pid: &struct pid for this socket's peer
272 * @sk_peer_cred: %SO_PEERCRED setting
273 * @sk_rcvlowat: %SO_RCVLOWAT setting
274 * @sk_rcvtimeo: %SO_RCVTIMEO setting
275 * @sk_sndtimeo: %SO_SNDTIMEO setting
276 * @sk_rxhash: flow hash received from netif layer
277 * @sk_filter: socket filtering instructions
278 * @sk_protinfo: private area, net family specific, when not using slab
279 * @sk_timer: sock cleanup timer
280 * @sk_stamp: time stamp of last packet received
281 * @sk_socket: Identd and reporting IO signals
282 * @sk_user_data: RPC layer private data
283 * @sk_frag: cached page frag
284 * @sk_peek_off: current peek_offset value
285 * @sk_send_head: front of stuff to transmit
286 * @sk_security: used by security modules
287 * @sk_mark: generic packet mark
288 * @sk_classid: this socket's cgroup classid
289 * @sk_cgrp: this socket's cgroup-specific proto data
290 * @sk_write_pending: a write to stream socket waits to start
291 * @sk_state_change: callback to indicate change in the state of the sock
292 * @sk_data_ready: callback to indicate there is data to be processed
293 * @sk_write_space: callback to indicate there is bf sending space available
294 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
295 * @sk_backlog_rcv: callback to process the backlog
296 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
297 */
298 struct sock {
299 /*
300 * Now struct inet_timewait_sock also uses sock_common, so please just
301 * don't add nothing before this first member (__sk_common) --acme
302 */
303 struct sock_common __sk_common;
304 #define sk_node __sk_common.skc_node
305 #define sk_nulls_node __sk_common.skc_nulls_node
306 #define sk_refcnt __sk_common.skc_refcnt
307 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
308
309 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
310 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
311 #define sk_hash __sk_common.skc_hash
312 #define sk_family __sk_common.skc_family
313 #define sk_state __sk_common.skc_state
314 #define sk_reuse __sk_common.skc_reuse
315 #define sk_reuseport __sk_common.skc_reuseport
316 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
317 #define sk_bind_node __sk_common.skc_bind_node
318 #define sk_prot __sk_common.skc_prot
319 #define sk_net __sk_common.skc_net
320 socket_lock_t sk_lock;
321 struct sk_buff_head sk_receive_queue;
322 /*
323 * The backlog queue is special, it is always used with
324 * the per-socket spinlock held and requires low latency
325 * access. Therefore we special case it's implementation.
326 * Note : rmem_alloc is in this structure to fill a hole
327 * on 64bit arches, not because its logically part of
328 * backlog.
329 */
330 struct {
331 atomic_t rmem_alloc;
332 int len;
333 struct sk_buff *head;
334 struct sk_buff *tail;
335 } sk_backlog;
336 #define sk_rmem_alloc sk_backlog.rmem_alloc
337 int sk_forward_alloc;
338 #ifdef CONFIG_RPS
339 __u32 sk_rxhash;
340 #endif
341 atomic_t sk_drops;
342 int sk_rcvbuf;
343
344 struct sk_filter __rcu *sk_filter;
345 struct socket_wq __rcu *sk_wq;
346
347 #ifdef CONFIG_NET_DMA
348 struct sk_buff_head sk_async_wait_queue;
349 #endif
350
351 #ifdef CONFIG_XFRM
352 struct xfrm_policy *sk_policy[2];
353 #endif
354 unsigned long sk_flags;
355 struct dst_entry *sk_rx_dst;
356 struct dst_entry __rcu *sk_dst_cache;
357 spinlock_t sk_dst_lock;
358 atomic_t sk_wmem_alloc;
359 atomic_t sk_omem_alloc;
360 int sk_sndbuf;
361 struct sk_buff_head sk_write_queue;
362 kmemcheck_bitfield_begin(flags);
363 unsigned int sk_shutdown : 2,
364 sk_no_check : 2,
365 sk_userlocks : 4,
366 sk_protocol : 8,
367 #define SK_PROTOCOL_MAX U8_MAX
368 sk_type : 16;
369 kmemcheck_bitfield_end(flags);
370 int sk_wmem_queued;
371 gfp_t sk_allocation;
372 u32 sk_pacing_rate; /* bytes per second */
373 netdev_features_t sk_route_caps;
374 netdev_features_t sk_route_nocaps;
375 int sk_gso_type;
376 unsigned int sk_gso_max_size;
377 u16 sk_gso_max_segs;
378 int sk_rcvlowat;
379 unsigned long sk_lingertime;
380 struct sk_buff_head sk_error_queue;
381 struct proto *sk_prot_creator;
382 rwlock_t sk_callback_lock;
383 int sk_err,
384 sk_err_soft;
385 unsigned short sk_ack_backlog;
386 unsigned short sk_max_ack_backlog;
387 __u32 sk_priority;
388 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
389 __u32 sk_cgrp_prioidx;
390 #endif
391 struct pid *sk_peer_pid;
392 const struct cred *sk_peer_cred;
393 long sk_rcvtimeo;
394 long sk_sndtimeo;
395 void *sk_protinfo;
396 struct timer_list sk_timer;
397 ktime_t sk_stamp;
398 struct socket *sk_socket;
399 void *sk_user_data;
400 struct page_frag sk_frag;
401 struct sk_buff *sk_send_head;
402 __s32 sk_peek_off;
403 int sk_write_pending;
404 #ifdef CONFIG_SECURITY
405 void *sk_security;
406 #endif
407 __u32 sk_mark;
408 kuid_t sk_uid;
409 u32 sk_classid;
410 struct cg_proto *sk_cgrp;
411 uid_t knox_uid;
412 pid_t knox_pid;
413 void (*sk_state_change)(struct sock *sk);
414 void (*sk_data_ready)(struct sock *sk, int bytes);
415 void (*sk_write_space)(struct sock *sk);
416 void (*sk_error_report)(struct sock *sk);
417 int (*sk_backlog_rcv)(struct sock *sk,
418 struct sk_buff *skb);
419 void (*sk_destruct)(struct sock *sk);
420 };
421
422 /*
423 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
424 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
425 * on a socket means that the socket will reuse everybody else's port
426 * without looking at the other's sk_reuse value.
427 */
428
429 #define SK_NO_REUSE 0
430 #define SK_CAN_REUSE 1
431 #define SK_FORCE_REUSE 2
432
433 static inline int sk_peek_offset(struct sock *sk, int flags)
434 {
435 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
436 return sk->sk_peek_off;
437 else
438 return 0;
439 }
440
441 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
442 {
443 if (sk->sk_peek_off >= 0) {
444 if (sk->sk_peek_off >= val)
445 sk->sk_peek_off -= val;
446 else
447 sk->sk_peek_off = 0;
448 }
449 }
450
451 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
452 {
453 if (sk->sk_peek_off >= 0)
454 sk->sk_peek_off += val;
455 }
456
457 /*
458 * Hashed lists helper routines
459 */
460 static inline struct sock *sk_entry(const struct hlist_node *node)
461 {
462 return hlist_entry(node, struct sock, sk_node);
463 }
464
465 static inline struct sock *__sk_head(const struct hlist_head *head)
466 {
467 return hlist_entry(head->first, struct sock, sk_node);
468 }
469
470 static inline struct sock *sk_head(const struct hlist_head *head)
471 {
472 return hlist_empty(head) ? NULL : __sk_head(head);
473 }
474
475 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
476 {
477 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
478 }
479
480 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
481 {
482 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
483 }
484
485 static inline struct sock *sk_next(const struct sock *sk)
486 {
487 return sk->sk_node.next ?
