arm64: perf: fix ARMv8 EVTYPE_MASK to include NSH bit
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / arch / arm64 / kernel / perf_event.c
1 /*
2 * PMU support
3 *
4 * Copyright (C) 2012 ARM Limited
5 * Author: Will Deacon <will.deacon@arm.com>
6 *
7 * This code is based heavily on the ARMv7 perf event code.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21 #define pr_fmt(fmt) "hw perfevents: " fmt
22
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/perf_event.h>
28 #include <linux/platform_device.h>
29 #include <linux/spinlock.h>
30 #include <linux/uaccess.h>
31
32 #include <asm/cputype.h>
33 #include <asm/irq.h>
34 #include <asm/irq_regs.h>
35 #include <asm/pmu.h>
36 #include <asm/stacktrace.h>
37
38 /*
39 * ARMv8 supports a maximum of 32 events.
40 * The cycle counter is included in this total.
41 */
42 #define ARMPMU_MAX_HWEVENTS 32
43
44 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
45 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
46 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
47
48 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
49
50 /* Set at runtime when we know what CPU type we are. */
51 static struct arm_pmu *cpu_pmu;
52
53 int
54 armpmu_get_max_events(void)
55 {
56 int max_events = 0;
57
58 if (cpu_pmu != NULL)
59 max_events = cpu_pmu->num_events;
60
61 return max_events;
62 }
63 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
64
65 int perf_num_counters(void)
66 {
67 return armpmu_get_max_events();
68 }
69 EXPORT_SYMBOL_GPL(perf_num_counters);
70
71 #define HW_OP_UNSUPPORTED 0xFFFF
72
73 #define C(_x) \
74 PERF_COUNT_HW_CACHE_##_x
75
76 #define CACHE_OP_UNSUPPORTED 0xFFFF
77
78 static int
79 armpmu_map_cache_event(const unsigned (*cache_map)
80 [PERF_COUNT_HW_CACHE_MAX]
81 [PERF_COUNT_HW_CACHE_OP_MAX]
82 [PERF_COUNT_HW_CACHE_RESULT_MAX],
83 u64 config)
84 {
85 unsigned int cache_type, cache_op, cache_result, ret;
86
87 cache_type = (config >> 0) & 0xff;
88 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
89 return -EINVAL;
90
91 cache_op = (config >> 8) & 0xff;
92 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
93 return -EINVAL;
94
95 cache_result = (config >> 16) & 0xff;
96 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
97 return -EINVAL;
98
99 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
100
101 if (ret == CACHE_OP_UNSUPPORTED)
102 return -ENOENT;
103
104 return ret;
105 }
106
107 static int
108 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
109 {
110 int mapping;
111
112 if (config >= PERF_COUNT_HW_MAX)
113 return -EINVAL;
114
115 mapping = (*event_map)[config];
116 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
117 }
118
119 static int
120 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
121 {
122 return (int)(config & raw_event_mask);
123 }
124
125 static int map_cpu_event(struct perf_event *event,
126 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
127 const unsigned (*cache_map)
128 [PERF_COUNT_HW_CACHE_MAX]
129 [PERF_COUNT_HW_CACHE_OP_MAX]
130 [PERF_COUNT_HW_CACHE_RESULT_MAX],
131 u32 raw_event_mask)
132 {
133 u64 config = event->attr.config;
134
135 switch (event->attr.type) {
136 case PERF_TYPE_HARDWARE:
137 return armpmu_map_event(event_map, config);
138 case PERF_TYPE_HW_CACHE:
139 return armpmu_map_cache_event(cache_map, config);
140 case PERF_TYPE_RAW:
141 return armpmu_map_raw_event(raw_event_mask, config);
142 }
143
144 return -ENOENT;
145 }
146
147 int
148 armpmu_event_set_period(struct perf_event *event,
149 struct hw_perf_event *hwc,
150 int idx)
151 {
152 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
153 s64 left = local64_read(&hwc->period_left);
154 s64 period = hwc->sample_period;
155 int ret = 0;
156
157 if (unlikely(left <= -period)) {
158 left = period;
159 local64_set(&hwc->period_left, left);
160 hwc->last_period = period;
161 ret = 1;
162 }
163
164 if (unlikely(left <= 0)) {
165 left += period;
166 local64_set(&hwc->period_left, left);
167 hwc->last_period = period;
168 ret = 1;
169 }
170
171 if (left > (s64)armpmu->max_period)
172 left = armpmu->max_period;
173
174 local64_set(&hwc->prev_count, (u64)-left);
175
176 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
177
178 perf_event_update_userpage(event);
179
180 return ret;
181 }
182
183 u64
184 armpmu_event_update(struct perf_event *event,
185 struct hw_perf_event *hwc,
186 int idx)
187 {
188 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
189 u64 delta, prev_raw_count, new_raw_count;
190
191 again:
192 prev_raw_count = local64_read(&hwc->prev_count);
193 new_raw_count = armpmu->read_counter(idx);
194
195 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
196 new_raw_count) != prev_raw_count)
197 goto again;
198
199 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
200
201 local64_add(delta, &event->count);
202 local64_sub(delta, &hwc->period_left);
203
204 return new_raw_count;
205 }
206
207 static void
208 armpmu_read(struct perf_event *event)
209 {
210 struct hw_perf_event *hwc = &event->hw;
211
212 /* Don't read disabled counters! */
213 if (hwc->idx < 0)
214 return;
215
216 armpmu_event_update(event, hwc, hwc->idx);
217 }
218
219 static void
220 armpmu_stop(struct perf_event *event, int flags)
221 {
222 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
223 struct hw_perf_event *hwc = &event->hw;
224
225 /*
226 * ARM pmu always has to update the counter, so ignore
227 * PERF_EF_UPDATE, see comments in armpmu_start().
