mm: remove SWAP_DIRTY in ttu
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57
58 #include "internal.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62
63 struct scan_control {
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 /* This context's GFP mask */
68 gfp_t gfp_mask;
69
70 /* Allocation order */
71 int order;
72
73 /*
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
76 */
77 nodemask_t *nodemask;
78
79 /*
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
82 */
83 struct mem_cgroup *target_mem_cgroup;
84
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
87
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
90
91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
92 unsigned int may_writepage:1;
93
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
96
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
99
100 /*
101 * Cgroups are not reclaimed below their configured memory.low,
102 * unless we threaten to OOM. If any cgroups are skipped due to
103 * memory.low and nothing was reclaimed, go back for memory.low.
104 */
105 unsigned int memcg_low_reclaim:1;
106 unsigned int memcg_low_skipped:1;
107
108 unsigned int hibernation_mode:1;
109
110 /* One of the zones is ready for compaction */
111 unsigned int compaction_ready:1;
112
113 /* Incremented by the number of inactive pages that were scanned */
114 unsigned long nr_scanned;
115
116 /* Number of pages freed so far during a call to shrink_zones() */
117 unsigned long nr_reclaimed;
118 };
119
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
125 \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
128 } \
129 } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
139 \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
142 } \
143 } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147
148 /*
149 * From 0 .. 100. Higher means more swappy.
150 */
151 int vm_swappiness = 60;
152 /*
153 * The total number of pages which are beyond the high watermark within all
154 * zones.
155 */
156 unsigned long vm_total_pages;
157
158 static LIST_HEAD(shrinker_list);
159 static DECLARE_RWSEM(shrinker_rwsem);
160
161 #ifdef CONFIG_MEMCG
162 static bool global_reclaim(struct scan_control *sc)
163 {
164 return !sc->target_mem_cgroup;
165 }
166
167 /**
168 * sane_reclaim - is the usual dirty throttling mechanism operational?
169 * @sc: scan_control in question
170 *
171 * The normal page dirty throttling mechanism in balance_dirty_pages() is
172 * completely broken with the legacy memcg and direct stalling in
173 * shrink_page_list() is used for throttling instead, which lacks all the
174 * niceties such as fairness, adaptive pausing, bandwidth proportional
175 * allocation and configurability.
176 *
177 * This function tests whether the vmscan currently in progress can assume
178 * that the normal dirty throttling mechanism is operational.
179 */
180 static bool sane_reclaim(struct scan_control *sc)
181 {
182 struct mem_cgroup *memcg = sc->target_mem_cgroup;
183
184 if (!memcg)
185 return true;
186 #ifdef CONFIG_CGROUP_WRITEBACK
187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 return true;
189 #endif
190 return false;
191 }
192 #else
193 static bool global_reclaim(struct scan_control *sc)
194 {
195 return true;
196 }
197
198 static bool sane_reclaim(struct scan_control *sc)
199 {
200 return true;
201 }
202 #endif
203
204 /*
205 * This misses isolated pages which are not accounted for to save counters.
206 * As the data only determines if reclaim or compaction continues, it is
207 * not expected that isolated pages will be a dominating factor.
208 */
209 unsigned long zone_reclaimable_pages(struct zone *zone)
210 {
211 unsigned long nr;
212
213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 if (get_nr_swap_pages() > 0)
216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
218
219 return nr;
220 }
221
222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
223 {
224 unsigned long nr;
225
226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229
230 if (get_nr_swap_pages() > 0)
231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234
235 return nr;
236 }
237
238 /**
239 * lruvec_lru_size - Returns the number of pages on the given LRU list.
240 * @lruvec: lru vector
241 * @lru: lru to use
242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 unsigned long lru_size;
247 int zid;
248
249 if (!mem_cgroup_disabled())
250 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 else
252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253
254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 unsigned long size;
257
258 if (!managed_zone(zone))
259 continue;
260
261 if (!mem_cgroup_disabled())
262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 else
264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 NR_ZONE_LRU_BASE + lru);
266 lru_size -= min(size, lru_size);
267 }
268
269 return lru_size;
270
271 }
272
273 /*
274 * Add a shrinker callback to be called from the vm.