488 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
489 }
490
491 static inline struct sock *sk_nulls_next(const struct sock *sk)
492 {
493 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
494 hlist_nulls_entry(sk->sk_nulls_node.next,
495 struct sock, sk_nulls_node) :
496 NULL;
497 }
498
499 static inline bool sk_unhashed(const struct sock *sk)
500 {
501 return hlist_unhashed(&sk->sk_node);
502 }
503
504 static inline bool sk_hashed(const struct sock *sk)
505 {
506 return !sk_unhashed(sk);
507 }
508
509 static inline void sk_node_init(struct hlist_node *node)
510 {
511 node->pprev = NULL;
512 }
513
514 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
515 {
516 node->pprev = NULL;
517 }
518
519 static inline void __sk_del_node(struct sock *sk)
520 {
521 __hlist_del(&sk->sk_node);
522 }
523
524 /* NB: equivalent to hlist_del_init_rcu */
525 static inline bool __sk_del_node_init(struct sock *sk)
526 {
527 if (sk_hashed(sk)) {
528 __sk_del_node(sk);
529 sk_node_init(&sk->sk_node);
530 return true;
531 }
532 return false;
533 }
534
535 /* Grab socket reference count. This operation is valid only
536 when sk is ALREADY grabbed f.e. it is found in hash table
537 or a list and the lookup is made under lock preventing hash table
538 modifications.
539 */
540
541 static inline void sock_hold(struct sock *sk)
542 {
543 atomic_inc(&sk->sk_refcnt);
544 }
545
546 /* Ungrab socket in the context, which assumes that socket refcnt
547 cannot hit zero, f.e. it is true in context of any socketcall.
548 */
549 static inline void __sock_put(struct sock *sk)
550 {
551 atomic_dec(&sk->sk_refcnt);
552 }
553
554 static inline bool sk_del_node_init(struct sock *sk)
555 {
556 bool rc = __sk_del_node_init(sk);
557
558 if (rc) {
559 /* paranoid for a while -acme */
560 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
561 __sock_put(sk);
562 }
563 return rc;
564 }
565 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
566
567 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
568 {
569 if (sk_hashed(sk)) {
570 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
571 return true;
572 }
573 return false;
574 }
575
576 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
577 {
578 bool rc = __sk_nulls_del_node_init_rcu(sk);
579
580 if (rc) {
581 /* paranoid for a while -acme */
582 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
583 __sock_put(sk);
584 }
585 return rc;
586 }
587
588 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
589 {
590 hlist_add_head(&sk->sk_node, list);
591 }
592
593 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
594 {
595 sock_hold(sk);
596 __sk_add_node(sk, list);
597 }
598
599 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
600 {
601 sock_hold(sk);
602 hlist_add_head_rcu(&sk->sk_node, list);
603 }
604
605 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
606 {
607 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
608 }
609
610 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
611 {
612 sock_hold(sk);
613 __sk_nulls_add_node_rcu(sk, list);
614 }
615
616 static inline void __sk_del_bind_node(struct sock *sk)
617 {
618 __hlist_del(&sk->sk_bind_node);
619 }
620
621 static inline void sk_add_bind_node(struct sock *sk,
622 struct hlist_head *list)
623 {
624 hlist_add_head(&sk->sk_bind_node, list);
625 }
626
627 #define sk_for_each(__sk, list) \
628 hlist_for_each_entry(__sk, list, sk_node)
629 #define sk_for_each_rcu(__sk, list) \
630 hlist_for_each_entry_rcu(__sk, list, sk_node)
631 #define sk_nulls_for_each(__sk, node, list) \
632 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
633 #define sk_nulls_for_each_rcu(__sk, node, list) \
634 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
635 #define sk_for_each_from(__sk) \
636 hlist_for_each_entry_from(__sk, sk_node)
637 #define sk_nulls_for_each_from(__sk, node) \
638 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
639 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
640 #define sk_for_each_safe(__sk, tmp, list) \
641 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
642 #define sk_for_each_bound(__sk, list) \
643 hlist_for_each_entry(__sk, list, sk_bind_node)
644
645 static inline struct user_namespace *sk_user_ns(struct sock *sk)
646 {
647 /* Careful only use this in a context where these parameters
648 * can not change and must all be valid, such as recvmsg from
649 * userspace.
650 */
651 return sk->sk_socket->file->f_cred->user_ns;
652 }
653
654 /* Sock flags */
655 enum sock_flags {
656 SOCK_DEAD,
657 SOCK_DONE,
658 SOCK_URGINLINE,
659 SOCK_KEEPOPEN,
660 SOCK_LINGER,
661 SOCK_DESTROY,
662 SOCK_BROADCAST,
663 SOCK_TIMESTAMP,
664 SOCK_ZAPPED,
665 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
666 SOCK_DBG, /* %SO_DEBUG setting */
667 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
668 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
669 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
670 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
671 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
672 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
673 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
674 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
675 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
676 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
677 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
678 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
679 SOCK_FASYNC, /* fasync() active */
680 SOCK_RXQ_OVFL,
681 SOCK_ZEROCOPY, /* buffers from userspace */
682 SOCK_WIFI_STATUS, /* push wifi status to userspace */
683 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
684 * Will use last 4 bytes of packet sent from
685 * user-space instead.
686 */
687 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
688 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
689 };
690
691 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
692
693 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
694 {
695 nsk->sk_flags = osk->sk_flags;
696 }
697
698 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
699 {
700 __set_bit(flag, &sk->sk_flags);
701 }
702
703 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
704 {
705 __clear_bit(flag, &sk->sk_flags);
706 }
707
708 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
709 {
710 return test_bit(flag, &sk->sk_flags);
711 }
712
713 #ifdef CONFIG_NET
714 extern struct static_key memalloc_socks;
715 static inline int sk_memalloc_socks(void)
716 {
717 return static_key_false(&memalloc_socks);
718 }
719 #else
720
721 static inline int sk_memalloc_socks(void)
722 {
723 return 0;
724 }
725
726 #endif
727
728 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
729 {
730 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
731 }
732
733 static inline void sk_acceptq_removed(struct sock *sk)
734 {
735 sk->sk_ack_backlog--;
736 }
737
738 static inline void sk_acceptq_added(struct sock *sk)
739 {
740 sk->sk_ack_backlog++;
741 }
742
743 static inline bool sk_acceptq_is_full(const struct sock *sk)
744 {
745 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
746 }
747
748 /*
749 * Compute minimal free write space needed to queue new packets.
750 */
751 static inline int sk_stream_min_wspace(const struct sock *sk)
752 {
753 return sk->sk_wmem_queued >> 1;
754 }
755
756 static inline int sk_stream_wspace(const struct sock *sk)
757 {
758 return sk->sk_sndbuf - sk->sk_wmem_queued;
759 }
760
761 extern void sk_stream_write_space(struct sock *sk);
762
763 static inline bool sk_stream_memory_free(const struct sock *sk)
764 {
765 return sk->sk_wmem_queued < sk->sk_sndbuf;
766 }
767
768 /* OOB backlog add */
769 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
770 {
771 /* dont let skb dst not refcounted, we are going to leave rcu lock */
772 skb_dst_force(skb);
773
774 if (!sk->sk_backlog.tail)
775 sk->sk_backlog.head = skb;
776 else
777 sk->sk_backlog.tail->next = skb;
778
779 sk->sk_backlog.tail = skb;
780 skb->next = NULL;
781 }
782
783 /*
784 * Take into account size of receive queue and backlog queue
785 * Do not take into account this skb truesize,
786 * to allow even a single big packet to come.
