Merge 4.14.107 into android-4.14-p
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / net / ipv4 / tcp_input.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79
80 int sysctl_tcp_fack __read_mostly;
81 int sysctl_tcp_max_reordering __read_mostly = 300;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 1;
85 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
86
87 /* rfc5961 challenge ack rate limiting */
88 int sysctl_tcp_challenge_ack_limit = 1000;
89
90 int sysctl_tcp_stdurg __read_mostly;
91 int sysctl_tcp_rfc1337 __read_mostly;
92 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
93 int sysctl_tcp_frto __read_mostly = 2;
94 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
95 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
96 int sysctl_tcp_early_retrans __read_mostly = 3;
97 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
98 int sysctl_tcp_default_init_rwnd __read_mostly = TCP_INIT_CWND * 2;
99
100 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
101 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
102 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
103 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
104 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
105 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
106 #define FLAG_ECE 0x40 /* ECE in this ACK */
107 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
108 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
110 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
116
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 #define REXMIT_NONE 0 /* no loss recovery to do */
126 #define REXMIT_LOST 1 /* retransmit packets marked lost */
127 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
128
129 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
130 unsigned int len)
131 {
132 static bool __once __read_mostly;
133
134 if (!__once) {
135 struct net_device *dev;
136
137 __once = true;
138
139 rcu_read_lock();
140 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
141 if (!dev || len >= dev->mtu)
142 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
143 dev ? dev->name : "Unknown driver");
144 rcu_read_unlock();
145 }
146 }
147
148 /* Adapt the MSS value used to make delayed ack decision to the
149 * real world.
150 */
151 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
152 {
153 struct inet_connection_sock *icsk = inet_csk(sk);
154 const unsigned int lss = icsk->icsk_ack.last_seg_size;
155 unsigned int len;
156
157 icsk->icsk_ack.last_seg_size = 0;
158
159 /* skb->len may jitter because of SACKs, even if peer
160 * sends good full-sized frames.
161 */
162 len = skb_shinfo(skb)->gso_size ? : skb->len;
163 if (len >= icsk->icsk_ack.rcv_mss) {
164 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
165 tcp_sk(sk)->advmss);
166 /* Account for possibly-removed options */
167 if (unlikely(len > icsk->icsk_ack.rcv_mss +
168 MAX_TCP_OPTION_SPACE))
169 tcp_gro_dev_warn(sk, skb, len);
170 } else {
171 /* Otherwise, we make more careful check taking into account,
172 * that SACKs block is variable.
173 *
174 * "len" is invariant segment length, including TCP header.
175 */
176 len += skb->data - skb_transport_header(skb);
177 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
178 /* If PSH is not set, packet should be
179 * full sized, provided peer TCP is not badly broken.
180 * This observation (if it is correct 8)) allows
181 * to handle super-low mtu links fairly.
182 */
183 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
184 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
185 /* Subtract also invariant (if peer is RFC compliant),
186 * tcp header plus fixed timestamp option length.
187 * Resulting "len" is MSS free of SACK jitter.
188 */
189 len -= tcp_sk(sk)->tcp_header_len;
190 icsk->icsk_ack.last_seg_size = len;
191 if (len == lss) {
192 icsk->icsk_ack.rcv_mss = len;
193 return;
194 }
195 }
196 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
198 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
199 }
200 }
201
202 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
203 {
204 struct inet_connection_sock *icsk = inet_csk(sk);
205 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
206
207 if (quickacks == 0)
208 quickacks = 2;
209 quickacks = min(quickacks, max_quickacks);
210 if (quickacks > icsk->icsk_ack.quick)
211 icsk->icsk_ack.quick = quickacks;
212 }
213
214 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
215 {
216 struct inet_connection_sock *icsk = inet_csk(sk);
217
218 tcp_incr_quickack(sk, max_quickacks);
219 icsk->icsk_ack.pingpong = 0;
220 icsk->icsk_ack.ato = TCP_ATO_MIN;
221 }
222 EXPORT_SYMBOL(tcp_enter_quickack_mode);
223
224 /* Send ACKs quickly, if "quick" count is not exhausted
225 * and the session is not interactive.
226 */
227
228 static bool tcp_in_quickack_mode(struct sock *sk)
229 {
230 const struct inet_connection_sock *icsk = inet_csk(sk);
231 const struct dst_entry *dst = __sk_dst_get(sk);
232
233 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
234 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
235 }
236
237 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
238 {
239 if (tp->ecn_flags & TCP_ECN_OK)
240 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
241 }
242
243 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
244 {
245 if (tcp_hdr(skb)->cwr)
246 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
247 }
248
249 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
250 {
251 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
252 }
253
254 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
255 {
256 struct tcp_sock *tp = tcp_sk(sk);
257
258 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
259 case INET_ECN_NOT_ECT:
260 /* Funny extension: if ECT is not set on a segment,
261 * and we already seen ECT on a previous segment,
262 * it is probably a retransmit.
263 */
264 if (tp->ecn_flags & TCP_ECN_SEEN)
265 tcp_enter_quickack_mode(sk, 2);
266 break;
267 case INET_ECN_CE:
268 if (tcp_ca_needs_ecn(sk))
269 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
270
271 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
272 /* Better not delay acks, sender can have a very low cwnd */
273 tcp_enter_quickack_mode(sk, 2);
274 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
275 }
276 tp->ecn_flags |= TCP_ECN_SEEN;
277 break;
278 default:
279 if (tcp_ca_needs_ecn(sk))
280 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
281 tp->ecn_flags |= TCP_ECN_SEEN;
282 break;
283 }
284 }
285
286 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
287 {
288 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
289 __tcp_ecn_check_ce(sk, skb);
290 }
291
292 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
293 {
294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
295 tp->ecn_flags &= ~TCP_ECN_OK;
296 }
297
298 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
299 {
300 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
301 tp->ecn_flags &= ~TCP_ECN_OK;
302 }
303
304 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
305 {
306 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
307 return true;
308 return false;
309 }
310
311 /* Buffer size and advertised window tuning.
312 *
313 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
314 */
315
316 static void tcp_sndbuf_expand(struct sock *sk)
317 {
318 const struct tcp_sock *tp = tcp_sk(sk);
319 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
320 int sndmem, per_mss;
321 u32 nr_segs;
322
323 /* Worst case is non GSO/TSO : each frame consumes one skb
324 * and skb->head is kmalloced using power of two area of memory
325 */
326 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
327 MAX_TCP_HEADER +
328 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
329
330 per_mss = roundup_pow_of_two(per_mss) +
331 SKB_DATA_ALIGN(sizeof(struct sk_buff));
332
333 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
334 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
335
336 /* Fast Recovery (RFC 5681 3.2) :
337 * Cubic needs 1.7 factor, rounded to 2 to include
338 * extra cushion (application might react slowly to POLLOUT)
339 */
340 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
341 sndmem *= nr_segs * per_mss;
342
343 if (sk->sk_sndbuf < sndmem)
344 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
345 }
346
347 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
348 *
349 * All tcp_full_space() is split to two parts: "network" buffer, allocated
350 * forward and advertised in receiver window (tp->rcv_wnd) and
351 * "application buffer", required to isolate scheduling/application
352 * latencies from network.
353 * window_clamp is maximal advertised window. It can be less than
354 * tcp_full_space(), in this case tcp_full_space() - window_clamp
355 * is reserved for "application" buffer. The less window_clamp is
356 * the smoother our behaviour from viewpoint of network, but the lower
357 * throughput and the higher sensitivity of the connection to losses. 8)
358 *
359 * rcv_ssthresh is more strict window_clamp used at "slow start"
360 * phase to predict further behaviour of this connection.
361 * It is used for two goals:
362 * - to enforce header prediction at sender, even when application
363 * requires some significant "application buffer". It is check #1.
364 * - to prevent pruning of receive queue because of misprediction
365 * of receiver window. Check #2.
366 *
367 * The scheme does not work when sender sends good segments opening
368 * window and then starts to feed us spaghetti. But it should work
369 * in common situations. Otherwise, we have to rely on queue collapsing.
370 */
371
372 /* Slow part of check#2. */
373 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
374 {
375 struct tcp_sock *tp = tcp_sk(sk);
376 /* Optimize this! */
377 int truesize = tcp_win_from_space(skb->truesize) >> 1;
378 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
379
380 while (tp->rcv_ssthresh <= window) {
381 if (truesize <= skb->len)
382 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
383
384 truesize >>= 1;
385 window >>= 1;
386 }
387 return 0;
388 }
389
390 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
391 {
392 struct tcp_sock *tp = tcp_sk(sk);
393
394 /* Check #1 */
395 if (tp->rcv_ssthresh < tp->window_clamp &&
396 (int)tp->rcv_ssthresh < tcp_space(sk) &&
397 !tcp_under_memory_pressure(sk)) {
398 int incr;
399
400 /* Check #2. Increase window, if skb with such overhead
401 * will fit to rcvbuf in future.
402 */
403 if (tcp_win_from_space(skb->truesize) <= skb->len)
404 incr = 2 * tp->advmss;
405 else
406 incr = __tcp_grow_window(sk, skb);
407
408 if (incr) {
409 incr = max_t(int, incr, 2 * skb->len);
410 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
411 tp->window_clamp);
412 inet_csk(sk)->icsk_ack.quick |= 1;
413 }
414 }
415 }
416
417 /* 3. Tuning rcvbuf, when connection enters established state. */
418 static void tcp_fixup_rcvbuf(struct sock *sk)
419 {
420 u32 mss = tcp_sk(sk)->advmss;
421 int rcvmem;
422
423 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
424 tcp_default_init_rwnd(mss);
425
426 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
427 * Allow enough cushion so that sender is not limited by our window
428 */
429 if (sysctl_tcp_moderate_rcvbuf)
430 rcvmem <<= 2;
431
432 if (sk->sk_rcvbuf < rcvmem)
433 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
434 }
435
436 /* 4. Try to fixup all. It is made immediately after connection enters
437 * established state.
438 */
439 void tcp_init_buffer_space(struct sock *sk)
440 {
441 struct tcp_sock *tp = tcp_sk(sk);
442 int maxwin;
443
444 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
445 tcp_fixup_rcvbuf(sk);
446 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
447 tcp_sndbuf_expand(sk);
448
449 tp->rcvq_space.space = tp->rcv_wnd;
450 tcp_mstamp_refresh(tp);
451 tp->rcvq_space.time = tp->tcp_mstamp;
452 tp->rcvq_space.seq = tp->copied_seq;
453
454 maxwin = tcp_full_space(sk);
455
456 if (tp->window_clamp >= maxwin) {
457 tp->window_clamp = maxwin;
458
459 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
460 tp->window_clamp = max(maxwin -
461 (maxwin >> sysctl_tcp_app_win),
462 4 * tp->advmss);
463 }
464
465 /* Force reservation of one segment. */
466 if (sysctl_tcp_app_win &&
467 tp->window_clamp > 2 * tp->advmss &&
468 tp->window_clamp + tp->advmss > maxwin)
469 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
470
471 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
472 tp->snd_cwnd_stamp = tcp_jiffies32;
473 }
474
475 /* 5. Recalculate window clamp after socket hit its memory bounds. */
476 static void tcp_clamp_window(struct sock *sk)
477 {
478 struct tcp_sock *tp = tcp_sk(sk);
479 struct inet_connection_sock *icsk = inet_csk(sk);
480
481 icsk->icsk_ack.quick = 0;
482
483 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
484 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
485 !tcp_under_memory_pressure(sk) &&
486 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
487 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
488 sysctl_tcp_rmem[2]);
489 }
490 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
491 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
492 }
493
494 /* Initialize RCV_MSS value.
495 * RCV_MSS is an our guess about MSS used by the peer.
496 * We haven't any direct information about the MSS.
497 * It's better to underestimate the RCV_MSS rather than overestimate.
498 * Overestimations make us ACKing less frequently than needed.
499 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
500 */
501 void tcp_initialize_rcv_mss(struct sock *sk)
502 {
503 const struct tcp_sock *tp = tcp_sk(sk);
504 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
505
506 hint = min(hint, tp->rcv_wnd / 2);
507 hint = min(hint, TCP_MSS_DEFAULT);
508 hint = max(hint, TCP_MIN_MSS);
509
510 inet_csk(sk)->icsk_ack.rcv_mss = hint;
511 }
512 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
513
514 /* Receiver "autotuning" code.
515 *
516 * The algorithm for RTT estimation w/o timestamps is based on
517 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
518 * <http://public.lanl.gov/radiant/pubs.html#DRS>
519 *
520 * More detail on this code can be found at
521 * <http://staff.psc.edu/jheffner/>,
522 * though this reference is out of date. A new paper
523 * is pending.
524 */
525 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
526 {
527 u32 new_sample = tp->rcv_rtt_est.rtt_us;
528 long m = sample;
529
530 if (new_sample != 0) {
531 /* If we sample in larger samples in the non-timestamp
532 * case, we could grossly overestimate the RTT especially
533 * with chatty applications or bulk transfer apps which
534 * are stalled on filesystem I/O.
535 *
536 * Also, since we are only going for a minimum in the
537 * non-timestamp case, we do not smooth things out
538 * else with timestamps disabled convergence takes too
539 * long.
540 */
541 if (!win_dep) {
542 m -= (new_sample >> 3);
543 new_sample += m;
544 } else {
545 m <<= 3;
546 if (m < new_sample)
547 new_sample = m;
548 }
549 } else {
550 /* No previous measure. */
551 new_sample = m << 3;
552 }
553
554 tp->rcv_rtt_est.rtt_us = new_sample;
555 }
556
557 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
558 {
559 u32 delta_us;
560
561 if (tp->rcv_rtt_est.time == 0)
562 goto new_measure;
563 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
564 return;
565 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
566 if (!delta_us)
567 delta_us = 1;
568 tcp_rcv_rtt_update(tp, delta_us, 1);
569
570 new_measure:
571 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
572 tp->rcv_rtt_est.time = tp->tcp_mstamp;
573 }
574
575 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
576 const struct sk_buff *skb)
577 {
578 struct tcp_sock *tp = tcp_sk(sk);
579
580 if (tp->rx_opt.rcv_tsecr &&
581 (TCP_SKB_CB(skb)->end_seq -
582 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
583 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
584 u32 delta_us;
585
586 if (!delta)
587 delta = 1;
588 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
589 tcp_rcv_rtt_update(tp, delta_us, 0);
590 }
591 }
592
593 /*
594 * This function should be called every time data is copied to user space.
595 * It calculates the appropriate TCP receive buffer space.
596 */
597 void tcp_rcv_space_adjust(struct sock *sk)
598 {
599 struct tcp_sock *tp = tcp_sk(sk);
600 u32 copied;
601 int time;
602
603 tcp_mstamp_refresh(tp);
604 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
605 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
606 return;
607
608 /* Number of bytes copied to user in last RTT */
609 copied = tp->copied_seq - tp->rcvq_space.seq;
610 if (copied <= tp->rcvq_space.space)
611 goto new_measure;
612
613 /* A bit of theory :
614 * copied = bytes received in previous RTT, our base window
615 * To cope with packet losses, we need a 2x factor
616 * To cope with slow start, and sender growing its cwin by 100 %
617 * every RTT, we need a 4x factor, because the ACK we are sending
618 * now is for the next RTT, not the current one :
619 * <prev RTT . ><current RTT .. ><next RTT .... >
620 */
621
622 if (sysctl_tcp_moderate_rcvbuf &&
623 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
624 int rcvmem, rcvbuf;
625 u64 rcvwin;
626
627 /* minimal window to cope with packet losses, assuming
628 * steady state. Add some cushion because of small variations.
629 */
630 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
631
632 /* If rate increased by 25%,
633 * assume slow start, rcvwin = 3 * copied
634 * If rate increased by 50%,
635 * assume sender can use 2x growth, rcvwin = 4 * copied
636 */
637 if (copied >=
638 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
639 if (copied >=
640 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
641 rcvwin <<= 1;
642 else
643 rcvwin += (rcvwin >> 1);
644 }
645
646 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
647 while (tcp_win_from_space(rcvmem) < tp->advmss)
648 rcvmem += 128;
649
650 do_div(rcvwin, tp->advmss);
651 rcvbuf = min_t(u64, rcvwin * rcvmem, sysctl_tcp_rmem[2]);
652 if (rcvbuf > sk->sk_rcvbuf) {
653 sk->sk_rcvbuf = rcvbuf;
654
655 /* Make the window clamp follow along. */
656 tp->window_clamp = tcp_win_from_space(rcvbuf);
657 }
658 }
659 tp->rcvq_space.space = copied;
660
661 new_measure:
662 tp->rcvq_space.seq = tp->copied_seq;
663 tp->rcvq_space.time = tp->tcp_mstamp;
664 }
665
666 /* There is something which you must keep in mind when you analyze the
667 * behavior of the tp->ato delayed ack timeout interval. When a
668 * connection starts up, we want to ack as quickly as possible. The
669 * problem is that "good" TCP's do slow start at the beginning of data
670 * transmission. The means that until we send the first few ACK's the
671 * sender will sit on his end and only queue most of his data, because
672 * he can only send snd_cwnd unacked packets at any given time. For
673 * each ACK we send, he increments snd_cwnd and transmits more of his
674 * queue. -DaveM
675 */
676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
677 {
678 struct tcp_sock *tp = tcp_sk(sk);
679 struct inet_connection_sock *icsk = inet_csk(sk);
680 u32 now;
681
682 inet_csk_schedule_ack(sk);
683
684 tcp_measure_rcv_mss(sk, skb);
685
686 tcp_rcv_rtt_measure(tp);
687
688 now = tcp_jiffies32;
689
690 if (!icsk->icsk_ack.ato) {
691 /* The _first_ data packet received, initialize
692 * delayed ACK engine.
693 */
694 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
695 icsk->icsk_ack.ato = TCP_ATO_MIN;
696 } else {
697 int m = now - icsk->icsk_ack.lrcvtime;
698
699 if (m <= TCP_ATO_MIN / 2) {
700 /* The fastest case is the first. */
701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
702 } else if (m < icsk->icsk_ack.ato) {
703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
704 if (icsk->icsk_ack.ato > icsk->icsk_rto)
705 icsk->icsk_ack.ato = icsk->icsk_rto;
706 } else if (m > icsk->icsk_rto) {
707 /* Too long gap. Apparently sender failed to
708 * restart window, so that we send ACKs quickly.
709 */
710 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
711 sk_mem_reclaim(sk);
712 }
713 }
714 icsk->icsk_ack.lrcvtime = now;
715
716 tcp_ecn_check_ce(sk, skb);
717
718 if (skb->len >= 128)
719 tcp_grow_window(sk, skb);
720 }
721
722 /* Called to compute a smoothed rtt estimate. The data fed to this
723 * routine either comes from timestamps, or from segments that were
724 * known _not_ to have been retransmitted [see Karn/Partridge
725 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
726 * piece by Van Jacobson.
727 * NOTE: the next three routines used to be one big routine.
728 * To save cycles in the RFC 1323 implementation it was better to break
729 * it up into three procedures. -- erics
730 */
731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
732 {
733 struct tcp_sock *tp = tcp_sk(sk);
734 long m = mrtt_us; /* RTT */
735 u32 srtt = tp->srtt_us;
736
737 /* The following amusing code comes from Jacobson's
738 * article in SIGCOMM '88. Note that rtt and mdev
739 * are scaled versions of rtt and mean deviation.
740 * This is designed to be as fast as possible
741 * m stands for "measurement".
742 *
743 * On a 1990 paper the rto value is changed to:
744 * RTO = rtt + 4 * mdev
745 *
746 * Funny. This algorithm seems to be very broken.
747 * These formulae increase RTO, when it should be decreased, increase
748 * too slowly, when it should be increased quickly, decrease too quickly
749 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
750 * does not matter how to _calculate_ it. Seems, it was trap
751 * that VJ failed to avoid. 8)
752 */
753 if (srtt != 0) {
754 m -= (srtt >> 3); /* m is now error in rtt est */
755 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
756 if (m < 0) {
757 m = -m; /* m is now abs(error) */
758 m -= (tp->mdev_us >> 2); /* similar update on mdev */
759 /* This is similar to one of Eifel findings.
760 * Eifel blocks mdev updates when rtt decreases.
761 * This solution is a bit different: we use finer gain
762 * for mdev in this case (alpha*beta).
763 * Like Eifel it also prevents growth of rto,
764 * but also it limits too fast rto decreases,
765 * happening in pure Eifel.
766 */
767 if (m > 0)
768 m >>= 3;
769 } else {
770 m -= (tp->mdev_us >> 2); /* similar update on mdev */
771 }
772 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
773 if (tp->mdev_us > tp->mdev_max_us) {
774 tp->mdev_max_us = tp->mdev_us;
775 if (tp->mdev_max_us > tp->rttvar_us)
776 tp->rttvar_us = tp->mdev_max_us;
777 }
778 if (after(tp->snd_una, tp->rtt_seq)) {
779 if (tp->mdev_max_us < tp->rttvar_us)
780 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
781 tp->rtt_seq = tp->snd_nxt;
782 tp->mdev_max_us = tcp_rto_min_us(sk);
783 }
784 } else {
785 /* no previous measure. */
786 srtt = m << 3; /* take the measured time to be rtt */
787 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
788 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
789 tp->mdev_max_us = tp->rttvar_us;
790 tp->rtt_seq = tp->snd_nxt;
791 }
792 tp->srtt_us = max(1U, srtt);
793 }
794
795 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
796 * Note: TCP stack does not yet implement pacing.
797 * FQ packet scheduler can be used to implement cheap but effective
798 * TCP pacing, to smooth the burst on large writes when packets
799 * in flight is significantly lower than cwnd (or rwin)
800 */
801 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
802 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
803
804 static void tcp_update_pacing_rate(struct sock *sk)
805 {
806 const struct tcp_sock *tp = tcp_sk(sk);
807 u64 rate;
808
809 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
810 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
811
812 /* current rate is (cwnd * mss) / srtt
813 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
814 * In Congestion Avoidance phase, set it to 120 % the current rate.
815 *
816 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
817 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
818 * end of slow start and should slow down.
819 */
820 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
821 rate *= sysctl_tcp_pacing_ss_ratio;
822 else
823 rate *= sysctl_tcp_pacing_ca_ratio;
824
825 rate *= max(tp->snd_cwnd, tp->packets_out);
826
827 if (likely(tp->srtt_us))
828 do_div(rate, tp->srtt_us);
829
830 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
831 * without any lock. We want to make sure compiler wont store
832 * intermediate values in this location.
833 */
834 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
835 sk->sk_max_pacing_rate);
836 }
837
838 /* Calculate rto without backoff. This is the second half of Van Jacobson's
839 * routine referred to above.
840 */
841 static void tcp_set_rto(struct sock *sk)
842 {
843 const struct tcp_sock *tp = tcp_sk(sk);
844 /* Old crap is replaced with new one. 8)
845 *
846 * More seriously:
847 * 1. If rtt variance happened to be less 50msec, it is hallucination.
848 * It cannot be less due to utterly erratic ACK generation made
849 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
850 * to do with delayed acks, because at cwnd>2 true delack timeout
851 * is invisible. Actually, Linux-2.4 also generates erratic
852 * ACKs in some circumstances.
853 */
854 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
855
856 /* 2. Fixups made earlier cannot be right.
857 * If we do not estimate RTO correctly without them,
858 * all the algo is pure shit and should be replaced
859 * with correct one. It is exactly, which we pretend to do.
860 */
861
862 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
863 * guarantees that rto is higher.