228 */
229 if (!(hwc->state & PERF_HES_STOPPED)) {
230 armpmu->disable(hwc, hwc->idx);
231 barrier(); /* why? */
232 armpmu_event_update(event, hwc, hwc->idx);
233 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
234 }
235 }
236
237 static void
238 armpmu_start(struct perf_event *event, int flags)
239 {
240 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241 struct hw_perf_event *hwc = &event->hw;
242
243 /*
244 * ARM pmu always has to reprogram the period, so ignore
245 * PERF_EF_RELOAD, see the comment below.
246 */
247 if (flags & PERF_EF_RELOAD)
248 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
249
250 hwc->state = 0;
251 /*
252 * Set the period again. Some counters can't be stopped, so when we
253 * were stopped we simply disabled the IRQ source and the counter
254 * may have been left counting. If we don't do this step then we may
255 * get an interrupt too soon or *way* too late if the overflow has
256 * happened since disabling.
257 */
258 armpmu_event_set_period(event, hwc, hwc->idx);
259 armpmu->enable(hwc, hwc->idx);
260 }
261
262 static void
263 armpmu_del(struct perf_event *event, int flags)
264 {
265 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
266 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
267 struct hw_perf_event *hwc = &event->hw;
268 int idx = hwc->idx;
269
270 WARN_ON(idx < 0);
271
272 armpmu_stop(event, PERF_EF_UPDATE);
273 hw_events->events[idx] = NULL;
274 clear_bit(idx, hw_events->used_mask);
275
276 perf_event_update_userpage(event);
277 }
278
279 static int
280 armpmu_add(struct perf_event *event, int flags)
281 {
282 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
283 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
284 struct hw_perf_event *hwc = &event->hw;
285 int idx;
286 int err = 0;
287
288 perf_pmu_disable(event->pmu);
289
290 /* If we don't have a space for the counter then finish early. */
291 idx = armpmu->get_event_idx(hw_events, hwc);
292 if (idx < 0) {
293 err = idx;
294 goto out;
295 }
296
297 /*
298 * If there is an event in the counter we are going to use then make
299 * sure it is disabled.
300 */
301 event->hw.idx = idx;
302 armpmu->disable(hwc, idx);
303 hw_events->events[idx] = event;
304
305 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
306 if (flags & PERF_EF_START)
307 armpmu_start(event, PERF_EF_RELOAD);
308
309 /* Propagate our changes to the userspace mapping. */
310 perf_event_update_userpage(event);
311
312 out:
313 perf_pmu_enable(event->pmu);
314 return err;
315 }
316
317 static int
318 validate_event(struct pmu_hw_events *hw_events,
319 struct perf_event *event)
320 {
321 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
322 struct hw_perf_event fake_event = event->hw;
323 struct pmu *leader_pmu = event->group_leader->pmu;
324
325 if (is_software_event(event))
326 return 1;
327
328 if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
329 return 1;
330
331 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
332 return 1;
333
334 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
335 }
336
337 static int
338 validate_group(struct perf_event *event)
339 {
340 struct perf_event *sibling, *leader = event->group_leader;
341 struct pmu_hw_events fake_pmu;
342 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
343
344 /*
345 * Initialise the fake PMU. We only need to populate the
346 * used_mask for the purposes of validation.