787 */
788 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
789 unsigned int limit)
790 {
791 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
792
793 return qsize > limit;
794 }
795
796 /* The per-socket spinlock must be held here. */
797 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
798 unsigned int limit)
799 {
800 if (sk_rcvqueues_full(sk, skb, limit * TCP_BACKLOG_SCALE))
801 return -ENOBUFS;
802
803 /*
804 * If the skb was allocated from pfmemalloc reserves, only
805 * allow SOCK_MEMALLOC sockets to use it as this socket is
806 * helping free memory
807 */
808 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
809 return -ENOMEM;
810
811 __sk_add_backlog(sk, skb);
812 sk->sk_backlog.len += skb->truesize;
813 return 0;
814 }
815
816 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
817
818 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
819 {
820 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
821 return __sk_backlog_rcv(sk, skb);
822
823 return sk->sk_backlog_rcv(sk, skb);
824 }
825
826 static inline void sock_rps_record_flow(const struct sock *sk)
827 {
828 #ifdef CONFIG_RPS
829 struct rps_sock_flow_table *sock_flow_table;
830
831 rcu_read_lock();
832 sock_flow_table = rcu_dereference(rps_sock_flow_table);
833 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
834 rcu_read_unlock();
835 #endif
836 }
837
838 static inline void sock_rps_reset_flow(const struct sock *sk)
839 {
840 #ifdef CONFIG_RPS
841 struct rps_sock_flow_table *sock_flow_table;
842
843 rcu_read_lock();
844 sock_flow_table = rcu_dereference(rps_sock_flow_table);
845 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
846 rcu_read_unlock();
847 #endif
848 }
849
850 static inline void sock_rps_save_rxhash(struct sock *sk,
851 const struct sk_buff *skb)
852 {
853 #ifdef CONFIG_RPS
854 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
855 sock_rps_reset_flow(sk);
856 sk->sk_rxhash = skb->rxhash;
857 }
858 #endif
859 }
860
861 static inline void sock_rps_reset_rxhash(struct sock *sk)
862 {
863 #ifdef CONFIG_RPS
864 sock_rps_reset_flow(sk);
865 sk->sk_rxhash = 0;
866 #endif
867 }
868
869 #define sk_wait_event(__sk, __timeo, __condition) \
870 ({ int __rc; \
871 release_sock(__sk); \
872 __rc = __condition; \
873 if (!__rc) { \
874 *(__timeo) = schedule_timeout(*(__timeo)); \
875 } \
876 lock_sock(__sk); \
877 __rc = __condition; \
878 __rc; \
879 })
880
881 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
882 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
883 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
884 extern int sk_stream_error(struct sock *sk, int flags, int err);
885 extern void sk_stream_kill_queues(struct sock *sk);
886 extern void sk_set_memalloc(struct sock *sk);
887 extern void sk_clear_memalloc(struct sock *sk);
888
889 extern int sk_wait_data(struct sock *sk, long *timeo);
890
891 struct request_sock_ops;
892 struct timewait_sock_ops;
893 struct inet_hashinfo;
894 struct raw_hashinfo;
895 struct module;
896
897 /*
898 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
899 * un-modified. Special care is taken when initializing object to zero.
900 */
901 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
902 {
903 if (offsetof(struct sock, sk_node.next) != 0)
904 memset(sk, 0, offsetof(struct sock, sk_node.next));
905 memset(&sk->sk_node.pprev, 0,
906 size - offsetof(struct sock, sk_node.pprev));
907 }
908
909 /* Networking protocol blocks we attach to sockets.
910 * socket layer -> transport layer interface
911 * transport -> network interface is defined by struct inet_proto
912 */
913 struct proto {
914 void (*close)(struct sock *sk,
915 long timeout);
916 int (*connect)(struct sock *sk,
917 struct sockaddr *uaddr,
918 int addr_len);
919 int (*disconnect)(struct sock *sk, int flags);
920
921 struct sock * (*accept)(struct sock *sk, int flags, int *err);
922
923 int (*ioctl)(struct sock *sk, int cmd,
924 unsigned long arg);
925 int (*init)(struct sock *sk);
926 void (*destroy)(struct sock *sk);
927 void (*shutdown)(struct sock *sk, int how);
928 int (*setsockopt)(struct sock *sk, int level,
929 int optname, char __user *optval,
930 unsigned int optlen);
931 int (*getsockopt)(struct sock *sk, int level,
932 int optname, char __user *optval,
933 int __user *option);
934 #ifdef CONFIG_COMPAT
935 int (*compat_setsockopt)(struct sock *sk,
936 int level,
937 int optname, char __user *optval,
938 unsigned int optlen);
939 int (*compat_getsockopt)(struct sock *sk,
940 int level,
941 int optname, char __user *optval,
942 int __user *option);
943 int (*compat_ioctl)(struct sock *sk,
944 unsigned int cmd, unsigned long arg);
945 #endif
946 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
947 struct msghdr *msg, size_t len);
948 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
949 struct msghdr *msg,
950 size_t len, int noblock, int flags,
951 int *addr_len);
952 int (*sendpage)(struct sock *sk, struct page *page,
953 int offset, size_t size, int flags);
954 int (*bind)(struct sock *sk,
955 struct sockaddr *uaddr, int addr_len);
956
957 int (*backlog_rcv) (struct sock *sk,
958 struct sk_buff *skb);
959
960 void (*release_cb)(struct sock *sk);
961
962 /* Keeping track of sk's, looking them up, and port selection methods. */
963 void (*hash)(struct sock *sk);
964 void (*unhash)(struct sock *sk);
965 void (*rehash)(struct sock *sk);
966 int (*get_port)(struct sock *sk, unsigned short snum);
967 void (*clear_sk)(struct sock *sk, int size);
968
969 /* Keeping track of sockets in use */
970 #ifdef CONFIG_PROC_FS
971 unsigned int inuse_idx;
972 #endif
973
974 /* Memory pressure */
975 void (*enter_memory_pressure)(struct sock *sk);
976 atomic_long_t *memory_allocated; /* Current allocated memory. */
977 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
978 /*
979 * Pressure flag: try to collapse.
980 * Technical note: it is used by multiple contexts non atomically.
981 * All the __sk_mem_schedule() is of this nature: accounting
982 * is strict, actions are advisory and have some latency.
983 */
984 int *memory_pressure;
985 long *sysctl_mem;
986 int *sysctl_wmem;
987 int *sysctl_rmem;
988 int max_header;
989 bool no_autobind;
990
991 struct kmem_cache *slab;
992 unsigned int obj_size;
993 int slab_flags;
994
995 struct percpu_counter *orphan_count;
996
997 struct request_sock_ops *rsk_prot;
998 struct timewait_sock_ops *twsk_prot;
999
1000 union {
1001 struct inet_hashinfo *hashinfo;
1002 struct udp_table *udp_table;
1003 struct raw_hashinfo *raw_hash;
1004 } h;
1005
1006 struct module *owner;
1007
1008 char name[32];
1009
1010 struct list_head node;
1011 #ifdef SOCK_REFCNT_DEBUG
1012 atomic_t socks;
1013 #endif
1014 #ifdef CONFIG_MEMCG_KMEM
1015 /*
1016 * cgroup specific init/deinit functions. Called once for all
1017 * protocols that implement it, from cgroups populate function.