864 */
865 tcp_bound_rto(sk);
866 }
867
868 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
869 {
870 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
871
872 if (!cwnd)
873 cwnd = TCP_INIT_CWND;
874 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
875 }
876
877 /*
878 * Packet counting of FACK is based on in-order assumptions, therefore TCP
879 * disables it when reordering is detected
880 */
881 void tcp_disable_fack(struct tcp_sock *tp)
882 {
883 /* RFC3517 uses different metric in lost marker => reset on change */
884 if (tcp_is_fack(tp))
885 tp->lost_skb_hint = NULL;
886 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
887 }
888
889 /* Take a notice that peer is sending D-SACKs */
890 static void tcp_dsack_seen(struct tcp_sock *tp)
891 {
892 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
893 }
894
895 static void tcp_update_reordering(struct sock *sk, const int metric,
896 const int ts)
897 {
898 struct tcp_sock *tp = tcp_sk(sk);
899 int mib_idx;
900
901 if (WARN_ON_ONCE(metric < 0))
902 return;
903
904 if (metric > tp->reordering) {
905 tp->reordering = min(sysctl_tcp_max_reordering, metric);
906
907 #if FASTRETRANS_DEBUG > 1
908 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
909 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
910 tp->reordering,
911 tp->fackets_out,
912 tp->sacked_out,
913 tp->undo_marker ? tp->undo_retrans : 0);
914 #endif
915 tcp_disable_fack(tp);
916 }
917
918 tp->rack.reord = 1;
919
920 /* This exciting event is worth to be remembered. 8) */
921 if (ts)
922 mib_idx = LINUX_MIB_TCPTSREORDER;
923 else if (tcp_is_reno(tp))
924 mib_idx = LINUX_MIB_TCPRENOREORDER;
925 else if (tcp_is_fack(tp))
926 mib_idx = LINUX_MIB_TCPFACKREORDER;
927 else
928 mib_idx = LINUX_MIB_TCPSACKREORDER;
929
930 NET_INC_STATS(sock_net(sk), mib_idx);
931 }
932
933 /* This must be called before lost_out is incremented */
934 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
935 {
936 if (!tp->retransmit_skb_hint ||
937 before(TCP_SKB_CB(skb)->seq,
938 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
939 tp->retransmit_skb_hint = skb;
940 }
941
942 /* Sum the number of packets on the wire we have marked as lost.
943 * There are two cases we care about here:
944 * a) Packet hasn't been marked lost (nor retransmitted),
945 * and this is the first loss.
946 * b) Packet has been marked both lost and retransmitted,
947 * and this means we think it was lost again.
948 */
949 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
950 {
951 __u8 sacked = TCP_SKB_CB(skb)->sacked;
952
953 if (!(sacked & TCPCB_LOST) ||
954 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
955 tp->lost += tcp_skb_pcount(skb);
956 }
957
958 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
959 {
960 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
961 tcp_verify_retransmit_hint(tp, skb);
962
963 tp->lost_out += tcp_skb_pcount(skb);
964 tcp_sum_lost(tp, skb);
965 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
966 }
967 }
968
969 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
970 {
971 tcp_verify_retransmit_hint(tp, skb);
972
973 tcp_sum_lost(tp, skb);
974 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
975 tp->lost_out += tcp_skb_pcount(skb);
976 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
977 }
978 }
979
980 /* This procedure tags the retransmission queue when SACKs arrive.
981 *
982 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
983 * Packets in queue with these bits set are counted in variables
984 * sacked_out, retrans_out and lost_out, correspondingly.
985 *
986 * Valid combinations are:
987 * Tag InFlight Description
988 * 0 1 - orig segment is in flight.
989 * S 0 - nothing flies, orig reached receiver.
990 * L 0 - nothing flies, orig lost by net.
991 * R 2 - both orig and retransmit are in flight.
992 * L|R 1 - orig is lost, retransmit is in flight.
993 * S|R 1 - orig reached receiver, retrans is still in flight.
994 * (L|S|R is logically valid, it could occur when L|R is sacked,
995 * but it is equivalent to plain S and code short-curcuits it to S.
996 * L|S is logically invalid, it would mean -1 packet in flight 8))
997 *
998 * These 6 states form finite state machine, controlled by the following events:
999 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1000 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1001 * 3. Loss detection event of two flavors:
1002 * A. Scoreboard estimator decided the packet is lost.
1003 * A'. Reno "three dupacks" marks head of queue lost.
1004 * A''. Its FACK modification, head until snd.fack is lost.
1005 * B. SACK arrives sacking SND.NXT at the moment, when the
1006 * segment was retransmitted.
1007 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1008 *
1009 * It is pleasant to note, that state diagram turns out to be commutative,
1010 * so that we are allowed not to be bothered by order of our actions,
1011 * when multiple events arrive simultaneously. (see the function below).
1012 *
1013 * Reordering detection.
1014 * --------------------
1015 * Reordering metric is maximal distance, which a packet can be displaced
1016 * in packet stream. With SACKs we can estimate it:
1017 *
1018 * 1. SACK fills old hole and the corresponding segment was not
1019 * ever retransmitted -> reordering. Alas, we cannot use it
1020 * when segment was retransmitted.
1021 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1022 * for retransmitted and already SACKed segment -> reordering..
1023 * Both of these heuristics are not used in Loss state, when we cannot
1024 * account for retransmits accurately.
1025 *
1026 * SACK block validation.
1027 * ----------------------
1028 *
1029 * SACK block range validation checks that the received SACK block fits to
1030 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1031 * Note that SND.UNA is not included to the range though being valid because
1032 * it means that the receiver is rather inconsistent with itself reporting
1033 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1034 * perfectly valid, however, in light of RFC2018 which explicitly states
1035 * that "SACK block MUST reflect the newest segment. Even if the newest
1036 * segment is going to be discarded ...", not that it looks very clever
1037 * in case of head skb. Due to potentional receiver driven attacks, we
1038 * choose to avoid immediate execution of a walk in write queue due to
1039 * reneging and defer head skb's loss recovery to standard loss recovery
1040 * procedure that will eventually trigger (nothing forbids us doing this).
1041 *
1042 * Implements also blockage to start_seq wrap-around. Problem lies in the
1043 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1044 * there's no guarantee that it will be before snd_nxt (n). The problem
1045 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1046 * wrap (s_w):
1047 *
1048 * <- outs wnd -> <- wrapzone ->
1049 * u e n u_w e_w s n_w
1050 * | | | | | | |
1051 * |<------------+------+----- TCP seqno space --------------+---------->|
1052 * ...-- <2^31 ->| |<--------...
1053 * ...---- >2^31 ------>| |<--------...
1054 *
1055 * Current code wouldn't be vulnerable but it's better still to discard such
1056 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1057 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1058 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1059 * equal to the ideal case (infinite seqno space without wrap caused issues).
1060 *
1061 * With D-SACK the lower bound is extended to cover sequence space below
1062 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1063 * again, D-SACK block must not to go across snd_una (for the same reason as
1064 * for the normal SACK blocks, explained above). But there all simplicity
1065 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1066 * fully below undo_marker they do not affect behavior in anyway and can
1067 * therefore be safely ignored. In rare cases (which are more or less
1068 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1069 * fragmentation and packet reordering past skb's retransmission. To consider
1070 * them correctly, the acceptable range must be extended even more though
1071 * the exact amount is rather hard to quantify. However, tp->max_window can
1072 * be used as an exaggerated estimate.
1073 */
1074 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1075 u32 start_seq, u32 end_seq)
1076 {
1077 /* Too far in future, or reversed (interpretation is ambiguous) */
1078 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1079 return false;
1080
1081 /* Nasty start_seq wrap-around check (see comments above) */
1082 if (!before(start_seq, tp->snd_nxt))
1083 return false;
1084
1085 /* In outstanding window? ...This is valid exit for D-SACKs too.
1086 * start_seq == snd_una is non-sensical (see comments above)
1087 */
1088 if (after(start_seq, tp->snd_una))
1089 return true;
1090
1091 if (!is_dsack || !tp->undo_marker)
1092 return false;
1093
1094 /* ...Then it's D-SACK, and must reside below snd_una completely */
1095 if (after(end_seq, tp->snd_una))
1096 return false;
1097
1098 if (!before(start_seq, tp->undo_marker))
1099 return true;
1100
1101 /* Too old */
1102 if (!after(end_seq, tp->undo_marker))
1103 return false;
1104
1105 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1106 * start_seq < undo_marker and end_seq >= undo_marker.
1107 */
1108 return !before(start_seq, end_seq - tp->max_window);
1109 }
1110
1111 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1112 struct tcp_sack_block_wire *sp, int num_sacks,
1113 u32 prior_snd_una)
1114 {
1115 struct tcp_sock *tp = tcp_sk(sk);
1116 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1117 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1118 bool dup_sack = false;
1119
1120 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1121 dup_sack = true;
1122 tcp_dsack_seen(tp);
1123 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1124 } else if (num_sacks > 1) {
1125 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1126 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1127
1128 if (!after(end_seq_0, end_seq_1) &&
1129 !before(start_seq_0, start_seq_1)) {
1130 dup_sack = true;
1131 tcp_dsack_seen(tp);
1132 NET_INC_STATS(sock_net(sk),
1133 LINUX_MIB_TCPDSACKOFORECV);
1134 }
1135 }
1136
1137 /* D-SACK for already forgotten data... Do dumb counting. */
1138 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1139 !after(end_seq_0, prior_snd_una) &&
1140 after(end_seq_0, tp->undo_marker))
1141 tp->undo_retrans--;
1142
1143 return dup_sack;
1144 }
1145
1146 struct tcp_sacktag_state {
1147 int reord;
1148 int fack_count;
1149 /* Timestamps for earliest and latest never-retransmitted segment
1150 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1151 * but congestion control should still get an accurate delay signal.
1152 */
1153 u64 first_sackt;
1154 u64 last_sackt;
1155 struct rate_sample *rate;
1156 int flag;
1157 };
1158
1159 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1160 * the incoming SACK may not exactly match but we can find smaller MSS
1161 * aligned portion of it that matches. Therefore we might need to fragment
1162 * which may fail and creates some hassle (caller must handle error case
1163 * returns).
1164 *
1165 * FIXME: this could be merged to shift decision code
1166 */
1167 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1168 u32 start_seq, u32 end_seq)
1169 {
1170 int err;
1171 bool in_sack;
1172 unsigned int pkt_len;
1173 unsigned int mss;
1174
1175 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1176 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1177
1178 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1179 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1180 mss = tcp_skb_mss(skb);
1181 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1182
1183 if (!in_sack) {
1184 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1185 if (pkt_len < mss)
1186 pkt_len = mss;
1187 } else {
1188 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1189 if (pkt_len < mss)
1190 return -EINVAL;
1191 }
1192
1193 /* Round if necessary so that SACKs cover only full MSSes
1194 * and/or the remaining small portion (if present)
1195 */
1196 if (pkt_len > mss) {
1197 unsigned int new_len = (pkt_len / mss) * mss;
1198 if (!in_sack && new_len < pkt_len)
1199 new_len += mss;
1200 pkt_len = new_len;
1201 }
1202
1203 if (pkt_len >= skb->len && !in_sack)
1204 return 0;
1205
1206 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1207 if (err < 0)
1208 return err;
1209 }
1210
1211 return in_sack;
1212 }
1213
1214 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1215 static u8 tcp_sacktag_one(struct sock *sk,
1216 struct tcp_sacktag_state *state, u8 sacked,
1217 u32 start_seq, u32 end_seq,
1218 int dup_sack, int pcount,
1219 u64 xmit_time)
1220 {
1221 struct tcp_sock *tp = tcp_sk(sk);
1222 int fack_count = state->fack_count;
1223
1224 /* Account D-SACK for retransmitted packet. */
1225 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1226 if (tp->undo_marker && tp->undo_retrans > 0 &&
1227 after(end_seq, tp->undo_marker))
1228 tp->undo_retrans--;
1229 if (sacked & TCPCB_SACKED_ACKED)
1230 state->reord = min(fack_count, state->reord);
1231 }
1232
1233 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1234 if (!after(end_seq, tp->snd_una))
1235 return sacked;
1236
1237 if (!(sacked & TCPCB_SACKED_ACKED)) {
1238 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1239
1240 if (sacked & TCPCB_SACKED_RETRANS) {
1241 /* If the segment is not tagged as lost,
1242 * we do not clear RETRANS, believing
1243 * that retransmission is still in flight.
1244 */
1245 if (sacked & TCPCB_LOST) {
1246 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1247 tp->lost_out -= pcount;
1248 tp->retrans_out -= pcount;
1249 }
1250 } else {
1251 if (!(sacked & TCPCB_RETRANS)) {
1252 /* New sack for not retransmitted frame,
1253 * which was in hole. It is reordering.
1254 */
1255 if (before(start_seq,
1256 tcp_highest_sack_seq(tp)))
1257 state->reord = min(fack_count,
1258 state->reord);
1259 if (!after(end_seq, tp->high_seq))
1260 state->flag |= FLAG_ORIG_SACK_ACKED;
1261 if (state->first_sackt == 0)
1262 state->first_sackt = xmit_time;
1263 state->last_sackt = xmit_time;
1264 }
1265
1266 if (sacked & TCPCB_LOST) {
1267 sacked &= ~TCPCB_LOST;
1268 tp->lost_out -= pcount;
1269 }
1270 }
1271
1272 sacked |= TCPCB_SACKED_ACKED;
1273 state->flag |= FLAG_DATA_SACKED;
1274 tp->sacked_out += pcount;
1275 tp->delivered += pcount; /* Out-of-order packets delivered */
1276
1277 fack_count += pcount;
1278
1279 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1280 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1281 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1282 tp->lost_cnt_hint += pcount;
1283
1284 if (fack_count > tp->fackets_out)
1285 tp->fackets_out = fack_count;
1286 }
1287
1288 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1289 * frames and clear it. undo_retrans is decreased above, L|R frames
1290 * are accounted above as well.
1291 */
1292 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1293 sacked &= ~TCPCB_SACKED_RETRANS;
1294 tp->retrans_out -= pcount;
1295 }
1296
1297 return sacked;
1298 }
1299
1300 /* Shift newly-SACKed bytes from this skb to the immediately previous
1301 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1302 */
1303 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1304 struct tcp_sacktag_state *state,
1305 unsigned int pcount, int shifted, int mss,
1306 bool dup_sack)
1307 {
1308 struct tcp_sock *tp = tcp_sk(sk);
1309 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1310 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1311 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1312
1313 BUG_ON(!pcount);
1314
1315 /* Adjust counters and hints for the newly sacked sequence
1316 * range but discard the return value since prev is already
1317 * marked. We must tag the range first because the seq
1318 * advancement below implicitly advances
1319 * tcp_highest_sack_seq() when skb is highest_sack.
1320 */
1321 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1322 start_seq, end_seq, dup_sack, pcount,
1323 skb->skb_mstamp);
1324 tcp_rate_skb_delivered(sk, skb, state->rate);
1325
1326 if (skb == tp->lost_skb_hint)
1327 tp->lost_cnt_hint += pcount;
1328
1329 TCP_SKB_CB(prev)->end_seq += shifted;
1330 TCP_SKB_CB(skb)->seq += shifted;
1331
1332 tcp_skb_pcount_add(prev, pcount);
1333 BUG_ON(tcp_skb_pcount(skb) < pcount);
1334 tcp_skb_pcount_add(skb, -pcount);
1335
1336 /* When we're adding to gso_segs == 1, gso_size will be zero,
1337 * in theory this shouldn't be necessary but as long as DSACK
1338 * code can come after this skb later on it's better to keep
1339 * setting gso_size to something.
1340 */
1341 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1342 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1343
1344 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1345 if (tcp_skb_pcount(skb) <= 1)
1346 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1347
1348 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1349 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1350
1351 if (skb->len > 0) {
1352 BUG_ON(!tcp_skb_pcount(skb));
1353 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1354 return false;
1355 }
1356
1357 /* Whole SKB was eaten :-) */
1358
1359 if (skb == tp->retransmit_skb_hint)
1360 tp->retransmit_skb_hint = prev;
1361 if (skb == tp->lost_skb_hint) {
1362 tp->lost_skb_hint = prev;
1363 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1364 }
1365
1366 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1367 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1368 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1369 TCP_SKB_CB(prev)->end_seq++;
1370
1371 if (skb == tcp_highest_sack(sk))
1372 tcp_advance_highest_sack(sk, skb);
1373
1374 tcp_skb_collapse_tstamp(prev, skb);
1375 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1376 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1377
1378 tcp_unlink_write_queue(skb, sk);
1379 sk_wmem_free_skb(sk, skb);
1380
1381 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1382
1383 return true;
1384 }
1385
1386 /* I wish gso_size would have a bit more sane initialization than
1387 * something-or-zero which complicates things
1388 */
1389 static int tcp_skb_seglen(const struct sk_buff *skb)
1390 {
1391 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1392 }
1393
1394 /* Shifting pages past head area doesn't work */
1395 static int skb_can_shift(const struct sk_buff *skb)
1396 {
1397 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1398 }
1399
1400 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1401 * skb.
1402 */
1403 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1404 struct tcp_sacktag_state *state,
1405 u32 start_seq, u32 end_seq,
1406 bool dup_sack)
1407 {
1408 struct tcp_sock *tp = tcp_sk(sk);
1409 struct sk_buff *prev;
1410 int mss;
1411 int pcount = 0;
1412 int len;
1413 int in_sack;
1414
1415 if (!sk_can_gso(sk))
1416 goto fallback;
1417
1418 /* Normally R but no L won't result in plain S */
1419 if (!dup_sack &&
1420 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1421 goto fallback;
1422 if (!skb_can_shift(skb))
1423 goto fallback;
1424 /* This frame is about to be dropped (was ACKed). */
1425 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1426 goto fallback;
1427
1428 /* Can only happen with delayed DSACK + discard craziness */
1429 if (unlikely(skb == tcp_write_queue_head(sk)))
1430 goto fallback;
1431 prev = tcp_write_queue_prev(sk, skb);
1432
1433 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1434 goto fallback;
1435
1436 if (!tcp_skb_can_collapse_to(prev))
1437 goto fallback;
1438
1439 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1440 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1441
1442 if (in_sack) {
1443 len = skb->len;
1444 pcount = tcp_skb_pcount(skb);
1445 mss = tcp_skb_seglen(skb);
1446
1447 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1448 * drop this restriction as unnecessary
1449 */
1450 if (mss != tcp_skb_seglen(prev))
1451 goto fallback;
1452 } else {
1453 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1454 goto noop;
1455 /* CHECKME: This is non-MSS split case only?, this will
1456 * cause skipped skbs due to advancing loop btw, original
1457 * has that feature too
1458 */
1459 if (tcp_skb_pcount(skb) <= 1)
1460 goto noop;
1461
1462 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1463 if (!in_sack) {
1464 /* TODO: head merge to next could be attempted here
1465 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1466 * though it might not be worth of the additional hassle
1467 *
1468 * ...we can probably just fallback to what was done
1469 * previously. We could try merging non-SACKed ones
1470 * as well but it probably isn't going to buy off
1471 * because later SACKs might again split them, and
1472 * it would make skb timestamp tracking considerably
1473 * harder problem.
1474 */
1475 goto fallback;
1476 }
1477
1478 len = end_seq - TCP_SKB_CB(skb)->seq;
1479 BUG_ON(len < 0);
1480 BUG_ON(len > skb->len);
1481
1482 /* MSS boundaries should be honoured or else pcount will
1483 * severely break even though it makes things bit trickier.
1484 * Optimize common case to avoid most of the divides
1485 */
1486 mss = tcp_skb_mss(skb);
1487
1488 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1489 * drop this restriction as unnecessary
1490 */
1491 if (mss != tcp_skb_seglen(prev))
1492 goto fallback;
1493
1494 if (len == mss) {
1495 pcount = 1;
1496 } else if (len < mss) {
1497 goto noop;
1498 } else {
1499 pcount = len / mss;
1500 len = pcount * mss;
1501 }
1502 }
1503
1504 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1505 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1506 goto fallback;
1507
1508 if (!skb_shift(prev, skb, len))
1509 goto fallback;
1510 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1511 goto out;
1512
1513 /* Hole filled allows collapsing with the next as well, this is very
1514 * useful when hole on every nth skb pattern happens
1515 */
1516 if (prev == tcp_write_queue_tail(sk))
1517 goto out;
1518 skb = tcp_write_queue_next(sk, prev);
1519
1520 if (!skb_can_shift(skb) ||
1521 (skb == tcp_send_head(sk)) ||
1522 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1523 (mss != tcp_skb_seglen(skb)))
1524 goto out;
1525
1526 len = skb->len;
1527 if (skb_shift(prev, skb, len)) {
1528 pcount += tcp_skb_pcount(skb);
1529 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1530 }
1531
1532 out:
1533 state->fack_count += pcount;
1534 return prev;
1535
1536 noop:
1537 return skb;
1538
1539 fallback:
1540 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1541 return NULL;
1542 }
1543
1544 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1545 struct tcp_sack_block *next_dup,
1546 struct tcp_sacktag_state *state,
1547 u32 start_seq, u32 end_seq,
1548 bool dup_sack_in)
1549 {
1550 struct tcp_sock *tp = tcp_sk(sk);
1551 struct sk_buff *tmp;
1552
1553 tcp_for_write_queue_from(skb, sk) {
1554 int in_sack = 0;
1555 bool dup_sack = dup_sack_in;
1556
1557 if (skb == tcp_send_head(sk))
1558 break;
1559
1560 /* queue is in-order => we can short-circuit the walk early */
1561 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1562 break;
1563
1564 if (next_dup &&
1565 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1566 in_sack = tcp_match_skb_to_sack(sk, skb,
1567 next_dup->start_seq,
1568 next_dup->end_seq);
1569 if (in_sack > 0)
1570 dup_sack = true;
1571 }
1572
1573 /* skb reference here is a bit tricky to get right, since
1574 * shifting can eat and free both this skb and the next,
1575 * so not even _safe variant of the loop is enough.
1576 */
1577 if (in_sack <= 0) {
1578 tmp = tcp_shift_skb_data(sk, skb, state,
1579 start_seq, end_seq, dup_sack);
1580 if (tmp) {
1581 if (tmp != skb) {
1582 skb = tmp;
1583 continue;
1584 }
1585
1586 in_sack = 0;
1587 } else {
1588 in_sack = tcp_match_skb_to_sack(sk, skb,
1589 start_seq,
1590 end_seq);
1591 }
1592 }
1593
1594 if (unlikely(in_sack < 0))
1595 break;
1596
1597 if (in_sack) {
1598 TCP_SKB_CB(skb)->sacked =
1599 tcp_sacktag_one(sk,
1600 state,
1601 TCP_SKB_CB(skb)->sacked,
1602 TCP_SKB_CB(skb)->seq,
1603 TCP_SKB_CB(skb)->end_seq,
1604 dup_sack,
1605 tcp_skb_pcount(skb),
1606 skb->skb_mstamp);
1607 tcp_rate_skb_delivered(sk, skb, state->rate);
1608
1609 if (!before(TCP_SKB_CB(skb)->seq,
1610 tcp_highest_sack_seq(tp)))
1611 tcp_advance_highest_sack(sk, skb);
1612 }
1613
1614 state->fack_count += tcp_skb_pcount(skb);
1615 }
1616 return skb;
1617 }
1618
1619 /* Avoid all extra work that is being done by sacktag while walking in
1620 * a normal way
1621 */
1622 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1623 struct tcp_sacktag_state *state,
1624 u32 skip_to_seq)
1625 {
1626 tcp_for_write_queue_from(skb, sk) {
1627 if (skb == tcp_send_head(sk))
1628 break;
1629
1630 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1631 break;
1632
1633 state->fack_count += tcp_skb_pcount(skb);
1634 }
1635 return skb;
1636 }
1637
1638 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1639 struct sock *sk,
1640 struct tcp_sack_block *next_dup,
1641 struct tcp_sacktag_state *state,
1642 u32 skip_to_seq)
1643 {
1644 if (!next_dup)
1645 return skb;
1646
1647 if (before(next_dup->start_seq, skip_to_seq)) {
1648 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1649 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1650 next_dup->start_seq, next_dup->end_seq,
1651 1);
1652 }
1653
1654 return skb;
1655 }
1656
1657 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1658 {
1659 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1660 }
1661
1662 static int
1663 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1664 u32 prior_snd_una, struct tcp_sacktag_state *state)
1665 {
1666 struct tcp_sock *tp = tcp_sk(sk);
1667 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1668 TCP_SKB_CB(ack_skb)->sacked);
1669 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1670 struct tcp_sack_block sp[TCP_NUM_SACKS];
1671 struct tcp_sack_block *cache;
1672 struct sk_buff *skb;
1673 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1674 int used_sacks;
1675 bool found_dup_sack = false;
1676 int i, j;
1677 int first_sack_index;
1678
1679 state->flag = 0;
1680 state->reord = tp->packets_out;
1681
1682 if (!tp->sacked_out) {
1683 if (WARN_ON(tp->fackets_out))
1684 tp->fackets_out = 0;
1685 tcp_highest_sack_reset(sk);
1686 }
1687
1688 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1689 num_sacks, prior_snd_una);
1690 if (found_dup_sack) {
1691 state->flag |= FLAG_DSACKING_ACK;
1692 tp->delivered++; /* A spurious retransmission is delivered */
1693 }
1694
1695 /* Eliminate too old ACKs, but take into
1696 * account more or less fresh ones, they can
1697 * contain valid SACK info.
