fs: sdfat: Update to version 2.4.5
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/ramfs.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include "pnode.h"
27 #include "internal.h"
28
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
31
32 static int event;
33 static DEFINE_IDA(mnt_id_ida);
34 static DEFINE_IDA(mnt_group_ida);
35 static DEFINE_SPINLOCK(mnt_id_lock);
36 static int mnt_id_start = 0;
37 static int mnt_group_start = 1;
38
39 static struct list_head *mount_hashtable __read_mostly;
40 static struct list_head *mountpoint_hashtable __read_mostly;
41 static struct kmem_cache *mnt_cache __read_mostly;
42 static struct rw_semaphore namespace_sem;
43
44 /* /sys/fs */
45 struct kobject *fs_kobj;
46 EXPORT_SYMBOL_GPL(fs_kobj);
47
48 /*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56 DEFINE_BRLOCK(vfsmount_lock);
57
58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59 {
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
64 }
65
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
68 /*
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
71 */
72 static int mnt_alloc_id(struct mount *mnt)
73 {
74 int res;
75
76 retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
78 spin_lock(&mnt_id_lock);
79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
80 if (!res)
81 mnt_id_start = mnt->mnt_id + 1;
82 spin_unlock(&mnt_id_lock);
83 if (res == -EAGAIN)
84 goto retry;
85
86 return res;
87 }
88
89 static void mnt_free_id(struct mount *mnt)
90 {
91 int id = mnt->mnt_id;
92 spin_lock(&mnt_id_lock);
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
96 spin_unlock(&mnt_id_lock);
97 }
98
99 /*
100 * Allocate a new peer group ID
101 *
102 * mnt_group_ida is protected by namespace_sem
103 */
104 static int mnt_alloc_group_id(struct mount *mnt)
105 {
106 int res;
107
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
110
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
113 &mnt->mnt_group_id);
114 if (!res)
115 mnt_group_start = mnt->mnt_group_id + 1;
116
117 return res;
118 }
119
120 /*
121 * Release a peer group ID
122 */
123 void mnt_release_group_id(struct mount *mnt)
124 {
125 int id = mnt->mnt_group_id;
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
129 mnt->mnt_group_id = 0;
130 }
131
132 /*
133 * vfsmount lock must be held for read
134 */
135 static inline void mnt_add_count(struct mount *mnt, int n)
136 {
137 #ifdef CONFIG_SMP
138 if (!mnt->mnt_pcp)
139 return;
140
141 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
142 #else
143 preempt_disable();
144 mnt->mnt_count += n;
145 preempt_enable();
146 #endif
147 }
148
149 /*
150 * vfsmount lock must be held for write
151 */
152 unsigned int mnt_get_count(struct mount *mnt)
153 {
154 #ifdef CONFIG_SMP
155 unsigned int count = 0;
156 int cpu;
157
158 for_each_possible_cpu(cpu) {
159 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
160 }
161
162 return count;
163 #else
164 return mnt->mnt_count;
165 #endif
166 }
167
168 static struct mount *alloc_vfsmnt(const char *name)
169 {
170 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
171 if (mnt) {
172 int err;
173
174 err = mnt_alloc_id(mnt);
175 if (err)
176 goto out_free_cache;
177
178 if (name) {
179 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
180 if (!mnt->mnt_devname)
181 goto out_free_id;
182 }
183
184 #ifdef CONFIG_SMP
185 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
186 if (!mnt->mnt_pcp)
187 goto out_free_devname;
188
189 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
190 #else
191 mnt->mnt_count = 1;
192 mnt->mnt_writers = 0;
193 #endif
194
195 INIT_LIST_HEAD(&mnt->mnt_hash);
196 INIT_LIST_HEAD(&mnt->mnt_child);
197 INIT_LIST_HEAD(&mnt->mnt_mounts);
198 INIT_LIST_HEAD(&mnt->mnt_list);
199 INIT_LIST_HEAD(&mnt->mnt_expire);
200 INIT_LIST_HEAD(&mnt->mnt_share);
201 INIT_LIST_HEAD(&mnt->mnt_slave_list);
202 INIT_LIST_HEAD(&mnt->mnt_slave);
203 #ifdef CONFIG_FSNOTIFY
204 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
205 #endif
206 }
207 return mnt;
208
209 #ifdef CONFIG_SMP
210 out_free_devname:
211 kfree(mnt->mnt_devname);
212 #endif
213 out_free_id:
214 mnt_free_id(mnt);
215 out_free_cache:
216 kmem_cache_free(mnt_cache, mnt);
217 return NULL;
218 }
219
220 /*
221 * Most r/o checks on a fs are for operations that take
222 * discrete amounts of time, like a write() or unlink().
223 * We must keep track of when those operations start
224 * (for permission checks) and when they end, so that
225 * we can determine when writes are able to occur to
226 * a filesystem.
227 */
228 /*
229 * __mnt_is_readonly: check whether a mount is read-only
230 * @mnt: the mount to check for its write status
231 *
232 * This shouldn't be used directly ouside of the VFS.
233 * It does not guarantee that the filesystem will stay
234 * r/w, just that it is right *now*. This can not and
235 * should not be used in place of IS_RDONLY(inode).
236 * mnt_want/drop_write() will _keep_ the filesystem
237 * r/w.
238 */
239 int __mnt_is_readonly(struct vfsmount *mnt)
240 {
241 if (mnt->mnt_flags & MNT_READONLY)
242 return 1;
243 if (mnt->mnt_sb->s_flags & MS_RDONLY)
244 return 1;
245 return 0;
246 }
247 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
248
249 static inline void mnt_inc_writers(struct mount *mnt)
250 {
251 #ifdef CONFIG_SMP
252 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
253 #else
254 mnt->mnt_writers++;
255 #endif
256 }
257
258 static inline void mnt_dec_writers(struct mount *mnt)
259 {
260 #ifdef CONFIG_SMP
261 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
262 #else
263 mnt->mnt_writers--;
264 #endif
265 }
266
267 static unsigned int mnt_get_writers(struct mount *mnt)
268 {
269 #ifdef CONFIG_SMP
270 unsigned int count = 0;
271 int cpu;
272
273 for_each_possible_cpu(cpu) {
274 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
275 }
276
277 return count;
278 #else
279 return mnt->mnt_writers;
280 #endif
281 }
282
283 static int mnt_is_readonly(struct vfsmount *mnt)
284 {
285 if (mnt->mnt_sb->s_readonly_remount)
286 return 1;
287 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
288 smp_rmb();
289 return __mnt_is_readonly(mnt);
290 }
291
292 /*
293 * Most r/o & frozen checks on a fs are for operations that take discrete
294 * amounts of time, like a write() or unlink(). We must keep track of when
295 * those operations start (for permission checks) and when they end, so that we
296 * can determine when writes are able to occur to a filesystem.
297 */
298 /**
299 * __mnt_want_write - get write access to a mount without freeze protection
300 * @m: the mount on which to take a write
301 *
302 * This tells the low-level filesystem that a write is about to be performed to
303 * it, and makes sure that writes are allowed (mnt it read-write) before
304 * returning success. This operation does not protect against filesystem being
305 * frozen. When the write operation is finished, __mnt_drop_write() must be
306 * called. This is effectively a refcount.
307 */
308 int __mnt_want_write(struct vfsmount *m)
309 {
310 struct mount *mnt = real_mount(m);
311 int ret = 0;
312
313 preempt_disable();
314 mnt_inc_writers(mnt);
315 /*
316 * The store to mnt_inc_writers must be visible before we pass
317 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
318 * incremented count after it has set MNT_WRITE_HOLD.
319 */
320 smp_mb();
321 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
322 cpu_relax();
323 /*
324 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
325 * be set to match its requirements. So we must not load that until
326 * MNT_WRITE_HOLD is cleared.
327 */
328 smp_rmb();
329 if (mnt_is_readonly(m)) {
330 mnt_dec_writers(mnt);
331 ret = -EROFS;
332 }
333 preempt_enable();
334
335 return ret;
336 }
337
338 /**
339 * mnt_want_write - get write access to a mount
340 * @m: the mount on which to take a write
341 *
342 * This tells the low-level filesystem that a write is about to be performed to
343 * it, and makes sure that writes are allowed (mount is read-write, filesystem
344 * is not frozen) before returning success. When the write operation is
345 * finished, mnt_drop_write() must be called. This is effectively a refcount.
346 */
347 int mnt_want_write(struct vfsmount *m)
348 {
349 int ret;
350
351 sb_start_write(m->mnt_sb);
352 ret = __mnt_want_write(m);
353 if (ret)
354 sb_end_write(m->mnt_sb);
355 return ret;
356 }
357 EXPORT_SYMBOL_GPL(mnt_want_write);
358
359 /**
360 * mnt_clone_write - get write access to a mount
361 * @mnt: the mount on which to take a write
362 *
363 * This is effectively like mnt_want_write, except
364 * it must only be used to take an extra write reference
365 * on a mountpoint that we already know has a write reference
366 * on it. This allows some optimisation.
367 *
368 * After finished, mnt_drop_write must be called as usual to
369 * drop the reference.
370 */
371 int mnt_clone_write(struct vfsmount *mnt)
372 {
373 /* superblock may be r/o */
374 if (__mnt_is_readonly(mnt))
375 return -EROFS;
376 preempt_disable();
377 mnt_inc_writers(real_mount(mnt));
378 preempt_enable();
379 return 0;
380 }
381 EXPORT_SYMBOL_GPL(mnt_clone_write);
382
383 /**
384 * __mnt_want_write_file - get write access to a file's mount
385 * @file: the file who's mount on which to take a write
386 *
387 * This is like __mnt_want_write, but it takes a file and can
388 * do some optimisations if the file is open for write already
389 */
390 int __mnt_want_write_file(struct file *file)
391 {
392 struct inode *inode = file_inode(file);
393
394 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
395 return __mnt_want_write(file->f_path.mnt);
396 else
397 return mnt_clone_write(file->f_path.mnt);
398 }
399
400 /**
401 * mnt_want_write_file - get write access to a file's mount
402 * @file: the file who's mount on which to take a write
403 *
404 * This is like mnt_want_write, but it takes a file and can
405 * do some optimisations if the file is open for write already
406 */
407 int mnt_want_write_file(struct file *file)
408 {
409 int ret;
410
411 sb_start_write(file->f_path.mnt->mnt_sb);
412 ret = __mnt_want_write_file(file);
413 if (ret)
414 sb_end_write(file->f_path.mnt->mnt_sb);
415 return ret;
416 }
417 EXPORT_SYMBOL_GPL(mnt_want_write_file);
418
419 /**
420 * __mnt_drop_write - give up write access to a mount
421 * @mnt: the mount on which to give up write access
422 *
423 * Tells the low-level filesystem that we are done
424 * performing writes to it. Must be matched with
425 * __mnt_want_write() call above.
426 */
427 void __mnt_drop_write(struct vfsmount *mnt)
428 {
429 preempt_disable();
430 mnt_dec_writers(real_mount(mnt));
431 preempt_enable();
432 }
433
434 /**
435 * mnt_drop_write - give up write access to a mount
436 * @mnt: the mount on which to give up write access
437 *
438 * Tells the low-level filesystem that we are done performing writes to it and
439 * also allows filesystem to be frozen again. Must be matched with
440 * mnt_want_write() call above.