1018 * This function has to setup any files the protocol want to
1019 * appear in the kmem cgroup filesystem.
1020 */
1021 int (*init_cgroup)(struct mem_cgroup *memcg,
1022 struct cgroup_subsys *ss);
1023 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1024 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1025 #endif
1026 int (*diag_destroy)(struct sock *sk, int err);
1027 };
1028
1029 /*
1030 * Bits in struct cg_proto.flags
1031 */
1032 enum cg_proto_flags {
1033 /* Currently active and new sockets should be assigned to cgroups */
1034 MEMCG_SOCK_ACTIVE,
1035 /* It was ever activated; we must disarm static keys on destruction */
1036 MEMCG_SOCK_ACTIVATED,
1037 };
1038
1039 struct cg_proto {
1040 void (*enter_memory_pressure)(struct sock *sk);
1041 struct res_counter *memory_allocated; /* Current allocated memory. */
1042 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1043 int *memory_pressure;
1044 long *sysctl_mem;
1045 unsigned long flags;
1046 /*
1047 * memcg field is used to find which memcg we belong directly
1048 * Each memcg struct can hold more than one cg_proto, so container_of
1049 * won't really cut.
1050 *
1051 * The elegant solution would be having an inverse function to
1052 * proto_cgroup in struct proto, but that means polluting the structure
1053 * for everybody, instead of just for memcg users.
1054 */
1055 struct mem_cgroup *memcg;
1056 };
1057
1058 extern int proto_register(struct proto *prot, int alloc_slab);
1059 extern void proto_unregister(struct proto *prot);
1060
1061 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1062 {
1063 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1064 }
1065
1066 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1067 {
1068 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1069 }
1070
1071 #ifdef SOCK_REFCNT_DEBUG
1072 static inline void sk_refcnt_debug_inc(struct sock *sk)
1073 {
1074 atomic_inc(&sk->sk_prot->socks);
1075 }
1076
1077 static inline void sk_refcnt_debug_dec(struct sock *sk)
1078 {
1079 atomic_dec(&sk->sk_prot->socks);
1080 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1081 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1082 }
1083
1084 static inline void sk_refcnt_debug_release(const struct sock *sk)
1085 {
1086 if (atomic_read(&sk->sk_refcnt) != 1)
1087 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1088 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1089 }
1090 #else /* SOCK_REFCNT_DEBUG */
1091 #define sk_refcnt_debug_inc(sk) do { } while (0)
1092 #define sk_refcnt_debug_dec(sk) do { } while (0)
1093 #define sk_refcnt_debug_release(sk) do { } while (0)
1094 #endif /* SOCK_REFCNT_DEBUG */
1095
1096 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1097 extern struct static_key memcg_socket_limit_enabled;
1098 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1099 struct cg_proto *cg_proto)
1100 {
1101 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1102 }
1103 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1104 #else
1105 #define mem_cgroup_sockets_enabled 0
1106 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1107 struct cg_proto *cg_proto)
1108 {
1109 return NULL;
1110 }
1111 #endif
1112
1113
1114 static inline bool sk_has_memory_pressure(const struct sock *sk)
1115 {
1116 return sk->sk_prot->memory_pressure != NULL;
1117 }
1118
1119 static inline bool sk_under_memory_pressure(const struct sock *sk)
1120 {
1121 if (!sk->sk_prot->memory_pressure)
1122 return false;
1123
1124 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1125 return !!*sk->sk_cgrp->memory_pressure;
1126
1127 return !!*sk->sk_prot->memory_pressure;
1128 }
1129
1130 static inline void sk_leave_memory_pressure(struct sock *sk)
1131 {
1132 int *memory_pressure = sk->sk_prot->memory_pressure;
1133
1134 if (!memory_pressure)
1135 return;
1136
1137 if (*memory_pressure)
1138 *memory_pressure = 0;
1139
1140 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1141 struct cg_proto *cg_proto = sk->sk_cgrp;
1142 struct proto *prot = sk->sk_prot;
1143
1144 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1145 if (*cg_proto->memory_pressure)
1146 *cg_proto->memory_pressure = 0;
1147 }
1148
1149 }
1150
1151 static inline void sk_enter_memory_pressure(struct sock *sk)
1152 {
1153 if (!sk->sk_prot->enter_memory_pressure)
1154 return;
1155
1156 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1157 struct cg_proto *cg_proto = sk->sk_cgrp;
1158 struct proto *prot = sk->sk_prot;
1159
1160 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1161 cg_proto->enter_memory_pressure(sk);
1162 }
1163
1164 sk->sk_prot->enter_memory_pressure(sk);
1165 }
1166
1167 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1168 {
1169 long *prot = sk->sk_prot->sysctl_mem;
1170 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1171 prot = sk->sk_cgrp->sysctl_mem;
1172 return prot[index];
1173 }
1174
1175 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1176 unsigned long amt,
1177 int *parent_status)
1178 {
1179 struct res_counter *fail;
1180 int ret;
1181
1182 ret = res_counter_charge_nofail(prot->memory_allocated,
1183 amt << PAGE_SHIFT, &fail);
1184 if (ret < 0)
1185 *parent_status = OVER_LIMIT;
1186 }
1187
1188 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1189 unsigned long amt)
1190 {
1191 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1192 }
1193
1194 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1195 {
1196 u64 ret;
1197 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1198 return ret >> PAGE_SHIFT;
1199 }
1200
1201 static inline long
1202 sk_memory_allocated(const struct sock *sk)
1203 {
1204 struct proto *prot = sk->sk_prot;
1205 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1206 return memcg_memory_allocated_read(sk->sk_cgrp);
1207
1208 return atomic_long_read(prot->memory_allocated);
1209 }
1210
1211 static inline long
1212 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1213 {
1214 struct proto *prot = sk->sk_prot;
1215
1216 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1217 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1218 /* update the root cgroup regardless */
1219 atomic_long_add_return(amt, prot->memory_allocated);
1220 return memcg_memory_allocated_read(sk->sk_cgrp);
1221 }
1222
1223 return atomic_long_add_return(amt, prot->memory_allocated);
1224 }
1225
1226 static inline void
1227 sk_memory_allocated_sub(struct sock *sk, int amt)
1228 {
1229 struct proto *prot = sk->sk_prot;
1230
1231 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1232 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1233
1234 atomic_long_sub(amt, prot->memory_allocated);
1235 }
1236
1237 static inline void sk_sockets_allocated_dec(struct sock *sk)
1238 {
1239 struct proto *prot = sk->sk_prot;
1240
1241 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1242 struct cg_proto *cg_proto = sk->sk_cgrp;
1243
1244 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1245 percpu_counter_dec(cg_proto->sockets_allocated);
1246 }
1247
1248 percpu_counter_dec(prot->sockets_allocated);
1249 }
1250
1251 static inline void sk_sockets_allocated_inc(struct sock *sk)
1252 {
1253 struct proto *prot = sk->sk_prot;
1254
1255 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1256 struct cg_proto *cg_proto = sk->sk_cgrp;
1257
1258 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1259 percpu_counter_inc(cg_proto->sockets_allocated);
1260 }
1261
1262 percpu_counter_inc(prot->sockets_allocated);
1263 }
1264
1265 static inline int
1266 sk_sockets_allocated_read_positive(struct sock *sk)
1267 {
1268 struct proto *prot = sk->sk_prot;
1269
1270 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1271 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1272
1273 return percpu_counter_read_positive(prot->sockets_allocated);
1274 }
1275
1276 static inline int
1277 proto_sockets_allocated_sum_positive(struct proto *prot)
1278 {
1279 return percpu_counter_sum_positive(prot->sockets_allocated);
1280 }
1281
1282 static inline long
1283 proto_memory_allocated(struct proto *prot)
1284 {
1285 return atomic_long_read(prot->memory_allocated);
1286 }
1287
1288 static inline bool
1289 proto_memory_pressure(struct proto *prot)
1290 {
1291 if (!prot->memory_pressure)
1292 return false;
1293 return !!*prot->memory_pressure;
1294 }
1295
1296
1297 #ifdef CONFIG_PROC_FS
1298 /* Called with local bh disabled */
1299 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1300 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1301 #else
1302 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1303 int inc)
1304 {
1305 }
1306 #endif
1307
1308
1309 /* With per-bucket locks this operation is not-atomic, so that
1310 * this version is not worse.