1698 */
1699 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1700 return 0;
1701
1702 if (!tp->packets_out)
1703 goto out;
1704
1705 used_sacks = 0;
1706 first_sack_index = 0;
1707 for (i = 0; i < num_sacks; i++) {
1708 bool dup_sack = !i && found_dup_sack;
1709
1710 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1711 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1712
1713 if (!tcp_is_sackblock_valid(tp, dup_sack,
1714 sp[used_sacks].start_seq,
1715 sp[used_sacks].end_seq)) {
1716 int mib_idx;
1717
1718 if (dup_sack) {
1719 if (!tp->undo_marker)
1720 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1721 else
1722 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1723 } else {
1724 /* Don't count olds caused by ACK reordering */
1725 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1726 !after(sp[used_sacks].end_seq, tp->snd_una))
1727 continue;
1728 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1729 }
1730
1731 NET_INC_STATS(sock_net(sk), mib_idx);
1732 if (i == 0)
1733 first_sack_index = -1;
1734 continue;
1735 }
1736
1737 /* Ignore very old stuff early */
1738 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1739 continue;
1740
1741 used_sacks++;
1742 }
1743
1744 /* order SACK blocks to allow in order walk of the retrans queue */
1745 for (i = used_sacks - 1; i > 0; i--) {
1746 for (j = 0; j < i; j++) {
1747 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1748 swap(sp[j], sp[j + 1]);
1749
1750 /* Track where the first SACK block goes to */
1751 if (j == first_sack_index)
1752 first_sack_index = j + 1;
1753 }
1754 }
1755 }
1756
1757 skb = tcp_write_queue_head(sk);
1758 state->fack_count = 0;
1759 i = 0;
1760
1761 if (!tp->sacked_out) {
1762 /* It's already past, so skip checking against it */
1763 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1764 } else {
1765 cache = tp->recv_sack_cache;
1766 /* Skip empty blocks in at head of the cache */
1767 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1768 !cache->end_seq)
1769 cache++;
1770 }
1771
1772 while (i < used_sacks) {
1773 u32 start_seq = sp[i].start_seq;
1774 u32 end_seq = sp[i].end_seq;
1775 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1776 struct tcp_sack_block *next_dup = NULL;
1777
1778 if (found_dup_sack && ((i + 1) == first_sack_index))
1779 next_dup = &sp[i + 1];
1780
1781 /* Skip too early cached blocks */
1782 while (tcp_sack_cache_ok(tp, cache) &&
1783 !before(start_seq, cache->end_seq))
1784 cache++;
1785
1786 /* Can skip some work by looking recv_sack_cache? */
1787 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1788 after(end_seq, cache->start_seq)) {
1789
1790 /* Head todo? */
1791 if (before(start_seq, cache->start_seq)) {
1792 skb = tcp_sacktag_skip(skb, sk, state,
1793 start_seq);
1794 skb = tcp_sacktag_walk(skb, sk, next_dup,
1795 state,
1796 start_seq,
1797 cache->start_seq,
1798 dup_sack);
1799 }
1800
1801 /* Rest of the block already fully processed? */
1802 if (!after(end_seq, cache->end_seq))
1803 goto advance_sp;
1804
1805 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1806 state,
1807 cache->end_seq);
1808
1809 /* ...tail remains todo... */
1810 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1811 /* ...but better entrypoint exists! */
1812 skb = tcp_highest_sack(sk);
1813 if (!skb)
1814 break;
1815 state->fack_count = tp->fackets_out;
1816 cache++;
1817 goto walk;
1818 }
1819
1820 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1821 /* Check overlap against next cached too (past this one already) */
1822 cache++;
1823 continue;
1824 }
1825
1826 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1827 skb = tcp_highest_sack(sk);
1828 if (!skb)
1829 break;
1830 state->fack_count = tp->fackets_out;
1831 }
1832 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1833
1834 walk:
1835 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1836 start_seq, end_seq, dup_sack);
1837
1838 advance_sp:
1839 i++;
1840 }
1841
1842 /* Clear the head of the cache sack blocks so we can skip it next time */
1843 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1844 tp->recv_sack_cache[i].start_seq = 0;
1845 tp->recv_sack_cache[i].end_seq = 0;
1846 }
1847 for (j = 0; j < used_sacks; j++)
1848 tp->recv_sack_cache[i++] = sp[j];
1849
1850 if ((state->reord < tp->fackets_out) &&
1851 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1852 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1853
1854 tcp_verify_left_out(tp);
1855 out:
1856
1857 #if FASTRETRANS_DEBUG > 0
1858 WARN_ON((int)tp->sacked_out < 0);
1859 WARN_ON((int)tp->lost_out < 0);
1860 WARN_ON((int)tp->retrans_out < 0);
1861 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1862 #endif
1863 return state->flag;
1864 }
1865
1866 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1867 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1868 */
1869 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1870 {
1871 u32 holes;
1872
1873 holes = max(tp->lost_out, 1U);
1874 holes = min(holes, tp->packets_out);
1875
1876 if ((tp->sacked_out + holes) > tp->packets_out) {
1877 tp->sacked_out = tp->packets_out - holes;
1878 return true;
1879 }
1880 return false;
1881 }
1882
1883 /* If we receive more dupacks than we expected counting segments
1884 * in assumption of absent reordering, interpret this as reordering.
1885 * The only another reason could be bug in receiver TCP.
1886 */
1887 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1888 {
1889 struct tcp_sock *tp = tcp_sk(sk);
1890 if (tcp_limit_reno_sacked(tp))
1891 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1892 }
1893
1894 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1895
1896 static void tcp_add_reno_sack(struct sock *sk)
1897 {
1898 struct tcp_sock *tp = tcp_sk(sk);
1899 u32 prior_sacked = tp->sacked_out;
1900
1901 tp->sacked_out++;
1902 tcp_check_reno_reordering(sk, 0);
1903 if (tp->sacked_out > prior_sacked)
1904 tp->delivered++; /* Some out-of-order packet is delivered */
1905 tcp_verify_left_out(tp);
1906 }
1907
1908 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1909
1910 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1911 {
1912 struct tcp_sock *tp = tcp_sk(sk);
1913
1914 if (acked > 0) {
1915 /* One ACK acked hole. The rest eat duplicate ACKs. */
1916 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1917 if (acked - 1 >= tp->sacked_out)
1918 tp->sacked_out = 0;
1919 else
1920 tp->sacked_out -= acked - 1;
1921 }
1922 tcp_check_reno_reordering(sk, acked);
1923 tcp_verify_left_out(tp);
1924 }
1925
1926 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1927 {
1928 tp->sacked_out = 0;
1929 }
1930
1931 void tcp_clear_retrans(struct tcp_sock *tp)
1932 {
1933 tp->retrans_out = 0;
1934 tp->lost_out = 0;
1935 tp->undo_marker = 0;
1936 tp->undo_retrans = -1;
1937 tp->fackets_out = 0;
1938 tp->sacked_out = 0;
1939 }
1940
1941 static inline void tcp_init_undo(struct tcp_sock *tp)
1942 {
1943 tp->undo_marker = tp->snd_una;
1944 /* Retransmission still in flight may cause DSACKs later. */
1945 tp->undo_retrans = tp->retrans_out ? : -1;
1946 }
1947
1948 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1949 * and reset tags completely, otherwise preserve SACKs. If receiver
1950 * dropped its ofo queue, we will know this due to reneging detection.
1951 */
1952 void tcp_enter_loss(struct sock *sk)
1953 {
1954 const struct inet_connection_sock *icsk = inet_csk(sk);
1955 struct tcp_sock *tp = tcp_sk(sk);
1956 struct net *net = sock_net(sk);
1957 struct sk_buff *skb;
1958 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1959 bool is_reneg; /* is receiver reneging on SACKs? */
1960 bool mark_lost;
1961
1962 /* Reduce ssthresh if it has not yet been made inside this window. */
1963 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1964 !after(tp->high_seq, tp->snd_una) ||
1965 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1966 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1967 tp->prior_cwnd = tp->snd_cwnd;
1968 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1969 tcp_ca_event(sk, CA_EVENT_LOSS);
1970 tcp_init_undo(tp);
1971 }
1972 tp->snd_cwnd = 1;
1973 tp->snd_cwnd_cnt = 0;
1974 tp->snd_cwnd_stamp = tcp_jiffies32;
1975
1976 tp->retrans_out = 0;
1977 tp->lost_out = 0;
1978
1979 if (tcp_is_reno(tp))
1980 tcp_reset_reno_sack(tp);
1981
1982 skb = tcp_write_queue_head(sk);
1983 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1984 if (is_reneg) {
1985 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1986 tp->sacked_out = 0;
1987 tp->fackets_out = 0;
1988 /* Mark SACK reneging until we recover from this loss event. */
1989 tp->is_sack_reneg = 1;
1990 }
1991 tcp_clear_all_retrans_hints(tp);
1992
1993 tcp_for_write_queue(skb, sk) {
1994 if (skb == tcp_send_head(sk))
1995 break;
1996
1997 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1998 is_reneg);
1999 if (mark_lost)
2000 tcp_sum_lost(tp, skb);
2001 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2002 if (mark_lost) {
2003 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2004 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2005 tp->lost_out += tcp_skb_pcount(skb);
2006 }
2007 }
2008 tcp_verify_left_out(tp);
2009
2010 /* Timeout in disordered state after receiving substantial DUPACKs
2011 * suggests that the degree of reordering is over-estimated.
2012 */
2013 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2014 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2015 tp->reordering = min_t(unsigned int, tp->reordering,
2016 net->ipv4.sysctl_tcp_reordering);
2017 tcp_set_ca_state(sk, TCP_CA_Loss);
2018 tp->high_seq = tp->snd_nxt;
2019 tcp_ecn_queue_cwr(tp);
2020
2021 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2022 * loss recovery is underway except recurring timeout(s) on
2023 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2024 */
2025 tp->frto = sysctl_tcp_frto &&
2026 (new_recovery || icsk->icsk_retransmits) &&
2027 !inet_csk(sk)->icsk_mtup.probe_size;
2028 }
2029
2030 /* If ACK arrived pointing to a remembered SACK, it means that our
2031 * remembered SACKs do not reflect real state of receiver i.e.
2032 * receiver _host_ is heavily congested (or buggy).
2033 *
2034 * To avoid big spurious retransmission bursts due to transient SACK
2035 * scoreboard oddities that look like reneging, we give the receiver a
2036 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2037 * restore sanity to the SACK scoreboard. If the apparent reneging
2038 * persists until this RTO then we'll clear the SACK scoreboard.
2039 */
2040 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2041 {
2042 if (flag & FLAG_SACK_RENEGING) {
2043 struct tcp_sock *tp = tcp_sk(sk);
2044 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2045 msecs_to_jiffies(10));
2046
2047 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2048 delay, TCP_RTO_MAX);
2049 return true;
2050 }
2051 return false;
2052 }
2053
2054 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2055 {
2056 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2057 }
2058
2059 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2060 * counter when SACK is enabled (without SACK, sacked_out is used for
2061 * that purpose).
2062 *
2063 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2064 * segments up to the highest received SACK block so far and holes in
2065 * between them.
2066 *
2067 * With reordering, holes may still be in flight, so RFC3517 recovery
2068 * uses pure sacked_out (total number of SACKed segments) even though
2069 * it violates the RFC that uses duplicate ACKs, often these are equal
2070 * but when e.g. out-of-window ACKs or packet duplication occurs,
2071 * they differ. Since neither occurs due to loss, TCP should really
2072 * ignore them.
2073 */
2074 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2075 {
2076 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2077 }
2078
2079 /* Linux NewReno/SACK/FACK/ECN state machine.
2080 * --------------------------------------
2081 *
2082 * "Open" Normal state, no dubious events, fast path.
2083 * "Disorder" In all the respects it is "Open",
2084 * but requires a bit more attention. It is entered when
2085 * we see some SACKs or dupacks. It is split of "Open"
2086 * mainly to move some processing from fast path to slow one.
2087 * "CWR" CWND was reduced due to some Congestion Notification event.
2088 * It can be ECN, ICMP source quench, local device congestion.
2089 * "Recovery" CWND was reduced, we are fast-retransmitting.
2090 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2091 *
2092 * tcp_fastretrans_alert() is entered:
2093 * - each incoming ACK, if state is not "Open"
2094 * - when arrived ACK is unusual, namely:
2095 * * SACK
2096 * * Duplicate ACK.
2097 * * ECN ECE.
2098 *
2099 * Counting packets in flight is pretty simple.
2100 *
2101 * in_flight = packets_out - left_out + retrans_out
2102 *
2103 * packets_out is SND.NXT-SND.UNA counted in packets.
2104 *
2105 * retrans_out is number of retransmitted segments.
2106 *
2107 * left_out is number of segments left network, but not ACKed yet.
2108 *
2109 * left_out = sacked_out + lost_out
2110 *
2111 * sacked_out: Packets, which arrived to receiver out of order
2112 * and hence not ACKed. With SACKs this number is simply
2113 * amount of SACKed data. Even without SACKs
2114 * it is easy to give pretty reliable estimate of this number,
2115 * counting duplicate ACKs.
2116 *
2117 * lost_out: Packets lost by network. TCP has no explicit
2118 * "loss notification" feedback from network (for now).
2119 * It means that this number can be only _guessed_.
2120 * Actually, it is the heuristics to predict lossage that
2121 * distinguishes different algorithms.
2122 *
2123 * F.e. after RTO, when all the queue is considered as lost,
2124 * lost_out = packets_out and in_flight = retrans_out.
2125 *
2126 * Essentially, we have now a few algorithms detecting
2127 * lost packets.
2128 *
2129 * If the receiver supports SACK:
2130 *
2131 * RFC6675/3517: It is the conventional algorithm. A packet is
2132 * considered lost if the number of higher sequence packets
2133 * SACKed is greater than or equal the DUPACK thoreshold
2134 * (reordering). This is implemented in tcp_mark_head_lost and
2135 * tcp_update_scoreboard.
2136 *
2137 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2138 * (2017-) that checks timing instead of counting DUPACKs.
2139 * Essentially a packet is considered lost if it's not S/ACKed
2140 * after RTT + reordering_window, where both metrics are
2141 * dynamically measured and adjusted. This is implemented in
2142 * tcp_rack_mark_lost.
2143 *
2144 * FACK (Disabled by default. Subsumbed by RACK):
2145 * It is the simplest heuristics. As soon as we decided
2146 * that something is lost, we decide that _all_ not SACKed
2147 * packets until the most forward SACK are lost. I.e.
2148 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2149 * It is absolutely correct estimate, if network does not reorder
2150 * packets. And it loses any connection to reality when reordering
2151 * takes place. We use FACK by default until reordering
2152 * is suspected on the path to this destination.
2153 *
2154 * If the receiver does not support SACK:
2155 *
2156 * NewReno (RFC6582): in Recovery we assume that one segment
2157 * is lost (classic Reno). While we are in Recovery and
2158 * a partial ACK arrives, we assume that one more packet
2159 * is lost (NewReno). This heuristics are the same in NewReno
2160 * and SACK.
2161 *
2162 * Really tricky (and requiring careful tuning) part of algorithm
2163 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2164 * The first determines the moment _when_ we should reduce CWND and,
2165 * hence, slow down forward transmission. In fact, it determines the moment
2166 * when we decide that hole is caused by loss, rather than by a reorder.
2167 *
2168 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2169 * holes, caused by lost packets.
2170 *
2171 * And the most logically complicated part of algorithm is undo
2172 * heuristics. We detect false retransmits due to both too early
2173 * fast retransmit (reordering) and underestimated RTO, analyzing
2174 * timestamps and D-SACKs. When we detect that some segments were
2175 * retransmitted by mistake and CWND reduction was wrong, we undo
2176 * window reduction and abort recovery phase. This logic is hidden
2177 * inside several functions named tcp_try_undo_<something>.
2178 */
2179
2180 /* This function decides, when we should leave Disordered state
2181 * and enter Recovery phase, reducing congestion window.
2182 *
2183 * Main question: may we further continue forward transmission
2184 * with the same cwnd?
2185 */
2186 static bool tcp_time_to_recover(struct sock *sk, int flag)
2187 {
2188 struct tcp_sock *tp = tcp_sk(sk);
2189
2190 /* Trick#1: The loss is proven. */
2191 if (tp->lost_out)
2192 return true;
2193
2194 /* Not-A-Trick#2 : Classic rule... */
2195 if (tcp_dupack_heuristics(tp) > tp->reordering)
2196 return true;
2197
2198 return false;
2199 }
2200
2201 /* Detect loss in event "A" above by marking head of queue up as lost.
2202 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2203 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2204 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2205 * the maximum SACKed segments to pass before reaching this limit.
2206 */
2207 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2208 {
2209 struct tcp_sock *tp = tcp_sk(sk);
2210 struct sk_buff *skb;
2211 int cnt, oldcnt, lost;
2212 unsigned int mss;
2213 /* Use SACK to deduce losses of new sequences sent during recovery */
2214 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2215
2216 WARN_ON(packets > tp->packets_out);
2217 if (tp->lost_skb_hint) {
2218 skb = tp->lost_skb_hint;
2219 cnt = tp->lost_cnt_hint;
2220 /* Head already handled? */
2221 if (mark_head && skb != tcp_write_queue_head(sk))
2222 return;
2223 } else {
2224 skb = tcp_write_queue_head(sk);
2225 cnt = 0;
2226 }
2227
2228 tcp_for_write_queue_from(skb, sk) {
2229 if (skb == tcp_send_head(sk))
2230 break;
2231 /* TODO: do this better */
2232 /* this is not the most efficient way to do this... */
2233 tp->lost_skb_hint = skb;
2234 tp->lost_cnt_hint = cnt;
2235
2236 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2237 break;
2238
2239 oldcnt = cnt;
2240 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2241 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2242 cnt += tcp_skb_pcount(skb);
2243
2244 if (cnt > packets) {
2245 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2246 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2247 (oldcnt >= packets))
2248 break;
2249
2250 mss = tcp_skb_mss(skb);
2251 /* If needed, chop off the prefix to mark as lost. */
2252 lost = (packets - oldcnt) * mss;
2253 if (lost < skb->len &&
2254 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2255 break;
2256 cnt = packets;
2257 }
2258
2259 tcp_skb_mark_lost(tp, skb);
2260
2261 if (mark_head)
2262 break;
2263 }
2264 tcp_verify_left_out(tp);
2265 }
2266
2267 /* Account newly detected lost packet(s) */
2268
2269 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2270 {
2271 struct tcp_sock *tp = tcp_sk(sk);
2272
2273 if (tcp_is_reno(tp)) {
2274 tcp_mark_head_lost(sk, 1, 1);
2275 } else if (tcp_is_fack(tp)) {
2276 int lost = tp->fackets_out - tp->reordering;
2277 if (lost <= 0)
2278 lost = 1;
2279 tcp_mark_head_lost(sk, lost, 0);
2280 } else {
2281 int sacked_upto = tp->sacked_out - tp->reordering;
2282 if (sacked_upto >= 0)
2283 tcp_mark_head_lost(sk, sacked_upto, 0);
2284 else if (fast_rexmit)
2285 tcp_mark_head_lost(sk, 1, 1);
2286 }
2287 }
2288
2289 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2290 {
2291 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2292 before(tp->rx_opt.rcv_tsecr, when);
2293 }
2294
2295 /* skb is spurious retransmitted if the returned timestamp echo
2296 * reply is prior to the skb transmission time
2297 */
2298 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2299 const struct sk_buff *skb)
2300 {
2301 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2302 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2303 }
2304
2305 /* Nothing was retransmitted or returned timestamp is less
2306 * than timestamp of the first retransmission.
2307 */
2308 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2309 {
2310 return !tp->retrans_stamp ||
2311 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2312 }
2313
2314 /* Undo procedures. */
2315
2316 /* We can clear retrans_stamp when there are no retransmissions in the
2317 * window. It would seem that it is trivially available for us in
2318 * tp->retrans_out, however, that kind of assumptions doesn't consider
2319 * what will happen if errors occur when sending retransmission for the
2320 * second time. ...It could the that such segment has only
2321 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2322 * the head skb is enough except for some reneging corner cases that
2323 * are not worth the effort.
2324 *
2325 * Main reason for all this complexity is the fact that connection dying
2326 * time now depends on the validity of the retrans_stamp, in particular,
2327 * that successive retransmissions of a segment must not advance
2328 * retrans_stamp under any conditions.
2329 */
2330 static bool tcp_any_retrans_done(const struct sock *sk)
2331 {
2332 const struct tcp_sock *tp = tcp_sk(sk);
2333 struct sk_buff *skb;
2334
2335 if (tp->retrans_out)
2336 return true;
2337
2338 skb = tcp_write_queue_head(sk);
2339 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2340 return true;
2341
2342 return false;
2343 }
2344
2345 #if FASTRETRANS_DEBUG > 1
2346 static void DBGUNDO(struct sock *sk, const char *msg)
2347 {
2348 struct tcp_sock *tp = tcp_sk(sk);
2349 struct inet_sock *inet = inet_sk(sk);
2350
2351 if (sk->sk_family == AF_INET) {
2352 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2353 msg,
2354 &inet->inet_daddr, ntohs(inet->inet_dport),
2355 tp->snd_cwnd, tcp_left_out(tp),
2356 tp->snd_ssthresh, tp->prior_ssthresh,
2357 tp->packets_out);
2358 }
2359 #if IS_ENABLED(CONFIG_IPV6)
2360 else if (sk->sk_family == AF_INET6) {
2361 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2362 msg,
2363 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2364 tp->snd_cwnd, tcp_left_out(tp),
2365 tp->snd_ssthresh, tp->prior_ssthresh,
2366 tp->packets_out);
2367 }
2368 #endif
2369 }
2370 #else
2371 #define DBGUNDO(x...) do { } while (0)
2372 #endif
2373
2374 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2375 {
2376 struct tcp_sock *tp = tcp_sk(sk);
2377
2378 if (unmark_loss) {
2379 struct sk_buff *skb;
2380
2381 tcp_for_write_queue(skb, sk) {
2382 if (skb == tcp_send_head(sk))
2383 break;
2384 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2385 }
2386 tp->lost_out = 0;
2387 tcp_clear_all_retrans_hints(tp);
2388 }
2389
2390 if (tp->prior_ssthresh) {
2391 const struct inet_connection_sock *icsk = inet_csk(sk);
2392
2393 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2394
2395 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2396 tp->snd_ssthresh = tp->prior_ssthresh;
2397 tcp_ecn_withdraw_cwr(tp);
2398 }
2399 }
2400 tp->snd_cwnd_stamp = tcp_jiffies32;
2401 tp->undo_marker = 0;
2402 }
2403
2404 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2405 {
2406 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2407 }
2408
2409 /* People celebrate: "We love our President!" */
2410 static bool tcp_try_undo_recovery(struct sock *sk)
2411 {
2412 struct tcp_sock *tp = tcp_sk(sk);
2413
2414 if (tcp_may_undo(tp)) {
2415 int mib_idx;
2416
2417 /* Happy end! We did not retransmit anything
2418 * or our original transmission succeeded.
2419 */
2420 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2421 tcp_undo_cwnd_reduction(sk, false);
2422 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2423 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2424 else
2425 mib_idx = LINUX_MIB_TCPFULLUNDO;
2426
2427 NET_INC_STATS(sock_net(sk), mib_idx);
2428 }
2429 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2430 /* Hold old state until something *above* high_seq
2431 * is ACKed. For Reno it is MUST to prevent false
2432 * fast retransmits (RFC2582). SACK TCP is safe. */
2433 if (!tcp_any_retrans_done(sk))
2434 tp->retrans_stamp = 0;
2435 return true;
2436 }
2437 tcp_set_ca_state(sk, TCP_CA_Open);
2438 tp->is_sack_reneg = 0;
2439 return false;
2440 }
2441
2442 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2443 static bool tcp_try_undo_dsack(struct sock *sk)
2444 {
2445 struct tcp_sock *tp = tcp_sk(sk);
2446
2447 if (tp->undo_marker && !tp->undo_retrans) {
2448 DBGUNDO(sk, "D-SACK");
2449 tcp_undo_cwnd_reduction(sk, false);
2450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2451 return true;
2452 }
2453 return false;
2454 }
2455
2456 /* Undo during loss recovery after partial ACK or using F-RTO. */
2457 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2458 {
2459 struct tcp_sock *tp = tcp_sk(sk);
2460
2461 if (frto_undo || tcp_may_undo(tp)) {
2462 tcp_undo_cwnd_reduction(sk, true);
2463
2464 DBGUNDO(sk, "partial loss");
2465 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2466 if (frto_undo)
2467 NET_INC_STATS(sock_net(sk),
2468 LINUX_MIB_TCPSPURIOUSRTOS);
2469 inet_csk(sk)->icsk_retransmits = 0;
2470 if (frto_undo || tcp_is_sack(tp)) {
2471 tcp_set_ca_state(sk, TCP_CA_Open);
2472 tp->is_sack_reneg = 0;
2473 }
2474 return true;
2475 }
2476 return false;
2477 }
2478
2479 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2480 * It computes the number of packets to send (sndcnt) based on packets newly
2481 * delivered:
2482 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2483 * cwnd reductions across a full RTT.