275 */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 size_t size = sizeof(*shrinker->nr_deferred);
279
280 if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 size *= nr_node_ids;
282
283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 if (!shrinker->nr_deferred)
285 return -ENOMEM;
286
287 down_write(&shrinker_rwsem);
288 list_add_tail(&shrinker->list, &shrinker_list);
289 up_write(&shrinker_rwsem);
290 return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293
294 /*
295 * Remove one
296 */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 down_write(&shrinker_rwsem);
300 list_del(&shrinker->list);
301 up_write(&shrinker_rwsem);
302 kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305
306 #define SHRINK_BATCH 128
307
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 struct shrinker *shrinker,
310 unsigned long nr_scanned,
311 unsigned long nr_eligible)
312 {
313 unsigned long freed = 0;
314 unsigned long long delta;
315 long total_scan;
316 long freeable;
317 long nr;
318 long new_nr;
319 int nid = shrinkctl->nid;
320 long batch_size = shrinker->batch ? shrinker->batch
321 : SHRINK_BATCH;
322 long scanned = 0, next_deferred;
323
324 freeable = shrinker->count_objects(shrinker, shrinkctl);
325 if (freeable == 0)
326 return 0;
327
328 /*
329 * copy the current shrinker scan count into a local variable
330 * and zero it so that other concurrent shrinker invocations
331 * don't also do this scanning work.
332 */
333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334
335 total_scan = nr;
336 delta = (4 * nr_scanned) / shrinker->seeks;
337 delta *= freeable;
338 do_div(delta, nr_eligible + 1);
339 total_scan += delta;
340 if (total_scan < 0) {
341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 shrinker->scan_objects, total_scan);
343 total_scan = freeable;
344 next_deferred = nr;
345 } else
346 next_deferred = total_scan;
347
348 /*
349 * We need to avoid excessive windup on filesystem shrinkers
350 * due to large numbers of GFP_NOFS allocations causing the
351 * shrinkers to return -1 all the time. This results in a large
352 * nr being built up so when a shrink that can do some work
353 * comes along it empties the entire cache due to nr >>>
354 * freeable. This is bad for sustaining a working set in
355 * memory.
356 *
357 * Hence only allow the shrinker to scan the entire cache when
358 * a large delta change is calculated directly.
359 */
360 if (delta < freeable / 4)
361 total_scan = min(total_scan, freeable / 2);
362
363 /*
364 * Avoid risking looping forever due to too large nr value:
365 * never try to free more than twice the estimate number of
366 * freeable entries.
367 */
368 if (total_scan > freeable * 2)
369 total_scan = freeable * 2;
370
371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 nr_scanned, nr_eligible,
373 freeable, delta, total_scan);
374
375 /*
376 * Normally, we should not scan less than batch_size objects in one
377 * pass to avoid too frequent shrinker calls, but if the slab has less
378 * than batch_size objects in total and we are really tight on memory,
379 * we will try to reclaim all available objects, otherwise we can end
380 * up failing allocations although there are plenty of reclaimable
381 * objects spread over several slabs with usage less than the
382 * batch_size.
383 *
384 * We detect the "tight on memory" situations by looking at the total
385 * number of objects we want to scan (total_scan). If it is greater
386 * than the total number of objects on slab (freeable), we must be
387 * scanning at high prio and therefore should try to reclaim as much as
388 * possible.