1311 */
1312 static inline void __sk_prot_rehash(struct sock *sk)
1313 {
1314 sk->sk_prot->unhash(sk);
1315 sk->sk_prot->hash(sk);
1316 }
1317
1318 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1319
1320 /* About 10 seconds */
1321 #define SOCK_DESTROY_TIME (10*HZ)
1322
1323 /* Sockets 0-1023 can't be bound to unless you are superuser */
1324 #define PROT_SOCK 1024
1325
1326 #define SHUTDOWN_MASK 3
1327 #define RCV_SHUTDOWN 1
1328 #define SEND_SHUTDOWN 2
1329
1330 #define SOCK_SNDBUF_LOCK 1
1331 #define SOCK_RCVBUF_LOCK 2
1332 #define SOCK_BINDADDR_LOCK 4
1333 #define SOCK_BINDPORT_LOCK 8
1334
1335 /* sock_iocb: used to kick off async processing of socket ios */
1336 struct sock_iocb {
1337 struct list_head list;
1338
1339 int flags;
1340 int size;
1341 struct socket *sock;
1342 struct sock *sk;
1343 struct scm_cookie *scm;
1344 struct msghdr *msg, async_msg;
1345 struct kiocb *kiocb;
1346 };
1347
1348 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1349 {
1350 return (struct sock_iocb *)iocb->private;
1351 }
1352
1353 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1354 {
1355 return si->kiocb;
1356 }
1357
1358 struct socket_alloc {
1359 struct socket socket;
1360 struct inode vfs_inode;
1361 };
1362
1363 static inline struct socket *SOCKET_I(struct inode *inode)
1364 {
1365 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1366 }
1367
1368 static inline struct inode *SOCK_INODE(struct socket *socket)
1369 {
1370 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1371 }
1372
1373 /*
1374 * Functions for memory accounting
1375 */
1376 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1377 void __sk_mem_reclaim(struct sock *sk, int amount);
1378
1379 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1380 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1381 #define SK_MEM_SEND 0
1382 #define SK_MEM_RECV 1
1383
1384 static inline int sk_mem_pages(int amt)
1385 {
1386 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1387 }
1388
1389 static inline bool sk_has_account(struct sock *sk)
1390 {
1391 /* return true if protocol supports memory accounting */
1392 return !!sk->sk_prot->memory_allocated;
1393 }
1394
1395 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1396 {
1397 if (!sk_has_account(sk))
1398 return true;
1399 return size <= sk->sk_forward_alloc ||
1400 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1401 }
1402
1403 static inline bool
1404 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1405 {
1406 if (!sk_has_account(sk))
1407 return true;
1408 return size<= sk->sk_forward_alloc ||
1409 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1410 skb_pfmemalloc(skb);
1411 }
1412
1413 static inline void sk_mem_reclaim(struct sock *sk)
1414 {
1415 if (!sk_has_account(sk))
1416 return;
1417 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1418 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1419 }
1420
1421 static inline void sk_mem_reclaim_partial(struct sock *sk)
1422 {
1423 if (!sk_has_account(sk))
1424 return;
1425 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1426 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1427 }
1428
1429 static inline void sk_mem_charge(struct sock *sk, int size)
1430 {
1431 if (!sk_has_account(sk))
1432 return;
1433 sk->sk_forward_alloc -= size;
1434 }
1435
1436 static inline void sk_mem_uncharge(struct sock *sk, int size)
1437 {
1438 if (!sk_has_account(sk))
1439 return;
1440 sk->sk_forward_alloc += size;
1441
1442 /* Avoid a possible overflow.
1443 * TCP send queues can make this happen, if sk_mem_reclaim()
1444 * is not called and more than 2 GBytes are released at once.
1445 *
1446 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1447 * no need to hold that much forward allocation anyway.
1448 */
1449 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1450 __sk_mem_reclaim(sk, 1 << 20);
1451 }
1452
1453 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1454 {
1455 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1456 sk->sk_wmem_queued -= skb->truesize;
1457 sk_mem_uncharge(sk, skb->truesize);
1458 __kfree_skb(skb);
1459 }
1460
1461 /* Used by processes to "lock" a socket state, so that
1462 * interrupts and bottom half handlers won't change it
1463 * from under us. It essentially blocks any incoming
1464 * packets, so that we won't get any new data or any
1465 * packets that change the state of the socket.
1466 *
1467 * While locked, BH processing will add new packets to
1468 * the backlog queue. This queue is processed by the
1469 * owner of the socket lock right before it is released.
1470 *
1471 * Since ~2.3.5 it is also exclusive sleep lock serializing
1472 * accesses from user process context.
1473 */
1474 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1475
1476 static inline void sock_release_ownership(struct sock *sk)
1477 {
1478 sk->sk_lock.owned = 0;
1479 }
1480
1481 /*
1482 * Macro so as to not evaluate some arguments when
1483 * lockdep is not enabled.
1484 *
1485 * Mark both the sk_lock and the sk_lock.slock as a
1486 * per-address-family lock class.
1487 */
1488 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1489 do { \
1490 sk->sk_lock.owned = 0; \
1491 init_waitqueue_head(&sk->sk_lock.wq); \
1492 spin_lock_init(&(sk)->sk_lock.slock); \
1493 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1494 sizeof((sk)->sk_lock)); \
1495 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1496 (skey), (sname)); \
1497 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1498 } while (0)
1499
1500 extern void lock_sock_nested(struct sock *sk, int subclass);
1501
1502 static inline void lock_sock(struct sock *sk)
1503 {
1504 lock_sock_nested(sk, 0);
1505 }
1506
1507 extern void release_sock(struct sock *sk);
1508
1509 /* BH context may only use the following locking interface. */
1510 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1511 #define bh_lock_sock_nested(__sk) \
1512 spin_lock_nested(&((__sk)->sk_lock.slock), \
1513 SINGLE_DEPTH_NESTING)
1514 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1515
1516 extern bool lock_sock_fast(struct sock *sk);
1517 /**
1518 * unlock_sock_fast - complement of lock_sock_fast
1519 * @sk: socket
1520 * @slow: slow mode
1521 *
1522 * fast unlock socket for user context.