2484 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2485 * But when the retransmits are acked without further losses, PRR
2486 * slow starts cwnd up to ssthresh to speed up the recovery.
2487 */
2488 static void tcp_init_cwnd_reduction(struct sock *sk)
2489 {
2490 struct tcp_sock *tp = tcp_sk(sk);
2491
2492 tp->high_seq = tp->snd_nxt;
2493 tp->tlp_high_seq = 0;
2494 tp->snd_cwnd_cnt = 0;
2495 tp->prior_cwnd = tp->snd_cwnd;
2496 tp->prr_delivered = 0;
2497 tp->prr_out = 0;
2498 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2499 tcp_ecn_queue_cwr(tp);
2500 }
2501
2502 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2503 {
2504 struct tcp_sock *tp = tcp_sk(sk);
2505 int sndcnt = 0;
2506 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2507
2508 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2509 return;
2510
2511 tp->prr_delivered += newly_acked_sacked;
2512 if (delta < 0) {
2513 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2514 tp->prior_cwnd - 1;
2515 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2516 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2517 !(flag & FLAG_LOST_RETRANS)) {
2518 sndcnt = min_t(int, delta,
2519 max_t(int, tp->prr_delivered - tp->prr_out,
2520 newly_acked_sacked) + 1);
2521 } else {
2522 sndcnt = min(delta, newly_acked_sacked);
2523 }
2524 /* Force a fast retransmit upon entering fast recovery */
2525 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2526 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2527 }
2528
2529 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2530 {
2531 struct tcp_sock *tp = tcp_sk(sk);
2532
2533 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2534 return;
2535
2536 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2537 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2538 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2539 tp->snd_cwnd = tp->snd_ssthresh;
2540 tp->snd_cwnd_stamp = tcp_jiffies32;
2541 }
2542 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2543 }
2544
2545 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2546 void tcp_enter_cwr(struct sock *sk)
2547 {
2548 struct tcp_sock *tp = tcp_sk(sk);
2549
2550 tp->prior_ssthresh = 0;
2551 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2552 tp->undo_marker = 0;
2553 tcp_init_cwnd_reduction(sk);
2554 tcp_set_ca_state(sk, TCP_CA_CWR);
2555 }
2556 }
2557 EXPORT_SYMBOL(tcp_enter_cwr);
2558
2559 static void tcp_try_keep_open(struct sock *sk)
2560 {
2561 struct tcp_sock *tp = tcp_sk(sk);
2562 int state = TCP_CA_Open;
2563
2564 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2565 state = TCP_CA_Disorder;
2566
2567 if (inet_csk(sk)->icsk_ca_state != state) {
2568 tcp_set_ca_state(sk, state);
2569 tp->high_seq = tp->snd_nxt;
2570 }
2571 }
2572
2573 static void tcp_try_to_open(struct sock *sk, int flag)
2574 {
2575 struct tcp_sock *tp = tcp_sk(sk);
2576
2577 tcp_verify_left_out(tp);
2578
2579 if (!tcp_any_retrans_done(sk))
2580 tp->retrans_stamp = 0;
2581
2582 if (flag & FLAG_ECE)
2583 tcp_enter_cwr(sk);
2584
2585 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2586 tcp_try_keep_open(sk);
2587 }
2588 }
2589
2590 static void tcp_mtup_probe_failed(struct sock *sk)
2591 {
2592 struct inet_connection_sock *icsk = inet_csk(sk);
2593
2594 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2595 icsk->icsk_mtup.probe_size = 0;
2596 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2597 }
2598
2599 static void tcp_mtup_probe_success(struct sock *sk)
2600 {
2601 struct tcp_sock *tp = tcp_sk(sk);
2602 struct inet_connection_sock *icsk = inet_csk(sk);
2603
2604 /* FIXME: breaks with very large cwnd */
2605 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2606 tp->snd_cwnd = tp->snd_cwnd *
2607 tcp_mss_to_mtu(sk, tp->mss_cache) /
2608 icsk->icsk_mtup.probe_size;
2609 tp->snd_cwnd_cnt = 0;
2610 tp->snd_cwnd_stamp = tcp_jiffies32;
2611 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2612
2613 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2614 icsk->icsk_mtup.probe_size = 0;
2615 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2616 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2617 }
2618
2619 /* Do a simple retransmit without using the backoff mechanisms in
2620 * tcp_timer. This is used for path mtu discovery.
2621 * The socket is already locked here.
2622 */
2623 void tcp_simple_retransmit(struct sock *sk)
2624 {
2625 const struct inet_connection_sock *icsk = inet_csk(sk);
2626 struct tcp_sock *tp = tcp_sk(sk);
2627 struct sk_buff *skb;
2628 unsigned int mss = tcp_current_mss(sk);
2629
2630 tcp_for_write_queue(skb, sk) {
2631 if (skb == tcp_send_head(sk))
2632 break;
2633 if (tcp_skb_seglen(skb) > mss &&
2634 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2635 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2636 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2637 tp->retrans_out -= tcp_skb_pcount(skb);
2638 }
2639 tcp_skb_mark_lost_uncond_verify(tp, skb);
2640 }
2641 }
2642
2643 tcp_clear_retrans_hints_partial(tp);
2644
2645 if (!tp->lost_out)
2646 return;
2647
2648 if (tcp_is_reno(tp))
2649 tcp_limit_reno_sacked(tp);
2650
2651 tcp_verify_left_out(tp);
2652
2653 /* Don't muck with the congestion window here.
2654 * Reason is that we do not increase amount of _data_
2655 * in network, but units changed and effective
2656 * cwnd/ssthresh really reduced now.
2657 */
2658 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2659 tp->high_seq = tp->snd_nxt;
2660 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2661 tp->prior_ssthresh = 0;
2662 tp->undo_marker = 0;
2663 tcp_set_ca_state(sk, TCP_CA_Loss);
2664 }
2665 tcp_xmit_retransmit_queue(sk);
2666 }
2667 EXPORT_SYMBOL(tcp_simple_retransmit);
2668
2669 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2670 {
2671 struct tcp_sock *tp = tcp_sk(sk);
2672 int mib_idx;
2673
2674 if (tcp_is_reno(tp))
2675 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2676 else
2677 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2678
2679 NET_INC_STATS(sock_net(sk), mib_idx);
2680
2681 tp->prior_ssthresh = 0;
2682 tcp_init_undo(tp);
2683
2684 if (!tcp_in_cwnd_reduction(sk)) {
2685 if (!ece_ack)
2686 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2687 tcp_init_cwnd_reduction(sk);
2688 }
2689 tcp_set_ca_state(sk, TCP_CA_Recovery);
2690 }
2691
2692 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2693 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2694 */
2695 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2696 int *rexmit)
2697 {
2698 struct tcp_sock *tp = tcp_sk(sk);
2699 bool recovered = !before(tp->snd_una, tp->high_seq);
2700
2701 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2702 tcp_try_undo_loss(sk, false))
2703 return;
2704
2705 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2706 /* Step 3.b. A timeout is spurious if not all data are
2707 * lost, i.e., never-retransmitted data are (s)acked.
2708 */
2709 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2710 tcp_try_undo_loss(sk, true))
2711 return;
2712
2713 if (after(tp->snd_nxt, tp->high_seq)) {
2714 if (flag & FLAG_DATA_SACKED || is_dupack)
2715 tp->frto = 0; /* Step 3.a. loss was real */
2716 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2717 tp->high_seq = tp->snd_nxt;
2718 /* Step 2.b. Try send new data (but deferred until cwnd
2719 * is updated in tcp_ack()). Otherwise fall back to
2720 * the conventional recovery.
2721 */
2722 if (tcp_send_head(sk) &&
2723 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2724 *rexmit = REXMIT_NEW;
2725 return;
2726 }
2727 tp->frto = 0;
2728 }
2729 }
2730
2731 if (recovered) {
2732 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2733 tcp_try_undo_recovery(sk);
2734 return;
2735 }
2736 if (tcp_is_reno(tp)) {
2737 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2738 * delivered. Lower inflight to clock out (re)tranmissions.
2739 */
2740 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2741 tcp_add_reno_sack(sk);
2742 else if (flag & FLAG_SND_UNA_ADVANCED)
2743 tcp_reset_reno_sack(tp);
2744 }
2745 *rexmit = REXMIT_LOST;
2746 }
2747
2748 /* Undo during fast recovery after partial ACK. */
2749 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2750 {
2751 struct tcp_sock *tp = tcp_sk(sk);
2752
2753 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2754 /* Plain luck! Hole if filled with delayed
2755 * packet, rather than with a retransmit.
2756 */
2757 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2758
2759 /* We are getting evidence that the reordering degree is higher
2760 * than we realized. If there are no retransmits out then we
2761 * can undo. Otherwise we clock out new packets but do not
2762 * mark more packets lost or retransmit more.
2763 */
2764 if (tp->retrans_out)
2765 return true;
2766
2767 if (!tcp_any_retrans_done(sk))
2768 tp->retrans_stamp = 0;
2769
2770 DBGUNDO(sk, "partial recovery");
2771 tcp_undo_cwnd_reduction(sk, true);
2772 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2773 tcp_try_keep_open(sk);
2774 return true;
2775 }
2776 return false;
2777 }
2778
2779 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2780 {
2781 struct tcp_sock *tp = tcp_sk(sk);
2782
2783 /* Use RACK to detect loss */
2784 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2785 u32 prior_retrans = tp->retrans_out;
2786
2787 tcp_rack_mark_lost(sk);
2788 if (prior_retrans > tp->retrans_out)
2789 *ack_flag |= FLAG_LOST_RETRANS;
2790 }
2791 }
2792
2793 /* Process an event, which can update packets-in-flight not trivially.
2794 * Main goal of this function is to calculate new estimate for left_out,
2795 * taking into account both packets sitting in receiver's buffer and
2796 * packets lost by network.
2797 *
2798 * Besides that it updates the congestion state when packet loss or ECN
2799 * is detected. But it does not reduce the cwnd, it is done by the
2800 * congestion control later.
2801 *
2802 * It does _not_ decide what to send, it is made in function
2803 * tcp_xmit_retransmit_queue().
2804 */
2805 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2806 bool is_dupack, int *ack_flag, int *rexmit)
2807 {
2808 struct inet_connection_sock *icsk = inet_csk(sk);
2809 struct tcp_sock *tp = tcp_sk(sk);
2810 int fast_rexmit = 0, flag = *ack_flag;
2811 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2812 (tcp_fackets_out(tp) > tp->reordering));
2813
2814 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2815 tp->sacked_out = 0;
2816 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2817 tp->fackets_out = 0;
2818
2819 /* Now state machine starts.
2820 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2821 if (flag & FLAG_ECE)
2822 tp->prior_ssthresh = 0;
2823
2824 /* B. In all the states check for reneging SACKs. */
2825 if (tcp_check_sack_reneging(sk, flag))
2826 return;
2827
2828 /* C. Check consistency of the current state. */
2829 tcp_verify_left_out(tp);
2830
2831 /* D. Check state exit conditions. State can be terminated
2832 * when high_seq is ACKed. */
2833 if (icsk->icsk_ca_state == TCP_CA_Open) {
2834 WARN_ON(tp->retrans_out != 0);
2835 tp->retrans_stamp = 0;
2836 } else if (!before(tp->snd_una, tp->high_seq)) {
2837 switch (icsk->icsk_ca_state) {
2838 case TCP_CA_CWR:
2839 /* CWR is to be held something *above* high_seq
2840 * is ACKed for CWR bit to reach receiver. */
2841 if (tp->snd_una != tp->high_seq) {
2842 tcp_end_cwnd_reduction(sk);
2843 tcp_set_ca_state(sk, TCP_CA_Open);
2844 }
2845 break;
2846
2847 case TCP_CA_Recovery:
2848 if (tcp_is_reno(tp))
2849 tcp_reset_reno_sack(tp);
2850 if (tcp_try_undo_recovery(sk))
2851 return;
2852 tcp_end_cwnd_reduction(sk);
2853 break;
2854 }
2855 }
2856
2857 /* E. Process state. */
2858 switch (icsk->icsk_ca_state) {
2859 case TCP_CA_Recovery:
2860 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2861 if (tcp_is_reno(tp) && is_dupack)
2862 tcp_add_reno_sack(sk);
2863 } else {
2864 if (tcp_try_undo_partial(sk, acked))
2865 return;
2866 /* Partial ACK arrived. Force fast retransmit. */
2867 do_lost = tcp_is_reno(tp) ||
2868 tcp_fackets_out(tp) > tp->reordering;
2869 }
2870 if (tcp_try_undo_dsack(sk)) {
2871 tcp_try_keep_open(sk);
2872 return;
2873 }
2874 tcp_rack_identify_loss(sk, ack_flag);
2875 break;
2876 case TCP_CA_Loss:
2877 tcp_process_loss(sk, flag, is_dupack, rexmit);
2878 tcp_rack_identify_loss(sk, ack_flag);
2879 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2880 (*ack_flag & FLAG_LOST_RETRANS)))
2881 return;
2882 /* Change state if cwnd is undone or retransmits are lost */
2883 default:
2884 if (tcp_is_reno(tp)) {
2885 if (flag & FLAG_SND_UNA_ADVANCED)
2886 tcp_reset_reno_sack(tp);
2887 if (is_dupack)
2888 tcp_add_reno_sack(sk);
2889 }
2890
2891 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2892 tcp_try_undo_dsack(sk);
2893
2894 tcp_rack_identify_loss(sk, ack_flag);
2895 if (!tcp_time_to_recover(sk, flag)) {
2896 tcp_try_to_open(sk, flag);
2897 return;
2898 }
2899
2900 /* MTU probe failure: don't reduce cwnd */
2901 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2902 icsk->icsk_mtup.probe_size &&
2903 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2904 tcp_mtup_probe_failed(sk);
2905 /* Restores the reduction we did in tcp_mtup_probe() */
2906 tp->snd_cwnd++;
2907 tcp_simple_retransmit(sk);
2908 return;
2909 }
2910
2911 /* Otherwise enter Recovery state */
2912 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2913 fast_rexmit = 1;
2914 }
2915
2916 if (do_lost)
2917 tcp_update_scoreboard(sk, fast_rexmit);
2918 *rexmit = REXMIT_LOST;
2919 }
2920
2921 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2922 {
2923 struct tcp_sock *tp = tcp_sk(sk);
2924 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2925
2926 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2927 rtt_us ? : jiffies_to_usecs(1));
2928 }
2929
2930 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2931 long seq_rtt_us, long sack_rtt_us,
2932 long ca_rtt_us, struct rate_sample *rs)
2933 {
2934 const struct tcp_sock *tp = tcp_sk(sk);
2935
2936 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2937 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2938 * Karn's algorithm forbids taking RTT if some retransmitted data
2939 * is acked (RFC6298).
2940 */
2941 if (seq_rtt_us < 0)
2942 seq_rtt_us = sack_rtt_us;
2943
2944 /* RTTM Rule: A TSecr value received in a segment is used to
2945 * update the averaged RTT measurement only if the segment
2946 * acknowledges some new data, i.e., only if it advances the
2947 * left edge of the send window.
2948 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2949 */
2950 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2951 flag & FLAG_ACKED) {
2952 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2953 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2954
2955 seq_rtt_us = ca_rtt_us = delta_us;
2956 }
2957 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2958 if (seq_rtt_us < 0)
2959 return false;
2960
2961 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2962 * always taken together with ACK, SACK, or TS-opts. Any negative
2963 * values will be skipped with the seq_rtt_us < 0 check above.
2964 */
2965 tcp_update_rtt_min(sk, ca_rtt_us);
2966 tcp_rtt_estimator(sk, seq_rtt_us);
2967 tcp_set_rto(sk);
2968
2969 /* RFC6298: only reset backoff on valid RTT measurement. */
2970 inet_csk(sk)->icsk_backoff = 0;
2971 return true;
2972 }
2973
2974 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2975 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2976 {
2977 struct rate_sample rs;
2978 long rtt_us = -1L;
2979
2980 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2981 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2982
2983 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2984 }
2985
2986
2987 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2988 {
2989 const struct inet_connection_sock *icsk = inet_csk(sk);
2990
2991 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2992 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2993 }
2994
2995 /* Restart timer after forward progress on connection.
2996 * RFC2988 recommends to restart timer to now+rto.
2997 */
2998 void tcp_rearm_rto(struct sock *sk)
2999 {
3000 const struct inet_connection_sock *icsk = inet_csk(sk);
3001 struct tcp_sock *tp = tcp_sk(sk);
3002
3003 /* If the retrans timer is currently being used by Fast Open
3004 * for SYN-ACK retrans purpose, stay put.
3005 */
3006 if (tp->fastopen_rsk)
3007 return;
3008
3009 if (!tp->packets_out) {
3010 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3011 } else {
3012 u32 rto = inet_csk(sk)->icsk_rto;
3013 /* Offset the time elapsed after installing regular RTO */
3014 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3015 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3016 s64 delta_us = tcp_rto_delta_us(sk);
3017 /* delta_us may not be positive if the socket is locked
3018 * when the retrans timer fires and is rescheduled.
3019 */
3020 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3021 }
3022 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3023 TCP_RTO_MAX);
3024 }
3025 }
3026
3027 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3028 static void tcp_set_xmit_timer(struct sock *sk)
3029 {
3030 if (!tcp_schedule_loss_probe(sk, true))
3031 tcp_rearm_rto(sk);
3032 }
3033
3034 /* If we get here, the whole TSO packet has not been acked. */
3035 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3036 {
3037 struct tcp_sock *tp = tcp_sk(sk);
3038 u32 packets_acked;
3039
3040 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3041
3042 packets_acked = tcp_skb_pcount(skb);
3043 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3044 return 0;
3045 packets_acked -= tcp_skb_pcount(skb);
3046
3047 if (packets_acked) {
3048 BUG_ON(tcp_skb_pcount(skb) == 0);
3049 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3050 }
3051
3052 return packets_acked;
3053 }
3054
3055 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3056 u32 prior_snd_una)
3057 {
3058 const struct skb_shared_info *shinfo;
3059
3060 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3061 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3062 return;
3063
3064 shinfo = skb_shinfo(skb);
3065 if (!before(shinfo->tskey, prior_snd_una) &&
3066 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3067 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3068 }
3069
3070 /* Remove acknowledged frames from the retransmission queue. If our packet
3071 * is before the ack sequence we can discard it as it's confirmed to have
3072 * arrived at the other end.
3073 */
3074 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3075 u32 prior_snd_una, int *acked,
3076 struct tcp_sacktag_state *sack)
3077 {
3078 const struct inet_connection_sock *icsk = inet_csk(sk);
3079 u64 first_ackt, last_ackt;
3080 struct tcp_sock *tp = tcp_sk(sk);
3081 u32 prior_sacked = tp->sacked_out;
3082 u32 reord = tp->packets_out;
3083 bool fully_acked = true;
3084 long sack_rtt_us = -1L;
3085 long seq_rtt_us = -1L;
3086 long ca_rtt_us = -1L;
3087 struct sk_buff *skb;
3088 u32 pkts_acked = 0;
3089 u32 last_in_flight = 0;
3090 bool rtt_update;
3091 int flag = 0;
3092
3093 first_ackt = 0;
3094
3095 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3096 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3097 u8 sacked = scb->sacked;
3098 u32 acked_pcount;
3099
3100 tcp_ack_tstamp(sk, skb, prior_snd_una);
3101
3102 /* Determine how many packets and what bytes were acked, tso and else */
3103 if (after(scb->end_seq, tp->snd_una)) {
3104 if (tcp_skb_pcount(skb) == 1 ||
3105 !after(tp->snd_una, scb->seq))
3106 break;
3107
3108 acked_pcount = tcp_tso_acked(sk, skb);
3109 if (!acked_pcount)
3110 break;
3111 fully_acked = false;
3112 } else {
3113 /* Speedup tcp_unlink_write_queue() and next loop */
3114 prefetchw(skb->next);
3115 acked_pcount = tcp_skb_pcount(skb);
3116 }
3117
3118 if (unlikely(sacked & TCPCB_RETRANS)) {
3119 if (sacked & TCPCB_SACKED_RETRANS)
3120 tp->retrans_out -= acked_pcount;
3121 flag |= FLAG_RETRANS_DATA_ACKED;
3122 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3123 last_ackt = skb->skb_mstamp;
3124 WARN_ON_ONCE(last_ackt == 0);
3125 if (!first_ackt)
3126 first_ackt = last_ackt;
3127
3128 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3129 reord = min(pkts_acked, reord);
3130 if (!after(scb->end_seq, tp->high_seq))
3131 flag |= FLAG_ORIG_SACK_ACKED;
3132 }
3133
3134 if (sacked & TCPCB_SACKED_ACKED) {
3135 tp->sacked_out -= acked_pcount;
3136 } else if (tcp_is_sack(tp)) {
3137 tp->delivered += acked_pcount;
3138 if (!tcp_skb_spurious_retrans(tp, skb))
3139 tcp_rack_advance(tp, sacked, scb->end_seq,
3140 skb->skb_mstamp);
3141 }
3142 if (sacked & TCPCB_LOST)
3143 tp->lost_out -= acked_pcount;
3144
3145 tp->packets_out -= acked_pcount;
3146 pkts_acked += acked_pcount;
3147 tcp_rate_skb_delivered(sk, skb, sack->rate);
3148
3149 /* Initial outgoing SYN's get put onto the write_queue
3150 * just like anything else we transmit. It is not
3151 * true data, and if we misinform our callers that
3152 * this ACK acks real data, we will erroneously exit
3153 * connection startup slow start one packet too
3154 * quickly. This is severely frowned upon behavior.
3155 */
3156 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3157 flag |= FLAG_DATA_ACKED;
3158 } else {
3159 flag |= FLAG_SYN_ACKED;
3160 tp->retrans_stamp = 0;
3161 }
3162
3163 if (!fully_acked)
3164 break;
3165
3166 tcp_unlink_write_queue(skb, sk);
3167 sk_wmem_free_skb(sk, skb);
3168 if (unlikely(skb == tp->retransmit_skb_hint))
3169 tp->retransmit_skb_hint = NULL;
3170 if (unlikely(skb == tp->lost_skb_hint))
3171 tp->lost_skb_hint = NULL;
3172 }
3173
3174 if (!skb)
3175 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3176
3177 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3178 tp->snd_up = tp->snd_una;
3179
3180 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3181 flag |= FLAG_SACK_RENEGING;
3182
3183 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3184 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3185 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3186 }
3187 if (sack->first_sackt) {
3188 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3189 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3190 }
3191 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3192 ca_rtt_us, sack->rate);
3193
3194 if (flag & FLAG_ACKED) {
3195 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3196 if (unlikely(icsk->icsk_mtup.probe_size &&
3197 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3198 tcp_mtup_probe_success(sk);
3199 }
3200
3201 if (tcp_is_reno(tp)) {
3202 tcp_remove_reno_sacks(sk, pkts_acked);
3203
3204 /* If any of the cumulatively ACKed segments was
3205 * retransmitted, non-SACK case cannot confirm that
3206 * progress was due to original transmission due to
3207 * lack of TCPCB_SACKED_ACKED bits even if some of
3208 * the packets may have been never retransmitted.