441 */
442 void mnt_drop_write(struct vfsmount *mnt)
443 {
444 __mnt_drop_write(mnt);
445 sb_end_write(mnt->mnt_sb);
446 }
447 EXPORT_SYMBOL_GPL(mnt_drop_write);
448
449 void __mnt_drop_write_file(struct file *file)
450 {
451 __mnt_drop_write(file->f_path.mnt);
452 }
453
454 void mnt_drop_write_file(struct file *file)
455 {
456 mnt_drop_write(file->f_path.mnt);
457 }
458 EXPORT_SYMBOL(mnt_drop_write_file);
459
460 static int mnt_make_readonly(struct mount *mnt)
461 {
462 int ret = 0;
463
464 br_write_lock(&vfsmount_lock);
465 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
466 /*
467 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
468 * should be visible before we do.
469 */
470 smp_mb();
471
472 /*
473 * With writers on hold, if this value is zero, then there are
474 * definitely no active writers (although held writers may subsequently
475 * increment the count, they'll have to wait, and decrement it after
476 * seeing MNT_READONLY).
477 *
478 * It is OK to have counter incremented on one CPU and decremented on
479 * another: the sum will add up correctly. The danger would be when we
480 * sum up each counter, if we read a counter before it is incremented,
481 * but then read another CPU's count which it has been subsequently
482 * decremented from -- we would see more decrements than we should.
483 * MNT_WRITE_HOLD protects against this scenario, because
484 * mnt_want_write first increments count, then smp_mb, then spins on
485 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
486 * we're counting up here.
487 */
488 if (mnt_get_writers(mnt) > 0)
489 ret = -EBUSY;
490 else
491 mnt->mnt.mnt_flags |= MNT_READONLY;
492 /*
493 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
494 * that become unheld will see MNT_READONLY.
495 */
496 smp_wmb();
497 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
498 br_write_unlock(&vfsmount_lock);
499 return ret;
500 }
501
502 static void __mnt_unmake_readonly(struct mount *mnt)
503 {
504 br_write_lock(&vfsmount_lock);
505 mnt->mnt.mnt_flags &= ~MNT_READONLY;
506 br_write_unlock(&vfsmount_lock);
507 }
508
509 int sb_prepare_remount_readonly(struct super_block *sb)
510 {
511 struct mount *mnt;
512 int err = 0;
513
514 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
515 if (atomic_long_read(&sb->s_remove_count))
516 return -EBUSY;
517
518 br_write_lock(&vfsmount_lock);
519 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
520 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
521 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
522 smp_mb();
523 if (mnt_get_writers(mnt) > 0) {
524 err = -EBUSY;
525 break;
526 }
527 }
528 }
529 if (!err && atomic_long_read(&sb->s_remove_count))
530 err = -EBUSY;
531
532 if (!err) {
533 sb->s_readonly_remount = 1;
534 smp_wmb();
535 }
536 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
537 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
538 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
539 }
540 br_write_unlock(&vfsmount_lock);
541
542 return err;
543 }
544
545 static void free_vfsmnt(struct mount *mnt)
546 {
547 kfree(mnt->mnt.data);
548 kfree(mnt->mnt_devname);
549 mnt_free_id(mnt);
550 #ifdef CONFIG_SMP
551 free_percpu(mnt->mnt_pcp);
552 #endif
553 kmem_cache_free(mnt_cache, mnt);
554 }
555
556 /*
557 * find the first or last mount at @dentry on vfsmount @mnt depending on
558 * @dir. If @dir is set return the first mount else return the last mount.
559 * vfsmount_lock must be held for read or write.
560 */
561 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
562 int dir)
563 {
564 struct list_head *head = mount_hashtable + hash(mnt, dentry);
565 struct list_head *tmp = head;
566 struct mount *p, *found = NULL;
567
568 for (;;) {
569 tmp = dir ? tmp->next : tmp->prev;
570 p = NULL;
571 if (tmp == head)
572 break;
573 p = list_entry(tmp, struct mount, mnt_hash);
574 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
575 found = p;
576 break;
577 }
578 }
579 return found;
580 }
581
582 /*
583 * lookup_mnt - Return the first child mount mounted at path
584 *
585 * "First" means first mounted chronologically. If you create the
586 * following mounts:
587 *
588 * mount /dev/sda1 /mnt
589 * mount /dev/sda2 /mnt
590 * mount /dev/sda3 /mnt
591 *
592 * Then lookup_mnt() on the base /mnt dentry in the root mount will
593 * return successively the root dentry and vfsmount of /dev/sda1, then
594 * /dev/sda2, then /dev/sda3, then NULL.
595 *
596 * lookup_mnt takes a reference to the found vfsmount.
597 */
598 struct vfsmount *lookup_mnt(struct path *path)
599 {
600 struct mount *child_mnt;
601
602 br_read_lock(&vfsmount_lock);
603 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
604 if (child_mnt) {
605 mnt_add_count(child_mnt, 1);
606 br_read_unlock(&vfsmount_lock);
607 return &child_mnt->mnt;
608 } else {
609 br_read_unlock(&vfsmount_lock);
610 return NULL;
611 }
612 }
613
614 static struct mountpoint *new_mountpoint(struct dentry *dentry)
615 {
616 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
617 struct mountpoint *mp;
618
619 list_for_each_entry(mp, chain, m_hash) {
620 if (mp->m_dentry == dentry) {
621 /* might be worth a WARN_ON() */
622 if (d_unlinked(dentry))
623 return ERR_PTR(-ENOENT);
624 mp->m_count++;
625 return mp;
626 }
627 }
628
629 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
630 if (!mp)
631 return ERR_PTR(-ENOMEM);
632
633 spin_lock(&dentry->d_lock);
634 if (d_unlinked(dentry)) {
635 spin_unlock(&dentry->d_lock);
636 kfree(mp);
637 return ERR_PTR(-ENOENT);
638 }
639 dentry->d_flags |= DCACHE_MOUNTED;
640 spin_unlock(&dentry->d_lock);
641 mp->m_dentry = dentry;
642 mp->m_count = 1;
643 list_add(&mp->m_hash, chain);
644 return mp;
645 }
646
647 static void put_mountpoint(struct mountpoint *mp)
648 {
649 if (!--mp->m_count) {
650 struct dentry *dentry = mp->m_dentry;
651 spin_lock(&dentry->d_lock);
652 dentry->d_flags &= ~DCACHE_MOUNTED;
653 spin_unlock(&dentry->d_lock);
654 list_del(&mp->m_hash);
655 kfree(mp);
656 }
657 }
658
659 static inline int check_mnt(struct mount *mnt)
660 {
661 return mnt->mnt_ns == current->nsproxy->mnt_ns;
662 }
663
664 /*
665 * vfsmount lock must be held for write
666 */
667 static void touch_mnt_namespace(struct mnt_namespace *ns)
668 {
669 if (ns) {
670 ns->event = ++event;
671 wake_up_interruptible(&ns->poll);
672 }
673 }
674
675 /*
676 * vfsmount lock must be held for write
677 */
678 static void __touch_mnt_namespace(struct mnt_namespace *ns)
679 {
680 if (ns && ns->event != event) {
681 ns->event = event;
682 wake_up_interruptible(&ns->poll);
683 }
684 }
685
686 /*
687 * vfsmount lock must be held for write
688 */
689 static void detach_mnt(struct mount *mnt, struct path *old_path)
690 {
691 old_path->dentry = mnt->mnt_mountpoint;
692 old_path->mnt = &mnt->mnt_parent->mnt;
693 mnt->mnt_parent = mnt;
694 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
695 list_del_init(&mnt->mnt_child);
696 list_del_init(&mnt->mnt_hash);
697 put_mountpoint(mnt->mnt_mp);
698 mnt->mnt_mp = NULL;
699 }
700
701 /*
702 * vfsmount lock must be held for write
703 */
704 void mnt_set_mountpoint(struct mount *mnt,
705 struct mountpoint *mp,
706 struct mount *child_mnt)
707 {
708 mp->m_count++;
709 mnt_add_count(mnt, 1); /* essentially, that's mntget */
710 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
711 child_mnt->mnt_parent = mnt;
712 child_mnt->mnt_mp = mp;
713 }
714
715 /*
716 * vfsmount lock must be held for write
717 */
718 static void attach_mnt(struct mount *mnt,
719 struct mount *parent,
720 struct mountpoint *mp)
721 {
722 mnt_set_mountpoint(parent, mp, mnt);
723 list_add_tail(&mnt->mnt_hash, mount_hashtable +
724 hash(&parent->mnt, mp->m_dentry));
725 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
726 }
727
728 /*
729 * vfsmount lock must be held for write
730 */
731 static void commit_tree(struct mount *mnt)
732 {
733 struct mount *parent = mnt->mnt_parent;
734 struct mount *m;
735 LIST_HEAD(head);
736 struct mnt_namespace *n = parent->mnt_ns;
737
738 BUG_ON(parent == mnt);
739
740 list_add_tail(&head, &mnt->mnt_list);
741 list_for_each_entry(m, &head, mnt_list)
742 m->mnt_ns = n;
743
744 list_splice(&head, n->list.prev);
745
746 list_add_tail(&mnt->mnt_hash, mount_hashtable +
747 hash(&parent->mnt, mnt->mnt_mountpoint));
748 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
749 touch_mnt_namespace(n);
750 }
751
752 static struct mount *next_mnt(struct mount *p, struct mount *root)
753 {
754 struct list_head *next = p->mnt_mounts.next;
755 if (next == &p->mnt_mounts) {
756 while (1) {
757 if (p == root)
758 return NULL;
759 next = p->mnt_child.next;
760 if (next != &p->mnt_parent->mnt_mounts)
761 break;
762 p = p->mnt_parent;
763 }
764 }
765 return list_entry(next, struct mount, mnt_child);
766 }
767
768 static struct mount *skip_mnt_tree(struct mount *p)
769 {
770 struct list_head *prev = p->mnt_mounts.prev;
771 while (prev != &p->mnt_mounts) {
772 p = list_entry(prev, struct mount, mnt_child);
773 prev = p->mnt_mounts.prev;
774 }
775 return p;
776 }
777
778 struct vfsmount *
779 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
780 {
781 struct mount *mnt;
782 struct dentry *root;
783
784 if (!type)
785 return ERR_PTR(-ENODEV);
786
787 mnt = alloc_vfsmnt(name);
788 if (!mnt)
789 return ERR_PTR(-ENOMEM);
790
791 mnt->mnt.data = NULL;
792 if (type->alloc_mnt_data) {
793 mnt->mnt.data = type->alloc_mnt_data();
794 if (!mnt->mnt.data) {
795 mnt_free_id(mnt);
796 free_vfsmnt(mnt);
797 return ERR_PTR(-ENOMEM);
798 }
799 }
800 if (flags & MS_KERNMOUNT)
801 mnt->mnt.mnt_flags = MNT_INTERNAL;
802