347 */
348 memset(fake_used_mask, 0, sizeof(fake_used_mask));
349 fake_pmu.used_mask = fake_used_mask;
350
351 if (!validate_event(&fake_pmu, leader))
352 return -EINVAL;
353
354 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
355 if (!validate_event(&fake_pmu, sibling))
356 return -EINVAL;
357 }
358
359 if (!validate_event(&fake_pmu, event))
360 return -EINVAL;
361
362 return 0;
363 }
364
365 static void
366 armpmu_release_hardware(struct arm_pmu *armpmu)
367 {
368 int i, irq, irqs;
369 struct platform_device *pmu_device = armpmu->plat_device;
370
371 irqs = min(pmu_device->num_resources, num_possible_cpus());
372
373 for (i = 0; i < irqs; ++i) {
374 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
375 continue;
376 irq = platform_get_irq(pmu_device, i);
377 if (irq >= 0)
378 free_irq(irq, armpmu);
379 }
380 }
381
382 static int
383 armpmu_reserve_hardware(struct arm_pmu *armpmu)
384 {
385 int i, err, irq, irqs;
386 struct platform_device *pmu_device = armpmu->plat_device;
387
388 if (!pmu_device) {
389 pr_err("no PMU device registered\n");
390 return -ENODEV;
391 }
392
393 irqs = min(pmu_device->num_resources, num_possible_cpus());
394 if (irqs < 1) {
395 pr_err("no irqs for PMUs defined\n");
396 return -ENODEV;
397 }
398
399 for (i = 0; i < irqs; ++i) {
400 err = 0;
401 irq = platform_get_irq(pmu_device, i);
402 if (irq < 0)
403 continue;
404
405 /*
406 * If we have a single PMU interrupt that we can't shift,
407 * assume that we're running on a uniprocessor machine and
408 * continue. Otherwise, continue without this interrupt.
409 */
410 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
411 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
412 irq, i);
413 continue;
414 }
415
416 err = request_irq(irq, armpmu->handle_irq,
417 IRQF_NOBALANCING,
418 "arm-pmu", armpmu);
419 if (err) {
420 pr_err("unable to request IRQ%d for ARM PMU counters\n",
421 irq);
422 armpmu_release_hardware(armpmu);
423 return err;
424 }
425
426 cpumask_set_cpu(i, &armpmu->active_irqs);
427 }
428
429 return 0;
430 }
431
432 static void
433 hw_perf_event_destroy(struct perf_event *event)
434 {
435 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
436 atomic_t *active_events = &armpmu->active_events;
437 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
438
439 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
440 armpmu_release_hardware(armpmu);
441 mutex_unlock(pmu_reserve_mutex);
442 }
443 }
444
445 static int
446 event_requires_mode_exclusion(struct perf_event_attr *attr)
447 {
448 return attr->exclude_idle || attr->exclude_user ||
449 attr->exclude_kernel || attr->exclude_hv;
450 }
451
452 static int
453 __hw_perf_event_init(struct perf_event *event)
454 {
455 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
456 struct hw_perf_event *hwc = &event->hw;
457 int mapping, err;
458
459 mapping = armpmu->map_event(event);
460
461 if (mapping < 0) {
462 pr_debug("event %x:%llx not supported\n", event->attr.type,
463 event->attr.config);
464 return mapping;
465 }
466
467 /*
468 * We don't assign an index until we actually place the event onto
469 * hardware. Use -1 to signify that we haven't decided where to put it
470 * yet. For SMP systems, each core has it's own PMU so we can't do any
471 * clever allocation or constraints checking at this point.
472 */
473 hwc->idx = -1;
474 hwc->config_base = 0;
475 hwc->config = 0;
476 hwc->event_base = 0;
477
478 /*
479 * Check whether we need to exclude the counter from certain modes.
480 */
481 if ((!armpmu->set_event_filter ||
482 armpmu->set_event_filter(hwc, &event->attr)) &&
483 event_requires_mode_exclusion(&event->attr)) {
484 pr_debug("ARM performance counters do not support mode exclusion\n");
485 return -EPERM;
486 }
487
488 /*
489 * Store the event encoding into the config_base field.
490 */
491 hwc->config_base |= (unsigned long)mapping;
492
493 if (!hwc->sample_period) {
494 /*
495 * For non-sampling runs, limit the sample_period to half
496 * of the counter width. That way, the new counter value
497 * is far less likely to overtake the previous one unless
498 * you have some serious IRQ latency issues.
499 */
500 hwc->sample_period = armpmu->max_period >> 1;
501 hwc->last_period = hwc->sample_period;
502 local64_set(&hwc->period_left, hwc->sample_period);
503 }
504
505 err = 0;
506 if (event->group_leader != event) {
507 err = validate_group(event);
508 if (err)
509 return -EINVAL;
510 }
511
512 return err;
513 }
514
515 static int armpmu_event_init(struct perf_event *event)
516 {
517 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
518 int err = 0;
519 atomic_t *active_events = &armpmu->active_events;
520
521 if (armpmu->map_event(event) == -ENOENT)
522 return -ENOENT;
523
524 event->destroy = hw_perf_event_destroy;
525
526 if (!atomic_inc_not_zero(active_events)) {
527 mutex_lock(&armpmu->reserve_mutex);
528 if (atomic_read(active_events) == 0)
529 err = armpmu_reserve_hardware(armpmu);
530
531 if (!err)
532 atomic_inc(active_events);
533 mutex_unlock(&armpmu->reserve_mutex);
534 }
535
536 if (err)
537 return err;
538
539 err = __hw_perf_event_init(event);
540 if (err)
541 hw_perf_event_destroy(event);
542
543 return err;
544 }
545
546 static void armpmu_enable(struct pmu *pmu)
547 {
548 struct arm_pmu *armpmu = to_arm_pmu(pmu);
549 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
550 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
551
552 if (enabled)
553 armpmu->start();
554 }
555
556 static void armpmu_disable(struct pmu *pmu)
557 {
558 struct arm_pmu *armpmu = to_arm_pmu(pmu);
559 armpmu->stop();
560 }
561
562 static void __init armpmu_init(struct arm_pmu *armpmu)
563 {
564 atomic_set(&armpmu->active_events, 0);
565 mutex_init(&armpmu->reserve_mutex);
566
567 armpmu->pmu = (struct pmu) {
568 .pmu_enable = armpmu_enable,
569 .pmu_disable = armpmu_disable,
570 .event_init = armpmu_event_init,
571 .add = armpmu_add,
572 .del = armpmu_del,
573 .start = armpmu_start,
574 .stop = armpmu_stop,
575 .read = armpmu_read,
576 };
577 }
578
579 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
580 {
581 armpmu_init(armpmu);
582 return perf_pmu_register(&armpmu->pmu, name, type);
583 }
584
585 /*
586 * ARMv8 PMUv3 Performance Events handling code.