3209 */
3210 if (flag & FLAG_RETRANS_DATA_ACKED)
3211 flag &= ~FLAG_ORIG_SACK_ACKED;
3212 } else {
3213 int delta;
3214
3215 /* Non-retransmitted hole got filled? That's reordering */
3216 if (reord < prior_fackets && reord <= tp->fackets_out)
3217 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3218
3219 delta = tcp_is_fack(tp) ? pkts_acked :
3220 prior_sacked - tp->sacked_out;
3221 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3222 }
3223
3224 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3225
3226 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3227 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3228 /* Do not re-arm RTO if the sack RTT is measured from data sent
3229 * after when the head was last (re)transmitted. Otherwise the
3230 * timeout may continue to extend in loss recovery.
3231 */
3232 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3233 }
3234
3235 if (icsk->icsk_ca_ops->pkts_acked) {
3236 struct ack_sample sample = { .pkts_acked = pkts_acked,
3237 .rtt_us = sack->rate->rtt_us,
3238 .in_flight = last_in_flight };
3239
3240 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3241 }
3242
3243 #if FASTRETRANS_DEBUG > 0
3244 WARN_ON((int)tp->sacked_out < 0);
3245 WARN_ON((int)tp->lost_out < 0);
3246 WARN_ON((int)tp->retrans_out < 0);
3247 if (!tp->packets_out && tcp_is_sack(tp)) {
3248 icsk = inet_csk(sk);
3249 if (tp->lost_out) {
3250 pr_debug("Leak l=%u %d\n",
3251 tp->lost_out, icsk->icsk_ca_state);
3252 tp->lost_out = 0;
3253 }
3254 if (tp->sacked_out) {
3255 pr_debug("Leak s=%u %d\n",
3256 tp->sacked_out, icsk->icsk_ca_state);
3257 tp->sacked_out = 0;
3258 }
3259 if (tp->retrans_out) {
3260 pr_debug("Leak r=%u %d\n",
3261 tp->retrans_out, icsk->icsk_ca_state);
3262 tp->retrans_out = 0;
3263 }
3264 }
3265 #endif
3266 *acked = pkts_acked;
3267 return flag;
3268 }
3269
3270 static void tcp_ack_probe(struct sock *sk)
3271 {
3272 const struct tcp_sock *tp = tcp_sk(sk);
3273 struct inet_connection_sock *icsk = inet_csk(sk);
3274
3275 /* Was it a usable window open? */
3276
3277 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3278 icsk->icsk_backoff = 0;
3279 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3280 /* Socket must be waked up by subsequent tcp_data_snd_check().
3281 * This function is not for random using!
3282 */
3283 } else {
3284 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3285
3286 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3287 when, TCP_RTO_MAX);
3288 }
3289 }
3290
3291 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3292 {
3293 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3294 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3295 }
3296
3297 /* Decide wheather to run the increase function of congestion control. */
3298 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3299 {
3300 /* If reordering is high then always grow cwnd whenever data is
3301 * delivered regardless of its ordering. Otherwise stay conservative
3302 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3303 * new SACK or ECE mark may first advance cwnd here and later reduce
3304 * cwnd in tcp_fastretrans_alert() based on more states.
3305 */
3306 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3307 return flag & FLAG_FORWARD_PROGRESS;
3308
3309 return flag & FLAG_DATA_ACKED;
3310 }
3311
3312 /* The "ultimate" congestion control function that aims to replace the rigid
3313 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3314 * It's called toward the end of processing an ACK with precise rate
3315 * information. All transmission or retransmission are delayed afterwards.
3316 */
3317 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3318 int flag, const struct rate_sample *rs)
3319 {
3320 const struct inet_connection_sock *icsk = inet_csk(sk);
3321
3322 if (icsk->icsk_ca_ops->cong_control) {
3323 icsk->icsk_ca_ops->cong_control(sk, rs);
3324 return;
3325 }
3326
3327 if (tcp_in_cwnd_reduction(sk)) {
3328 /* Reduce cwnd if state mandates */
3329 tcp_cwnd_reduction(sk, acked_sacked, flag);
3330 } else if (tcp_may_raise_cwnd(sk, flag)) {
3331 /* Advance cwnd if state allows */
3332 tcp_cong_avoid(sk, ack, acked_sacked);
3333 }
3334 tcp_update_pacing_rate(sk);
3335 }
3336
3337 /* Check that window update is acceptable.
3338 * The function assumes that snd_una<=ack<=snd_next.
3339 */
3340 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3341 const u32 ack, const u32 ack_seq,
3342 const u32 nwin)
3343 {
3344 return after(ack, tp->snd_una) ||
3345 after(ack_seq, tp->snd_wl1) ||
3346 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3347 }
3348
3349 /* If we update tp->snd_una, also update tp->bytes_acked */
3350 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3351 {
3352 u32 delta = ack - tp->snd_una;
3353
3354 sock_owned_by_me((struct sock *)tp);
3355 tp->bytes_acked += delta;
3356 tp->snd_una = ack;
3357 }
3358
3359 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3360 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3361 {
3362 u32 delta = seq - tp->rcv_nxt;
3363
3364 sock_owned_by_me((struct sock *)tp);
3365 tp->bytes_received += delta;
3366 tp->rcv_nxt = seq;
3367 }
3368
3369 /* Update our send window.
3370 *
3371 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3372 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3373 */
3374 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3375 u32 ack_seq)
3376 {
3377 struct tcp_sock *tp = tcp_sk(sk);
3378 int flag = 0;
3379 u32 nwin = ntohs(tcp_hdr(skb)->window);
3380
3381 if (likely(!tcp_hdr(skb)->syn))
3382 nwin <<= tp->rx_opt.snd_wscale;
3383
3384 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3385 flag |= FLAG_WIN_UPDATE;
3386 tcp_update_wl(tp, ack_seq);
3387
3388 if (tp->snd_wnd != nwin) {
3389 tp->snd_wnd = nwin;
3390
3391 /* Note, it is the only place, where
3392 * fast path is recovered for sending TCP.
3393 */
3394 tp->pred_flags = 0;
3395 tcp_fast_path_check(sk);
3396
3397 if (tcp_send_head(sk))
3398 tcp_slow_start_after_idle_check(sk);
3399
3400 if (nwin > tp->max_window) {
3401 tp->max_window = nwin;
3402 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3403 }
3404 }
3405 }
3406
3407 tcp_snd_una_update(tp, ack);
3408
3409 return flag;
3410 }
3411
3412 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3413 u32 *last_oow_ack_time)
3414 {
3415 if (*last_oow_ack_time) {
3416 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3417
3418 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3419 NET_INC_STATS(net, mib_idx);
3420 return true; /* rate-limited: don't send yet! */
3421 }
3422 }
3423
3424 *last_oow_ack_time = tcp_jiffies32;
3425
3426 return false; /* not rate-limited: go ahead, send dupack now! */
3427 }
3428
3429 /* Return true if we're currently rate-limiting out-of-window ACKs and
3430 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3431 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3432 * attacks that send repeated SYNs or ACKs for the same connection. To
3433 * do this, we do not send a duplicate SYNACK or ACK if the remote
3434 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3435 */
3436 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3437 int mib_idx, u32 *last_oow_ack_time)
3438 {
3439 /* Data packets without SYNs are not likely part of an ACK loop. */
3440 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3441 !tcp_hdr(skb)->syn)
3442 return false;
3443
3444 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3445 }
3446
3447 /* RFC 5961 7 [ACK Throttling] */
3448 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3449 {
3450 /* unprotected vars, we dont care of overwrites */
3451 static u32 challenge_timestamp;
3452 static unsigned int challenge_count;
3453 struct tcp_sock *tp = tcp_sk(sk);
3454 u32 count, now;
3455
3456 /* First check our per-socket dupack rate limit. */
3457 if (__tcp_oow_rate_limited(sock_net(sk),
3458 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3459 &tp->last_oow_ack_time))
3460 return;
3461
3462 /* Then check host-wide RFC 5961 rate limit. */
3463 now = jiffies / HZ;
3464 if (now != challenge_timestamp) {
3465 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3466
3467 challenge_timestamp = now;
3468 WRITE_ONCE(challenge_count, half +
3469 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3470 }
3471 count = READ_ONCE(challenge_count);
3472 if (count > 0) {
3473 WRITE_ONCE(challenge_count, count - 1);
3474 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3475 tcp_send_ack(sk);
3476 }
3477 }
3478
3479 static void tcp_store_ts_recent(struct tcp_sock *tp)
3480 {
3481 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3482 tp->rx_opt.ts_recent_stamp = get_seconds();
3483 }
3484
3485 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3486 {
3487 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3488 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3489 * extra check below makes sure this can only happen
3490 * for pure ACK frames. -DaveM
3491 *
3492 * Not only, also it occurs for expired timestamps.
3493 */
3494
3495 if (tcp_paws_check(&tp->rx_opt, 0))
3496 tcp_store_ts_recent(tp);
3497 }
3498 }
3499
3500 /* This routine deals with acks during a TLP episode.
3501 * We mark the end of a TLP episode on receiving TLP dupack or when
3502 * ack is after tlp_high_seq.
3503 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3504 */
3505 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3506 {
3507 struct tcp_sock *tp = tcp_sk(sk);
3508
3509 if (before(ack, tp->tlp_high_seq))
3510 return;
3511
3512 if (flag & FLAG_DSACKING_ACK) {
3513 /* This DSACK means original and TLP probe arrived; no loss */
3514 tp->tlp_high_seq = 0;
3515 } else if (after(ack, tp->tlp_high_seq)) {
3516 /* ACK advances: there was a loss, so reduce cwnd. Reset
3517 * tlp_high_seq in tcp_init_cwnd_reduction()
3518 */
3519 tcp_init_cwnd_reduction(sk);
3520 tcp_set_ca_state(sk, TCP_CA_CWR);
3521 tcp_end_cwnd_reduction(sk);
3522 tcp_try_keep_open(sk);
3523 NET_INC_STATS(sock_net(sk),
3524 LINUX_MIB_TCPLOSSPROBERECOVERY);
3525 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3526 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3527 /* Pure dupack: original and TLP probe arrived; no loss */
3528 tp->tlp_high_seq = 0;
3529 }
3530 }
3531
3532 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3533 {
3534 const struct inet_connection_sock *icsk = inet_csk(sk);
3535
3536 if (icsk->icsk_ca_ops->in_ack_event)
3537 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3538 }
3539
3540 /* Congestion control has updated the cwnd already. So if we're in
3541 * loss recovery then now we do any new sends (for FRTO) or
3542 * retransmits (for CA_Loss or CA_recovery) that make sense.
3543 */
3544 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3545 {
3546 struct tcp_sock *tp = tcp_sk(sk);
3547
3548 if (rexmit == REXMIT_NONE)
3549 return;
3550
3551 if (unlikely(rexmit == 2)) {
3552 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3553 TCP_NAGLE_OFF);
3554 if (after(tp->snd_nxt, tp->high_seq))
3555 return;
3556 tp->frto = 0;
3557 }
3558 tcp_xmit_retransmit_queue(sk);
3559 }
3560
3561 /* This routine deals with incoming acks, but not outgoing ones. */
3562 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3563 {
3564 struct inet_connection_sock *icsk = inet_csk(sk);
3565 struct tcp_sock *tp = tcp_sk(sk);
3566 struct tcp_sacktag_state sack_state;
3567 struct rate_sample rs = { .prior_delivered = 0 };
3568 u32 prior_snd_una = tp->snd_una;
3569 bool is_sack_reneg = tp->is_sack_reneg;
3570 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3571 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3572 bool is_dupack = false;
3573 u32 prior_fackets;
3574 int prior_packets = tp->packets_out;
3575 u32 delivered = tp->delivered;
3576 u32 lost = tp->lost;
3577 int acked = 0; /* Number of packets newly acked */
3578 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3579
3580 sack_state.first_sackt = 0;
3581 sack_state.rate = &rs;
3582
3583 /* We very likely will need to access write queue head. */
3584 prefetchw(sk->sk_write_queue.next);
3585
3586 /* If the ack is older than previous acks
3587 * then we can probably ignore it.
3588 */
3589 if (before(ack, prior_snd_una)) {
3590 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3591 if (before(ack, prior_snd_una - tp->max_window)) {
3592 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3593 tcp_send_challenge_ack(sk, skb);
3594 return -1;
3595 }
3596 goto old_ack;
3597 }
3598
3599 /* If the ack includes data we haven't sent yet, discard
3600 * this segment (RFC793 Section 3.9).
3601 */
3602 if (after(ack, tp->snd_nxt))
3603 goto invalid_ack;
3604
3605 if (after(ack, prior_snd_una)) {
3606 flag |= FLAG_SND_UNA_ADVANCED;
3607 icsk->icsk_retransmits = 0;
3608 }
3609
3610 prior_fackets = tp->fackets_out;
3611 rs.prior_in_flight = tcp_packets_in_flight(tp);
3612
3613 /* ts_recent update must be made after we are sure that the packet
3614 * is in window.
3615 */
3616 if (flag & FLAG_UPDATE_TS_RECENT)
3617 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3618
3619 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3620 /* Window is constant, pure forward advance.
3621 * No more checks are required.
3622 * Note, we use the fact that SND.UNA>=SND.WL2.
3623 */
3624 tcp_update_wl(tp, ack_seq);
3625 tcp_snd_una_update(tp, ack);
3626 flag |= FLAG_WIN_UPDATE;
3627
3628 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3629
3630 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3631 } else {
3632 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3633
3634 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3635 flag |= FLAG_DATA;
3636 else
3637 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3638
3639 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3640
3641 if (TCP_SKB_CB(skb)->sacked)
3642 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3643 &sack_state);
3644
3645 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3646 flag |= FLAG_ECE;
3647 ack_ev_flags |= CA_ACK_ECE;
3648 }
3649
3650 if (flag & FLAG_WIN_UPDATE)
3651 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3652
3653 tcp_in_ack_event(sk, ack_ev_flags);
3654 }
3655
3656 /* We passed data and got it acked, remove any soft error
3657 * log. Something worked...
3658 */
3659 sk->sk_err_soft = 0;
3660 icsk->icsk_probes_out = 0;
3661 tp->rcv_tstamp = tcp_jiffies32;
3662 if (!prior_packets)
3663 goto no_queue;
3664
3665 /* See if we can take anything off of the retransmit queue. */
3666 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3667 &sack_state);
3668
3669 if (tp->tlp_high_seq)
3670 tcp_process_tlp_ack(sk, ack, flag);
3671 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3672 if (flag & FLAG_SET_XMIT_TIMER)
3673 tcp_set_xmit_timer(sk);
3674
3675 if (tcp_ack_is_dubious(sk, flag)) {
3676 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3677 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3678 }
3679
3680 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3681 sk_dst_confirm(sk);
3682
3683 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3684 lost = tp->lost - lost; /* freshly marked lost */
3685 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3686 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3687 tcp_xmit_recovery(sk, rexmit);
3688 return 1;
3689
3690 no_queue:
3691 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3692 if (flag & FLAG_DSACKING_ACK)
3693 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3694 /* If this ack opens up a zero window, clear backoff. It was
3695 * being used to time the probes, and is probably far higher than
3696 * it needs to be for normal retransmission.
3697 */
3698 if (tcp_send_head(sk))
3699 tcp_ack_probe(sk);
3700
3701 if (tp->tlp_high_seq)
3702 tcp_process_tlp_ack(sk, ack, flag);
3703 return 1;
3704
3705 invalid_ack:
3706 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3707 return -1;
3708
3709 old_ack:
3710 /* If data was SACKed, tag it and see if we should send more data.
3711 * If data was DSACKed, see if we can undo a cwnd reduction.
3712 */
3713 if (TCP_SKB_CB(skb)->sacked) {
3714 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3715 &sack_state);
3716 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3717 tcp_xmit_recovery(sk, rexmit);
3718 }
3719
3720 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3721 return 0;
3722 }
3723
3724 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3725 bool syn, struct tcp_fastopen_cookie *foc,
3726 bool exp_opt)
3727 {
3728 /* Valid only in SYN or SYN-ACK with an even length. */
3729 if (!foc || !syn || len < 0 || (len & 1))
3730 return;
3731
3732 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3733 len <= TCP_FASTOPEN_COOKIE_MAX)
3734 memcpy(foc->val, cookie, len);
3735 else if (len != 0)
3736 len = -1;
3737 foc->len = len;
3738 foc->exp = exp_opt;
3739 }
3740
3741 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742 * But, this can also be called on packets in the established flow when
3743 * the fast version below fails.
3744 */
3745 void tcp_parse_options(const struct net *net,
3746 const struct sk_buff *skb,
3747 struct tcp_options_received *opt_rx, int estab,
3748 struct tcp_fastopen_cookie *foc)
3749 {
3750 const unsigned char *ptr;
3751 const struct tcphdr *th = tcp_hdr(skb);
3752 int length = (th->doff * 4) - sizeof(struct tcphdr);
3753
3754 ptr = (const unsigned char *)(th + 1);
3755 opt_rx->saw_tstamp = 0;
3756
3757 while (length > 0) {
3758 int opcode = *ptr++;
3759 int opsize;
3760
3761 switch (opcode) {
3762 case TCPOPT_EOL:
3763 return;
3764 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3765 length--;
3766 continue;
3767 default:
3768 opsize = *ptr++;
3769 if (opsize < 2) /* "silly options" */
3770 return;
3771 if (opsize > length)
3772 return; /* don't parse partial options */
3773 switch (opcode) {
3774 case TCPOPT_MSS:
3775 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3776 u16 in_mss = get_unaligned_be16(ptr);
3777 if (in_mss) {
3778 if (opt_rx->user_mss &&
3779 opt_rx->user_mss < in_mss)
3780 in_mss = opt_rx->user_mss;
3781 opt_rx->mss_clamp = in_mss;
3782 }
3783 }
3784 break;
3785 case TCPOPT_WINDOW:
3786 if (opsize == TCPOLEN_WINDOW && th->syn &&
3787 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3788 __u8 snd_wscale = *(__u8 *)ptr;
3789 opt_rx->wscale_ok = 1;
3790 if (snd_wscale > TCP_MAX_WSCALE) {
3791 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3792 __func__,
3793 snd_wscale,
3794 TCP_MAX_WSCALE);
3795 snd_wscale = TCP_MAX_WSCALE;
3796 }
3797 opt_rx->snd_wscale = snd_wscale;
3798 }
3799 break;
3800 case TCPOPT_TIMESTAMP:
3801 if ((opsize == TCPOLEN_TIMESTAMP) &&
3802 ((estab && opt_rx->tstamp_ok) ||
3803 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3804 opt_rx->saw_tstamp = 1;
3805 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3806 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3807 }
3808 break;
3809 case TCPOPT_SACK_PERM:
3810 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3811 !estab && net->ipv4.sysctl_tcp_sack) {
3812 opt_rx->sack_ok = TCP_SACK_SEEN;
3813 tcp_sack_reset(opt_rx);
3814 }
3815 break;
3816
3817 case TCPOPT_SACK:
3818 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3819 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3820 opt_rx->sack_ok) {
3821 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3822 }
3823 break;
3824 #ifdef CONFIG_TCP_MD5SIG
3825 case TCPOPT_MD5SIG:
3826 /*
3827 * The MD5 Hash has already been
3828 * checked (see tcp_v{4,6}_do_rcv()).
3829 */
3830 break;
3831 #endif
3832 case TCPOPT_FASTOPEN:
3833 tcp_parse_fastopen_option(
3834 opsize - TCPOLEN_FASTOPEN_BASE,
3835 ptr, th->syn, foc, false);
3836 break;
3837
3838 case TCPOPT_EXP:
3839 /* Fast Open option shares code 254 using a
3840 * 16 bits magic number.
3841 */
3842 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3843 get_unaligned_be16(ptr) ==
3844 TCPOPT_FASTOPEN_MAGIC)
3845 tcp_parse_fastopen_option(opsize -
3846 TCPOLEN_EXP_FASTOPEN_BASE,
3847 ptr + 2, th->syn, foc, true);
3848 break;
3849
3850 }
3851 ptr += opsize-2;
3852 length -= opsize;
3853 }
3854 }
3855 }
3856 EXPORT_SYMBOL(tcp_parse_options);
3857
3858 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3859 {
3860 const __be32 *ptr = (const __be32 *)(th + 1);
3861
3862 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3863 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3864 tp->rx_opt.saw_tstamp = 1;
3865 ++ptr;
3866 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3867 ++ptr;
3868 if (*ptr)
3869 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3870 else
3871 tp->rx_opt.rcv_tsecr = 0;
3872 return true;
3873 }
3874 return false;
3875 }
3876
3877 /* Fast parse options. This hopes to only see timestamps.
3878 * If it is wrong it falls back on tcp_parse_options().
3879 */
3880 static bool tcp_fast_parse_options(const struct net *net,
3881 const struct sk_buff *skb,
3882 const struct tcphdr *th, struct tcp_sock *tp)
3883 {
3884 /* In the spirit of fast parsing, compare doff directly to constant
3885 * values. Because equality is used, short doff can be ignored here.
3886 */
3887 if (th->doff == (sizeof(*th) / 4)) {
3888 tp->rx_opt.saw_tstamp = 0;
3889 return false;
3890 } else if (tp->rx_opt.tstamp_ok &&
3891 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3892 if (tcp_parse_aligned_timestamp(tp, th))
3893 return true;
3894 }
3895
3896 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3897 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3898 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3899
3900 return true;
3901 }
3902
3903 #ifdef CONFIG_TCP_MD5SIG
3904 /*
3905 * Parse MD5 Signature option
3906 */
3907 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3908 {
3909 int length = (th->doff << 2) - sizeof(*th);
3910 const u8 *ptr = (const u8 *)(th + 1);
3911
3912 /* If not enough data remaining, we can short cut */
3913 while (length >= TCPOLEN_MD5SIG) {
3914 int opcode = *ptr++;
3915 int opsize;
3916
3917 switch (opcode) {
3918 case TCPOPT_EOL:
3919 return NULL;
3920 case TCPOPT_NOP:
3921 length--;
3922 continue;
3923 default:
3924 opsize = *ptr++;
3925 if (opsize < 2 || opsize > length)
3926 return NULL;
3927 if (opcode == TCPOPT_MD5SIG)
3928 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3929 }
3930 ptr += opsize - 2;
3931 length -= opsize;
3932 }
3933 return NULL;
3934 }
3935 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3936 #endif
3937
3938 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3939 *
3940 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3941 * it can pass through stack. So, the following predicate verifies that
3942 * this segment is not used for anything but congestion avoidance or
3943 * fast retransmit. Moreover, we even are able to eliminate most of such
3944 * second order effects, if we apply some small "replay" window (~RTO)
3945 * to timestamp space.
3946 *
3947 * All these measures still do not guarantee that we reject wrapped ACKs
3948 * on networks with high bandwidth, when sequence space is recycled fastly,
3949 * but it guarantees that such events will be very rare and do not affect
3950 * connection seriously. This doesn't look nice, but alas, PAWS is really
3951 * buggy extension.
3952 *
3953 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3954 * states that events when retransmit arrives after original data are rare.
3955 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3956 * the biggest problem on large power networks even with minor reordering.
3957 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3958 * up to bandwidth of 18Gigabit/sec. 8) ]
3959 */
3960
3961 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3962 {
3963 const struct tcp_sock *tp = tcp_sk(sk);
3964 const struct tcphdr *th = tcp_hdr(skb);
3965 u32 seq = TCP_SKB_CB(skb)->seq;
3966 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3967
3968 return (/* 1. Pure ACK with correct sequence number. */
3969 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3970
3971 /* 2. ... and duplicate ACK. */
3972 ack == tp->snd_una &&
3973
3974 /* 3. ... and does not update window. */
3975 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3976
3977 /* 4. ... and sits in replay window. */
3978 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3979 }
3980
3981 static inline bool tcp_paws_discard(const struct sock *sk,
3982 const struct sk_buff *skb)
3983 {
3984 const struct tcp_sock *tp = tcp_sk(sk);
3985
3986 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3987 !tcp_disordered_ack(sk, skb);
3988 }
3989
3990 /* Check segment sequence number for validity.
3991 *
3992 * Segment controls are considered valid, if the segment
3993 * fits to the window after truncation to the window. Acceptability
3994 * of data (and SYN, FIN, of course) is checked separately.
3995 * See tcp_data_queue(), for example.