803 root = mount_fs(type, flags, name, &mnt->mnt, data);
804 if (IS_ERR(root)) {
805 kfree(mnt->mnt.data);
806 free_vfsmnt(mnt);
807 return ERR_CAST(root);
808 }
809
810 mnt->mnt.mnt_root = root;
811 mnt->mnt.mnt_sb = root->d_sb;
812 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
813 mnt->mnt_parent = mnt;
814 br_write_lock(&vfsmount_lock);
815 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
816 br_write_unlock(&vfsmount_lock);
817 return &mnt->mnt;
818 }
819 EXPORT_SYMBOL_GPL(vfs_kern_mount);
820
821 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
822 int flag)
823 {
824 struct super_block *sb = old->mnt.mnt_sb;
825 struct mount *mnt;
826 int err;
827
828 mnt = alloc_vfsmnt(old->mnt_devname);
829 if (!mnt)
830 return ERR_PTR(-ENOMEM);
831
832 if (sb->s_op->clone_mnt_data) {
833 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
834 if (!mnt->mnt.data) {
835 err = -ENOMEM;
836 goto out_free;
837 }
838 }
839
840 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
841 mnt->mnt_group_id = 0; /* not a peer of original */
842 else
843 mnt->mnt_group_id = old->mnt_group_id;
844
845 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
846 err = mnt_alloc_group_id(mnt);
847 if (err)
848 goto out_free;
849 }
850
851 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
852 /* Don't allow unprivileged users to change mount flags */
853 if (flag & CL_UNPRIVILEGED) {
854 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
855
856 if (mnt->mnt.mnt_flags & MNT_READONLY)
857 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
858
859 if (mnt->mnt.mnt_flags & MNT_NODEV)
860 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
861
862 if (mnt->mnt.mnt_flags & MNT_NOSUID)
863 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
864
865 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
866 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
867 }
868
869 atomic_inc(&sb->s_active);
870 mnt->mnt.mnt_sb = sb;
871 mnt->mnt.mnt_root = dget(root);
872 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
873 mnt->mnt_parent = mnt;
874 br_write_lock(&vfsmount_lock);
875 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
876 br_write_unlock(&vfsmount_lock);
877
878 if ((flag & CL_SLAVE) ||
879 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
880 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
881 mnt->mnt_master = old;
882 CLEAR_MNT_SHARED(mnt);
883 } else if (!(flag & CL_PRIVATE)) {
884 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
885 list_add(&mnt->mnt_share, &old->mnt_share);
886 if (IS_MNT_SLAVE(old))
887 list_add(&mnt->mnt_slave, &old->mnt_slave);
888 mnt->mnt_master = old->mnt_master;
889 }
890 if (flag & CL_MAKE_SHARED)
891 set_mnt_shared(mnt);
892
893 /* stick the duplicate mount on the same expiry list
894 * as the original if that was on one */
895 if (flag & CL_EXPIRE) {
896 if (!list_empty(&old->mnt_expire))
897 list_add(&mnt->mnt_expire, &old->mnt_expire);
898 }
899
900 return mnt;
901
902 out_free:
903 kfree(mnt->mnt.data);
904 free_vfsmnt(mnt);
905 return ERR_PTR(err);
906 }
907
908 static inline void mntfree(struct mount *mnt)
909 {
910 struct vfsmount *m = &mnt->mnt;
911 struct super_block *sb = m->mnt_sb;
912
913 /*
914 * This probably indicates that somebody messed
915 * up a mnt_want/drop_write() pair. If this
916 * happens, the filesystem was probably unable
917 * to make r/w->r/o transitions.
918 */
919 /*
920 * The locking used to deal with mnt_count decrement provides barriers,
921 * so mnt_get_writers() below is safe.
922 */
923 WARN_ON(mnt_get_writers(mnt));
924 fsnotify_vfsmount_delete(m);
925 dput(m->mnt_root);
926 free_vfsmnt(mnt);
927 deactivate_super(sb);
928 }
929
930 static void mntput_no_expire(struct mount *mnt)
931 {
932 put_again:
933 #ifdef CONFIG_SMP
934 br_read_lock(&vfsmount_lock);
935 if (likely(mnt->mnt_ns)) {
936 /* shouldn't be the last one */
937 mnt_add_count(mnt, -1);
938 br_read_unlock(&vfsmount_lock);
939 return;
940 }
941 br_read_unlock(&vfsmount_lock);
942
943 br_write_lock(&vfsmount_lock);
944 mnt_add_count(mnt, -1);
945 if (mnt_get_count(mnt)) {
946 br_write_unlock(&vfsmount_lock);
947 return;
948 }
949 #else
950 mnt_add_count(mnt, -1);
951 if (likely(mnt_get_count(mnt)))
952 return;
953 br_write_lock(&vfsmount_lock);
954 #endif
955 if (unlikely(mnt->mnt_pinned)) {
956 mnt_add_count(mnt, mnt->mnt_pinned + 1);
957 mnt->mnt_pinned = 0;
958 br_write_unlock(&vfsmount_lock);
959 acct_auto_close_mnt(&mnt->mnt);
960 goto put_again;
961 }
962
963 list_del(&mnt->mnt_instance);
964 br_write_unlock(&vfsmount_lock);
965 mntfree(mnt);
966 }
967
968 void mntput(struct vfsmount *mnt)
969 {
970 if (mnt) {
971 struct mount *m = real_mount(mnt);
972 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
973 if (unlikely(m->mnt_expiry_mark))
974 m->mnt_expiry_mark = 0;
975 mntput_no_expire(m);
976 }
977 }
978 EXPORT_SYMBOL(mntput);
979
980 struct vfsmount *mntget(struct vfsmount *mnt)
981 {
982 if (mnt)
983 mnt_add_count(real_mount(mnt), 1);
984 return mnt;
985 }
986 EXPORT_SYMBOL(mntget);
987
988 void mnt_pin(struct vfsmount *mnt)
989 {
990 br_write_lock(&vfsmount_lock);
991 real_mount(mnt)->mnt_pinned++;
992 br_write_unlock(&vfsmount_lock);
993 }
994 EXPORT_SYMBOL(mnt_pin);
995
996 void mnt_unpin(struct vfsmount *m)
997 {
998 struct mount *mnt = real_mount(m);
999 br_write_lock(&vfsmount_lock);
1000 if (mnt->mnt_pinned) {
1001 mnt_add_count(mnt, 1);
1002 mnt->mnt_pinned--;
1003 }
1004 br_write_unlock(&vfsmount_lock);
1005 }
1006 EXPORT_SYMBOL(mnt_unpin);
1007
1008 static inline void mangle(struct seq_file *m, const char *s)
1009 {
1010 seq_escape(m, s, " \t\n\\");
1011 }
1012
1013 /*
1014 * Simple .show_options callback for filesystems which don't want to
1015 * implement more complex mount option showing.
1016 *
1017 * See also save_mount_options().
1018 */
1019 int generic_show_options(struct seq_file *m, struct dentry *root)
1020 {
1021 const char *options;
1022
1023 rcu_read_lock();
1024 options = rcu_dereference(root->d_sb->s_options);
1025
1026 if (options != NULL && options[0]) {
1027 seq_putc(m, ',');
1028 mangle(m, options);
1029 }
1030 rcu_read_unlock();
1031
1032 return 0;
1033 }
1034 EXPORT_SYMBOL(generic_show_options);
1035
1036 /*
1037 * If filesystem uses generic_show_options(), this function should be
1038 * called from the fill_super() callback.
1039 *
1040 * The .remount_fs callback usually needs to be handled in a special
1041 * way, to make sure, that previous options are not overwritten if the
1042 * remount fails.
1043 *
1044 * Also note, that if the filesystem's .remount_fs function doesn't
1045 * reset all options to their default value, but changes only newly
1046 * given options, then the displayed options will not reflect reality
1047 * any more.
1048 */
1049 void save_mount_options(struct super_block *sb, char *options)
1050 {
1051 BUG_ON(sb->s_options);
1052 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1053 }
1054 EXPORT_SYMBOL(save_mount_options);
1055
1056 void replace_mount_options(struct super_block *sb, char *options)
1057 {
1058 char *old = sb->s_options;
1059 rcu_assign_pointer(sb->s_options, options);
1060 if (old) {
1061 synchronize_rcu();
1062 kfree(old);
1063 }
1064 }
1065 EXPORT_SYMBOL(replace_mount_options);
1066
1067 #ifdef CONFIG_PROC_FS
1068 /* iterator; we want it to have access to namespace_sem, thus here... */
1069 static void *m_start(struct seq_file *m, loff_t *pos)
1070 {
1071 struct proc_mounts *p = proc_mounts(m);
1072
1073 down_read(&namespace_sem);
1074 return seq_list_start(&p->ns->list, *pos);
1075 }
1076
1077 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1078 {
1079 struct proc_mounts *p = proc_mounts(m);
1080
1081 return seq_list_next(v, &p->ns->list, pos);
1082 }
1083
1084 static void m_stop(struct seq_file *m, void *v)
1085 {
1086 up_read(&namespace_sem);
1087 }
1088
1089 static int m_show(struct seq_file *m, void *v)
1090 {
1091 struct proc_mounts *p = proc_mounts(m);
1092 struct mount *r = list_entry(v, struct mount, mnt_list);
1093 return p->show(m, &r->mnt);
1094 }
1095
1096 const struct seq_operations mounts_op = {
1097 .start = m_start,
1098 .next = m_next,
1099 .stop = m_stop,
1100 .show = m_show,
1101 };
1102 #endif /* CONFIG_PROC_FS */
1103
1104 /**
1105 * may_umount_tree - check if a mount tree is busy
1106 * @mnt: root of mount tree
1107 *
1108 * This is called to check if a tree of mounts has any
1109 * open files, pwds, chroots or sub mounts that are
1110 * busy.
1111 */
1112 int may_umount_tree(struct vfsmount *m)
1113 {
1114 struct mount *mnt = real_mount(m);
1115 int actual_refs = 0;
1116 int minimum_refs = 0;
1117 struct mount *p;
1118 BUG_ON(!m);
1119
1120 /* write lock needed for mnt_get_count */
1121 br_write_lock(&vfsmount_lock);
1122 for (p = mnt; p; p = next_mnt(p, mnt)) {
1123 actual_refs += mnt_get_count(p);
1124 minimum_refs += 2;
1125 }
1126 br_write_unlock(&vfsmount_lock);
1127
1128 if (actual_refs > minimum_refs)
1129 return 0;
1130
1131 return 1;
1132 }
1133
1134 EXPORT_SYMBOL(may_umount_tree);
1135
1136 /**
1137 * may_umount - check if a mount point is busy
1138 * @mnt: root of mount
1139 *
1140 * This is called to check if a mount point has any
1141 * open files, pwds, chroots or sub mounts. If the
1142 * mount has sub mounts this will return busy
1143 * regardless of whether the sub mounts are busy.
1144 *
1145 * Doesn't take quota and stuff into account. IOW, in some cases it will
1146 * give false negatives. The main reason why it's here is that we need
1147 * a non-destructive way to look for easily umountable filesystems.