1523 * If slow mode is on, we call regular release_sock()
1524 */
1525 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1526 {
1527 if (slow)
1528 release_sock(sk);
1529 else
1530 spin_unlock_bh(&sk->sk_lock.slock);
1531 }
1532
1533
1534 extern struct sock *sk_alloc(struct net *net, int family,
1535 gfp_t priority,
1536 struct proto *prot);
1537 extern void sk_free(struct sock *sk);
1538 extern void sk_release_kernel(struct sock *sk);
1539 extern struct sock *sk_clone_lock(const struct sock *sk,
1540 const gfp_t priority);
1541
1542 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1543 unsigned long size, int force,
1544 gfp_t priority);
1545 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1546 unsigned long size, int force,
1547 gfp_t priority);
1548 extern void sock_wfree(struct sk_buff *skb);
1549 extern void sock_rfree(struct sk_buff *skb);
1550 extern void sock_edemux(struct sk_buff *skb);
1551
1552 extern int sock_setsockopt(struct socket *sock, int level,
1553 int op, char __user *optval,
1554 unsigned int optlen);
1555
1556 extern int sock_getsockopt(struct socket *sock, int level,
1557 int op, char __user *optval,
1558 int __user *optlen);
1559 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1560 unsigned long size,
1561 int noblock,
1562 int *errcode);
1563 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1564 unsigned long header_len,
1565 unsigned long data_len,
1566 int noblock,
1567 int *errcode);
1568 extern void *sock_kmalloc(struct sock *sk, int size,
1569 gfp_t priority);
1570 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1571 extern void sk_send_sigurg(struct sock *sk);
1572
1573 /*
1574 * Functions to fill in entries in struct proto_ops when a protocol
1575 * does not implement a particular function.
1576 */
1577 extern int sock_no_bind(struct socket *,
1578 struct sockaddr *, int);
1579 extern int sock_no_connect(struct socket *,
1580 struct sockaddr *, int, int);
1581 extern int sock_no_socketpair(struct socket *,
1582 struct socket *);
1583 extern int sock_no_accept(struct socket *,
1584 struct socket *, int);
1585 extern int sock_no_getname(struct socket *,
1586 struct sockaddr *, int *, int);
1587 extern unsigned int sock_no_poll(struct file *, struct socket *,
1588 struct poll_table_struct *);
1589 extern int sock_no_ioctl(struct socket *, unsigned int,
1590 unsigned long);
1591 extern int sock_no_listen(struct socket *, int);
1592 extern int sock_no_shutdown(struct socket *, int);
1593 extern int sock_no_getsockopt(struct socket *, int , int,
1594 char __user *, int __user *);
1595 extern int sock_no_setsockopt(struct socket *, int, int,
1596 char __user *, unsigned int);
1597 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1598 struct msghdr *, size_t);
1599 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1600 struct msghdr *, size_t, int);
1601 extern int sock_no_mmap(struct file *file,
1602 struct socket *sock,
1603 struct vm_area_struct *vma);
1604 extern ssize_t sock_no_sendpage(struct socket *sock,
1605 struct page *page,
1606 int offset, size_t size,
1607 int flags);
1608
1609 /*
1610 * Functions to fill in entries in struct proto_ops when a protocol
1611 * uses the inet style.
1612 */
1613 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1614 char __user *optval, int __user *optlen);
1615 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1616 struct msghdr *msg, size_t size, int flags);
1617 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1618 char __user *optval, unsigned int optlen);
1619 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1620 int optname, char __user *optval, int __user *optlen);
1621 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1622 int optname, char __user *optval, unsigned int optlen);
1623
1624 extern void sk_common_release(struct sock *sk);
1625
1626 /*
1627 * Default socket callbacks and setup code
1628 */
1629
1630 /* Initialise core socket variables */
1631 extern void sock_init_data(struct socket *sock, struct sock *sk);
1632
1633 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1634
1635 /**
1636 * sk_filter_release - release a socket filter
1637 * @fp: filter to remove
1638 *
1639 * Remove a filter from a socket and release its resources.
1640 */
1641
1642 static inline void sk_filter_release(struct sk_filter *fp)
1643 {
1644 if (atomic_dec_and_test(&fp->refcnt))
1645 call_rcu(&fp->rcu, sk_filter_release_rcu);
1646 }
1647
1648 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1649 {
1650 unsigned int size = sk_filter_len(fp);
1651
1652 atomic_sub(size, &sk->sk_omem_alloc);
1653 sk_filter_release(fp);
1654 }
1655
1656 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1657 {
1658 atomic_inc(&fp->refcnt);
1659 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1660 }
1661
1662 /*
1663 * Socket reference counting postulates.
1664 *
1665 * * Each user of socket SHOULD hold a reference count.
1666 * * Each access point to socket (an hash table bucket, reference from a list,
1667 * running timer, skb in flight MUST hold a reference count.
1668 * * When reference count hits 0, it means it will never increase back.
1669 * * When reference count hits 0, it means that no references from
1670 * outside exist to this socket and current process on current CPU
1671 * is last user and may/should destroy this socket.
1672 * * sk_free is called from any context: process, BH, IRQ. When
1673 * it is called, socket has no references from outside -> sk_free
1674 * may release descendant resources allocated by the socket, but
1675 * to the time when it is called, socket is NOT referenced by any
1676 * hash tables, lists etc.
1677 * * Packets, delivered from outside (from network or from another process)
1678 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1679 * when they sit in queue. Otherwise, packets will leak to hole, when
1680 * socket is looked up by one cpu and unhasing is made by another CPU.
1681 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1682 * (leak to backlog). Packet socket does all the processing inside
1683 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1684 * use separate SMP lock, so that they are prone too.
1685 */
1686
1687 /* Ungrab socket and destroy it, if it was the last reference. */
1688 static inline void sock_put(struct sock *sk)
1689 {
1690 if (atomic_dec_and_test(&sk->sk_refcnt))
1691 sk_free(sk);
1692 }
1693
1694 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1695 const int nested);
1696
1697 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1698 {
1699 sk->sk_tx_queue_mapping = tx_queue;
1700 }
1701
1702 static inline void sk_tx_queue_clear(struct sock *sk)
1703 {
1704 sk->sk_tx_queue_mapping = -1;
1705 }
1706
1707 static inline int sk_tx_queue_get(const struct sock *sk)
1708 {
1709 return sk ? sk->sk_tx_queue_mapping : -1;
1710 }
1711
1712 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1713 {
1714 sk_tx_queue_clear(sk);
1715 sk->sk_socket = sock;
1716 }
1717
1718 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1719 {
1720 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1721 return &rcu_dereference_raw(sk->sk_wq)->wait;
1722 }
1723 /* Detach socket from process context.
1724 * Announce socket dead, detach it from wait queue and inode.
1725 * Note that parent inode held reference count on this struct sock,
1726 * we do not release it in this function, because protocol
1727 * probably wants some additional cleanups or even continuing
1728 * to work with this socket (TCP).