389 */
390 while (total_scan >= batch_size ||
391 total_scan >= freeable) {
392 unsigned long ret;
393 unsigned long nr_to_scan = min(batch_size, total_scan);
394
395 shrinkctl->nr_to_scan = nr_to_scan;
396 ret = shrinker->scan_objects(shrinker, shrinkctl);
397 if (ret == SHRINK_STOP)
398 break;
399 freed += ret;
400
401 count_vm_events(SLABS_SCANNED, nr_to_scan);
402 total_scan -= nr_to_scan;
403 scanned += nr_to_scan;
404
405 cond_resched();
406 }
407
408 if (next_deferred >= scanned)
409 next_deferred -= scanned;
410 else
411 next_deferred = 0;
412 /*
413 * move the unused scan count back into the shrinker in a
414 * manner that handles concurrent updates. If we exhausted the
415 * scan, there is no need to do an update.
416 */
417 if (next_deferred > 0)
418 new_nr = atomic_long_add_return(next_deferred,
419 &shrinker->nr_deferred[nid]);
420 else
421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
422
423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
424 return freed;
425 }
426
427 /**
428 * shrink_slab - shrink slab caches
429 * @gfp_mask: allocation context
430 * @nid: node whose slab caches to target
431 * @memcg: memory cgroup whose slab caches to target
432 * @nr_scanned: pressure numerator
433 * @nr_eligible: pressure denominator
434 *
435 * Call the shrink functions to age shrinkable caches.
436 *
437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438 * unaware shrinkers will receive a node id of 0 instead.
439 *
440 * @memcg specifies the memory cgroup to target. If it is not NULL,
441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 * objects from the memory cgroup specified. Otherwise, only unaware
443 * shrinkers are called.
444 *
445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446 * the available objects should be scanned. Page reclaim for example
447 * passes the number of pages scanned and the number of pages on the
448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449 * when it encountered mapped pages. The ratio is further biased by
450 * the ->seeks setting of the shrink function, which indicates the
451 * cost to recreate an object relative to that of an LRU page.
452 *
453 * Returns the number of reclaimed slab objects.
454 */
455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 struct mem_cgroup *memcg,
457 unsigned long nr_scanned,
458 unsigned long nr_eligible)
459 {
460 struct shrinker *shrinker;
461 unsigned long freed = 0;
462
463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 return 0;
465
466 if (nr_scanned == 0)
467 nr_scanned = SWAP_CLUSTER_MAX;
468
469 if (!down_read_trylock(&shrinker_rwsem)) {
470 /*
471 * If we would return 0, our callers would understand that we
472 * have nothing else to shrink and give up trying. By returning
473 * 1 we keep it going and assume we'll be able to shrink next
474 * time.
475 */
476 freed = 1;
477 goto out;
478 }
479
480 list_for_each_entry(shrinker, &shrinker_list, list) {
481 struct shrink_control sc = {
482 .gfp_mask = gfp_mask,
483 .nid = nid,
484 .memcg = memcg,
485 };
486
487 /*
488 * If kernel memory accounting is disabled, we ignore
489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 * passing NULL for memcg.
491 */
492 if (memcg_kmem_enabled() &&
493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 continue;
495
496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 sc.nid = 0;
498
499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
500 }
501
502 up_read(&shrinker_rwsem);
503 out:
504 cond_resched();
505 return freed;
506 }
507
508 void drop_slab_node(int nid)
509 {
510 unsigned long freed;
511
512 do {
513 struct mem_cgroup *memcg = NULL;
514
515 freed = 0;
516 do {
517 freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 1000, 1000);
519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 } while (freed > 10);
521 }
522
523 void drop_slab(void)
524 {
525 int nid;
526
527 for_each_online_node(nid)
528 drop_slab_node(nid);
529 }
530
531 static inline int is_page_cache_freeable(struct page *page)
532 {
533 /*
534 * A freeable page cache page is referenced only by the caller
535 * that isolated the page, the page cache radix tree and
536 * optional buffer heads at page->private.