1148 */
1149 int may_umount(struct vfsmount *mnt)
1150 {
1151 int ret = 1;
1152 down_read(&namespace_sem);
1153 br_write_lock(&vfsmount_lock);
1154 if (propagate_mount_busy(real_mount(mnt), 2))
1155 ret = 0;
1156 br_write_unlock(&vfsmount_lock);
1157 up_read(&namespace_sem);
1158 return ret;
1159 }
1160
1161 EXPORT_SYMBOL(may_umount);
1162
1163 static LIST_HEAD(unmounted); /* protected by namespace_sem */
1164
1165 static void namespace_unlock(void)
1166 {
1167 struct mount *mnt;
1168 LIST_HEAD(head);
1169
1170 if (likely(list_empty(&unmounted))) {
1171 up_write(&namespace_sem);
1172 return;
1173 }
1174
1175 list_splice_init(&unmounted, &head);
1176 up_write(&namespace_sem);
1177
1178 while (!list_empty(&head)) {
1179 mnt = list_first_entry(&head, struct mount, mnt_hash);
1180 list_del_init(&mnt->mnt_hash);
1181 if (mnt_has_parent(mnt)) {
1182 struct dentry *dentry;
1183 struct mount *m;
1184
1185 br_write_lock(&vfsmount_lock);
1186 dentry = mnt->mnt_mountpoint;
1187 m = mnt->mnt_parent;
1188 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1189 mnt->mnt_parent = mnt;
1190 m->mnt_ghosts--;
1191 br_write_unlock(&vfsmount_lock);
1192 dput(dentry);
1193 mntput(&m->mnt);
1194 }
1195 mntput(&mnt->mnt);
1196 }
1197 }
1198
1199 static inline void namespace_lock(void)
1200 {
1201 down_write(&namespace_sem);
1202 }
1203
1204 /*
1205 * vfsmount lock must be held for write
1206 * namespace_sem must be held for write
1207 */
1208 void umount_tree(struct mount *mnt, int propagate)
1209 {
1210 LIST_HEAD(tmp_list);
1211 struct mount *p;
1212
1213 for (p = mnt; p; p = next_mnt(p, mnt))
1214 list_move(&p->mnt_hash, &tmp_list);
1215
1216 if (propagate)
1217 propagate_umount(&tmp_list);
1218
1219 list_for_each_entry(p, &tmp_list, mnt_hash) {
1220 list_del_init(&p->mnt_expire);
1221 list_del_init(&p->mnt_list);
1222 __touch_mnt_namespace(p->mnt_ns);
1223 p->mnt_ns = NULL;
1224 list_del_init(&p->mnt_child);
1225 if (mnt_has_parent(p)) {
1226 p->mnt_parent->mnt_ghosts++;
1227 put_mountpoint(p->mnt_mp);
1228 p->mnt_mp = NULL;
1229 }
1230 change_mnt_propagation(p, MS_PRIVATE);
1231 }
1232 list_splice(&tmp_list, &unmounted);
1233 }
1234
1235 static void shrink_submounts(struct mount *mnt);
1236
1237 static int do_umount(struct mount *mnt, int flags)
1238 {
1239 struct super_block *sb = mnt->mnt.mnt_sb;
1240 int retval;
1241
1242 retval = security_sb_umount(&mnt->mnt, flags);
1243 if (retval)
1244 return retval;
1245
1246 /*
1247 * Allow userspace to request a mountpoint be expired rather than
1248 * unmounting unconditionally. Unmount only happens if:
1249 * (1) the mark is already set (the mark is cleared by mntput())
1250 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1251 */
1252 if (flags & MNT_EXPIRE) {
1253 if (&mnt->mnt == current->fs->root.mnt ||
1254 flags & (MNT_FORCE | MNT_DETACH))
1255 return -EINVAL;
1256
1257 /*
1258 * probably don't strictly need the lock here if we examined
1259 * all race cases, but it's a slowpath.
1260 */
1261 br_write_lock(&vfsmount_lock);
1262 if (mnt_get_count(mnt) != 2) {
1263 br_write_unlock(&vfsmount_lock);
1264 return -EBUSY;
1265 }
1266 br_write_unlock(&vfsmount_lock);
1267
1268 if (!xchg(&mnt->mnt_expiry_mark, 1))
1269 return -EAGAIN;
1270 }
1271
1272 /*
1273 * If we may have to abort operations to get out of this
1274 * mount, and they will themselves hold resources we must
1275 * allow the fs to do things. In the Unix tradition of
1276 * 'Gee thats tricky lets do it in userspace' the umount_begin
1277 * might fail to complete on the first run through as other tasks
1278 * must return, and the like. Thats for the mount program to worry
1279 * about for the moment.
1280 */
1281
1282 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1283 sb->s_op->umount_begin(sb);
1284 }
1285
1286 /*
1287 * No sense to grab the lock for this test, but test itself looks
1288 * somewhat bogus. Suggestions for better replacement?
1289 * Ho-hum... In principle, we might treat that as umount + switch
1290 * to rootfs. GC would eventually take care of the old vfsmount.
1291 * Actually it makes sense, especially if rootfs would contain a
1292 * /reboot - static binary that would close all descriptors and
1293 * call reboot(9). Then init(8) could umount root and exec /reboot.
1294 */
1295 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1296 /*
1297 * Special case for "unmounting" root ...
1298 * we just try to remount it readonly.
1299 */
1300 if (!capable(CAP_SYS_ADMIN))
1301 return -EPERM;
1302 down_write(&sb->s_umount);
1303 if (!(sb->s_flags & MS_RDONLY))
1304 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1305 up_write(&sb->s_umount);
1306 return retval;
1307 }
1308
1309 namespace_lock();
1310 br_write_lock(&vfsmount_lock);
1311 event++;
1312
1313 if (!(flags & MNT_DETACH))
1314 shrink_submounts(mnt);
1315
1316 retval = -EBUSY;
1317 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1318 if (!list_empty(&mnt->mnt_list))
1319 umount_tree(mnt, 1);
1320 retval = 0;
1321 }
1322 br_write_unlock(&vfsmount_lock);
1323 namespace_unlock();
1324 return retval;
1325 }
1326
1327 /*
1328 * Is the caller allowed to modify his namespace?
1329 */
1330 static inline bool may_mount(void)
1331 {
1332 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1333 }
1334
1335 /*
1336 * Now umount can handle mount points as well as block devices.
1337 * This is important for filesystems which use unnamed block devices.
1338 *
1339 * We now support a flag for forced unmount like the other 'big iron'
1340 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1341 */
1342
1343 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1344 {
1345 struct path path;
1346 struct mount *mnt;
1347 int retval;
1348 int lookup_flags = 0;
1349
1350 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1351 return -EINVAL;
1352
1353 if (!may_mount())
1354 return -EPERM;
1355
1356 if (!(flags & UMOUNT_NOFOLLOW))
1357 lookup_flags |= LOOKUP_FOLLOW;
1358
1359 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1360 if (retval)
1361 goto out;
1362 mnt = real_mount(path.mnt);
1363 retval = -EINVAL;
1364 if (path.dentry != path.mnt->mnt_root)
1365 goto dput_and_out;
1366 if (!check_mnt(mnt))
1367 goto dput_and_out;
1368 retval = -EPERM;
1369 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1370 goto dput_and_out;
1371
1372 retval = do_umount(mnt, flags);
1373 dput_and_out:
1374 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1375 dput(path.dentry);
1376 mntput_no_expire(mnt);
1377 out:
1378 return retval;
1379 }
1380
1381 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1382
1383 /*
1384 * The 2.0 compatible umount. No flags.
1385 */
1386 SYSCALL_DEFINE1(oldumount, char __user *, name)
1387 {
1388 return sys_umount(name, 0);
1389 }
1390
1391 #endif
1392
1393 static bool mnt_ns_loop(struct path *path)
1394 {
1395 /* Could bind mounting the mount namespace inode cause a
1396 * mount namespace loop?
1397 */
1398 struct inode *inode = path->dentry->d_inode;
1399 struct proc_ns *ei;
1400 struct mnt_namespace *mnt_ns;
1401
1402 if (!proc_ns_inode(inode))
1403 return false;
1404
1405 ei = get_proc_ns(inode);
1406 if (ei->ns_ops != &mntns_operations)
1407 return false;
1408
1409 mnt_ns = ei->ns;
1410 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1411 }
1412
1413 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1414 int flag)
1415 {
1416 struct mount *res, *p, *q, *r, *parent;
1417
1418 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1419 return ERR_PTR(-EINVAL);
1420
1421 res = q = clone_mnt(mnt, dentry, flag);
1422 if (IS_ERR(q))
1423 return q;
1424
1425 q->mnt_mountpoint = mnt->mnt_mountpoint;
1426
1427 p = mnt;
1428 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1429 struct mount *s;
1430 if (!is_subdir(r->mnt_mountpoint, dentry))
1431 continue;
1432
1433 for (s = r; s; s = next_mnt(s, r)) {
1434 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1435 s = skip_mnt_tree(s);
1436 continue;
1437 }
1438 while (p != s->mnt_parent) {
1439 p = p->mnt_parent;
1440 q = q->mnt_parent;
1441 }
1442 p = s;
1443 parent = q;
1444 q = clone_mnt(p, p->mnt.mnt_root, flag);
1445 if (IS_ERR(q))
1446 goto out;
1447 br_write_lock(&vfsmount_lock);
1448 list_add_tail(&q->mnt_list, &res->mnt_list);
1449 attach_mnt(q, parent, p->mnt_mp);
1450 br_write_unlock(&vfsmount_lock);
1451 }
1452 }
1453 return res;
1454 out:
1455 if (res) {
1456 br_write_lock(&vfsmount_lock);
1457 umount_tree(res, 0);
1458 br_write_unlock(&vfsmount_lock);
1459 }
1460 return q;
1461 }
1462
1463 /* Caller should check returned pointer for errors */
1464
1465 struct vfsmount *collect_mounts(struct path *path)
1466 {
1467 struct mount *tree;
1468 namespace_lock();
1469 if (!check_mnt(real_mount(path->mnt)))
1470 tree = ERR_PTR(-EINVAL);
1471 else
1472 tree = copy_tree(real_mount(path->mnt), path->dentry,
1473 CL_COPY_ALL | CL_PRIVATE);
1474 namespace_unlock();
1475 if (IS_ERR(tree))
1476 return ERR_CAST(tree);
1477 return &tree->mnt;
1478 }
1479
1480 void drop_collected_mounts(struct vfsmount *mnt)
1481 {
1482 namespace_lock();
1483 br_write_lock(&vfsmount_lock);
1484 umount_tree(real_mount(mnt), 0);
1485 br_write_unlock(&vfsmount_lock);
1486 namespace_unlock();
1487 }
1488
1489 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1490 struct vfsmount *root)
1491 {
1492 struct mount *mnt;
1493 int res = f(root, arg);
1494 if (res)
1495 return res;
1496 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1497 res = f(&mnt->mnt, arg);
1498 if (res)
1499 return res;
1500 }
1501 return 0;
1502 }
1503
1504 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1505 {
1506 struct mount *p;
1507
1508 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1509 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1510 mnt_release_group_id(p);
1511 }
1512 }
1513
1514 static int invent_group_ids(struct mount *mnt, bool recurse)
1515 {
1516 struct mount *p;
1517
1518 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1519 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1520 int err = mnt_alloc_group_id(p);
1521 if (err) {
1522 cleanup_group_ids(mnt, p);
1523 return err;
1524 }
1525 }
1526 }
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * @source_mnt : mount tree to be attached
1533 * @nd : place the mount tree @source_mnt is attached
1534 * @parent_nd : if non-null, detach the source_mnt from its parent and
1535 * store the parent mount and mountpoint dentry.