1729 */
1730 static inline void sock_orphan(struct sock *sk)
1731 {
1732 write_lock_bh(&sk->sk_callback_lock);
1733 sock_set_flag(sk, SOCK_DEAD);
1734 sk_set_socket(sk, NULL);
1735 sk->sk_wq = NULL;
1736 write_unlock_bh(&sk->sk_callback_lock);
1737 }
1738
1739 static inline void sock_graft(struct sock *sk, struct socket *parent)
1740 {
1741 write_lock_bh(&sk->sk_callback_lock);
1742 sk->sk_wq = parent->wq;
1743 parent->sk = sk;
1744 sk_set_socket(sk, parent);
1745 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1746 security_sock_graft(sk, parent);
1747 write_unlock_bh(&sk->sk_callback_lock);
1748 }
1749
1750 extern kuid_t sock_i_uid(struct sock *sk);
1751 extern unsigned long sock_i_ino(struct sock *sk);
1752
1753 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1754 {
1755 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1756 }
1757
1758 static inline struct dst_entry *
1759 __sk_dst_get(struct sock *sk)
1760 {
1761 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1762 lockdep_is_held(&sk->sk_lock.slock));
1763 }
1764
1765 static inline struct dst_entry *
1766 sk_dst_get(struct sock *sk)
1767 {
1768 struct dst_entry *dst;
1769
1770 rcu_read_lock();
1771 dst = rcu_dereference(sk->sk_dst_cache);
1772 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1773 dst = NULL;
1774 rcu_read_unlock();
1775 return dst;
1776 }
1777
1778 extern void sk_reset_txq(struct sock *sk);
1779
1780 static inline void dst_negative_advice(struct sock *sk)
1781 {
1782 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1783
1784 if (dst && dst->ops->negative_advice) {
1785 ndst = dst->ops->negative_advice(dst);
1786
1787 if (ndst != dst) {
1788 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1789 sk_reset_txq(sk);
1790 }
1791 }
1792 }
1793
1794 static inline void
1795 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1796 {
1797 struct dst_entry *old_dst;
1798
1799 sk_tx_queue_clear(sk);
1800 /*
1801 * This can be called while sk is owned by the caller only,
1802 * with no state that can be checked in a rcu_dereference_check() cond
1803 */
1804 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1805 rcu_assign_pointer(sk->sk_dst_cache, dst);
1806 dst_release(old_dst);
1807 }
1808
1809 static inline void
1810 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1811 {
1812 struct dst_entry *old_dst;
1813
1814 sk_tx_queue_clear(sk);
1815 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1816 dst_release(old_dst);
1817 }
1818
1819 static inline void
1820 __sk_dst_reset(struct sock *sk)
1821 {
1822 __sk_dst_set(sk, NULL);
1823 }
1824
1825 static inline void
1826 sk_dst_reset(struct sock *sk)
1827 {
1828 sk_dst_set(sk, NULL);
1829 }
1830
1831 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1832
1833 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1834
1835 static inline bool sk_can_gso(const struct sock *sk)
1836 {
1837 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1838 }
1839
1840 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1841
1842 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1843 {
1844 sk->sk_route_nocaps |= flags;
1845 sk->sk_route_caps &= ~flags;
1846 }
1847
1848 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1849 char __user *from, char *to,
1850 int copy, int offset)
1851 {
1852 if (skb->ip_summed == CHECKSUM_NONE) {
1853 int err = 0;
1854 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1855 if (err)
1856 return err;
1857 skb->csum = csum_block_add(skb->csum, csum, offset);
1858 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1859 if (!access_ok(VERIFY_READ, from, copy) ||
1860 __copy_from_user_nocache(to, from, copy))
1861 return -EFAULT;
1862 } else if (copy_from_user(to, from, copy))
1863 return -EFAULT;
1864
1865 return 0;
1866 }
1867
1868 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1869 char __user *from, int copy)
1870 {
1871 int err, offset = skb->len;
1872
1873 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1874 copy, offset);
1875 if (err)
1876 __skb_trim(skb, offset);
1877
1878 return err;
1879 }
1880
1881 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1882 struct sk_buff *skb,
1883 struct page *page,
1884 int off, int copy)
1885 {
1886 int err;
1887
1888 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1889 copy, skb->len);
1890 if (err)
1891 return err;
1892
1893 skb->len += copy;
1894 skb->data_len += copy;
1895 skb->truesize += copy;
1896 sk->sk_wmem_queued += copy;
1897 sk_mem_charge(sk, copy);
1898 return 0;
1899 }
1900
1901 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1902 struct sk_buff *skb, struct page *page,
1903 int off, int copy)
1904 {
1905 if (skb->ip_summed == CHECKSUM_NONE) {
1906 int err = 0;
1907 __wsum csum = csum_and_copy_from_user(from,
1908 page_address(page) + off,
1909 copy, 0, &err);
1910 if (err)
1911 return err;
1912 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1913 } else if (copy_from_user(page_address(page) + off, from, copy))
1914 return -EFAULT;
1915
1916 skb->len += copy;
1917 skb->data_len += copy;
1918 skb->truesize += copy;
1919 sk->sk_wmem_queued += copy;
1920 sk_mem_charge(sk, copy);
1921 return 0;
1922 }
1923
1924 /**
1925 * sk_wmem_alloc_get - returns write allocations
1926 * @sk: socket
1927 *
1928 * Returns sk_wmem_alloc minus initial offset of one
1929 */
1930 static inline int sk_wmem_alloc_get(const struct sock *sk)
1931 {
1932 return atomic_read(&sk->sk_wmem_alloc) - 1;
1933 }
1934
1935 /**
1936 * sk_rmem_alloc_get - returns read allocations
1937 * @sk: socket
1938 *
1939 * Returns sk_rmem_alloc
1940 */
1941 static inline int sk_rmem_alloc_get(const struct sock *sk)
1942 {
1943 return atomic_read(&sk->sk_rmem_alloc);
1944 }
1945
1946 /**
1947 * sk_has_allocations - check if allocations are outstanding
1948 * @sk: socket
1949 *
1950 * Returns true if socket has write or read allocations
1951 */
1952 static inline bool sk_has_allocations(const struct sock *sk)
1953 {
1954 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1955 }
1956
1957 /**
1958 * wq_has_sleeper - check if there are any waiting processes
1959 * @wq: struct socket_wq
1960 *
1961 * Returns true if socket_wq has waiting processes
1962 *
1963 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1964 * barrier call. They were added due to the race found within the tcp code.
1965 *
1966 * Consider following tcp code paths:
1967 *
1968 * CPU1 CPU2
1969 *
1970 * sys_select receive packet
1971 * ... ...
1972 * __add_wait_queue update tp->rcv_nxt
1973 * ... ...
1974 * tp->rcv_nxt check sock_def_readable
1975 * ... {
1976 * schedule rcu_read_lock();
1977 * wq = rcu_dereference(sk->sk_wq);
1978 * if (wq && waitqueue_active(&wq->wait))
1979 * wake_up_interruptible(&wq->wait)
1980 * ...
1981 * }
1982 *
1983 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1984 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1985 * could then endup calling schedule and sleep forever if there are no more
1986 * data on the socket.
1987 *
1988 */
1989 static inline bool wq_has_sleeper(struct socket_wq *wq)
1990 {
1991 /* We need to be sure we are in sync with the
1992 * add_wait_queue modifications to the wait queue.
1993 *
1994 * This memory barrier is paired in the sock_poll_wait.
1995 */
1996 smp_mb();
1997 return wq && waitqueue_active(&wq->wait);
1998 }
1999
2000 /**
2001 * sock_poll_wait - place memory barrier behind the poll_wait call.
2002 * @filp: file
2003 * @wait_address: socket wait queue
2004 * @p: poll_table
2005 *
2006 * See the comments in the wq_has_sleeper function.
2007 */
2008 static inline void sock_poll_wait(struct file *filp,
2009 wait_queue_head_t *wait_address, poll_table *p)
2010 {
2011 if (!poll_does_not_wait(p) && wait_address) {
2012 poll_wait(filp, wait_address, p);
2013 /* We need to be sure we are in sync with the
2014 * socket flags modification.
2015 *
2016 * This memory barrier is paired in the wq_has_sleeper.