537 */
538 return page_count(page) - page_has_private(page) == 2;
539 }
540
541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
542 {
543 if (current->flags & PF_SWAPWRITE)
544 return 1;
545 if (!inode_write_congested(inode))
546 return 1;
547 if (inode_to_bdi(inode) == current->backing_dev_info)
548 return 1;
549 return 0;
550 }
551
552 /*
553 * We detected a synchronous write error writing a page out. Probably
554 * -ENOSPC. We need to propagate that into the address_space for a subsequent
555 * fsync(), msync() or close().
556 *
557 * The tricky part is that after writepage we cannot touch the mapping: nothing
558 * prevents it from being freed up. But we have a ref on the page and once
559 * that page is locked, the mapping is pinned.
560 *
561 * We're allowed to run sleeping lock_page() here because we know the caller has
562 * __GFP_FS.
563 */
564 static void handle_write_error(struct address_space *mapping,
565 struct page *page, int error)
566 {
567 lock_page(page);
568 if (page_mapping(page) == mapping)
569 mapping_set_error(mapping, error);
570 unlock_page(page);
571 }
572
573 /* possible outcome of pageout() */
574 typedef enum {
575 /* failed to write page out, page is locked */
576 PAGE_KEEP,
577 /* move page to the active list, page is locked */
578 PAGE_ACTIVATE,
579 /* page has been sent to the disk successfully, page is unlocked */
580 PAGE_SUCCESS,
581 /* page is clean and locked */
582 PAGE_CLEAN,
583 } pageout_t;
584
585 /*
586 * pageout is called by shrink_page_list() for each dirty page.
587 * Calls ->writepage().
588 */
589 static pageout_t pageout(struct page *page, struct address_space *mapping,
590 struct scan_control *sc)
591 {
592 /*
593 * If the page is dirty, only perform writeback if that write
594 * will be non-blocking. To prevent this allocation from being
595 * stalled by pagecache activity. But note that there may be
596 * stalls if we need to run get_block(). We could test
597 * PagePrivate for that.
598 *
599 * If this process is currently in __generic_file_write_iter() against
600 * this page's queue, we can perform writeback even if that
601 * will block.
602 *
603 * If the page is swapcache, write it back even if that would
604 * block, for some throttling. This happens by accident, because
605 * swap_backing_dev_info is bust: it doesn't reflect the
606 * congestion state of the swapdevs. Easy to fix, if needed.
607 */
608 if (!is_page_cache_freeable(page))
609 return PAGE_KEEP;
610 if (!mapping) {
611 /*
612 * Some data journaling orphaned pages can have
613 * page->mapping == NULL while being dirty with clean buffers.
614 */
615 if (page_has_private(page)) {
616 if (try_to_free_buffers(page)) {
617 ClearPageDirty(page);
618 pr_info("%s: orphaned page\n", __func__);
619 return PAGE_CLEAN;
620 }
621 }
622 return PAGE_KEEP;
623 }
624 if (mapping->a_ops->writepage == NULL)
625 return PAGE_ACTIVATE;
626 if (!may_write_to_inode(mapping->host, sc))
627 return PAGE_KEEP;
628
629 if (clear_page_dirty_for_io(page)) {
630 int res;
631 struct writeback_control wbc = {
632 .sync_mode = WB_SYNC_NONE,
633 .nr_to_write = SWAP_CLUSTER_MAX,
634 .range_start = 0,
635 .range_end = LLONG_MAX,
636 .for_reclaim = 1,
637 };
638
639 SetPageReclaim(page);
640 res = mapping->a_ops->writepage(page, &wbc);
641 if (res < 0)
642 handle_write_error(mapping, page, res);
643 if (res == AOP_WRITEPAGE_ACTIVATE) {
644 ClearPageReclaim(page);
645 return PAGE_ACTIVATE;
646 }
647
648 if (!PageWriteback(page)) {
649 /* synchronous write or broken a_ops? */
650 ClearPageReclaim(page);
651 }
652 trace_mm_vmscan_writepage(page);
653 inc_node_page_state(page, NR_VMSCAN_WRITE);
654 return PAGE_SUCCESS;
655 }
656
657 return PAGE_CLEAN;
658 }
659
660 /*
661 * Same as remove_mapping, but if the page is removed from the mapping, it
662 * gets returned with a refcount of 0.