1536 * (done when source_mnt is moved)
1537 *
1538 * NOTE: in the table below explains the semantics when a source mount
1539 * of a given type is attached to a destination mount of a given type.
1540 * ---------------------------------------------------------------------------
1541 * | BIND MOUNT OPERATION |
1542 * |**************************************************************************
1543 * | source-->| shared | private | slave | unbindable |
1544 * | dest | | | | |
1545 * | | | | | | |
1546 * | v | | | | |
1547 * |**************************************************************************
1548 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1549 * | | | | | |
1550 * |non-shared| shared (+) | private | slave (*) | invalid |
1551 * ***************************************************************************
1552 * A bind operation clones the source mount and mounts the clone on the
1553 * destination mount.
1554 *
1555 * (++) the cloned mount is propagated to all the mounts in the propagation
1556 * tree of the destination mount and the cloned mount is added to
1557 * the peer group of the source mount.
1558 * (+) the cloned mount is created under the destination mount and is marked
1559 * as shared. The cloned mount is added to the peer group of the source
1560 * mount.
1561 * (+++) the mount is propagated to all the mounts in the propagation tree
1562 * of the destination mount and the cloned mount is made slave
1563 * of the same master as that of the source mount. The cloned mount
1564 * is marked as 'shared and slave'.
1565 * (*) the cloned mount is made a slave of the same master as that of the
1566 * source mount.
1567 *
1568 * ---------------------------------------------------------------------------
1569 * | MOVE MOUNT OPERATION |
1570 * |**************************************************************************
1571 * | source-->| shared | private | slave | unbindable |
1572 * | dest | | | | |
1573 * | | | | | | |
1574 * | v | | | | |
1575 * |**************************************************************************
1576 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1577 * | | | | | |
1578 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1579 * ***************************************************************************
1580 *
1581 * (+) the mount is moved to the destination. And is then propagated to
1582 * all the mounts in the propagation tree of the destination mount.
1583 * (+*) the mount is moved to the destination.
1584 * (+++) the mount is moved to the destination and is then propagated to
1585 * all the mounts belonging to the destination mount's propagation tree.
1586 * the mount is marked as 'shared and slave'.
1587 * (*) the mount continues to be a slave at the new location.
1588 *
1589 * if the source mount is a tree, the operations explained above is
1590 * applied to each mount in the tree.
1591 * Must be called without spinlocks held, since this function can sleep
1592 * in allocations.
1593 */
1594 static int attach_recursive_mnt(struct mount *source_mnt,
1595 struct mount *dest_mnt,
1596 struct mountpoint *dest_mp,
1597 struct path *parent_path)
1598 {
1599 LIST_HEAD(tree_list);
1600 struct mount *child, *p;
1601 int err;
1602
1603 if (IS_MNT_SHARED(dest_mnt)) {
1604 err = invent_group_ids(source_mnt, true);
1605 if (err)
1606 goto out;
1607 }
1608 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1609 if (err)
1610 goto out_cleanup_ids;
1611
1612 br_write_lock(&vfsmount_lock);
1613
1614 if (IS_MNT_SHARED(dest_mnt)) {
1615 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1616 set_mnt_shared(p);
1617 }
1618 if (parent_path) {
1619 detach_mnt(source_mnt, parent_path);
1620 attach_mnt(source_mnt, dest_mnt, dest_mp);
1621 touch_mnt_namespace(source_mnt->mnt_ns);
1622 } else {
1623 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1624 commit_tree(source_mnt);
1625 }
1626
1627 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1628 list_del_init(&child->mnt_hash);
1629 commit_tree(child);
1630 }
1631 br_write_unlock(&vfsmount_lock);
1632
1633 return 0;
1634
1635 out_cleanup_ids:
1636 if (IS_MNT_SHARED(dest_mnt))
1637 cleanup_group_ids(source_mnt, NULL);
1638 out:
1639 return err;
1640 }
1641
1642 static struct mountpoint *lock_mount(struct path *path)
1643 {
1644 struct vfsmount *mnt;
1645 struct dentry *dentry = path->dentry;
1646 retry:
1647 mutex_lock(&dentry->d_inode->i_mutex);
1648 if (unlikely(cant_mount(dentry))) {
1649 mutex_unlock(&dentry->d_inode->i_mutex);
1650 return ERR_PTR(-ENOENT);
1651 }
1652 namespace_lock();
1653 mnt = lookup_mnt(path);
1654 if (likely(!mnt)) {
1655 struct mountpoint *mp = new_mountpoint(dentry);
1656 if (IS_ERR(mp)) {
1657 namespace_unlock();
1658 mutex_unlock(&dentry->d_inode->i_mutex);
1659 return mp;
1660 }
1661 return mp;
1662 }
1663 namespace_unlock();
1664 mutex_unlock(&path->dentry->d_inode->i_mutex);
1665 path_put(path);
1666 path->mnt = mnt;
1667 dentry = path->dentry = dget(mnt->mnt_root);
1668 goto retry;
1669 }
1670
1671 static void unlock_mount(struct mountpoint *where)
1672 {
1673 struct dentry *dentry = where->m_dentry;
1674 put_mountpoint(where);
1675 namespace_unlock();
1676 mutex_unlock(&dentry->d_inode->i_mutex);
1677 }
1678
1679 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1680 {
1681 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1682 return -EINVAL;
1683
1684 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1685 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1686 return -ENOTDIR;
1687
1688 return attach_recursive_mnt(mnt, p, mp, NULL);
1689 }
1690
1691 /*
1692 * Sanity check the flags to change_mnt_propagation.
1693 */
1694
1695 static int flags_to_propagation_type(int flags)
1696 {
1697 int type = flags & ~(MS_REC | MS_SILENT);
1698
1699 /* Fail if any non-propagation flags are set */
1700 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1701 return 0;
1702 /* Only one propagation flag should be set */
1703 if (!is_power_of_2(type))
1704 return 0;
1705 return type;
1706 }
1707
1708 /*
1709 * recursively change the type of the mountpoint.
1710 */
1711 static int do_change_type(struct path *path, int flag)
1712 {
1713 struct mount *m;
1714 struct mount *mnt = real_mount(path->mnt);
1715 int recurse = flag & MS_REC;
1716 int type;
1717 int err = 0;
1718
1719 if (path->dentry != path->mnt->mnt_root)
1720 return -EINVAL;
1721
1722 type = flags_to_propagation_type(flag);
1723 if (!type)
1724 return -EINVAL;
1725
1726 namespace_lock();
1727 if (type == MS_SHARED) {
1728 err = invent_group_ids(mnt, recurse);
1729 if (err)
1730 goto out_unlock;
1731 }
1732
1733 br_write_lock(&vfsmount_lock);
1734 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1735 change_mnt_propagation(m, type);
1736 br_write_unlock(&vfsmount_lock);
1737
1738 out_unlock:
1739 namespace_unlock();
1740 return err;
1741 }
1742
1743 /*
1744 * do loopback mount.
1745 */
1746 static int do_loopback(struct path *path, const char *old_name,
1747 int recurse)
1748 {
1749 struct path old_path;
1750 struct mount *mnt = NULL, *old, *parent;
1751 struct mountpoint *mp;
1752 int err;
1753 if (!old_name || !*old_name)
1754 return -EINVAL;
1755 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1756 if (err)
1757 return err;
1758
1759 err = -EINVAL;
1760 if (mnt_ns_loop(&old_path))
1761 goto out;
1762
1763 mp = lock_mount(path);
1764 err = PTR_ERR(mp);
1765 if (IS_ERR(mp))
1766 goto out;
1767
1768 old = real_mount(old_path.mnt);
1769 parent = real_mount(path->mnt);
1770
1771 err = -EINVAL;
1772 if (IS_MNT_UNBINDABLE(old))
1773 goto out2;
1774
1775 if (!check_mnt(parent) || !check_mnt(old))
1776 goto out2;
1777
1778 if (recurse)
1779 mnt = copy_tree(old, old_path.dentry, 0);
1780 else
1781 mnt = clone_mnt(old, old_path.dentry, 0);
1782
1783 if (IS_ERR(mnt)) {
1784 err = PTR_ERR(mnt);
1785 goto out2;
1786 }
1787
1788 err = graft_tree(mnt, parent, mp);
1789 if (err) {
1790 br_write_lock(&vfsmount_lock);
1791 umount_tree(mnt, 0);
1792 br_write_unlock(&vfsmount_lock);
1793 }
1794 out2:
1795 unlock_mount(mp);
1796 out:
1797 path_put(&old_path);
1798 return err;
1799 }
1800
1801 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1802 {
1803 int error = 0;
1804 int readonly_request = 0;
1805
1806 if (ms_flags & MS_RDONLY)
1807 readonly_request = 1;
1808 if (readonly_request == __mnt_is_readonly(mnt))
1809 return 0;
1810
1811 if (readonly_request)
1812 error = mnt_make_readonly(real_mount(mnt));
1813 else
1814 __mnt_unmake_readonly(real_mount(mnt));
1815 return error;
1816 }
1817
1818 /*
1819 * change filesystem flags. dir should be a physical root of filesystem.
1820 * If you've mounted a non-root directory somewhere and want to do remount
1821 * on it - tough luck.
1822 */
1823 static int do_remount(struct path *path, int flags, int mnt_flags,
1824 void *data)
1825 {
1826 int err;
1827 struct super_block *sb = path->mnt->mnt_sb;
1828 struct mount *mnt = real_mount(path->mnt);
1829
1830 if (!check_mnt(mnt))
1831 return -EINVAL;
1832
1833 if (path->dentry != path->mnt->mnt_root)
1834 return -EINVAL;
1835
1836 /* Don't allow changing of locked mnt flags.
1837 *
1838 * No locks need to be held here while testing the various
1839 * MNT_LOCK flags because those flags can never be cleared
1840 * once they are set.