587 * Common event types.
588 */
589 enum armv8_pmuv3_perf_types {
590 /* Required events. */
591 ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR = 0x00,
592 ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL = 0x03,
593 ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS = 0x04,
594 ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
595 ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES = 0x11,
596 ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED = 0x12,
597
598 /* At least one of the following is required. */
599 ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED = 0x08,
600 ARMV8_PMUV3_PERFCTR_OP_SPEC = 0x1B,
601
602 /* Common architectural events. */
603 ARMV8_PMUV3_PERFCTR_MEM_READ = 0x06,
604 ARMV8_PMUV3_PERFCTR_MEM_WRITE = 0x07,
605 ARMV8_PMUV3_PERFCTR_EXC_TAKEN = 0x09,
606 ARMV8_PMUV3_PERFCTR_EXC_EXECUTED = 0x0A,
607 ARMV8_PMUV3_PERFCTR_CID_WRITE = 0x0B,
608 ARMV8_PMUV3_PERFCTR_PC_WRITE = 0x0C,
609 ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH = 0x0D,
610 ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN = 0x0E,
611 ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS = 0x0F,
612 ARMV8_PMUV3_PERFCTR_TTBR_WRITE = 0x1C,
613
614 /* Common microarchitectural events. */
615 ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL = 0x01,
616 ARMV8_PMUV3_PERFCTR_ITLB_REFILL = 0x02,
617 ARMV8_PMUV3_PERFCTR_DTLB_REFILL = 0x05,
618 ARMV8_PMUV3_PERFCTR_MEM_ACCESS = 0x13,
619 ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS = 0x14,
620 ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB = 0x15,
621 ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS = 0x16,
622 ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL = 0x17,
623 ARMV8_PMUV3_PERFCTR_L2_CACHE_WB = 0x18,
624 ARMV8_PMUV3_PERFCTR_BUS_ACCESS = 0x19,
625 ARMV8_PMUV3_PERFCTR_MEM_ERROR = 0x1A,
626 ARMV8_PMUV3_PERFCTR_BUS_CYCLES = 0x1D,
627 };
628
629 /* PMUv3 HW events mapping. */
630 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
631 [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
632 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
633 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
634 [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
635 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = HW_OP_UNSUPPORTED,
636 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
637 [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
638 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED,
639 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = HW_OP_UNSUPPORTED,
640 };
641
642 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
643 [PERF_COUNT_HW_CACHE_OP_MAX]
644 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
645 [C(L1D)] = {
646 [C(OP_READ)] = {
647 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
648 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
649 },
650 [C(OP_WRITE)] = {
651 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
652 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
653 },
654 [C(OP_PREFETCH)] = {
655 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
656 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
657 },
658 },
659 [C(L1I)] = {
660 [C(OP_READ)] = {
661 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
662 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
663 },
664 [C(OP_WRITE)] = {
665 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
666 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
667 },
668 [C(OP_PREFETCH)] = {
669 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
670 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
671 },
672 },
673 [C(LL)] = {
674 [C(OP_READ)] = {
675 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
676 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
677 },
678 [C(OP_WRITE)] = {
679 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
680 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
681 },
682 [C(OP_PREFETCH)] = {
683 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
684 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
685 },
686 },
687 [C(DTLB)] = {
688 [C(OP_READ)] = {
689 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
690 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
691 },
692 [C(OP_WRITE)] = {
693 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
694 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
695 },
696 [C(OP_PREFETCH)] = {
697 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
698 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
699 },
700 },
701 [C(ITLB)] = {
702 [C(OP_READ)] = {
703 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
704 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
705 },
706 [C(OP_WRITE)] = {
707 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
708 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