663 */
664 static int __remove_mapping(struct address_space *mapping, struct page *page,
665 bool reclaimed)
666 {
667 unsigned long flags;
668
669 BUG_ON(!PageLocked(page));
670 BUG_ON(mapping != page_mapping(page));
671
672 spin_lock_irqsave(&mapping->tree_lock, flags);
673 /*
674 * The non racy check for a busy page.
675 *
676 * Must be careful with the order of the tests. When someone has
677 * a ref to the page, it may be possible that they dirty it then
678 * drop the reference. So if PageDirty is tested before page_count
679 * here, then the following race may occur:
680 *
681 * get_user_pages(&page);
682 * [user mapping goes away]
683 * write_to(page);
684 * !PageDirty(page) [good]
685 * SetPageDirty(page);
686 * put_page(page);
687 * !page_count(page) [good, discard it]
688 *
689 * [oops, our write_to data is lost]
690 *
691 * Reversing the order of the tests ensures such a situation cannot
692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693 * load is not satisfied before that of page->_refcount.
694 *
695 * Note that if SetPageDirty is always performed via set_page_dirty,
696 * and thus under tree_lock, then this ordering is not required.
697 */
698 if (!page_ref_freeze(page, 2))
699 goto cannot_free;
700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 if (unlikely(PageDirty(page))) {
702 page_ref_unfreeze(page, 2);
703 goto cannot_free;
704 }
705
706 if (PageSwapCache(page)) {
707 swp_entry_t swap = { .val = page_private(page) };
708 mem_cgroup_swapout(page, swap);
709 __delete_from_swap_cache(page);
710 spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 swapcache_free(swap);
712 } else {
713 void (*freepage)(struct page *);
714 void *shadow = NULL;
715
716 freepage = mapping->a_ops->freepage;
717 /*
718 * Remember a shadow entry for reclaimed file cache in
719 * order to detect refaults, thus thrashing, later on.
720 *
721 * But don't store shadows in an address space that is
722 * already exiting. This is not just an optizimation,
723 * inode reclaim needs to empty out the radix tree or
724 * the nodes are lost. Don't plant shadows behind its
725 * back.
726 *
727 * We also don't store shadows for DAX mappings because the
728 * only page cache pages found in these are zero pages
729 * covering holes, and because we don't want to mix DAX
730 * exceptional entries and shadow exceptional entries in the
731 * same page_tree.
732 */
733 if (reclaimed && page_is_file_cache(page) &&
734 !mapping_exiting(mapping) && !dax_mapping(mapping))
735 shadow = workingset_eviction(mapping, page);
736 __delete_from_page_cache(page, shadow);
737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
738
739 if (freepage != NULL)
740 freepage(page);
741 }
742
743 return 1;
744
745 cannot_free:
746 spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 return 0;
748 }
749
750 /*
751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
752 * someone else has a ref on the page, abort and return 0. If it was
753 * successfully detached, return 1. Assumes the caller has a single ref on
754 * this page.
755 */
756 int remove_mapping(struct address_space *mapping, struct page *page)
757 {
758 if (__remove_mapping(mapping, page, false)) {
759 /*
760 * Unfreezing the refcount with 1 rather than 2 effectively
761 * drops the pagecache ref for us without requiring another
762 * atomic operation.
763 */
764 page_ref_unfreeze(page, 1);
765 return 1;
766 }
767 return 0;
768 }
769
770 /**
771 * putback_lru_page - put previously isolated page onto appropriate LRU list
772 * @page: page to be put back to appropriate lru list
773 *
774 * Add previously isolated @page to appropriate LRU list.