1841 */
1842 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1843 !(mnt_flags & MNT_READONLY)) {
1844 return -EPERM;
1845 }
1846 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1847 !(mnt_flags & MNT_NODEV)) {
1848 /* Was the nodev implicitly added in mount? */
1849 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
1850 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1851 mnt_flags |= MNT_NODEV;
1852 } else {
1853 return -EPERM;
1854 }
1855 }
1856 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1857 !(mnt_flags & MNT_NOSUID)) {
1858 return -EPERM;
1859 }
1860 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1861 !(mnt_flags & MNT_NOEXEC)) {
1862 return -EPERM;
1863 }
1864 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1865 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1866 return -EPERM;
1867 }
1868
1869 err = security_sb_remount(sb, data);
1870 if (err)
1871 return err;
1872
1873 down_write(&sb->s_umount);
1874 if (flags & MS_BIND)
1875 err = change_mount_flags(path->mnt, flags);
1876 else if (!capable(CAP_SYS_ADMIN))
1877 err = -EPERM;
1878 else {
1879 err = do_remount_sb2(path->mnt, sb, flags, data, 0);
1880 namespace_lock();
1881 br_write_lock(&vfsmount_lock);
1882 propagate_remount(mnt);
1883 br_write_unlock(&vfsmount_lock);
1884 namespace_unlock();
1885 }
1886 if (!err) {
1887 br_write_lock(&vfsmount_lock);
1888 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
1889 mnt->mnt.mnt_flags = mnt_flags;
1890 br_write_unlock(&vfsmount_lock);
1891 }
1892 up_write(&sb->s_umount);
1893 if (!err) {
1894 br_write_lock(&vfsmount_lock);
1895 touch_mnt_namespace(mnt->mnt_ns);
1896 br_write_unlock(&vfsmount_lock);
1897 }
1898 return err;
1899 }
1900
1901 static inline int tree_contains_unbindable(struct mount *mnt)
1902 {
1903 struct mount *p;
1904 for (p = mnt; p; p = next_mnt(p, mnt)) {
1905 if (IS_MNT_UNBINDABLE(p))
1906 return 1;
1907 }
1908 return 0;
1909 }
1910
1911 static int do_move_mount(struct path *path, const char *old_name)
1912 {
1913 struct path old_path, parent_path;
1914 struct mount *p;
1915 struct mount *old;
1916 struct mountpoint *mp;
1917 int err;
1918 if (!old_name || !*old_name)
1919 return -EINVAL;
1920 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1921 if (err)
1922 return err;
1923
1924 mp = lock_mount(path);
1925 err = PTR_ERR(mp);
1926 if (IS_ERR(mp))
1927 goto out;
1928
1929 old = real_mount(old_path.mnt);
1930 p = real_mount(path->mnt);
1931
1932 err = -EINVAL;
1933 if (!check_mnt(p) || !check_mnt(old))
1934 goto out1;
1935
1936 err = -EINVAL;
1937 if (old_path.dentry != old_path.mnt->mnt_root)
1938 goto out1;
1939
1940 if (!mnt_has_parent(old))
1941 goto out1;
1942
1943 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1944 S_ISDIR(old_path.dentry->d_inode->i_mode))
1945 goto out1;
1946 /*
1947 * Don't move a mount residing in a shared parent.
1948 */
1949 if (IS_MNT_SHARED(old->mnt_parent))
1950 goto out1;
1951 /*
1952 * Don't move a mount tree containing unbindable mounts to a destination
1953 * mount which is shared.
1954 */
1955 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1956 goto out1;
1957 err = -ELOOP;
1958 for (; mnt_has_parent(p); p = p->mnt_parent)
1959 if (p == old)
1960 goto out1;
1961
1962 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1963 if (err)
1964 goto out1;
1965
1966 /* if the mount is moved, it should no longer be expire
1967 * automatically */
1968 list_del_init(&old->mnt_expire);
1969 out1:
1970 unlock_mount(mp);
1971 out:
1972 if (!err)
1973 path_put(&parent_path);
1974 path_put(&old_path);
1975 return err;
1976 }
1977
1978 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1979 {
1980 int err;
1981 const char *subtype = strchr(fstype, '.');
1982 if (subtype) {
1983 subtype++;
1984 err = -EINVAL;
1985 if (!subtype[0])
1986 goto err;
1987 } else
1988 subtype = "";
1989
1990 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1991 err = -ENOMEM;
1992 if (!mnt->mnt_sb->s_subtype)
1993 goto err;
1994 return mnt;
1995
1996 err:
1997 mntput(mnt);
1998 return ERR_PTR(err);
1999 }
2000
2001 /*
2002 * add a mount into a namespace's mount tree
2003 */
2004 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2005 {
2006 struct mountpoint *mp;
2007 struct mount *parent;
2008 int err;
2009
2010 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
2011
2012 mp = lock_mount(path);
2013 if (IS_ERR(mp))
2014 return PTR_ERR(mp);
2015
2016 parent = real_mount(path->mnt);
2017 err = -EINVAL;
2018 if (unlikely(!check_mnt(parent))) {
2019 /* that's acceptable only for automounts done in private ns */
2020 if (!(mnt_flags & MNT_SHRINKABLE))
2021 goto unlock;
2022 /* ... and for those we'd better have mountpoint still alive */
2023 if (!parent->mnt_ns)
2024 goto unlock;
2025 }
2026
2027 /* Refuse the same filesystem on the same mount point */
2028 err = -EBUSY;
2029 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2030 path->mnt->mnt_root == path->dentry)
2031 goto unlock;
2032
2033 err = -EINVAL;
2034 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2035 goto unlock;
2036
2037 newmnt->mnt.mnt_flags = mnt_flags;
2038 err = graft_tree(newmnt, parent, mp);
2039
2040 unlock:
2041 unlock_mount(mp);
2042 return err;
2043 }
2044
2045 /*
2046 * create a new mount for userspace and request it to be added into the
2047 * namespace's tree
2048 */
2049 static int do_new_mount(struct path *path, const char *fstype, int flags,
2050 int mnt_flags, const char *name, void *data)
2051 {
2052 struct file_system_type *type;
2053 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2054 struct vfsmount *mnt;
2055 int err;
2056
2057 if (!fstype)
2058 return -EINVAL;
2059
2060 type = get_fs_type(fstype);
2061 if (!type)
2062 return -ENODEV;
2063
2064 if (user_ns != &init_user_ns) {
2065 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2066 put_filesystem(type);
2067 return -EPERM;
2068 }
2069 /* Only in special cases allow devices from mounts
2070 * created outside the initial user namespace.
2071 */
2072 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2073 flags |= MS_NODEV;
2074 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2075 }
2076 }
2077
2078 mnt = vfs_kern_mount(type, flags, name, data);
2079 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2080 !mnt->mnt_sb->s_subtype)
2081 mnt = fs_set_subtype(mnt, fstype);
2082
2083 put_filesystem(type);
2084 if (IS_ERR(mnt))
2085 return PTR_ERR(mnt);
2086
2087 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2088 if (err)
2089 mntput(mnt);
2090 return err;
2091 }
2092
2093 int finish_automount(struct vfsmount *m, struct path *path)
2094 {
2095 struct mount *mnt = real_mount(m);
2096 int err;
2097 /* The new mount record should have at least 2 refs to prevent it being
2098 * expired before we get a chance to add it
2099 */
2100 BUG_ON(mnt_get_count(mnt) < 2);
2101
2102 if (m->mnt_sb == path->mnt->mnt_sb &&
2103 m->mnt_root == path->dentry) {
2104 err = -ELOOP;
2105 goto fail;
2106 }
2107
2108 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2109 if (!err)
2110 return 0;
2111 fail:
2112 /* remove m from any expiration list it may be on */
2113 if (!list_empty(&mnt->mnt_expire)) {
2114 namespace_lock();
2115 br_write_lock(&vfsmount_lock);
2116 list_del_init(&mnt->mnt_expire);
2117 br_write_unlock(&vfsmount_lock);
2118 namespace_unlock();
2119 }
2120 mntput(m);
2121 mntput(m);
2122 return err;
2123 }
2124
2125 /**
2126 * mnt_set_expiry - Put a mount on an expiration list
2127 * @mnt: The mount to list.
2128 * @expiry_list: The list to add the mount to.
2129 */
2130 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2131 {
2132 namespace_lock();
2133 br_write_lock(&vfsmount_lock);
2134
2135 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2136
2137 br_write_unlock(&vfsmount_lock);
2138 namespace_unlock();
2139 }
2140 EXPORT_SYMBOL(mnt_set_expiry);
2141
2142 /*
2143 * process a list of expirable mountpoints with the intent of discarding any
2144 * mountpoints that aren't in use and haven't been touched since last we came
2145 * here
2146 */
2147 void mark_mounts_for_expiry(struct list_head *mounts)
2148 {
2149 struct mount *mnt, *next;
2150 LIST_HEAD(graveyard);
2151
2152 if (list_empty(mounts))
2153 return;
2154
2155 namespace_lock();
2156 br_write_lock(&vfsmount_lock);
2157
2158 /* extract from the expiration list every vfsmount that matches the
2159 * following criteria:
2160 * - only referenced by its parent vfsmount
2161 * - still marked for expiry (marked on the last call here; marks are
2162 * cleared by mntput())
2163 */
2164 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2165 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2166 propagate_mount_busy(mnt, 1))
2167 continue;
2168 list_move(&mnt->mnt_expire, &graveyard);
2169 }
2170 while (!list_empty(&graveyard)) {
2171 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2172 touch_mnt_namespace(mnt->mnt_ns);
2173 umount_tree(mnt, 1);
2174 }
2175 br_write_unlock(&vfsmount_lock);
2176 namespace_unlock();
2177 }
2178
2179 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2180
2181 /*
2182 * Ripoff of 'select_parent()'
2183 *
2184 * search the list of submounts for a given mountpoint, and move any
2185 * shrinkable submounts to the 'graveyard' list.
2186 */
2187 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2188 {
2189 struct mount *this_parent = parent;
2190 struct list_head *next;
2191 int found = 0;
2192
2193 repeat:
2194 next = this_parent->mnt_mounts.next;
2195 resume:
2196 while (next != &this_parent->mnt_mounts) {
2197 struct list_head *tmp = next;
2198 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2199
2200 next = tmp->next;
2201 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2202 continue;
2203 /*
2204 * Descend a level if the d_mounts list is non-empty.
2205 */
2206 if (!list_empty(&mnt->mnt_mounts)) {
2207 this_parent = mnt;
2208 goto repeat;
2209 }
2210
2211 if (!propagate_mount_busy(mnt, 1)) {
2212 list_move_tail(&mnt->mnt_expire, graveyard);
2213 found++;
2214 }
2215 }
2216 /*
2217 * All done at this level ... ascend and resume the search
2218 */
2219 if (this_parent != parent) {
2220 next = this_parent->mnt_child.next;
2221 this_parent = this_parent->mnt_parent;
2222 goto resume;
2223 }
2224 return found;
2225 }
2226
2227 /*
2228 * process a list of expirable mountpoints with the intent of discarding any
2229 * submounts of a specific parent mountpoint
2230 *
2231 * vfsmount_lock must be held for write
2232 */
2233 static void shrink_submounts(struct mount *mnt)
2234 {
2235 LIST_HEAD(graveyard);
2236 struct mount *m;
2237
2238 /* extract submounts of 'mountpoint' from the expiration list */
2239 while (select_submounts(mnt, &graveyard)) {
2240 while (!list_empty(&graveyard)) {
2241 m = list_first_entry(&graveyard, struct mount,
2242 mnt_expire);
2243 touch_mnt_namespace(m->mnt_ns);
2244 umount_tree(m, 1);
2245 }
2246 }
2247 }
2248
2249 /*
2250 * Some copy_from_user() implementations do not return the exact number of
2251 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2252 * Note that this function differs from copy_from_user() in that it will oops
2253 * on bad values of `to', rather than returning a short copy.