709 },
710 [C(OP_PREFETCH)] = {
711 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
712 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
713 },
714 },
715 [C(BPU)] = {
716 [C(OP_READ)] = {
717 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
718 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
719 },
720 [C(OP_WRITE)] = {
721 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
722 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
723 },
724 [C(OP_PREFETCH)] = {
725 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
726 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
727 },
728 },
729 [C(NODE)] = {
730 [C(OP_READ)] = {
731 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
732 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
733 },
734 [C(OP_WRITE)] = {
735 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
736 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
737 },
738 [C(OP_PREFETCH)] = {
739 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
740 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
741 },
742 },
743 };
744
745 /*
746 * Perf Events' indices
747 */
748 #define ARMV8_IDX_CYCLE_COUNTER 0
749 #define ARMV8_IDX_COUNTER0 1
750 #define ARMV8_IDX_COUNTER_LAST (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
751
752 #define ARMV8_MAX_COUNTERS 32
753 #define ARMV8_COUNTER_MASK (ARMV8_MAX_COUNTERS - 1)
754
755 /*
756 * ARMv8 low level PMU access
757 */
758
759 /*
760 * Perf Event to low level counters mapping
761 */
762 #define ARMV8_IDX_TO_COUNTER(x) \
763 (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
764
765 /*
766 * Per-CPU PMCR: config reg
767 */
768 #define ARMV8_PMCR_E (1 << 0) /* Enable all counters */
769 #define ARMV8_PMCR_P (1 << 1) /* Reset all counters */
770 #define ARMV8_PMCR_C (1 << 2) /* Cycle counter reset */
771 #define ARMV8_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */
772 #define ARMV8_PMCR_X (1 << 4) /* Export to ETM */
773 #define ARMV8_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
774 #define ARMV8_PMCR_N_SHIFT 11 /* Number of counters supported */
775 #define ARMV8_PMCR_N_MASK 0x1f
776 #define ARMV8_PMCR_MASK 0x3f /* Mask for writable bits */
777
778 /*
779 * PMOVSR: counters overflow flag status reg
780 */
781 #define ARMV8_OVSR_MASK 0xffffffff /* Mask for writable bits */
782 #define ARMV8_OVERFLOWED_MASK ARMV8_OVSR_MASK
783
784 /*
785 * PMXEVTYPER: Event selection reg
786 */
787 #define ARMV8_EVTYPE_MASK 0xc80000ff /* Mask for writable bits */
788 #define ARMV8_EVTYPE_EVENT 0xff /* Mask for EVENT bits */
789
790 /*
791 * Event filters for PMUv3
792 */
793 #define ARMV8_EXCLUDE_EL1 (1 << 31)
794 #define ARMV8_EXCLUDE_EL0 (1 << 30)
795 #define ARMV8_INCLUDE_EL2 (1 << 27)
796
797 static inline u32 armv8pmu_pmcr_read(void)
798 {
799 u32 val;
800 asm volatile("mrs %0, pmcr_el0" : "=r" (val));
801 return val;
802 }
803
804 static inline void armv8pmu_pmcr_write(u32 val)
805 {
806 val &= ARMV8_PMCR_MASK;
807 isb();
808 asm volatile("msr pmcr_el0, %0" :: "r" (val));
809 }
810
811 static inline int armv8pmu_has_overflowed(u32 pmovsr)
812 {
813 return pmovsr & ARMV8_OVERFLOWED_MASK;
814 }
815
816 static inline int armv8pmu_counter_valid(int idx)
817 {
818 return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
819 }
820
821 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
822 {
823 int ret = 0;
824 u32 counter;
825
826 if (!armv8pmu_counter_valid(idx)) {
827 pr_err("CPU%u checking wrong counter %d overflow status\n",
828 smp_processor_id(), idx);
829 } else {
830 counter = ARMV8_IDX_TO_COUNTER(idx);
831 ret = pmnc & BIT(counter);
832 }
833
834 return ret;
835 }
836
837 static inline int armv8pmu_select_counter(int idx)
838 {
839 u32 counter;
840
841 if (!armv8pmu_counter_valid(idx)) {
842 pr_err("CPU%u selecting wrong PMNC counter %d\n",
843 smp_processor_id(), idx);
844 return -EINVAL;
845 }
846
847 counter = ARMV8_IDX_TO_COUNTER(idx);
848 asm volatile("msr pmselr_el0, %0" :: "r" (counter));
849 isb();
850
851 return idx;
852 }
853
854 static inline u32 armv8pmu_read_counter(int idx)
855 {
856 u32 value = 0;
857
858 if (!armv8pmu_counter_valid(idx))
859 pr_err("CPU%u reading wrong counter %d\n",
860 smp_processor_id(), idx);
861 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
862 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
863 else if (armv8pmu_select_counter(idx) == idx)
864 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
865
866 return value;
867 }
868
869 static inline void armv8pmu_write_counter(int idx, u32 value)
870 {
871 if (!armv8pmu_counter_valid(idx))
872 pr_err("CPU%u writing wrong counter %d\n",
873 smp_processor_id(), idx);
874 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
875 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
876 else if (armv8pmu_select_counter(idx) == idx)