775 * Page may still be unevictable for other reasons.
776 *
777 * lru_lock must not be held, interrupts must be enabled.
778 */
779 void putback_lru_page(struct page *page)
780 {
781 bool is_unevictable;
782 int was_unevictable = PageUnevictable(page);
783
784 VM_BUG_ON_PAGE(PageLRU(page), page);
785
786 redo:
787 ClearPageUnevictable(page);
788
789 if (page_evictable(page)) {
790 /*
791 * For evictable pages, we can use the cache.
792 * In event of a race, worst case is we end up with an
793 * unevictable page on [in]active list.
794 * We know how to handle that.
795 */
796 is_unevictable = false;
797 lru_cache_add(page);
798 } else {
799 /*
800 * Put unevictable pages directly on zone's unevictable
801 * list.
802 */
803 is_unevictable = true;
804 add_page_to_unevictable_list(page);
805 /*
806 * When racing with an mlock or AS_UNEVICTABLE clearing
807 * (page is unlocked) make sure that if the other thread
808 * does not observe our setting of PG_lru and fails
809 * isolation/check_move_unevictable_pages,
810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 * the page back to the evictable list.
812 *
813 * The other side is TestClearPageMlocked() or shmem_lock().
814 */
815 smp_mb();
816 }
817
818 /*
819 * page's status can change while we move it among lru. If an evictable
820 * page is on unevictable list, it never be freed. To avoid that,
821 * check after we added it to the list, again.
822 */
823 if (is_unevictable && page_evictable(page)) {
824 if (!isolate_lru_page(page)) {
825 put_page(page);
826 goto redo;
827 }
828 /* This means someone else dropped this page from LRU
829 * So, it will be freed or putback to LRU again. There is
830 * nothing to do here.
831 */
832 }
833
834 if (was_unevictable && !is_unevictable)
835 count_vm_event(UNEVICTABLE_PGRESCUED);
836 else if (!was_unevictable && is_unevictable)
837 count_vm_event(UNEVICTABLE_PGCULLED);
838
839 put_page(page); /* drop ref from isolate */
840 }
841
842 enum page_references {
843 PAGEREF_RECLAIM,
844 PAGEREF_RECLAIM_CLEAN,
845 PAGEREF_KEEP,
846 PAGEREF_ACTIVATE,
847 };
848
849 static enum page_references page_check_references(struct page *page,
850 struct scan_control *sc)
851 {
852 int referenced_ptes, referenced_page;
853 unsigned long vm_flags;
854
855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 &vm_flags);
857 referenced_page = TestClearPageReferenced(page);
858
859 /*
860 * Mlock lost the isolation race with us. Let try_to_unmap()
861 * move the page to the unevictable list.
862 */
863 if (vm_flags & VM_LOCKED)
864 return PAGEREF_RECLAIM;
865
866 if (referenced_ptes) {
867 if (PageSwapBacked(page))
868 return PAGEREF_ACTIVATE;
869 /*
870 * All mapped pages start out with page table
871 * references from the instantiating fault, so we need
872 * to look twice if a mapped file page is used more
873 * than once.
874 *
875 * Mark it and spare it for another trip around the
876 * inactive list. Another page table reference will
877 * lead to its activation.
878 *
879 * Note: the mark is set for activated pages as well
880 * so that recently deactivated but used pages are
881 * quickly recovered.
882 */
883 SetPageReferenced(page);
884
885 if (referenced_page || referenced_ptes > 1)
886 return PAGEREF_ACTIVATE;
887
888 /*
889 * Activate file-backed executable pages after first usage.