2254 */
2255 static long exact_copy_from_user(void *to, const void __user * from,
2256 unsigned long n)
2257 {
2258 char *t = to;
2259 const char __user *f = from;
2260 char c;
2261
2262 if (!access_ok(VERIFY_READ, from, n))
2263 return n;
2264
2265 while (n) {
2266 if (__get_user(c, f)) {
2267 memset(t, 0, n);
2268 break;
2269 }
2270 *t++ = c;
2271 f++;
2272 n--;
2273 }
2274 return n;
2275 }
2276
2277 int copy_mount_options(const void __user * data, unsigned long *where)
2278 {
2279 int i;
2280 unsigned long page;
2281 unsigned long size;
2282
2283 *where = 0;
2284 if (!data)
2285 return 0;
2286
2287 if (!(page = __get_free_page(GFP_KERNEL)))
2288 return -ENOMEM;
2289
2290 /* We only care that *some* data at the address the user
2291 * gave us is valid. Just in case, we'll zero
2292 * the remainder of the page.
2293 */
2294 /* copy_from_user cannot cross TASK_SIZE ! */
2295 size = TASK_SIZE - (unsigned long)data;
2296 if (size > PAGE_SIZE)
2297 size = PAGE_SIZE;
2298
2299 i = size - exact_copy_from_user((void *)page, data, size);
2300 if (!i) {
2301 free_page(page);
2302 return -EFAULT;
2303 }
2304 if (i != PAGE_SIZE)
2305 memset((char *)page + i, 0, PAGE_SIZE - i);
2306 *where = page;
2307 return 0;
2308 }
2309
2310 int copy_mount_string(const void __user *data, char **where)
2311 {
2312 char *tmp;
2313
2314 if (!data) {
2315 *where = NULL;
2316 return 0;
2317 }
2318
2319 tmp = strndup_user(data, PAGE_SIZE);
2320 if (IS_ERR(tmp))
2321 return PTR_ERR(tmp);
2322
2323 *where = tmp;
2324 return 0;
2325 }
2326
2327 /*
2328 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2329 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2330 *
2331 * data is a (void *) that can point to any structure up to
2332 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2333 * information (or be NULL).
2334 *
2335 * Pre-0.97 versions of mount() didn't have a flags word.
2336 * When the flags word was introduced its top half was required
2337 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2338 * Therefore, if this magic number is present, it carries no information
2339 * and must be discarded.
2340 */
2341 long do_mount(const char *dev_name, const char *dir_name,
2342 const char *type_page, unsigned long flags, void *data_page)
2343 {
2344 struct path path;
2345 int retval = 0;
2346 int mnt_flags = 0;
2347
2348 /* Discard magic */
2349 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2350 flags &= ~MS_MGC_MSK;
2351
2352 /* Basic sanity checks */
2353
2354 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2355 return -EINVAL;
2356
2357 if (data_page)
2358 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2359
2360 /* ... and get the mountpoint */
2361 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2362 if (retval)
2363 return retval;
2364
2365 retval = security_sb_mount(dev_name, &path,
2366 type_page, flags, data_page);
2367 if (!retval && !may_mount())
2368 retval = -EPERM;
2369 if (retval)
2370 goto dput_out;
2371
2372 /* Default to relatime unless overriden */
2373 if (!(flags & MS_NOATIME))
2374 mnt_flags |= MNT_RELATIME;
2375
2376 /* Separate the per-mountpoint flags */
2377 if (flags & MS_NOSUID)
2378 mnt_flags |= MNT_NOSUID;
2379 if (flags & MS_NODEV)
2380 mnt_flags |= MNT_NODEV;
2381 if (flags & MS_NOEXEC)
2382 mnt_flags |= MNT_NOEXEC;
2383 if (flags & MS_NOATIME)
2384 mnt_flags |= MNT_NOATIME;
2385 if (flags & MS_NODIRATIME)
2386 mnt_flags |= MNT_NODIRATIME;
2387 if (flags & MS_STRICTATIME)
2388 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2389 if (flags & MS_RDONLY)
2390 mnt_flags |= MNT_READONLY;
2391
2392 /* The default atime for remount is preservation */
2393 if ((flags & MS_REMOUNT) &&
2394 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2395 MS_STRICTATIME)) == 0)) {
2396 mnt_flags &= ~MNT_ATIME_MASK;
2397 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2398 }
2399
2400 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2401 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2402 MS_STRICTATIME);
2403
2404 if (flags & MS_REMOUNT)
2405 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2406 data_page);
2407 else if (flags & MS_BIND)
2408 retval = do_loopback(&path, dev_name, flags & MS_REC);
2409 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2410 retval = do_change_type(&path, flags);
2411 else if (flags & MS_MOVE)
2412 retval = do_move_mount(&path, dev_name);
2413 else
2414 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2415 dev_name, data_page);
2416 dput_out:
2417 path_put(&path);
2418 return retval;
2419 }
2420
2421 static void free_mnt_ns(struct mnt_namespace *ns)
2422 {
2423 proc_free_inum(ns->proc_inum);
2424 put_user_ns(ns->user_ns);
2425 kfree(ns);
2426 }
2427
2428 /*
2429 * Assign a sequence number so we can detect when we attempt to bind
2430 * mount a reference to an older mount namespace into the current
2431 * mount namespace, preventing reference counting loops. A 64bit
2432 * number incrementing at 10Ghz will take 12,427 years to wrap which
2433 * is effectively never, so we can ignore the possibility.
2434 */
2435 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2436
2437 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2438 {
2439 struct mnt_namespace *new_ns;
2440 int ret;
2441
2442 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2443 if (!new_ns)
2444 return ERR_PTR(-ENOMEM);
2445 ret = proc_alloc_inum(&new_ns->proc_inum);
2446 if (ret) {
2447 kfree(new_ns);
2448 return ERR_PTR(ret);
2449 }
2450 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2451 atomic_set(&new_ns->count, 1);
2452 new_ns->root = NULL;
2453 INIT_LIST_HEAD(&new_ns->list);
2454 init_waitqueue_head(&new_ns->poll);
2455 new_ns->event = 0;
2456 new_ns->user_ns = get_user_ns(user_ns);
2457 return new_ns;
2458 }
2459
2460 /*
2461 * Allocate a new namespace structure and populate it with contents
2462 * copied from the namespace of the passed in task structure.
2463 */
2464 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2465 struct user_namespace *user_ns, struct fs_struct *fs)
2466 {
2467 struct mnt_namespace *new_ns;
2468 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2469 struct mount *p, *q;
2470 struct mount *old = mnt_ns->root;
2471 struct mount *new;
2472 int copy_flags;
2473
2474 new_ns = alloc_mnt_ns(user_ns);
2475 if (IS_ERR(new_ns))
2476 return new_ns;
2477
2478 namespace_lock();
2479 /* First pass: copy the tree topology */
2480 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2481 if (user_ns != mnt_ns->user_ns)
2482 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2483 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2484 if (IS_ERR(new)) {
2485 namespace_unlock();
2486 free_mnt_ns(new_ns);
2487 return ERR_CAST(new);
2488 }
2489 new_ns->root = new;
2490 br_write_lock(&vfsmount_lock);
2491 list_add_tail(&new_ns->list, &new->mnt_list);
2492 br_write_unlock(&vfsmount_lock);
2493
2494 /*
2495 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2496 * as belonging to new namespace. We have already acquired a private
2497 * fs_struct, so tsk->fs->lock is not needed.
2498 */
2499 p = old;
2500 q = new;
2501 while (p) {
2502 q->mnt_ns = new_ns;
2503 if (fs) {
2504 if (&p->mnt == fs->root.mnt) {
2505 fs->root.mnt = mntget(&q->mnt);
2506 rootmnt = &p->mnt;
2507 }
2508 if (&p->mnt == fs->pwd.mnt) {
2509 fs->pwd.mnt = mntget(&q->mnt);
2510 pwdmnt = &p->mnt;
2511 }
2512 }
2513 p = next_mnt(p, old);
2514 q = next_mnt(q, new);
2515 }
2516 namespace_unlock();
2517
2518 if (rootmnt)
2519 mntput(rootmnt);
2520 if (pwdmnt)
2521 mntput(pwdmnt);
2522
2523 return new_ns;
2524 }
2525
2526 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2527 struct user_namespace *user_ns, struct fs_struct *new_fs)
2528 {
2529 struct mnt_namespace *new_ns;
2530
2531 BUG_ON(!ns);
2532 get_mnt_ns(ns);
2533
2534 if (!(flags & CLONE_NEWNS))
2535 return ns;
2536
2537 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2538
2539 put_mnt_ns(ns);
2540 return new_ns;
2541 }
2542
2543 /**
2544 * create_mnt_ns - creates a private namespace and adds a root filesystem
2545 * @mnt: pointer to the new root filesystem mountpoint
2546 */
2547 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2548 {
2549 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2550 if (!IS_ERR(new_ns)) {
2551 struct mount *mnt = real_mount(m);
2552 mnt->mnt_ns = new_ns;
2553 new_ns->root = mnt;
2554 list_add(&mnt->mnt_list, &new_ns->list);
2555 } else {
2556 mntput(m);
2557 }
2558 return new_ns;
2559 }
2560
2561 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2562 {
2563 struct mnt_namespace *ns;
2564 struct super_block *s;
2565 struct path path;
2566 int err;
2567
2568 ns = create_mnt_ns(mnt);
2569 if (IS_ERR(ns))
2570 return ERR_CAST(ns);
2571
2572 err = vfs_path_lookup(mnt->mnt_root, mnt,
2573 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2574
2575 put_mnt_ns(ns);
2576
2577 if (err)
2578 return ERR_PTR(err);
2579
2580 /* trade a vfsmount reference for active sb one */
2581 s = path.mnt->mnt_sb;
2582 atomic_inc(&s->s_active);
2583 mntput(path.mnt);
2584 /* lock the sucker */
2585 down_write(&s->s_umount);
2586 /* ... and return the root of (sub)tree on it */
2587 return path.dentry;
2588 }
2589 EXPORT_SYMBOL(mount_subtree);
2590
2591 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2592 char __user *, type, unsigned long, flags, void __user *, data)
2593 {
2594 int ret;
2595 char *kernel_type;
2596 struct filename *kernel_dir;
2597 char *kernel_dev;
2598 unsigned long data_page;
2599
2600 ret = copy_mount_string(type, &kernel_type);
2601 if (ret < 0)
2602 goto out_type;
2603
2604 kernel_dir = getname(dir_name);
2605 if (IS_ERR(kernel_dir)) {
2606 ret = PTR_ERR(kernel_dir);
2607 goto out_dir;
2608 }
2609
2610 ret = copy_mount_string(dev_name, &kernel_dev);
2611 if (ret < 0)
2612 goto out_dev;
2613
2614 ret = copy_mount_options(data, &data_page);
2615 if (ret < 0)
2616 goto out_data;
2617
2618 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2619 (void *) data_page);
2620
2621 free_page(data_page);
2622 out_data:
2623 kfree(kernel_dev);
2624 out_dev:
2625 putname(kernel_dir);
2626 out_dir:
2627 kfree(kernel_type);
2628 out_type:
2629 return ret;
2630 }
2631
2632 /*
2633 * Return true if path is reachable from root
2634 *
2635 * namespace_sem or vfsmount_lock is held
2636 */
2637 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2638 const struct path *root)
2639 {
2640 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2641 dentry = mnt->mnt_mountpoint;
2642 mnt = mnt->mnt_parent;
2643 }
2644 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2645 }
2646
2647 int path_is_under(struct path *path1, struct path *path2)
2648 {
2649 int res;
2650 br_read_lock(&vfsmount_lock);
2651 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2652 br_read_unlock(&vfsmount_lock);
2653 return res;
2654 }
2655 EXPORT_SYMBOL(path_is_under);
2656
2657 /*
2658 * pivot_root Semantics:
2659 * Moves the root file system of the current process to the directory put_old,
2660 * makes new_root as the new root file system of the current process, and sets
2661 * root/cwd of all processes which had them on the current root to new_root.