2017 */
2018 smp_mb();
2019 }
2020 }
2021
2022 /*
2023 * Queue a received datagram if it will fit. Stream and sequenced
2024 * protocols can't normally use this as they need to fit buffers in
2025 * and play with them.
2026 *
2027 * Inlined as it's very short and called for pretty much every
2028 * packet ever received.
2029 */
2030
2031 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2032 {
2033 skb_orphan(skb);
2034 skb->sk = sk;
2035 skb->destructor = sock_wfree;
2036 /*
2037 * We used to take a refcount on sk, but following operation
2038 * is enough to guarantee sk_free() wont free this sock until
2039 * all in-flight packets are completed
2040 */
2041 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2042 }
2043
2044 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2045 {
2046 skb_orphan(skb);
2047 skb->sk = sk;
2048 skb->destructor = sock_rfree;
2049 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2050 sk_mem_charge(sk, skb->truesize);
2051 }
2052
2053 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2054 unsigned long expires);
2055
2056 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2057
2058 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2059
2060 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2061
2062 /*
2063 * Recover an error report and clear atomically
2064 */
2065
2066 static inline int sock_error(struct sock *sk)
2067 {
2068 int err;
2069 if (likely(!sk->sk_err))
2070 return 0;
2071 err = xchg(&sk->sk_err, 0);
2072 return -err;
2073 }
2074
2075 static inline unsigned long sock_wspace(struct sock *sk)
2076 {
2077 int amt = 0;
2078
2079 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2080 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2081 if (amt < 0)
2082 amt = 0;
2083 }
2084 return amt;
2085 }
2086
2087 static inline void sk_wake_async(struct sock *sk, int how, int band)
2088 {
2089 if (sock_flag(sk, SOCK_FASYNC))
2090 sock_wake_async(sk->sk_socket, how, band);
2091 }
2092
2093 #define SOCK_MIN_SNDBUF 2048
2094 /*
2095 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2096 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2097 */
2098 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2099
2100 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2101 {
2102 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2103 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2104 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2105 }
2106 }
2107
2108 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2109
2110 /**
2111 * sk_page_frag - return an appropriate page_frag
2112 * @sk: socket
2113 *
2114 * If socket allocation mode allows current thread to sleep, it means its
2115 * safe to use the per task page_frag instead of the per socket one.
2116 */
2117 static inline struct page_frag *sk_page_frag(struct sock *sk)
2118 {
2119 if (sk->sk_allocation & __GFP_WAIT)
2120 return &current->task_frag;
2121
2122 return &sk->sk_frag;
2123 }
2124
2125 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2126
2127 /*
2128 * Default write policy as shown to user space via poll/select/SIGIO
2129 */
2130 static inline bool sock_writeable(const struct sock *sk)
2131 {
2132 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2133 }
2134
2135 static inline gfp_t gfp_any(void)
2136 {
2137 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2138 }
2139
2140 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2141 {
2142 return noblock ? 0 : sk->sk_rcvtimeo;
2143 }
2144
2145 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2146 {
2147 return noblock ? 0 : sk->sk_sndtimeo;
2148 }
2149
2150 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2151 {
2152 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2153 }
2154
2155 /* Alas, with timeout socket operations are not restartable.
2156 * Compare this to poll().
2157 */
2158 static inline int sock_intr_errno(long timeo)
2159 {
2160 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2161 }
2162
2163 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2164 struct sk_buff *skb);
2165 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2166 struct sk_buff *skb);
2167
2168 static inline void
2169 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2170 {
2171 ktime_t kt = skb->tstamp;
2172 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2173
2174 /*
2175 * generate control messages if
2176 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2177 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2178 * - software time stamp available and wanted
2179 * (SOCK_TIMESTAMPING_SOFTWARE)
2180 * - hardware time stamps available and wanted
2181 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2182 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2183 */
2184 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2185 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2186 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2187 (hwtstamps->hwtstamp.tv64 &&
2188 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2189 (hwtstamps->syststamp.tv64 &&
2190 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2191 __sock_recv_timestamp(msg, sk, skb);
2192 else
2193 sk->sk_stamp = kt;
2194
2195 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2196 __sock_recv_wifi_status(msg, sk, skb);
2197 }
2198
2199 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2200 struct sk_buff *skb);
2201
2202 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2203 struct sk_buff *skb)
2204 {
2205 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2206 (1UL << SOCK_RCVTSTAMP) | \
2207 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2208 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2209 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2210 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2211
2212 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2213 __sock_recv_ts_and_drops(msg, sk, skb);
2214 else
2215 sk->sk_stamp = skb->tstamp;
2216 }
2217
2218 /**
2219 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2220 * @sk: socket sending this packet
2221 * @tx_flags: filled with instructions for time stamping
2222 *
2223 * Currently only depends on SOCK_TIMESTAMPING* flags.
2224 */
2225 extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2226
2227 /**
2228 * sk_eat_skb - Release a skb if it is no longer needed
2229 * @sk: socket to eat this skb from
2230 * @skb: socket buffer to eat
2231 * @copied_early: flag indicating whether DMA operations copied this data early
2232 *
2233 * This routine must be called with interrupts disabled or with the socket
2234 * locked so that the sk_buff queue operation is ok.
2235 */
2236 #ifdef CONFIG_NET_DMA
2237 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2238 {
2239 __skb_unlink(skb, &sk->sk_receive_queue);
2240 if (!copied_early)
2241 __kfree_skb(skb);
2242 else
2243 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2244 }
2245 #else
2246 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2247 {
2248 __skb_unlink(skb, &sk->sk_receive_queue);
2249 __kfree_skb(skb);
2250 }
2251 #endif
2252
2253 static inline
2254 struct net *sock_net(const struct sock *sk)
2255 {
2256 return read_pnet(&sk->sk_net);
2257 }
2258
2259 static inline
2260 void sock_net_set(struct sock *sk, struct net *net)
2261 {
2262 write_pnet(&sk->sk_net, net);
2263 }
2264
2265 /*
2266 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2267 * They should not hold a reference to a namespace in order to allow
2268 * to stop it.
2269 * Sockets after sk_change_net should be released using sk_release_kernel
2270 */
2271 static inline void sk_change_net(struct sock *sk, struct net *net)
2272 {
2273 put_net(sock_net(sk));
2274 sock_net_set(sk, hold_net(net));
2275 }
2276
2277 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2278 {
2279 if (skb->sk) {
2280 struct sock *sk = skb->sk;
2281
2282 skb->destructor = NULL;
2283 skb->sk = NULL;
2284 return sk;
2285 }
2286 return NULL;
2287 }
2288
2289 extern void sock_enable_timestamp(struct sock *sk, int flag);
2290 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2291 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2292
2293 bool sk_ns_capable(const struct sock *sk,
2294 struct user_namespace *user_ns, int cap);
2295 bool sk_capable(const struct sock *sk, int cap);
2296 bool sk_net_capable(const struct sock *sk, int cap);
2297
2298 /*
2299 * Enable debug/info messages
2300 */
2301 extern int net_msg_warn;
2302 #define NETDEBUG(fmt, args...) \
2303 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2304
2305 #define LIMIT_NETDEBUG(fmt, args...) \
2306 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2307
2308 extern __u32 sysctl_wmem_max;
2309 extern __u32 sysctl_rmem_max;
2310
2311 extern int sysctl_optmem_max;
2312
2313 extern __u32 sysctl_wmem_default;
2314 extern __u32 sysctl_rmem_default;
2315
2316 #endif /* _SOCK_H */