877 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
878 }
879
880 static inline void armv8pmu_write_evtype(int idx, u32 val)
881 {
882 if (armv8pmu_select_counter(idx) == idx) {
883 val &= ARMV8_EVTYPE_MASK;
884 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
885 }
886 }
887
888 static inline int armv8pmu_enable_counter(int idx)
889 {
890 u32 counter;
891
892 if (!armv8pmu_counter_valid(idx)) {
893 pr_err("CPU%u enabling wrong PMNC counter %d\n",
894 smp_processor_id(), idx);
895 return -EINVAL;
896 }
897
898 counter = ARMV8_IDX_TO_COUNTER(idx);
899 asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
900 return idx;
901 }
902
903 static inline int armv8pmu_disable_counter(int idx)
904 {
905 u32 counter;
906
907 if (!armv8pmu_counter_valid(idx)) {
908 pr_err("CPU%u disabling wrong PMNC counter %d\n",
909 smp_processor_id(), idx);
910 return -EINVAL;
911 }
912
913 counter = ARMV8_IDX_TO_COUNTER(idx);
914 asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
915 return idx;
916 }
917
918 static inline int armv8pmu_enable_intens(int idx)
919 {
920 u32 counter;
921
922 if (!armv8pmu_counter_valid(idx)) {
923 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
924 smp_processor_id(), idx);
925 return -EINVAL;
926 }
927
928 counter = ARMV8_IDX_TO_COUNTER(idx);
929 asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
930 return idx;
931 }
932
933 static inline int armv8pmu_disable_intens(int idx)
934 {
935 u32 counter;
936
937 if (!armv8pmu_counter_valid(idx)) {
938 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
939 smp_processor_id(), idx);
940 return -EINVAL;
941 }
942
943 counter = ARMV8_IDX_TO_COUNTER(idx);
944 asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
945 isb();
946 /* Clear the overflow flag in case an interrupt is pending. */
947 asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
948 isb();
949 return idx;
950 }
951
952 static inline u32 armv8pmu_getreset_flags(void)
953 {
954 u32 value;
955
956 /* Read */
957 asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
958
959 /* Write to clear flags */
960 value &= ARMV8_OVSR_MASK;
961 asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
962
963 return value;
964 }
965
966 static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
967 {
968 unsigned long flags;
969 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
970
971 /*
972 * Enable counter and interrupt, and set the counter to count
973 * the event that we're interested in.
974 */
975 raw_spin_lock_irqsave(&events->pmu_lock, flags);
976
977 /*
978 * Disable counter
979 */
980 armv8pmu_disable_counter(idx);
981
982 /*
983 * Set event (if destined for PMNx counters).
984 */
985 armv8pmu_write_evtype(idx, hwc->config_base);
986
987 /*
988 * Enable interrupt for this counter
989 */
990 armv8pmu_enable_intens(idx);
991
992 /*
993 * Enable counter
994 */
995 armv8pmu_enable_counter(idx);
996
997 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
998 }
999
1000 static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
1001 {
1002 unsigned long flags;
1003 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1004
1005 /*
1006 * Disable counter and interrupt
1007 */
1008 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1009
1010 /*
1011 * Disable counter
1012 */
1013 armv8pmu_disable_counter(idx);
1014
1015 /*
1016 * Disable interrupt for this counter
1017 */
1018 armv8pmu_disable_intens(idx);
1019
1020 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1021 }
1022
1023 static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1024 {
1025 u32 pmovsr;
1026 struct perf_sample_data data;
1027 struct pmu_hw_events *cpuc;
1028 struct pt_regs *regs;
1029 int idx;
1030
1031 /*
1032 * Get and reset the IRQ flags
1033 */
1034 pmovsr = armv8pmu_getreset_flags();
1035
1036 /*
1037 * Did an overflow occur?
1038 */
1039 if (!armv8pmu_has_overflowed(pmovsr))
1040 return IRQ_NONE;
1041
1042 /*
1043 * Handle the counter(s) overflow(s)
1044 */
1045 regs = get_irq_regs();
1046
1047 cpuc = &__get_cpu_var(cpu_hw_events);
1048 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1049 struct perf_event *event = cpuc->events[idx];
1050 struct hw_perf_event *hwc;
1051
1052 /* Ignore if we don't have an event. */
1053 if (!event)
1054 continue;
1055
1056 /*
1057 * We have a single interrupt for all counters. Check that
1058 * each counter has overflowed before we process it.
1059 */
1060 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1061 continue;
1062
1063 hwc = &event->hw;
1064 armpmu_event_update(event, hwc, idx);
1065 perf_sample_data_init(&data, 0, hwc->last_period);
1066 if (!armpmu_event_set_period(event, hwc, idx))
1067 continue;
1068
1069 if (perf_event_overflow(event, &data, regs))
1070 cpu_pmu->disable(hwc, idx);
1071 }
1072
1073 /*
1074 * Handle the pending perf events.