3996 *
3997 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3998 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3999 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4000 * (borrowed from freebsd)
4001 */
4002
4003 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4004 {
4005 return !before(end_seq, tp->rcv_wup) &&
4006 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4007 }
4008
4009 /* When we get a reset we do this. */
4010 void tcp_reset(struct sock *sk)
4011 {
4012 /* We want the right error as BSD sees it (and indeed as we do). */
4013 switch (sk->sk_state) {
4014 case TCP_SYN_SENT:
4015 sk->sk_err = ECONNREFUSED;
4016 break;
4017 case TCP_CLOSE_WAIT:
4018 sk->sk_err = EPIPE;
4019 break;
4020 case TCP_CLOSE:
4021 return;
4022 default:
4023 sk->sk_err = ECONNRESET;
4024 }
4025 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4026 smp_wmb();
4027
4028 tcp_write_queue_purge(sk);
4029 tcp_done(sk);
4030
4031 if (!sock_flag(sk, SOCK_DEAD))
4032 sk->sk_error_report(sk);
4033 }
4034
4035 /*
4036 * Process the FIN bit. This now behaves as it is supposed to work
4037 * and the FIN takes effect when it is validly part of sequence
4038 * space. Not before when we get holes.
4039 *
4040 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4041 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4042 * TIME-WAIT)
4043 *
4044 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4045 * close and we go into CLOSING (and later onto TIME-WAIT)
4046 *
4047 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4048 */
4049 void tcp_fin(struct sock *sk)
4050 {
4051 struct tcp_sock *tp = tcp_sk(sk);
4052
4053 inet_csk_schedule_ack(sk);
4054
4055 sk->sk_shutdown |= RCV_SHUTDOWN;
4056 sock_set_flag(sk, SOCK_DONE);
4057
4058 switch (sk->sk_state) {
4059 case TCP_SYN_RECV:
4060 case TCP_ESTABLISHED:
4061 /* Move to CLOSE_WAIT */
4062 tcp_set_state(sk, TCP_CLOSE_WAIT);
4063 inet_csk(sk)->icsk_ack.pingpong = 1;
4064 break;
4065
4066 case TCP_CLOSE_WAIT:
4067 case TCP_CLOSING:
4068 /* Received a retransmission of the FIN, do
4069 * nothing.
4070 */
4071 break;
4072 case TCP_LAST_ACK:
4073 /* RFC793: Remain in the LAST-ACK state. */
4074 break;
4075
4076 case TCP_FIN_WAIT1:
4077 /* This case occurs when a simultaneous close
4078 * happens, we must ack the received FIN and
4079 * enter the CLOSING state.
4080 */
4081 tcp_send_ack(sk);
4082 tcp_set_state(sk, TCP_CLOSING);
4083 break;
4084 case TCP_FIN_WAIT2:
4085 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4086 tcp_send_ack(sk);
4087 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4088 break;
4089 default:
4090 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4091 * cases we should never reach this piece of code.
4092 */
4093 pr_err("%s: Impossible, sk->sk_state=%d\n",
4094 __func__, sk->sk_state);
4095 break;
4096 }
4097
4098 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4099 * Probably, we should reset in this case. For now drop them.
4100 */
4101 skb_rbtree_purge(&tp->out_of_order_queue);
4102 if (tcp_is_sack(tp))
4103 tcp_sack_reset(&tp->rx_opt);
4104 sk_mem_reclaim(sk);
4105
4106 if (!sock_flag(sk, SOCK_DEAD)) {
4107 sk->sk_state_change(sk);
4108
4109 /* Do not send POLL_HUP for half duplex close. */
4110 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4111 sk->sk_state == TCP_CLOSE)
4112 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4113 else
4114 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4115 }
4116 }
4117
4118 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4119 u32 end_seq)
4120 {
4121 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4122 if (before(seq, sp->start_seq))
4123 sp->start_seq = seq;
4124 if (after(end_seq, sp->end_seq))
4125 sp->end_seq = end_seq;
4126 return true;
4127 }
4128 return false;
4129 }
4130
4131 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4132 {
4133 struct tcp_sock *tp = tcp_sk(sk);
4134
4135 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4136 int mib_idx;
4137
4138 if (before(seq, tp->rcv_nxt))
4139 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4140 else
4141 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4142
4143 NET_INC_STATS(sock_net(sk), mib_idx);
4144
4145 tp->rx_opt.dsack = 1;
4146 tp->duplicate_sack[0].start_seq = seq;
4147 tp->duplicate_sack[0].end_seq = end_seq;
4148 }
4149 }
4150
4151 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4152 {
4153 struct tcp_sock *tp = tcp_sk(sk);
4154
4155 if (!tp->rx_opt.dsack)
4156 tcp_dsack_set(sk, seq, end_seq);
4157 else
4158 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4159 }
4160
4161 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4162 {
4163 struct tcp_sock *tp = tcp_sk(sk);
4164
4165 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4166 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4167 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4168 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4169
4170 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4171 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4172
4173 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4174 end_seq = tp->rcv_nxt;
4175 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4176 }
4177 }
4178
4179 tcp_send_ack(sk);
4180 }
4181
4182 /* These routines update the SACK block as out-of-order packets arrive or
4183 * in-order packets close up the sequence space.
4184 */
4185 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4186 {
4187 int this_sack;
4188 struct tcp_sack_block *sp = &tp->selective_acks[0];
4189 struct tcp_sack_block *swalk = sp + 1;
4190
4191 /* See if the recent change to the first SACK eats into
4192 * or hits the sequence space of other SACK blocks, if so coalesce.
4193 */
4194 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4195 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4196 int i;
4197
4198 /* Zap SWALK, by moving every further SACK up by one slot.
4199 * Decrease num_sacks.
4200 */
4201 tp->rx_opt.num_sacks--;
4202 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4203 sp[i] = sp[i + 1];
4204 continue;
4205 }
4206 this_sack++, swalk++;
4207 }
4208 }
4209
4210 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4211 {
4212 struct tcp_sock *tp = tcp_sk(sk);
4213 struct tcp_sack_block *sp = &tp->selective_acks[0];
4214 int cur_sacks = tp->rx_opt.num_sacks;
4215 int this_sack;
4216
4217 if (!cur_sacks)
4218 goto new_sack;
4219
4220 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4221 if (tcp_sack_extend(sp, seq, end_seq)) {
4222 /* Rotate this_sack to the first one. */
4223 for (; this_sack > 0; this_sack--, sp--)
4224 swap(*sp, *(sp - 1));
4225 if (cur_sacks > 1)
4226 tcp_sack_maybe_coalesce(tp);
4227 return;
4228 }
4229 }
4230
4231 /* Could not find an adjacent existing SACK, build a new one,
4232 * put it at the front, and shift everyone else down. We
4233 * always know there is at least one SACK present already here.
4234 *
4235 * If the sack array is full, forget about the last one.
4236 */
4237 if (this_sack >= TCP_NUM_SACKS) {
4238 this_sack--;
4239 tp->rx_opt.num_sacks--;
4240 sp--;
4241 }
4242 for (; this_sack > 0; this_sack--, sp--)
4243 *sp = *(sp - 1);
4244
4245 new_sack:
4246 /* Build the new head SACK, and we're done. */
4247 sp->start_seq = seq;
4248 sp->end_seq = end_seq;
4249 tp->rx_opt.num_sacks++;
4250 }
4251
4252 /* RCV.NXT advances, some SACKs should be eaten. */
4253
4254 static void tcp_sack_remove(struct tcp_sock *tp)
4255 {
4256 struct tcp_sack_block *sp = &tp->selective_acks[0];
4257 int num_sacks = tp->rx_opt.num_sacks;
4258 int this_sack;
4259
4260 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4261 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4262 tp->rx_opt.num_sacks = 0;
4263 return;
4264 }
4265
4266 for (this_sack = 0; this_sack < num_sacks;) {
4267 /* Check if the start of the sack is covered by RCV.NXT. */
4268 if (!before(tp->rcv_nxt, sp->start_seq)) {
4269 int i;
4270
4271 /* RCV.NXT must cover all the block! */
4272 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4273
4274 /* Zap this SACK, by moving forward any other SACKS. */
4275 for (i = this_sack+1; i < num_sacks; i++)
4276 tp->selective_acks[i-1] = tp->selective_acks[i];
4277 num_sacks--;
4278 continue;
4279 }
4280 this_sack++;
4281 sp++;
4282 }
4283 tp->rx_opt.num_sacks = num_sacks;
4284 }
4285
4286 enum tcp_queue {
4287 OOO_QUEUE,
4288 RCV_QUEUE,
4289 };
4290
4291 /**
4292 * tcp_try_coalesce - try to merge skb to prior one
4293 * @sk: socket
4294 * @dest: destination queue
4295 * @to: prior buffer
4296 * @from: buffer to add in queue
4297 * @fragstolen: pointer to boolean
4298 *
4299 * Before queueing skb @from after @to, try to merge them
4300 * to reduce overall memory use and queue lengths, if cost is small.
4301 * Packets in ofo or receive queues can stay a long time.
4302 * Better try to coalesce them right now to avoid future collapses.
4303 * Returns true if caller should free @from instead of queueing it
4304 */
4305 static bool tcp_try_coalesce(struct sock *sk,
4306 enum tcp_queue dest,
4307 struct sk_buff *to,
4308 struct sk_buff *from,
4309 bool *fragstolen)
4310 {
4311 int delta;
4312
4313 *fragstolen = false;
4314
4315 /* Its possible this segment overlaps with prior segment in queue */
4316 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4317 return false;
4318
4319 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4320 return false;
4321
4322 atomic_add(delta, &sk->sk_rmem_alloc);
4323 sk_mem_charge(sk, delta);
4324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4325 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4326 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4327 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4328
4329 if (TCP_SKB_CB(from)->has_rxtstamp) {
4330 TCP_SKB_CB(to)->has_rxtstamp = true;
4331 if (dest == OOO_QUEUE)
4332 TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp;
4333 else
4334 to->tstamp = from->tstamp;
4335 }
4336
4337 return true;
4338 }
4339
4340 static bool tcp_ooo_try_coalesce(struct sock *sk,
4341 struct sk_buff *to,
4342 struct sk_buff *from,
4343 bool *fragstolen)
4344 {
4345 bool res = tcp_try_coalesce(sk, OOO_QUEUE, to, from, fragstolen);
4346
4347 /* In case tcp_drop() is called later, update to->gso_segs */
4348 if (res) {
4349 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4350 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4351
4352 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4353 }
4354 return res;
4355 }
4356
4357 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4358 {
4359 sk_drops_add(sk, skb);
4360 __kfree_skb(skb);
4361 }
4362
4363 /* This one checks to see if we can put data from the
4364 * out_of_order queue into the receive_queue.
4365 */
4366 static void tcp_ofo_queue(struct sock *sk)
4367 {
4368 struct tcp_sock *tp = tcp_sk(sk);
4369 __u32 dsack_high = tp->rcv_nxt;
4370 bool fin, fragstolen, eaten;
4371 struct sk_buff *skb, *tail;
4372 struct rb_node *p;
4373
4374 p = rb_first(&tp->out_of_order_queue);
4375 while (p) {
4376 skb = rb_to_skb(p);
4377 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4378 break;
4379
4380 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4381 __u32 dsack = dsack_high;
4382 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4383 dsack_high = TCP_SKB_CB(skb)->end_seq;
4384 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4385 }
4386 p = rb_next(p);
4387 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4388 /* Replace tstamp which was stomped by rbnode */
4389 if (TCP_SKB_CB(skb)->has_rxtstamp)
4390 skb->tstamp = TCP_SKB_CB(skb)->swtstamp;
4391
4392 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4393 SOCK_DEBUG(sk, "ofo packet was already received\n");
4394 tcp_drop(sk, skb);
4395 continue;
4396 }
4397 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4398 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4399 TCP_SKB_CB(skb)->end_seq);
4400
4401 tail = skb_peek_tail(&sk->sk_receive_queue);
4402 eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE,
4403 tail, skb, &fragstolen);
4404 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4405 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4406 if (!eaten)
4407 __skb_queue_tail(&sk->sk_receive_queue, skb);
4408 else
4409 kfree_skb_partial(skb, fragstolen);
4410
4411 if (unlikely(fin)) {
4412 tcp_fin(sk);
4413 /* tcp_fin() purges tp->out_of_order_queue,
4414 * so we must end this loop right now.
4415 */
4416 break;
4417 }
4418 }
4419 }
4420
4421 static bool tcp_prune_ofo_queue(struct sock *sk);
4422 static int tcp_prune_queue(struct sock *sk);
4423
4424 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4425 unsigned int size)
4426 {
4427 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4428 !sk_rmem_schedule(sk, skb, size)) {
4429
4430 if (tcp_prune_queue(sk) < 0)
4431 return -1;
4432
4433 while (!sk_rmem_schedule(sk, skb, size)) {
4434 if (!tcp_prune_ofo_queue(sk))
4435 return -1;
4436 }
4437 }
4438 return 0;
4439 }
4440
4441 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4442 {
4443 struct tcp_sock *tp = tcp_sk(sk);
4444 struct rb_node **p, *parent;
4445 struct sk_buff *skb1;
4446 u32 seq, end_seq;
4447 bool fragstolen;
4448
4449 tcp_ecn_check_ce(sk, skb);
4450
4451 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4452 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4453 tcp_drop(sk, skb);
4454 return;
4455 }
4456
4457 /* Stash tstamp to avoid being stomped on by rbnode */
4458 if (TCP_SKB_CB(skb)->has_rxtstamp)
4459 TCP_SKB_CB(skb)->swtstamp = skb->tstamp;
4460
4461 /* Disable header prediction. */
4462 tp->pred_flags = 0;
4463 inet_csk_schedule_ack(sk);
4464
4465 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4466 seq = TCP_SKB_CB(skb)->seq;
4467 end_seq = TCP_SKB_CB(skb)->end_seq;
4468 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4469 tp->rcv_nxt, seq, end_seq);
4470
4471 p = &tp->out_of_order_queue.rb_node;
4472 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4473 /* Initial out of order segment, build 1 SACK. */
4474 if (tcp_is_sack(tp)) {
4475 tp->rx_opt.num_sacks = 1;
4476 tp->selective_acks[0].start_seq = seq;
4477 tp->selective_acks[0].end_seq = end_seq;
4478 }
4479 rb_link_node(&skb->rbnode, NULL, p);
4480 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4481 tp->ooo_last_skb = skb;
4482 goto end;
4483 }
4484
4485 /* In the typical case, we are adding an skb to the end of the list.
4486 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4487 */
4488 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4489 skb, &fragstolen)) {
4490 coalesce_done:
4491 tcp_grow_window(sk, skb);
4492 kfree_skb_partial(skb, fragstolen);
4493 skb = NULL;
4494 goto add_sack;
4495 }
4496 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4497 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4498 parent = &tp->ooo_last_skb->rbnode;
4499 p = &parent->rb_right;
4500 goto insert;
4501 }
4502
4503 /* Find place to insert this segment. Handle overlaps on the way. */
4504 parent = NULL;
4505 while (*p) {
4506 parent = *p;
4507 skb1 = rb_to_skb(parent);
4508 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4509 p = &parent->rb_left;
4510 continue;
4511 }
4512 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4513 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4514 /* All the bits are present. Drop. */
4515 NET_INC_STATS(sock_net(sk),
4516 LINUX_MIB_TCPOFOMERGE);
4517 tcp_drop(sk, skb);
4518 skb = NULL;
4519 tcp_dsack_set(sk, seq, end_seq);
4520 goto add_sack;
4521 }
4522 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4523 /* Partial overlap. */
4524 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4525 } else {
4526 /* skb's seq == skb1's seq and skb covers skb1.
4527 * Replace skb1 with skb.
4528 */
4529 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4530 &tp->out_of_order_queue);
4531 tcp_dsack_extend(sk,
4532 TCP_SKB_CB(skb1)->seq,
4533 TCP_SKB_CB(skb1)->end_seq);
4534 NET_INC_STATS(sock_net(sk),
4535 LINUX_MIB_TCPOFOMERGE);
4536 tcp_drop(sk, skb1);
4537 goto merge_right;
4538 }
4539 } else if (tcp_ooo_try_coalesce(sk, skb1,
4540 skb, &fragstolen)) {
4541 goto coalesce_done;
4542 }
4543 p = &parent->rb_right;
4544 }
4545 insert:
4546 /* Insert segment into RB tree. */
4547 rb_link_node(&skb->rbnode, parent, p);
4548 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4549
4550 merge_right:
4551 /* Remove other segments covered by skb. */
4552 while ((skb1 = skb_rb_next(skb)) != NULL) {
4553 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4554 break;
4555 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4556 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4557 end_seq);
4558 break;
4559 }
4560 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4561 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4562 TCP_SKB_CB(skb1)->end_seq);
4563 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4564 tcp_drop(sk, skb1);
4565 }
4566 /* If there is no skb after us, we are the last_skb ! */
4567 if (!skb1)
4568 tp->ooo_last_skb = skb;
4569
4570 add_sack:
4571 if (tcp_is_sack(tp))
4572 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4573 end:
4574 if (skb) {
4575 tcp_grow_window(sk, skb);
4576 skb_condense(skb);
4577 skb_set_owner_r(skb, sk);
4578 }
4579 }
4580
4581 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4582 bool *fragstolen)
4583 {
4584 int eaten;
4585 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4586
4587 __skb_pull(skb, hdrlen);
4588 eaten = (tail &&
4589 tcp_try_coalesce(sk, RCV_QUEUE, tail,
4590 skb, fragstolen)) ? 1 : 0;
4591 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4592 if (!eaten) {
4593 __skb_queue_tail(&sk->sk_receive_queue, skb);
4594 skb_set_owner_r(skb, sk);
4595 }
4596 return eaten;
4597 }
4598
4599 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4600 {
4601 struct sk_buff *skb;
4602 int err = -ENOMEM;
4603 int data_len = 0;
4604 bool fragstolen;
4605
4606 if (size == 0)
4607 return 0;
4608
4609 if (size > PAGE_SIZE) {
4610 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4611
4612 data_len = npages << PAGE_SHIFT;
4613 size = data_len + (size & ~PAGE_MASK);
4614 }
4615 skb = alloc_skb_with_frags(size - data_len, data_len,
4616 PAGE_ALLOC_COSTLY_ORDER,
4617 &err, sk->sk_allocation);
4618 if (!skb)
4619 goto err;
4620
4621 skb_put(skb, size - data_len);
4622 skb->data_len = data_len;
4623 skb->len = size;
4624
4625 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4626 goto err_free;
4627
4628 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4629 if (err)
4630 goto err_free;
4631
4632 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4633 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4634 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4635
4636 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4637 WARN_ON_ONCE(fragstolen); /* should not happen */
4638 __kfree_skb(skb);
4639 }
4640 return size;
4641
4642 err_free:
4643 kfree_skb(skb);
4644 err:
4645 return err;
4646
4647 }
4648
4649 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4650 {
4651 struct tcp_sock *tp = tcp_sk(sk);
4652 bool fragstolen;
4653 int eaten;
4654
4655 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4656 __kfree_skb(skb);
4657 return;
4658 }
4659 skb_dst_drop(skb);
4660 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4661
4662 tcp_ecn_accept_cwr(tp, skb);
4663
4664 tp->rx_opt.dsack = 0;
4665
4666 /* Queue data for delivery to the user.
4667 * Packets in sequence go to the receive queue.
4668 * Out of sequence packets to the out_of_order_queue.
4669 */
4670 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4671 if (tcp_receive_window(tp) == 0)
4672 goto out_of_window;
4673
4674 /* Ok. In sequence. In window. */
4675 queue_and_out:
4676 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4677 sk_forced_mem_schedule(sk, skb->truesize);
4678 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4679 goto drop;
4680
4681 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4682 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4683 if (skb->len)
4684 tcp_event_data_recv(sk, skb);
4685 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4686 tcp_fin(sk);
4687
4688 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4689 tcp_ofo_queue(sk);
4690
4691 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4692 * gap in queue is filled.
4693 */
4694 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4695 inet_csk(sk)->icsk_ack.pingpong = 0;
4696 }
4697
4698 if (tp->rx_opt.num_sacks)
4699 tcp_sack_remove(tp);
4700
4701 tcp_fast_path_check(sk);
4702
4703 if (eaten > 0)
4704 kfree_skb_partial(skb, fragstolen);
4705 if (!sock_flag(sk, SOCK_DEAD))
4706 sk->sk_data_ready(sk);
4707 return;
4708 }
4709
4710 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4711 /* A retransmit, 2nd most common case. Force an immediate ack. */
4712 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4713 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4714
4715 out_of_window:
4716 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4717 inet_csk_schedule_ack(sk);
4718 drop:
4719 tcp_drop(sk, skb);
4720 return;
4721 }
4722
4723 /* Out of window. F.e. zero window probe. */
4724 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4725 goto out_of_window;
4726
4727 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4728 /* Partial packet, seq < rcv_next < end_seq */
4729 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4730 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4731 TCP_SKB_CB(skb)->end_seq);
4732
4733 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4734
4735 /* If window is closed, drop tail of packet. But after
4736 * remembering D-SACK for its head made in previous line.
4737 */
4738 if (!tcp_receive_window(tp))
4739 goto out_of_window;
4740 goto queue_and_out;
4741 }
4742
4743 tcp_data_queue_ofo(sk, skb);
4744 }
4745
4746 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4747 {
4748 if (list)
4749 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4750
4751 return skb_rb_next(skb);
4752 }
4753
4754 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4755 struct sk_buff_head *list,
4756 struct rb_root *root)
4757 {
4758 struct sk_buff *next = tcp_skb_next(skb, list);
4759
4760 if (list)
4761 __skb_unlink(skb, list);
4762 else
4763 rb_erase(&skb->rbnode, root);
4764
4765 __kfree_skb(skb);
4766 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4767
4768 return next;
4769 }
4770
4771 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4772 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4773 {
4774 struct rb_node **p = &root->rb_node;
4775 struct rb_node *parent = NULL;
4776 struct sk_buff *skb1;
4777
4778 while (*p) {
4779 parent = *p;
4780 skb1 = rb_to_skb(parent);
4781 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4782 p = &parent->rb_left;
4783 else
4784 p = &parent->rb_right;
4785 }
4786 rb_link_node(&skb->rbnode, parent, p);
4787 rb_insert_color(&skb->rbnode, root);
4788 }
4789
4790 /* Collapse contiguous sequence of skbs head..tail with
4791 * sequence numbers start..end.
4792 *
4793 * If tail is NULL, this means until the end of the queue.
4794 *
4795 * Segments with FIN/SYN are not collapsed (only because this
4796 * simplifies code)
4797 */
4798 static void
4799 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4800 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4801 {
4802 struct sk_buff *skb = head, *n;
4803 struct sk_buff_head tmp;
4804 bool end_of_skbs;
4805
4806 /* First, check that queue is collapsible and find
4807 * the point where collapsing can be useful.
4808 */
4809 restart:
4810 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4811 n = tcp_skb_next(skb, list);
4812
4813 /* No new bits? It is possible on ofo queue. */
4814 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4815 skb = tcp_collapse_one(sk, skb, list, root);
4816 if (!skb)
4817 break;
4818 goto restart;
4819 }
4820
4821 /* The first skb to collapse is:
4822 * - not SYN/FIN and
4823 * - bloated or contains data before "start" or
4824 * overlaps to the next one.
4825 */
4826 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4827 (tcp_win_from_space(skb->truesize) > skb->len ||
4828 before(TCP_SKB_CB(skb)->seq, start))) {
4829 end_of_skbs = false;
4830 break;
4831 }
4832
4833 if (n && n != tail &&
4834 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4835 end_of_skbs = false;
4836 break;
4837 }
4838
4839 /* Decided to skip this, advance start seq. */
4840 start = TCP_SKB_CB(skb)->end_seq;
4841 }
4842 if (end_of_skbs ||
4843 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4844 return;
4845
4846 __skb_queue_head_init(&tmp);
4847
4848 while (before(start, end)) {
4849 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4850 struct sk_buff *nskb;
4851
4852 nskb = alloc_skb(copy, GFP_ATOMIC);
4853 if (!nskb)
4854 break;
4855
4856 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4857 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4858 if (list)
4859 __skb_queue_before(list, skb, nskb);
4860 else
4861 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4862 skb_set_owner_r(nskb, sk);
4863
4864 /* Copy data, releasing collapsed skbs. */
4865 while (copy > 0) {
4866 int offset = start - TCP_SKB_CB(skb)->seq;
4867 int size = TCP_SKB_CB(skb)->end_seq - start;
4868
4869 BUG_ON(offset < 0);
4870 if (size > 0) {
4871 size = min(copy, size);
4872 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4873 BUG();
4874 TCP_SKB_CB(nskb)->end_seq += size;
4875 copy -= size;
4876 start += size;
4877 }
4878 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4879 skb = tcp_collapse_one(sk, skb, list, root);
4880 if (!skb ||
4881 skb == tail ||
4882 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4883 goto end;
4884 }
4885 }
4886 }
4887 end:
4888 skb_queue_walk_safe(&tmp, skb, n)
4889 tcp_rbtree_insert(root, skb);
4890 }
4891
4892 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4893 * and tcp_collapse() them until all the queue is collapsed.