890 */
891 if (vm_flags & VM_EXEC)
892 return PAGEREF_ACTIVATE;
893
894 return PAGEREF_KEEP;
895 }
896
897 /* Reclaim if clean, defer dirty pages to writeback */
898 if (referenced_page && !PageSwapBacked(page))
899 return PAGEREF_RECLAIM_CLEAN;
900
901 return PAGEREF_RECLAIM;
902 }
903
904 /* Check if a page is dirty or under writeback */
905 static void page_check_dirty_writeback(struct page *page,
906 bool *dirty, bool *writeback)
907 {
908 struct address_space *mapping;
909
910 /*
911 * Anonymous pages are not handled by flushers and must be written
912 * from reclaim context. Do not stall reclaim based on them
913 */
914 if (!page_is_file_cache(page) ||
915 (PageAnon(page) && !PageSwapBacked(page))) {
916 *dirty = false;
917 *writeback = false;
918 return;
919 }
920
921 /* By default assume that the page flags are accurate */
922 *dirty = PageDirty(page);
923 *writeback = PageWriteback(page);
924
925 /* Verify dirty/writeback state if the filesystem supports it */
926 if (!page_has_private(page))
927 return;
928
929 mapping = page_mapping(page);
930 if (mapping && mapping->a_ops->is_dirty_writeback)
931 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 }
933
934 struct reclaim_stat {
935 unsigned nr_dirty;
936 unsigned nr_unqueued_dirty;
937 unsigned nr_congested;
938 unsigned nr_writeback;
939 unsigned nr_immediate;
940 unsigned nr_activate;
941 unsigned nr_ref_keep;
942 unsigned nr_unmap_fail;
943 };
944
945 /*
946 * shrink_page_list() returns the number of reclaimed pages
947 */
948 static unsigned long shrink_page_list(struct list_head *page_list,
949 struct pglist_data *pgdat,
950 struct scan_control *sc,
951 enum ttu_flags ttu_flags,
952 struct reclaim_stat *stat,
953 bool force_reclaim)
954 {
955 LIST_HEAD(ret_pages);
956 LIST_HEAD(free_pages);
957 int pgactivate = 0;
958 unsigned nr_unqueued_dirty = 0;
959 unsigned nr_dirty = 0;
960 unsigned nr_congested = 0;
961 unsigned nr_reclaimed = 0;
962 unsigned nr_writeback = 0;
963 unsigned nr_immediate = 0;
964 unsigned nr_ref_keep = 0;
965 unsigned nr_unmap_fail = 0;
966
967 cond_resched();
968
969 while (!list_empty(page_list)) {
970 struct address_space *mapping;
971 struct page *page;
972 int may_enter_fs;
973 enum page_references references = PAGEREF_RECLAIM_CLEAN;
974 bool dirty, writeback;
975 int ret = SWAP_SUCCESS;
976
977 cond_resched();
978
979 page = lru_to_page(page_list);
980 list_del(&page->lru);
981
982 if (!trylock_page(page))
983 goto keep;
984
985 VM_BUG_ON_PAGE(PageActive(page), page);
986
987 sc->nr_scanned++;
988
989 if (unlikely(!page_evictable(page)))
990 goto cull_mlocked;
991
992 if (!sc->may_unmap && page_mapped(page))
993 goto keep_locked;
994
995 /* Double the slab pressure for mapped and swapcache pages */
996 if ((page_mapped(page) || PageSwapCache(page)) &&
997 !(PageAnon(page) && !PageSwapBacked(page)))
998 sc->nr_scanned++;
999
1000 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1001 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1002
1003 /*
1004 * The number of dirty pages determines if a zone is marked
1005 * reclaim_congested which affects wait_iff_congested. kswapd
1006 * will stall and start writing pages if the tail of the LRU
1007 * is all dirty unqueued pages.
1008 */
1009 page_check_dirty_writeback(page, &dirty, &writeback);
1010 if (dirty || writeback)
1011 nr_dirty++;
1012
1013 if (dirty && !writeback)
1014 nr_unqueued_dirty++;
1015
1016 /*
1017 * Treat this page as congested if the underlying BDI is or if
1018 * pages are cycling through the LRU so quickly that the
1019 * pages marked for immediate reclaim are making it to the
1020 * end of the LRU a second time.