2662 *
2663 * Restrictions:
2664 * The new_root and put_old must be directories, and must not be on the
2665 * same file system as the current process root. The put_old must be
2666 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2667 * pointed to by put_old must yield the same directory as new_root. No other
2668 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2669 *
2670 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2671 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2672 * in this situation.
2673 *
2674 * Notes:
2675 * - we don't move root/cwd if they are not at the root (reason: if something
2676 * cared enough to change them, it's probably wrong to force them elsewhere)
2677 * - it's okay to pick a root that isn't the root of a file system, e.g.
2678 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2679 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2680 * first.
2681 */
2682 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2683 const char __user *, put_old)
2684 {
2685 struct path new, old, parent_path, root_parent, root;
2686 struct mount *new_mnt, *root_mnt, *old_mnt;
2687 struct mountpoint *old_mp, *root_mp;
2688 int error;
2689
2690 if (!may_mount())
2691 return -EPERM;
2692
2693 error = user_path_dir(new_root, &new);
2694 if (error)
2695 goto out0;
2696
2697 error = user_path_dir(put_old, &old);
2698 if (error)
2699 goto out1;
2700
2701 error = security_sb_pivotroot(&old, &new);
2702 if (error)
2703 goto out2;
2704
2705 get_fs_root(current->fs, &root);
2706 old_mp = lock_mount(&old);
2707 error = PTR_ERR(old_mp);
2708 if (IS_ERR(old_mp))
2709 goto out3;
2710
2711 error = -EINVAL;
2712 new_mnt = real_mount(new.mnt);
2713 root_mnt = real_mount(root.mnt);
2714 old_mnt = real_mount(old.mnt);
2715 if (IS_MNT_SHARED(old_mnt) ||
2716 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2717 IS_MNT_SHARED(root_mnt->mnt_parent))
2718 goto out4;
2719 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2720 goto out4;
2721 error = -ENOENT;
2722 if (d_unlinked(new.dentry))
2723 goto out4;
2724 error = -EBUSY;
2725 if (new_mnt == root_mnt || old_mnt == root_mnt)
2726 goto out4; /* loop, on the same file system */
2727 error = -EINVAL;
2728 if (root.mnt->mnt_root != root.dentry)
2729 goto out4; /* not a mountpoint */
2730 if (!mnt_has_parent(root_mnt))
2731 goto out4; /* not attached */
2732 root_mp = root_mnt->mnt_mp;
2733 if (new.mnt->mnt_root != new.dentry)
2734 goto out4; /* not a mountpoint */
2735 if (!mnt_has_parent(new_mnt))
2736 goto out4; /* not attached */
2737 /* make sure we can reach put_old from new_root */
2738 if (!is_path_reachable(old_mnt, old.dentry, &new))
2739 goto out4;
2740 /* make certain new is below the root */
2741 if (!is_path_reachable(new_mnt, new.dentry, &root))
2742 goto out4;
2743 root_mp->m_count++; /* pin it so it won't go away */
2744 br_write_lock(&vfsmount_lock);
2745 detach_mnt(new_mnt, &parent_path);
2746 detach_mnt(root_mnt, &root_parent);
2747 /* mount old root on put_old */
2748 attach_mnt(root_mnt, old_mnt, old_mp);
2749 /* mount new_root on / */
2750 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2751 touch_mnt_namespace(current->nsproxy->mnt_ns);
2752 br_write_unlock(&vfsmount_lock);
2753 chroot_fs_refs(&root, &new);
2754 put_mountpoint(root_mp);
2755 error = 0;
2756 out4:
2757 unlock_mount(old_mp);
2758 if (!error) {
2759 path_put(&root_parent);
2760 path_put(&parent_path);
2761 }
2762 out3:
2763 path_put(&root);
2764 out2:
2765 path_put(&old);
2766 out1:
2767 path_put(&new);
2768 out0:
2769 return error;
2770 }
2771
2772 static void __init init_mount_tree(void)
2773 {
2774 struct vfsmount *mnt;
2775 struct mnt_namespace *ns;
2776 struct path root;
2777 struct file_system_type *type;
2778
2779 type = get_fs_type("rootfs");
2780 if (!type)
2781 panic("Can't find rootfs type");
2782 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2783 put_filesystem(type);
2784 if (IS_ERR(mnt))
2785 panic("Can't create rootfs");
2786
2787 ns = create_mnt_ns(mnt);
2788 if (IS_ERR(ns))
2789 panic("Can't allocate initial namespace");
2790
2791 init_task.nsproxy->mnt_ns = ns;
2792 get_mnt_ns(ns);
2793
2794 root.mnt = mnt;
2795 root.dentry = mnt->mnt_root;
2796
2797 set_fs_pwd(current->fs, &root);
2798 set_fs_root(current->fs, &root);
2799 }
2800
2801 void __init mnt_init(void)
2802 {
2803 unsigned u;
2804 int err;
2805
2806 init_rwsem(&namespace_sem);
2807
2808 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2809 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2810
2811 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2812 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2813
2814 if (!mount_hashtable || !mountpoint_hashtable)
2815 panic("Failed to allocate mount hash table\n");
2816
2817 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2818
2819 for (u = 0; u < HASH_SIZE; u++)
2820 INIT_LIST_HEAD(&mount_hashtable[u]);
2821 for (u = 0; u < HASH_SIZE; u++)
2822 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2823
2824 br_lock_init(&vfsmount_lock);
2825
2826 err = sysfs_init();
2827 if (err)
2828 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2829 __func__, err);
2830 fs_kobj = kobject_create_and_add("fs", NULL);
2831 if (!fs_kobj)
2832 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2833 init_rootfs();
2834 init_mount_tree();
2835 }
2836
2837 void put_mnt_ns(struct mnt_namespace *ns)
2838 {
2839 if (!atomic_dec_and_test(&ns->count))
2840 return;
2841 namespace_lock();
2842 br_write_lock(&vfsmount_lock);
2843 umount_tree(ns->root, 0);
2844 br_write_unlock(&vfsmount_lock);
2845 namespace_unlock();
2846 free_mnt_ns(ns);
2847 }
2848
2849 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2850 {
2851 struct vfsmount *mnt;
2852 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2853 if (!IS_ERR(mnt)) {
2854 /*
2855 * it is a longterm mount, don't release mnt until
2856 * we unmount before file sys is unregistered
2857 */
2858 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2859 }
2860 return mnt;
2861 }
2862 EXPORT_SYMBOL_GPL(kern_mount_data);
2863
2864 void kern_unmount(struct vfsmount *mnt)
2865 {
2866 /* release long term mount so mount point can be released */
2867 if (!IS_ERR_OR_NULL(mnt)) {
2868 br_write_lock(&vfsmount_lock);
2869 real_mount(mnt)->mnt_ns = NULL;
2870 br_write_unlock(&vfsmount_lock);
2871 mntput(mnt);
2872 }
2873 }
2874 EXPORT_SYMBOL(kern_unmount);
2875
2876 bool our_mnt(struct vfsmount *mnt)
2877 {
2878 return check_mnt(real_mount(mnt));
2879 }
2880
2881 bool current_chrooted(void)
2882 {
2883 /* Does the current process have a non-standard root */
2884 struct path ns_root;
2885 struct path fs_root;
2886 bool chrooted;
2887
2888 /* Find the namespace root */
2889 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2890 ns_root.dentry = ns_root.mnt->mnt_root;
2891 path_get(&ns_root);
2892 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2893 ;
2894
2895 get_fs_root(current->fs, &fs_root);
2896
2897 chrooted = !path_equal(&fs_root, &ns_root);
2898
2899 path_put(&fs_root);
2900 path_put(&ns_root);
2901
2902 return chrooted;
2903 }
2904
2905 void update_mnt_policy(struct user_namespace *userns)
2906 {
2907 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2908 struct mount *mnt;
2909
2910 down_read(&namespace_sem);
2911 list_for_each_entry(mnt, &ns->list, mnt_list) {
2912 switch (mnt->mnt.mnt_sb->s_magic) {
2913 case SYSFS_MAGIC:
2914 userns->may_mount_sysfs = true;
2915 break;
2916 case PROC_SUPER_MAGIC:
2917 userns->may_mount_proc = true;
2918 break;
2919 }
2920 if (userns->may_mount_sysfs && userns->may_mount_proc)
2921 break;
2922 }
2923 up_read(&namespace_sem);
2924 }
2925
2926 static void *mntns_get(struct task_struct *task)
2927 {
2928 struct mnt_namespace *ns = NULL;
2929 struct nsproxy *nsproxy;
2930
2931 rcu_read_lock();
2932 nsproxy = task_nsproxy(task);
2933 if (nsproxy) {
2934 ns = nsproxy->mnt_ns;
2935 get_mnt_ns(ns);
2936 }
2937 rcu_read_unlock();
2938
2939 return ns;
2940 }
2941
2942 static void mntns_put(void *ns)
2943 {
2944 put_mnt_ns(ns);
2945 }
2946
2947 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2948 {
2949 struct fs_struct *fs = current->fs;
2950 struct mnt_namespace *mnt_ns = ns;
2951 struct path root;
2952
2953 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2954 !nsown_capable(CAP_SYS_CHROOT) ||
2955 !nsown_capable(CAP_SYS_ADMIN))
2956 return -EPERM;
2957
2958 if (fs->users != 1)
2959 return -EINVAL;
2960
2961 get_mnt_ns(mnt_ns);
2962 put_mnt_ns(nsproxy->mnt_ns);
2963 nsproxy->mnt_ns = mnt_ns;
2964
2965 /* Find the root */
2966 root.mnt = &mnt_ns->root->mnt;
2967 root.dentry = mnt_ns->root->mnt.mnt_root;
2968 path_get(&root);
2969 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2970 ;
2971
2972 /* Update the pwd and root */
2973 set_fs_pwd(fs, &root);
2974 set_fs_root(fs, &root);
2975
2976 path_put(&root);
2977 return 0;
2978 }
2979
2980 static unsigned int mntns_inum(void *ns)
2981 {
2982 struct mnt_namespace *mnt_ns = ns;
2983 return mnt_ns->proc_inum;
2984 }
2985
2986 const struct proc_ns_operations mntns_operations = {
2987 .name = "mnt",
2988 .type = CLONE_NEWNS,
2989 .get = mntns_get,
2990 .put = mntns_put,
2991 .install = mntns_install,
2992 .inum = mntns_inum,
2993 };