1075 *
1076 * Note: this call *must* be run with interrupts disabled. For
1077 * platforms that can have the PMU interrupts raised as an NMI, this
1078 * will not work.
1079 */
1080 irq_work_run();
1081
1082 return IRQ_HANDLED;
1083 }
1084
1085 static void armv8pmu_start(void)
1086 {
1087 unsigned long flags;
1088 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1089
1090 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1091 /* Enable all counters */
1092 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1093 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1094 }
1095
1096 static void armv8pmu_stop(void)
1097 {
1098 unsigned long flags;
1099 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1100
1101 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1102 /* Disable all counters */
1103 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1104 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1105 }
1106
1107 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1108 struct hw_perf_event *event)
1109 {
1110 int idx;
1111 unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1112
1113 /* Always place a cycle counter into the cycle counter. */
1114 if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
1115 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1116 return -EAGAIN;
1117
1118 return ARMV8_IDX_CYCLE_COUNTER;
1119 }
1120
1121 /*
1122 * For anything other than a cycle counter, try and use
1123 * the events counters
1124 */
1125 for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1126 if (!test_and_set_bit(idx, cpuc->used_mask))
1127 return idx;
1128 }
1129
1130 /* The counters are all in use. */
1131 return -EAGAIN;
1132 }
1133
1134 /*
1135 * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1136 */
1137 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1138 struct perf_event_attr *attr)
1139 {
1140 unsigned long config_base = 0;
1141
1142 if (attr->exclude_idle)
1143 return -EPERM;
1144 if (attr->exclude_user)
1145 config_base |= ARMV8_EXCLUDE_EL0;
1146 if (attr->exclude_kernel)
1147 config_base |= ARMV8_EXCLUDE_EL1;
1148 if (!attr->exclude_hv)
1149 config_base |= ARMV8_INCLUDE_EL2;
1150
1151 /*
1152 * Install the filter into config_base as this is used to
1153 * construct the event type.
1154 */
1155 event->config_base = config_base;
1156
1157 return 0;
1158 }
1159
1160 static void armv8pmu_reset(void *info)
1161 {
1162 u32 idx, nb_cnt = cpu_pmu->num_events;
1163
1164 /* The counter and interrupt enable registers are unknown at reset. */
1165 for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1166 armv8pmu_disable_event(NULL, idx);
1167
1168 /* Initialize & Reset PMNC: C and P bits. */
1169 armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1170
1171 /* Disable access from userspace. */
1172 asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1173 }
1174
1175 static int armv8_pmuv3_map_event(struct perf_event *event)
1176 {
1177 return map_cpu_event(event, &armv8_pmuv3_perf_map,
1178 &armv8_pmuv3_perf_cache_map, 0xFF);
1179 }
1180
1181 static struct arm_pmu armv8pmu = {
1182 .handle_irq = armv8pmu_handle_irq,
1183 .enable = armv8pmu_enable_event,
1184 .disable = armv8pmu_disable_event,
1185 .read_counter = armv8pmu_read_counter,
1186 .write_counter = armv8pmu_write_counter,
1187 .get_event_idx = armv8pmu_get_event_idx,
1188 .start = armv8pmu_start,
1189 .stop = armv8pmu_stop,
1190 .reset = armv8pmu_reset,
1191 .max_period = (1LLU << 32) - 1,
1192 };
1193
1194 static u32 __init armv8pmu_read_num_pmnc_events(void)
1195 {
1196 u32 nb_cnt;
1197
1198 /* Read the nb of CNTx counters supported from PMNC */
1199 nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1200
1201 /* Add the CPU cycles counter and return */
1202 return nb_cnt + 1;
1203 }
1204
1205 static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1206 {
1207 armv8pmu.name = "arm/armv8-pmuv3";
1208 armv8pmu.map_event = armv8_pmuv3_map_event;
1209 armv8pmu.num_events = armv8pmu_read_num_pmnc_events();
1210 armv8pmu.set_event_filter = armv8pmu_set_event_filter;
1211 return &armv8pmu;
1212 }
1213
1214 /*
1215 * Ensure the PMU has sane values out of reset.
1216 * This requires SMP to be available, so exists as a separate initcall.
1217 */
1218 static int __init
1219 cpu_pmu_reset(void)
1220 {
1221 if (cpu_pmu && cpu_pmu->reset)
1222 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1223 return 0;
1224 }
1225 arch_initcall(cpu_pmu_reset);
1226
1227 /*
1228 * PMU platform driver and devicetree bindings.