4894 */
4895 static void tcp_collapse_ofo_queue(struct sock *sk)
4896 {
4897 struct tcp_sock *tp = tcp_sk(sk);
4898 u32 range_truesize, sum_tiny = 0;
4899 struct sk_buff *skb, *head;
4900 u32 start, end;
4901
4902 skb = skb_rb_first(&tp->out_of_order_queue);
4903 new_range:
4904 if (!skb) {
4905 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4906 return;
4907 }
4908 start = TCP_SKB_CB(skb)->seq;
4909 end = TCP_SKB_CB(skb)->end_seq;
4910 range_truesize = skb->truesize;
4911
4912 for (head = skb;;) {
4913 skb = skb_rb_next(skb);
4914
4915 /* Range is terminated when we see a gap or when
4916 * we are at the queue end.
4917 */
4918 if (!skb ||
4919 after(TCP_SKB_CB(skb)->seq, end) ||
4920 before(TCP_SKB_CB(skb)->end_seq, start)) {
4921 /* Do not attempt collapsing tiny skbs */
4922 if (range_truesize != head->truesize ||
4923 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4924 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4925 head, skb, start, end);
4926 } else {
4927 sum_tiny += range_truesize;
4928 if (sum_tiny > sk->sk_rcvbuf >> 3)
4929 return;
4930 }
4931 goto new_range;
4932 }
4933
4934 range_truesize += skb->truesize;
4935 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4936 start = TCP_SKB_CB(skb)->seq;
4937 if (after(TCP_SKB_CB(skb)->end_seq, end))
4938 end = TCP_SKB_CB(skb)->end_seq;
4939 }
4940 }
4941
4942 /*
4943 * Clean the out-of-order queue to make room.
4944 * We drop high sequences packets to :
4945 * 1) Let a chance for holes to be filled.
4946 * 2) not add too big latencies if thousands of packets sit there.
4947 * (But if application shrinks SO_RCVBUF, we could still end up
4948 * freeing whole queue here)
4949 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4950 *
4951 * Return true if queue has shrunk.
4952 */
4953 static bool tcp_prune_ofo_queue(struct sock *sk)
4954 {
4955 struct tcp_sock *tp = tcp_sk(sk);
4956 struct rb_node *node, *prev;
4957 int goal;
4958
4959 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4960 return false;
4961
4962 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4963 goal = sk->sk_rcvbuf >> 3;
4964 node = &tp->ooo_last_skb->rbnode;
4965 do {
4966 prev = rb_prev(node);
4967 rb_erase(node, &tp->out_of_order_queue);
4968 goal -= rb_to_skb(node)->truesize;
4969 tcp_drop(sk, rb_to_skb(node));
4970 if (!prev || goal <= 0) {
4971 sk_mem_reclaim(sk);
4972 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4973 !tcp_under_memory_pressure(sk))
4974 break;
4975 goal = sk->sk_rcvbuf >> 3;
4976 }
4977 node = prev;
4978 } while (node);
4979 tp->ooo_last_skb = rb_to_skb(prev);
4980
4981 /* Reset SACK state. A conforming SACK implementation will
4982 * do the same at a timeout based retransmit. When a connection
4983 * is in a sad state like this, we care only about integrity
4984 * of the connection not performance.
4985 */
4986 if (tp->rx_opt.sack_ok)
4987 tcp_sack_reset(&tp->rx_opt);
4988 return true;
4989 }
4990
4991 /* Reduce allocated memory if we can, trying to get
4992 * the socket within its memory limits again.
4993 *
4994 * Return less than zero if we should start dropping frames
4995 * until the socket owning process reads some of the data
4996 * to stabilize the situation.
4997 */
4998 static int tcp_prune_queue(struct sock *sk)
4999 {
5000 struct tcp_sock *tp = tcp_sk(sk);
5001
5002 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5003
5004 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5005
5006 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5007 tcp_clamp_window(sk);
5008 else if (tcp_under_memory_pressure(sk))
5009 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5010
5011 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5012 return 0;
5013
5014 tcp_collapse_ofo_queue(sk);
5015 if (!skb_queue_empty(&sk->sk_receive_queue))
5016 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5017 skb_peek(&sk->sk_receive_queue),
5018 NULL,
5019 tp->copied_seq, tp->rcv_nxt);
5020 sk_mem_reclaim(sk);
5021
5022 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5023 return 0;
5024
5025 /* Collapsing did not help, destructive actions follow.
5026 * This must not ever occur. */
5027
5028 tcp_prune_ofo_queue(sk);
5029
5030 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5031 return 0;
5032
5033 /* If we are really being abused, tell the caller to silently
5034 * drop receive data on the floor. It will get retransmitted
5035 * and hopefully then we'll have sufficient space.
5036 */
5037 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5038
5039 /* Massive buffer overcommit. */
5040 tp->pred_flags = 0;
5041 return -1;
5042 }
5043
5044 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5045 {
5046 const struct tcp_sock *tp = tcp_sk(sk);
5047
5048 /* If the user specified a specific send buffer setting, do
5049 * not modify it.
5050 */
5051 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5052 return false;
5053
5054 /* If we are under global TCP memory pressure, do not expand. */
5055 if (tcp_under_memory_pressure(sk))
5056 return false;
5057
5058 /* If we are under soft global TCP memory pressure, do not expand. */
5059 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5060 return false;
5061
5062 /* If we filled the congestion window, do not expand. */
5063 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5064 return false;
5065
5066 return true;
5067 }
5068
5069 /* When incoming ACK allowed to free some skb from write_queue,
5070 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5071 * on the exit from tcp input handler.
5072 *
5073 * PROBLEM: sndbuf expansion does not work well with largesend.
5074 */
5075 static void tcp_new_space(struct sock *sk)
5076 {
5077 struct tcp_sock *tp = tcp_sk(sk);
5078
5079 if (tcp_should_expand_sndbuf(sk)) {
5080 tcp_sndbuf_expand(sk);
5081 tp->snd_cwnd_stamp = tcp_jiffies32;
5082 }
5083
5084 sk->sk_write_space(sk);
5085 }
5086
5087 static void tcp_check_space(struct sock *sk)
5088 {
5089 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5090 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5091 /* pairs with tcp_poll() */
5092 smp_mb();
5093 if (sk->sk_socket &&
5094 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5095 tcp_new_space(sk);
5096 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5097 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5098 }
5099 }
5100 }
5101
5102 static inline void tcp_data_snd_check(struct sock *sk)
5103 {
5104 tcp_push_pending_frames(sk);
5105 tcp_check_space(sk);
5106 }
5107
5108 /*
5109 * Check if sending an ack is needed.
5110 */
5111 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5112 {
5113 struct tcp_sock *tp = tcp_sk(sk);
5114
5115 /* More than one full frame received... */
5116 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5117 /* ... and right edge of window advances far enough.
5118 * (tcp_recvmsg() will send ACK otherwise). Or...
5119 */
5120 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5121 /* We ACK each frame or... */
5122 tcp_in_quickack_mode(sk) ||
5123 /* We have out of order data. */
5124 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5125 /* Then ack it now */
5126 tcp_send_ack(sk);
5127 } else {
5128 /* Else, send delayed ack. */
5129 tcp_send_delayed_ack(sk);
5130 }
5131 }
5132
5133 static inline void tcp_ack_snd_check(struct sock *sk)
5134 {
5135 if (!inet_csk_ack_scheduled(sk)) {
5136 /* We sent a data segment already. */
5137 return;
5138 }
5139 __tcp_ack_snd_check(sk, 1);
5140 }
5141
5142 /*
5143 * This routine is only called when we have urgent data
5144 * signaled. Its the 'slow' part of tcp_urg. It could be
5145 * moved inline now as tcp_urg is only called from one
5146 * place. We handle URGent data wrong. We have to - as
5147 * BSD still doesn't use the correction from RFC961.
5148 * For 1003.1g we should support a new option TCP_STDURG to permit
5149 * either form (or just set the sysctl tcp_stdurg).
5150 */
5151
5152 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5153 {
5154 struct tcp_sock *tp = tcp_sk(sk);
5155 u32 ptr = ntohs(th->urg_ptr);
5156
5157 if (ptr && !sysctl_tcp_stdurg)
5158 ptr--;
5159 ptr += ntohl(th->seq);
5160
5161 /* Ignore urgent data that we've already seen and read. */
5162 if (after(tp->copied_seq, ptr))
5163 return;
5164
5165 /* Do not replay urg ptr.
5166 *
5167 * NOTE: interesting situation not covered by specs.
5168 * Misbehaving sender may send urg ptr, pointing to segment,
5169 * which we already have in ofo queue. We are not able to fetch
5170 * such data and will stay in TCP_URG_NOTYET until will be eaten
5171 * by recvmsg(). Seems, we are not obliged to handle such wicked
5172 * situations. But it is worth to think about possibility of some
5173 * DoSes using some hypothetical application level deadlock.
5174 */
5175 if (before(ptr, tp->rcv_nxt))
5176 return;
5177
5178 /* Do we already have a newer (or duplicate) urgent pointer? */
5179 if (tp->urg_data && !after(ptr, tp->urg_seq))
5180 return;
5181
5182 /* Tell the world about our new urgent pointer. */
5183 sk_send_sigurg(sk);
5184
5185 /* We may be adding urgent data when the last byte read was
5186 * urgent. To do this requires some care. We cannot just ignore
5187 * tp->copied_seq since we would read the last urgent byte again
5188 * as data, nor can we alter copied_seq until this data arrives
5189 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5190 *
5191 * NOTE. Double Dutch. Rendering to plain English: author of comment
5192 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5193 * and expect that both A and B disappear from stream. This is _wrong_.
5194 * Though this happens in BSD with high probability, this is occasional.
5195 * Any application relying on this is buggy. Note also, that fix "works"
5196 * only in this artificial test. Insert some normal data between A and B and we will
5197 * decline of BSD again. Verdict: it is better to remove to trap
5198 * buggy users.
5199 */
5200 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5201 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5202 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5203 tp->copied_seq++;
5204 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5205 __skb_unlink(skb, &sk->sk_receive_queue);
5206 __kfree_skb(skb);
5207 }
5208 }
5209
5210 tp->urg_data = TCP_URG_NOTYET;
5211 tp->urg_seq = ptr;
5212
5213 /* Disable header prediction. */
5214 tp->pred_flags = 0;
5215 }
5216
5217 /* This is the 'fast' part of urgent handling. */
5218 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5219 {
5220 struct tcp_sock *tp = tcp_sk(sk);
5221
5222 /* Check if we get a new urgent pointer - normally not. */
5223 if (th->urg)
5224 tcp_check_urg(sk, th);
5225
5226 /* Do we wait for any urgent data? - normally not... */
5227 if (tp->urg_data == TCP_URG_NOTYET) {
5228 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5229 th->syn;
5230
5231 /* Is the urgent pointer pointing into this packet? */
5232 if (ptr < skb->len) {
5233 u8 tmp;
5234 if (skb_copy_bits(skb, ptr, &tmp, 1))
5235 BUG();
5236 tp->urg_data = TCP_URG_VALID | tmp;
5237 if (!sock_flag(sk, SOCK_DEAD))
5238 sk->sk_data_ready(sk);
5239 }
5240 }
5241 }
5242
5243 /* Accept RST for rcv_nxt - 1 after a FIN.
5244 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5245 * FIN is sent followed by a RST packet. The RST is sent with the same
5246 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5247 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5248 * ACKs on the closed socket. In addition middleboxes can drop either the
5249 * challenge ACK or a subsequent RST.
5250 */
5251 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5252 {
5253 struct tcp_sock *tp = tcp_sk(sk);
5254
5255 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5256 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5257 TCPF_CLOSING));
5258 }
5259
5260 /* Does PAWS and seqno based validation of an incoming segment, flags will
5261 * play significant role here.
5262 */
5263 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5264 const struct tcphdr *th, int syn_inerr)
5265 {
5266 struct tcp_sock *tp = tcp_sk(sk);
5267 bool rst_seq_match = false;
5268
5269 /* RFC1323: H1. Apply PAWS check first. */
5270 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5271 tp->rx_opt.saw_tstamp &&
5272 tcp_paws_discard(sk, skb)) {
5273 if (!th->rst) {
5274 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5275 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5276 LINUX_MIB_TCPACKSKIPPEDPAWS,
5277 &tp->last_oow_ack_time))
5278 tcp_send_dupack(sk, skb);
5279 goto discard;
5280 }
5281 /* Reset is accepted even if it did not pass PAWS. */
5282 }
5283
5284 /* Step 1: check sequence number */
5285 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5286 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5287 * (RST) segments are validated by checking their SEQ-fields."
5288 * And page 69: "If an incoming segment is not acceptable,
5289 * an acknowledgment should be sent in reply (unless the RST
5290 * bit is set, if so drop the segment and return)".
5291 */
5292 if (!th->rst) {
5293 if (th->syn)
5294 goto syn_challenge;
5295 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5296 LINUX_MIB_TCPACKSKIPPEDSEQ,
5297 &tp->last_oow_ack_time))
5298 tcp_send_dupack(sk, skb);
5299 } else if (tcp_reset_check(sk, skb)) {
5300 tcp_reset(sk);
5301 }
5302 goto discard;
5303 }
5304
5305 /* Step 2: check RST bit */
5306 if (th->rst) {
5307 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5308 * FIN and SACK too if available):
5309 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5310 * the right-most SACK block,
5311 * then
5312 * RESET the connection
5313 * else
5314 * Send a challenge ACK
5315 */
5316 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5317 tcp_reset_check(sk, skb)) {
5318 rst_seq_match = true;
5319 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5320 struct tcp_sack_block *sp = &tp->selective_acks[0];
5321 int max_sack = sp[0].end_seq;
5322 int this_sack;
5323
5324 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5325 ++this_sack) {
5326 max_sack = after(sp[this_sack].end_seq,
5327 max_sack) ?
5328 sp[this_sack].end_seq : max_sack;
5329 }
5330
5331 if (TCP_SKB_CB(skb)->seq == max_sack)
5332 rst_seq_match = true;
5333 }
5334
5335 if (rst_seq_match)
5336 tcp_reset(sk);
5337 else {
5338 /* Disable TFO if RST is out-of-order
5339 * and no data has been received
5340 * for current active TFO socket
5341 */
5342 if (tp->syn_fastopen && !tp->data_segs_in &&
5343 sk->sk_state == TCP_ESTABLISHED)
5344 tcp_fastopen_active_disable(sk);
5345 tcp_send_challenge_ack(sk, skb);
5346 }
5347 goto discard;
5348 }
5349
5350 /* step 3: check security and precedence [ignored] */
5351
5352 /* step 4: Check for a SYN
5353 * RFC 5961 4.2 : Send a challenge ack
5354 */
5355 if (th->syn) {
5356 syn_challenge:
5357 if (syn_inerr)
5358 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5359 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5360 tcp_send_challenge_ack(sk, skb);
5361 goto discard;
5362 }
5363
5364 return true;
5365
5366 discard:
5367 tcp_drop(sk, skb);
5368 return false;
5369 }
5370
5371 /*
5372 * TCP receive function for the ESTABLISHED state.
5373 *
5374 * It is split into a fast path and a slow path. The fast path is
5375 * disabled when:
5376 * - A zero window was announced from us - zero window probing
5377 * is only handled properly in the slow path.
5378 * - Out of order segments arrived.
5379 * - Urgent data is expected.
5380 * - There is no buffer space left
5381 * - Unexpected TCP flags/window values/header lengths are received
5382 * (detected by checking the TCP header against pred_flags)
5383 * - Data is sent in both directions. Fast path only supports pure senders
5384 * or pure receivers (this means either the sequence number or the ack
5385 * value must stay constant)
5386 * - Unexpected TCP option.
5387 *
5388 * When these conditions are not satisfied it drops into a standard
5389 * receive procedure patterned after RFC793 to handle all cases.
5390 * The first three cases are guaranteed by proper pred_flags setting,
5391 * the rest is checked inline. Fast processing is turned on in
5392 * tcp_data_queue when everything is OK.
5393 */
5394 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5395 const struct tcphdr *th)
5396 {
5397 unsigned int len = skb->len;
5398 struct tcp_sock *tp = tcp_sk(sk);
5399
5400 tcp_mstamp_refresh(tp);
5401 if (unlikely(!sk->sk_rx_dst))
5402 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5403 /*
5404 * Header prediction.
5405 * The code loosely follows the one in the famous
5406 * "30 instruction TCP receive" Van Jacobson mail.
5407 *
5408 * Van's trick is to deposit buffers into socket queue
5409 * on a device interrupt, to call tcp_recv function
5410 * on the receive process context and checksum and copy
5411 * the buffer to user space. smart...
5412 *
5413 * Our current scheme is not silly either but we take the
5414 * extra cost of the net_bh soft interrupt processing...
5415 * We do checksum and copy also but from device to kernel.
5416 */
5417
5418 tp->rx_opt.saw_tstamp = 0;
5419
5420 /* pred_flags is 0xS?10 << 16 + snd_wnd
5421 * if header_prediction is to be made
5422 * 'S' will always be tp->tcp_header_len >> 2
5423 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5424 * turn it off (when there are holes in the receive
5425 * space for instance)
5426 * PSH flag is ignored.
5427 */
5428
5429 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5430 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5431 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5432 int tcp_header_len = tp->tcp_header_len;
5433
5434 /* Timestamp header prediction: tcp_header_len
5435 * is automatically equal to th->doff*4 due to pred_flags
5436 * match.
5437 */
5438
5439 /* Check timestamp */
5440 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5441 /* No? Slow path! */
5442 if (!tcp_parse_aligned_timestamp(tp, th))
5443 goto slow_path;
5444
5445 /* If PAWS failed, check it more carefully in slow path */
5446 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5447 goto slow_path;
5448
5449 /* DO NOT update ts_recent here, if checksum fails
5450 * and timestamp was corrupted part, it will result
5451 * in a hung connection since we will drop all
5452 * future packets due to the PAWS test.
5453 */
5454 }
5455
5456 if (len <= tcp_header_len) {
5457 /* Bulk data transfer: sender */
5458 if (len == tcp_header_len) {
5459 /* Predicted packet is in window by definition.
5460 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5461 * Hence, check seq<=rcv_wup reduces to:
5462 */
5463 if (tcp_header_len ==
5464 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5465 tp->rcv_nxt == tp->rcv_wup)
5466 tcp_store_ts_recent(tp);
5467
5468 /* We know that such packets are checksummed
5469 * on entry.
5470 */
5471 tcp_ack(sk, skb, 0);
5472 __kfree_skb(skb);
5473 tcp_data_snd_check(sk);
5474 return;
5475 } else { /* Header too small */
5476 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5477 goto discard;
5478 }
5479 } else {
5480 int eaten = 0;
5481 bool fragstolen = false;
5482
5483 if (tcp_checksum_complete(skb))
5484 goto csum_error;
5485
5486 if ((int)skb->truesize > sk->sk_forward_alloc)
5487 goto step5;
5488
5489 /* Predicted packet is in window by definition.
5490 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5491 * Hence, check seq<=rcv_wup reduces to:
5492 */
5493 if (tcp_header_len ==
5494 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5495 tp->rcv_nxt == tp->rcv_wup)
5496 tcp_store_ts_recent(tp);
5497
5498 tcp_rcv_rtt_measure_ts(sk, skb);
5499
5500 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5501
5502 /* Bulk data transfer: receiver */
5503 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5504 &fragstolen);
5505
5506 tcp_event_data_recv(sk, skb);
5507
5508 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5509 /* Well, only one small jumplet in fast path... */
5510 tcp_ack(sk, skb, FLAG_DATA);
5511 tcp_data_snd_check(sk);
5512 if (!inet_csk_ack_scheduled(sk))
5513 goto no_ack;
5514 }
5515
5516 __tcp_ack_snd_check(sk, 0);
5517 no_ack:
5518 if (eaten)
5519 kfree_skb_partial(skb, fragstolen);
5520 sk->sk_data_ready(sk);
5521 return;
5522 }
5523 }
5524
5525 slow_path:
5526 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5527 goto csum_error;
5528
5529 if (!th->ack && !th->rst && !th->syn)
5530 goto discard;
5531
5532 /*
5533 * Standard slow path.
5534 */
5535
5536 if (!tcp_validate_incoming(sk, skb, th, 1))
5537 return;
5538
5539 step5:
5540 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5541 goto discard;
5542
5543 tcp_rcv_rtt_measure_ts(sk, skb);
5544
5545 /* Process urgent data. */
5546 tcp_urg(sk, skb, th);
5547
5548 /* step 7: process the segment text */
5549 tcp_data_queue(sk, skb);
5550
5551 tcp_data_snd_check(sk);
5552 tcp_ack_snd_check(sk);
5553 return;
5554
5555 csum_error:
5556 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5557 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5558
5559 discard:
5560 tcp_drop(sk, skb);
5561 }
5562 EXPORT_SYMBOL(tcp_rcv_established);
5563
5564 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5565 {
5566 struct tcp_sock *tp = tcp_sk(sk);
5567 struct inet_connection_sock *icsk = inet_csk(sk);
5568
5569 tcp_set_state(sk, TCP_ESTABLISHED);
5570 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5571
5572 if (skb) {
5573 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5574 security_inet_conn_established(sk, skb);
5575 }
5576
5577 /* Make sure socket is routed, for correct metrics. */
5578 icsk->icsk_af_ops->rebuild_header(sk);
5579
5580 tcp_init_metrics(sk);
5581 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5582 tcp_init_congestion_control(sk);
5583
5584 /* Prevent spurious tcp_cwnd_restart() on first data
5585 * packet.
5586 */
5587 tp->lsndtime = tcp_jiffies32;
5588
5589 tcp_init_buffer_space(sk);
5590
5591 if (sock_flag(sk, SOCK_KEEPOPEN))
5592 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5593
5594 if (!tp->rx_opt.snd_wscale)
5595 __tcp_fast_path_on(tp, tp->snd_wnd);
5596 else
5597 tp->pred_flags = 0;
5598 }
5599
5600 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5601 struct tcp_fastopen_cookie *cookie)
5602 {
5603 struct tcp_sock *tp = tcp_sk(sk);
5604 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5605 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5606 bool syn_drop = false;
5607
5608 if (mss == tp->rx_opt.user_mss) {
5609 struct tcp_options_received opt;
5610
5611 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5612 tcp_clear_options(&opt);
5613 opt.user_mss = opt.mss_clamp = 0;
5614 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5615 mss = opt.mss_clamp;
5616 }
5617
5618 if (!tp->syn_fastopen) {
5619 /* Ignore an unsolicited cookie */
5620 cookie->len = -1;
5621 } else if (tp->total_retrans) {
5622 /* SYN timed out and the SYN-ACK neither has a cookie nor
5623 * acknowledges data. Presumably the remote received only
5624 * the retransmitted (regular) SYNs: either the original
5625 * SYN-data or the corresponding SYN-ACK was dropped.
5626 */
5627 syn_drop = (cookie->len < 0 && data);
5628 } else if (cookie->len < 0 && !tp->syn_data) {
5629 /* We requested a cookie but didn't get it. If we did not use
5630 * the (old) exp opt format then try so next time (try_exp=1).