1229 */
1230 static struct of_device_id armpmu_of_device_ids[] = {
1231 {.compatible = "arm,armv8-pmuv3"},
1232 {},
1233 };
1234
1235 static int armpmu_device_probe(struct platform_device *pdev)
1236 {
1237 if (!cpu_pmu)
1238 return -ENODEV;
1239
1240 cpu_pmu->plat_device = pdev;
1241 return 0;
1242 }
1243
1244 static struct platform_driver armpmu_driver = {
1245 .driver = {
1246 .name = "arm-pmu",
1247 .of_match_table = armpmu_of_device_ids,
1248 },
1249 .probe = armpmu_device_probe,
1250 };
1251
1252 static int __init register_pmu_driver(void)
1253 {
1254 return platform_driver_register(&armpmu_driver);
1255 }
1256 device_initcall(register_pmu_driver);
1257
1258 static struct pmu_hw_events *armpmu_get_cpu_events(void)
1259 {
1260 return &__get_cpu_var(cpu_hw_events);
1261 }
1262
1263 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1264 {
1265 int cpu;
1266 for_each_possible_cpu(cpu) {
1267 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1268 events->events = per_cpu(hw_events, cpu);
1269 events->used_mask = per_cpu(used_mask, cpu);
1270 raw_spin_lock_init(&events->pmu_lock);
1271 }
1272 armpmu->get_hw_events = armpmu_get_cpu_events;
1273 }
1274
1275 static int __init init_hw_perf_events(void)
1276 {
1277 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1278
1279 switch ((dfr >> 8) & 0xf) {
1280 case 0x1: /* PMUv3 */
1281 cpu_pmu = armv8_pmuv3_pmu_init();
1282 break;
1283 }
1284
1285 if (cpu_pmu) {
1286 pr_info("enabled with %s PMU driver, %d counters available\n",
1287 cpu_pmu->name, cpu_pmu->num_events);
1288 cpu_pmu_init(cpu_pmu);
1289 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1290 } else {
1291 pr_info("no hardware support available\n");
1292 }
1293
1294 return 0;
1295 }
1296 early_initcall(init_hw_perf_events);
1297
1298 /*
1299 * Callchain handling code.
1300 */
1301 struct frame_tail {
1302 struct frame_tail __user *fp;
1303 unsigned long lr;
1304 } __attribute__((packed));
1305
1306 /*
1307 * Get the return address for a single stackframe and return a pointer to the
1308 * next frame tail.
1309 */
1310 static struct frame_tail __user *
1311 user_backtrace(struct frame_tail __user *tail,
1312 struct perf_callchain_entry *entry)
1313 {
1314 struct frame_tail buftail;
1315 unsigned long err;
1316
1317 /* Also check accessibility of one struct frame_tail beyond */
1318 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1319 return NULL;
1320
1321 pagefault_disable();
1322 err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1323 pagefault_enable();
1324
1325 if (err)
1326 return NULL;
1327
1328 perf_callchain_store(entry, buftail.lr);
1329
1330 /*
1331 * Frame pointers should strictly progress back up the stack
1332 * (towards higher addresses).
1333 */
1334 if (tail >= buftail.fp)
1335 return NULL;
1336
1337 return buftail.fp;
1338 }
1339
1340 void perf_callchain_user(struct perf_callchain_entry *entry,
1341 struct pt_regs *regs)
1342 {
1343 struct frame_tail __user *tail;
1344
1345 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1346 /* We don't support guest os callchain now */
1347 return;
1348 }
1349
1350 perf_callchain_store(entry, regs->pc);
1351 tail = (struct frame_tail __user *)regs->regs[29];
1352
1353 while (entry->nr < PERF_MAX_STACK_DEPTH &&
1354 tail && !((unsigned long)tail & 0xf))
1355 tail = user_backtrace(tail, entry);
1356 }
1357
1358 /*
1359 * Gets called by walk_stackframe() for every stackframe. This will be called
1360 * whist unwinding the stackframe and is like a subroutine return so we use
1361 * the PC.
1362 */
1363 static int callchain_trace(struct stackframe *frame, void *data)
1364 {
1365 struct perf_callchain_entry *entry = data;
1366 perf_callchain_store(entry, frame->pc);
1367 return 0;
1368 }
1369
1370 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1371 struct pt_regs *regs)
1372 {
1373 struct stackframe frame;
1374
1375 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1376 /* We don't support guest os callchain now */
1377 return;
1378 }
1379
1380 frame.fp = regs->regs[29];
1381 frame.sp = regs->sp;
1382 frame.pc = regs->pc;
1383 walk_stackframe(&frame, callchain_trace, entry);
1384 }
1385
1386 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1387 {
1388 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1389 return perf_guest_cbs->get_guest_ip();
1390
1391 return instruction_pointer(regs);
1392 }
1393
1394 unsigned long perf_misc_flags(struct pt_regs *regs)
1395 {
1396 int misc = 0;
1397
1398 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1399 if (perf_guest_cbs->is_user_mode())
1400 misc |= PERF_RECORD_MISC_GUEST_USER;
1401 else
1402 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1403 } else {
1404 if (user_mode(regs))
1405 misc |= PERF_RECORD_MISC_USER;
1406 else
1407 misc |= PERF_RECORD_MISC_KERNEL;
1408 }
1409
1410 return misc;
1411 }