5631 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5632 */
5633 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5634 }
5635
5636 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5637
5638 if (data) { /* Retransmit unacked data in SYN */
5639 tcp_for_write_queue_from(data, sk) {
5640 if (data == tcp_send_head(sk) ||
5641 __tcp_retransmit_skb(sk, data, 1))
5642 break;
5643 }
5644 tcp_rearm_rto(sk);
5645 NET_INC_STATS(sock_net(sk),
5646 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5647 return true;
5648 }
5649 tp->syn_data_acked = tp->syn_data;
5650 if (tp->syn_data_acked)
5651 NET_INC_STATS(sock_net(sk),
5652 LINUX_MIB_TCPFASTOPENACTIVE);
5653
5654 tcp_fastopen_add_skb(sk, synack);
5655
5656 return false;
5657 }
5658
5659 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5660 const struct tcphdr *th)
5661 {
5662 struct inet_connection_sock *icsk = inet_csk(sk);
5663 struct tcp_sock *tp = tcp_sk(sk);
5664 struct tcp_fastopen_cookie foc = { .len = -1 };
5665 int saved_clamp = tp->rx_opt.mss_clamp;
5666 bool fastopen_fail;
5667
5668 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5669 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5670 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5671
5672 if (th->ack) {
5673 /* rfc793:
5674 * "If the state is SYN-SENT then
5675 * first check the ACK bit
5676 * If the ACK bit is set
5677 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5678 * a reset (unless the RST bit is set, if so drop
5679 * the segment and return)"
5680 */
5681 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5682 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5683 goto reset_and_undo;
5684
5685 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5686 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5687 tcp_time_stamp(tp))) {
5688 NET_INC_STATS(sock_net(sk),
5689 LINUX_MIB_PAWSACTIVEREJECTED);
5690 goto reset_and_undo;
5691 }
5692
5693 /* Now ACK is acceptable.
5694 *
5695 * "If the RST bit is set
5696 * If the ACK was acceptable then signal the user "error:
5697 * connection reset", drop the segment, enter CLOSED state,
5698 * delete TCB, and return."
5699 */
5700
5701 if (th->rst) {
5702 tcp_reset(sk);
5703 goto discard;
5704 }
5705
5706 /* rfc793:
5707 * "fifth, if neither of the SYN or RST bits is set then
5708 * drop the segment and return."
5709 *
5710 * See note below!
5711 * --ANK(990513)
5712 */
5713 if (!th->syn)
5714 goto discard_and_undo;
5715
5716 /* rfc793:
5717 * "If the SYN bit is on ...
5718 * are acceptable then ...
5719 * (our SYN has been ACKed), change the connection
5720 * state to ESTABLISHED..."
5721 */
5722
5723 tcp_ecn_rcv_synack(tp, th);
5724
5725 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5726 tcp_ack(sk, skb, FLAG_SLOWPATH);
5727
5728 /* Ok.. it's good. Set up sequence numbers and
5729 * move to established.
5730 */
5731 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5732 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5733
5734 /* RFC1323: The window in SYN & SYN/ACK segments is
5735 * never scaled.
5736 */
5737 tp->snd_wnd = ntohs(th->window);
5738
5739 if (!tp->rx_opt.wscale_ok) {
5740 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5741 tp->window_clamp = min(tp->window_clamp, 65535U);
5742 }
5743
5744 if (tp->rx_opt.saw_tstamp) {
5745 tp->rx_opt.tstamp_ok = 1;
5746 tp->tcp_header_len =
5747 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5748 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5749 tcp_store_ts_recent(tp);
5750 } else {
5751 tp->tcp_header_len = sizeof(struct tcphdr);
5752 }
5753
5754 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5755 tcp_enable_fack(tp);
5756
5757 tcp_mtup_init(sk);
5758 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5759 tcp_initialize_rcv_mss(sk);
5760
5761 /* Remember, tcp_poll() does not lock socket!
5762 * Change state from SYN-SENT only after copied_seq
5763 * is initialized. */
5764 tp->copied_seq = tp->rcv_nxt;
5765
5766 smp_mb();
5767
5768 tcp_finish_connect(sk, skb);
5769
5770 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5771 tcp_rcv_fastopen_synack(sk, skb, &foc);
5772
5773 if (!sock_flag(sk, SOCK_DEAD)) {
5774 sk->sk_state_change(sk);
5775 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5776 }
5777 if (fastopen_fail)
5778 return -1;
5779 if (sk->sk_write_pending ||
5780 icsk->icsk_accept_queue.rskq_defer_accept ||
5781 icsk->icsk_ack.pingpong) {
5782 /* Save one ACK. Data will be ready after
5783 * several ticks, if write_pending is set.
5784 *
5785 * It may be deleted, but with this feature tcpdumps
5786 * look so _wonderfully_ clever, that I was not able
5787 * to stand against the temptation 8) --ANK
5788 */
5789 inet_csk_schedule_ack(sk);
5790 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5791 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5792 TCP_DELACK_MAX, TCP_RTO_MAX);
5793
5794 discard:
5795 tcp_drop(sk, skb);
5796 return 0;
5797 } else {
5798 tcp_send_ack(sk);
5799 }
5800 return -1;
5801 }
5802
5803 /* No ACK in the segment */
5804
5805 if (th->rst) {
5806 /* rfc793:
5807 * "If the RST bit is set
5808 *
5809 * Otherwise (no ACK) drop the segment and return."
5810 */
5811
5812 goto discard_and_undo;
5813 }
5814
5815 /* PAWS check. */
5816 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5817 tcp_paws_reject(&tp->rx_opt, 0))
5818 goto discard_and_undo;
5819
5820 if (th->syn) {
5821 /* We see SYN without ACK. It is attempt of
5822 * simultaneous connect with crossed SYNs.
5823 * Particularly, it can be connect to self.
5824 */
5825 tcp_set_state(sk, TCP_SYN_RECV);
5826
5827 if (tp->rx_opt.saw_tstamp) {
5828 tp->rx_opt.tstamp_ok = 1;
5829 tcp_store_ts_recent(tp);
5830 tp->tcp_header_len =
5831 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5832 } else {
5833 tp->tcp_header_len = sizeof(struct tcphdr);
5834 }
5835
5836 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5837 tp->copied_seq = tp->rcv_nxt;
5838 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5839
5840 /* RFC1323: The window in SYN & SYN/ACK segments is
5841 * never scaled.
5842 */
5843 tp->snd_wnd = ntohs(th->window);
5844 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5845 tp->max_window = tp->snd_wnd;
5846
5847 tcp_ecn_rcv_syn(tp, th);
5848
5849 tcp_mtup_init(sk);
5850 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5851 tcp_initialize_rcv_mss(sk);
5852
5853 tcp_send_synack(sk);
5854 #if 0
5855 /* Note, we could accept data and URG from this segment.
5856 * There are no obstacles to make this (except that we must
5857 * either change tcp_recvmsg() to prevent it from returning data
5858 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5859 *
5860 * However, if we ignore data in ACKless segments sometimes,
5861 * we have no reasons to accept it sometimes.
5862 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5863 * is not flawless. So, discard packet for sanity.
5864 * Uncomment this return to process the data.
5865 */
5866 return -1;
5867 #else
5868 goto discard;
5869 #endif
5870 }
5871 /* "fifth, if neither of the SYN or RST bits is set then
5872 * drop the segment and return."
5873 */
5874
5875 discard_and_undo:
5876 tcp_clear_options(&tp->rx_opt);
5877 tp->rx_opt.mss_clamp = saved_clamp;
5878 goto discard;
5879
5880 reset_and_undo:
5881 tcp_clear_options(&tp->rx_opt);
5882 tp->rx_opt.mss_clamp = saved_clamp;
5883 return 1;
5884 }
5885
5886 /*
5887 * This function implements the receiving procedure of RFC 793 for
5888 * all states except ESTABLISHED and TIME_WAIT.
5889 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5890 * address independent.
5891 */
5892
5893 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5894 {
5895 struct tcp_sock *tp = tcp_sk(sk);
5896 struct inet_connection_sock *icsk = inet_csk(sk);
5897 const struct tcphdr *th = tcp_hdr(skb);
5898 struct request_sock *req;
5899 int queued = 0;
5900 bool acceptable;
5901
5902 switch (sk->sk_state) {
5903 case TCP_CLOSE:
5904 goto discard;
5905
5906 case TCP_LISTEN:
5907 if (th->ack)
5908 return 1;
5909
5910 if (th->rst)
5911 goto discard;
5912
5913 if (th->syn) {
5914 if (th->fin)
5915 goto discard;
5916 /* It is possible that we process SYN packets from backlog,
5917 * so we need to make sure to disable BH and RCU right there.
5918 */
5919 rcu_read_lock();
5920 local_bh_disable();
5921 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5922 local_bh_enable();
5923 rcu_read_unlock();
5924
5925 if (!acceptable)
5926 return 1;
5927 consume_skb(skb);
5928 return 0;
5929 }
5930 goto discard;
5931
5932 case TCP_SYN_SENT:
5933 tp->rx_opt.saw_tstamp = 0;
5934 tcp_mstamp_refresh(tp);
5935 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5936 if (queued >= 0)
5937 return queued;
5938
5939 /* Do step6 onward by hand. */
5940 tcp_urg(sk, skb, th);
5941 __kfree_skb(skb);
5942 tcp_data_snd_check(sk);
5943 return 0;
5944 }
5945
5946 tcp_mstamp_refresh(tp);
5947 tp->rx_opt.saw_tstamp = 0;
5948 req = tp->fastopen_rsk;
5949 if (req) {
5950 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5951 sk->sk_state != TCP_FIN_WAIT1);
5952
5953 if (!tcp_check_req(sk, skb, req, true))
5954 goto discard;
5955 }
5956
5957 if (!th->ack && !th->rst && !th->syn)
5958 goto discard;
5959
5960 if (!tcp_validate_incoming(sk, skb, th, 0))
5961 return 0;
5962
5963 /* step 5: check the ACK field */
5964 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5965 FLAG_UPDATE_TS_RECENT |
5966 FLAG_NO_CHALLENGE_ACK) > 0;
5967
5968 if (!acceptable) {
5969 if (sk->sk_state == TCP_SYN_RECV)
5970 return 1; /* send one RST */
5971 tcp_send_challenge_ack(sk, skb);
5972 goto discard;
5973 }
5974 switch (sk->sk_state) {
5975 case TCP_SYN_RECV:
5976 if (!tp->srtt_us)
5977 tcp_synack_rtt_meas(sk, req);
5978
5979 /* Once we leave TCP_SYN_RECV, we no longer need req
5980 * so release it.
5981 */
5982 if (req) {
5983 inet_csk(sk)->icsk_retransmits = 0;
5984 reqsk_fastopen_remove(sk, req, false);
5985 } else {
5986 /* Make sure socket is routed, for correct metrics. */
5987 icsk->icsk_af_ops->rebuild_header(sk);
5988 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5989 tcp_init_congestion_control(sk);
5990
5991 tcp_mtup_init(sk);
5992 tp->copied_seq = tp->rcv_nxt;
5993 tcp_init_buffer_space(sk);
5994 }
5995 smp_mb();
5996 tcp_set_state(sk, TCP_ESTABLISHED);
5997 sk->sk_state_change(sk);
5998
5999 /* Note, that this wakeup is only for marginal crossed SYN case.
6000 * Passively open sockets are not waked up, because
6001 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6002 */
6003 if (sk->sk_socket)
6004 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6005
6006 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6007 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6008 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6009
6010 if (tp->rx_opt.tstamp_ok)
6011 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6012
6013 if (req) {
6014 /* Re-arm the timer because data may have been sent out.
6015 * This is similar to the regular data transmission case
6016 * when new data has just been ack'ed.
6017 *
6018 * (TFO) - we could try to be more aggressive and
6019 * retransmitting any data sooner based on when they
6020 * are sent out.
6021 */
6022 tcp_rearm_rto(sk);
6023 } else
6024 tcp_init_metrics(sk);
6025
6026 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6027 tcp_update_pacing_rate(sk);
6028
6029 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6030 tp->lsndtime = tcp_jiffies32;
6031
6032 tcp_initialize_rcv_mss(sk);
6033 tcp_fast_path_on(tp);
6034 break;
6035
6036 case TCP_FIN_WAIT1: {
6037 int tmo;
6038
6039 /* If we enter the TCP_FIN_WAIT1 state and we are a
6040 * Fast Open socket and this is the first acceptable
6041 * ACK we have received, this would have acknowledged
6042 * our SYNACK so stop the SYNACK timer.
6043 */
6044 if (req) {
6045 /* We no longer need the request sock. */
6046 reqsk_fastopen_remove(sk, req, false);
6047 tcp_rearm_rto(sk);
6048 }
6049 if (tp->snd_una != tp->write_seq)
6050 break;
6051
6052 tcp_set_state(sk, TCP_FIN_WAIT2);
6053 sk->sk_shutdown |= SEND_SHUTDOWN;
6054
6055 sk_dst_confirm(sk);
6056
6057 if (!sock_flag(sk, SOCK_DEAD)) {
6058 /* Wake up lingering close() */
6059 sk->sk_state_change(sk);
6060 break;
6061 }
6062
6063 if (tp->linger2 < 0) {
6064 tcp_done(sk);
6065 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6066 return 1;
6067 }
6068 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6069 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6070 /* Receive out of order FIN after close() */
6071 if (tp->syn_fastopen && th->fin)
6072 tcp_fastopen_active_disable(sk);
6073 tcp_done(sk);
6074 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6075 return 1;
6076 }
6077
6078 tmo = tcp_fin_time(sk);
6079 if (tmo > TCP_TIMEWAIT_LEN) {
6080 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6081 } else if (th->fin || sock_owned_by_user(sk)) {
6082 /* Bad case. We could lose such FIN otherwise.
6083 * It is not a big problem, but it looks confusing
6084 * and not so rare event. We still can lose it now,
6085 * if it spins in bh_lock_sock(), but it is really
6086 * marginal case.
6087 */
6088 inet_csk_reset_keepalive_timer(sk, tmo);
6089 } else {
6090 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6091 goto discard;
6092 }
6093 break;
6094 }
6095
6096 case TCP_CLOSING:
6097 if (tp->snd_una == tp->write_seq) {
6098 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6099 goto discard;
6100 }
6101 break;
6102
6103 case TCP_LAST_ACK:
6104 if (tp->snd_una == tp->write_seq) {
6105 tcp_update_metrics(sk);
6106 tcp_done(sk);
6107 goto discard;
6108 }
6109 break;
6110 }
6111
6112 /* step 6: check the URG bit */
6113 tcp_urg(sk, skb, th);
6114
6115 /* step 7: process the segment text */
6116 switch (sk->sk_state) {
6117 case TCP_CLOSE_WAIT:
6118 case TCP_CLOSING:
6119 case TCP_LAST_ACK:
6120 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6121 break;
6122 case TCP_FIN_WAIT1:
6123 case TCP_FIN_WAIT2:
6124 /* RFC 793 says to queue data in these states,
6125 * RFC 1122 says we MUST send a reset.
6126 * BSD 4.4 also does reset.
6127 */
6128 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6129 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6130 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6131 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6132 tcp_reset(sk);
6133 return 1;
6134 }
6135 }
6136 /* Fall through */
6137 case TCP_ESTABLISHED:
6138 tcp_data_queue(sk, skb);
6139 queued = 1;
6140 break;
6141 }
6142
6143 /* tcp_data could move socket to TIME-WAIT */
6144 if (sk->sk_state != TCP_CLOSE) {
6145 tcp_data_snd_check(sk);
6146 tcp_ack_snd_check(sk);
6147 }
6148
6149 if (!queued) {
6150 discard:
6151 tcp_drop(sk, skb);
6152 }
6153 return 0;
6154 }
6155 EXPORT_SYMBOL(tcp_rcv_state_process);
6156
6157 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6158 {
6159 struct inet_request_sock *ireq = inet_rsk(req);
6160
6161 if (family == AF_INET)
6162 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6163 &ireq->ir_rmt_addr, port);
6164 #if IS_ENABLED(CONFIG_IPV6)
6165 else if (family == AF_INET6)
6166 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6167 &ireq->ir_v6_rmt_addr, port);
6168 #endif
6169 }
6170
6171 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6172 *
6173 * If we receive a SYN packet with these bits set, it means a
6174 * network is playing bad games with TOS bits. In order to
6175 * avoid possible false congestion notifications, we disable
6176 * TCP ECN negotiation.
6177 *
6178 * Exception: tcp_ca wants ECN. This is required for DCTCP
6179 * congestion control: Linux DCTCP asserts ECT on all packets,
6180 * including SYN, which is most optimal solution; however,
6181 * others, such as FreeBSD do not.
6182 */
6183 static void tcp_ecn_create_request(struct request_sock *req,
6184 const struct sk_buff *skb,
6185 const struct sock *listen_sk,
6186 const struct dst_entry *dst)
6187 {
6188 const struct tcphdr *th = tcp_hdr(skb);
6189 const struct net *net = sock_net(listen_sk);
6190 bool th_ecn = th->ece && th->cwr;
6191 bool ect, ecn_ok;
6192 u32 ecn_ok_dst;
6193
6194 if (!th_ecn)
6195 return;
6196
6197 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6198 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6199 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6200
6201 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6202 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6203 tcp_bpf_ca_needs_ecn((struct sock *)req))
6204 inet_rsk(req)->ecn_ok = 1;
6205 }
6206
6207 static void tcp_openreq_init(struct request_sock *req,
6208 const struct tcp_options_received *rx_opt,
6209 struct sk_buff *skb, const struct sock *sk)
6210 {
6211 struct inet_request_sock *ireq = inet_rsk(req);
6212
6213 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6214 req->cookie_ts = 0;
6215 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6216 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6217 tcp_rsk(req)->snt_synack = tcp_clock_us();
6218 tcp_rsk(req)->last_oow_ack_time = 0;
6219 req->mss = rx_opt->mss_clamp;
6220 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6221 ireq->tstamp_ok = rx_opt->tstamp_ok;
6222 ireq->sack_ok = rx_opt->sack_ok;
6223 ireq->snd_wscale = rx_opt->snd_wscale;
6224 ireq->wscale_ok = rx_opt->wscale_ok;
6225 ireq->acked = 0;
6226 ireq->ecn_ok = 0;
6227 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6228 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6229 ireq->ir_mark = inet_request_mark(sk, skb);
6230 }
6231
6232 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6233 struct sock *sk_listener,
6234 bool attach_listener)
6235 {
6236 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6237 attach_listener);
6238
6239 if (req) {
6240 struct inet_request_sock *ireq = inet_rsk(req);
6241
6242 ireq->ireq_opt = NULL;
6243 #if IS_ENABLED(CONFIG_IPV6)
6244 ireq->pktopts = NULL;
6245 #endif
6246 atomic64_set(&ireq->ir_cookie, 0);
6247 ireq->ireq_state = TCP_NEW_SYN_RECV;
6248 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6249 ireq->ireq_family = sk_listener->sk_family;
6250 }
6251
6252 return req;
6253 }
6254 EXPORT_SYMBOL(inet_reqsk_alloc);
6255
6256 /*
6257 * Return true if a syncookie should be sent
6258 */
6259 static bool tcp_syn_flood_action(const struct sock *sk,
6260 const struct sk_buff *skb,
6261 const char *proto)
6262 {
6263 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6264 const char *msg = "Dropping request";
6265 bool want_cookie = false;
6266 struct net *net = sock_net(sk);
6267
6268 #ifdef CONFIG_SYN_COOKIES
6269 if (net->ipv4.sysctl_tcp_syncookies) {
6270 msg = "Sending cookies";
6271 want_cookie = true;
6272 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6273 } else
6274 #endif
6275 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6276
6277 if (!queue->synflood_warned &&
6278 net->ipv4.sysctl_tcp_syncookies != 2 &&
6279 xchg(&queue->synflood_warned, 1) == 0)
6280 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6281 proto, ntohs(tcp_hdr(skb)->dest), msg);
6282
6283 return want_cookie;
6284 }
6285
6286 static void tcp_reqsk_record_syn(const struct sock *sk,
6287 struct request_sock *req,
6288 const struct sk_buff *skb)
6289 {
6290 if (tcp_sk(sk)->save_syn) {
6291 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6292 u32 *copy;
6293
6294 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6295 if (copy) {
6296 copy[0] = len;
6297 memcpy(&copy[1], skb_network_header(skb), len);
6298 req->saved_syn = copy;
6299 }
6300 }
6301 }
6302
6303 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6304 const struct tcp_request_sock_ops *af_ops,
6305 struct sock *sk, struct sk_buff *skb)
6306 {
6307 struct tcp_fastopen_cookie foc = { .len = -1 };
6308 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6309 struct tcp_options_received tmp_opt;
6310 struct tcp_sock *tp = tcp_sk(sk);
6311 struct net *net = sock_net(sk);
6312 struct sock *fastopen_sk = NULL;
6313 struct request_sock *req;
6314 bool want_cookie = false;
6315 struct dst_entry *dst;
6316 struct flowi fl;
6317
6318 /* TW buckets are converted to open requests without
6319 * limitations, they conserve resources and peer is
6320 * evidently real one.
6321 */
6322 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6323 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6324 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6325 if (!want_cookie)
6326 goto drop;
6327 }
6328
6329 if (sk_acceptq_is_full(sk)) {
6330 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6331 goto drop;
6332 }
6333
6334 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6335 if (!req)
6336 goto drop;
6337
6338 tcp_rsk(req)->af_specific = af_ops;
6339 tcp_rsk(req)->ts_off = 0;
6340
6341 tcp_clear_options(&tmp_opt);
6342 tmp_opt.mss_clamp = af_ops->mss_clamp;
6343 tmp_opt.user_mss = tp->rx_opt.user_mss;
6344 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6345 want_cookie ? NULL : &foc);
6346
6347 if (want_cookie && !tmp_opt.saw_tstamp)
6348 tcp_clear_options(&tmp_opt);
6349
6350 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6351 tcp_openreq_init(req, &tmp_opt, skb, sk);
6352 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6353
6354 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6355 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6356
6357 af_ops->init_req(req, sk, skb);
6358
6359 if (security_inet_conn_request(sk, skb, req))
6360 goto drop_and_free;
6361
6362 if (tmp_opt.tstamp_ok)
6363 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6364
6365 dst = af_ops->route_req(sk, &fl, req);
6366 if (!dst)
6367 goto drop_and_free;
6368
6369 if (!want_cookie && !isn) {
6370 /* Kill the following clause, if you dislike this way. */
6371 if (!net->ipv4.sysctl_tcp_syncookies &&
6372 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6373 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6374 !tcp_peer_is_proven(req, dst)) {
6375 /* Without syncookies last quarter of
6376 * backlog is filled with destinations,
6377 * proven to be alive.
6378 * It means that we continue to communicate
6379 * to destinations, already remembered
6380 * to the moment of synflood.
6381 */
6382 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6383 rsk_ops->family);
6384 goto drop_and_release;
6385 }
6386
6387 isn = af_ops->init_seq(skb);
6388 }
6389
6390 tcp_ecn_create_request(req, skb, sk, dst);
6391
6392 if (want_cookie) {
6393 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6394 req->cookie_ts = tmp_opt.tstamp_ok;
6395 if (!tmp_opt.tstamp_ok)
6396 inet_rsk(req)->ecn_ok = 0;
6397 }
6398
6399 tcp_rsk(req)->snt_isn = isn;
6400 tcp_rsk(req)->txhash = net_tx_rndhash();
6401 tcp_openreq_init_rwin(req, sk, dst);
6402 if (!want_cookie) {
6403 tcp_reqsk_record_syn(sk, req, skb);
6404 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
6405 }
6406 if (fastopen_sk) {
6407 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6408 &foc, TCP_SYNACK_FASTOPEN);
6409 /* Add the child socket directly into the accept queue */
6410 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6411 reqsk_fastopen_remove(fastopen_sk, req, false);
6412 bh_unlock_sock(fastopen_sk);
6413 sock_put(fastopen_sk);
6414 reqsk_put(req);
6415 goto drop;
6416 }
6417 sk->sk_data_ready(sk);
6418 bh_unlock_sock(fastopen_sk);
6419 sock_put(fastopen_sk);
6420 } else {
6421 tcp_rsk(req)->tfo_listener = false;
6422 if (!want_cookie)
6423 inet_csk_reqsk_queue_hash_add(sk, req,
6424 tcp_timeout_init((struct sock *)req));
6425 af_ops->send_synack(sk, dst, &fl, req, &foc,
6426 !want_cookie ? TCP_SYNACK_NORMAL :
6427 TCP_SYNACK_COOKIE);
6428 if (want_cookie) {
6429 reqsk_free(req);
6430 return 0;
6431 }
6432 }
6433 reqsk_put(req);
6434 return 0;
6435
6436 drop_and_release:
6437 dst_release(dst);
6438 drop_and_free:
6439 reqsk_free(req);
6440 drop:
6441 tcp_listendrop(sk);
6442 return 0;
6443 }
6444 EXPORT_SYMBOL(tcp_conn_request);