1021 */
1022 mapping = page_mapping(page);
1023 if (((dirty || writeback) && mapping &&
1024 inode_write_congested(mapping->host)) ||
1025 (writeback && PageReclaim(page)))
1026 nr_congested++;
1027
1028 /*
1029 * If a page at the tail of the LRU is under writeback, there
1030 * are three cases to consider.
1031 *
1032 * 1) If reclaim is encountering an excessive number of pages
1033 * under writeback and this page is both under writeback and
1034 * PageReclaim then it indicates that pages are being queued
1035 * for IO but are being recycled through the LRU before the
1036 * IO can complete. Waiting on the page itself risks an
1037 * indefinite stall if it is impossible to writeback the
1038 * page due to IO error or disconnected storage so instead
1039 * note that the LRU is being scanned too quickly and the
1040 * caller can stall after page list has been processed.
1041 *
1042 * 2) Global or new memcg reclaim encounters a page that is
1043 * not marked for immediate reclaim, or the caller does not
1044 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1045 * not to fs). In this case mark the page for immediate
1046 * reclaim and continue scanning.
1047 *
1048 * Require may_enter_fs because we would wait on fs, which
1049 * may not have submitted IO yet. And the loop driver might
1050 * enter reclaim, and deadlock if it waits on a page for
1051 * which it is needed to do the write (loop masks off
1052 * __GFP_IO|__GFP_FS for this reason); but more thought
1053 * would probably show more reasons.
1054 *
1055 * 3) Legacy memcg encounters a page that is already marked
1056 * PageReclaim. memcg does not have any dirty pages
1057 * throttling so we could easily OOM just because too many
1058 * pages are in writeback and there is nothing else to
1059 * reclaim. Wait for the writeback to complete.
1060 *
1061 * In cases 1) and 2) we activate the pages to get them out of
1062 * the way while we continue scanning for clean pages on the
1063 * inactive list and refilling from the active list. The
1064 * observation here is that waiting for disk writes is more
1065 * expensive than potentially causing reloads down the line.
1066 * Since they're marked for immediate reclaim, they won't put
1067 * memory pressure on the cache working set any longer than it
1068 * takes to write them to disk.
1069 */
1070 if (PageWriteback(page)) {
1071 /* Case 1 above */
1072 if (current_is_kswapd() &&
1073 PageReclaim(page) &&
1074 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1075 nr_immediate++;
1076 goto activate_locked;
1077
1078 /* Case 2 above */
1079 } else if (sane_reclaim(sc) ||
1080 !PageReclaim(page) || !may_enter_fs) {
1081 /*
1082 * This is slightly racy - end_page_writeback()
1083 * might have just cleared PageReclaim, then
1084 * setting PageReclaim here end up interpreted
1085 * as PageReadahead - but that does not matter
1086 * enough to care. What we do want is for this
1087 * page to have PageReclaim set next time memcg
1088 * reclaim reaches the tests above, so it will
1089 * then wait_on_page_writeback() to avoid OOM;
1090 * and it's also appropriate in global reclaim.
1091 */
1092 SetPageReclaim(page);
1093 nr_writeback++;
1094 goto activate_locked;
1095
1096 /* Case 3 above */
1097 } else {
1098 unlock_page(page);
1099 wait_on_page_writeback(page);
1100 /* then go back and try same page again */
1101 list_add_tail(&page->lru, page_list);
1102 continue;
1103 }
1104 }
1105
1106 if (!force_reclaim)
1107 references = page_check_references(page, sc);
1108
1109 switch (references) {
1110 case PAGEREF_ACTIVATE:
1111 goto activate_locked;
1112 case PAGEREF_KEEP:
1113 nr_ref_keep++;
1114 goto keep_locked;
1115 case PAGEREF_RECLAIM:
1116 case PAGEREF_RECLAIM_CLEAN:
1117 ; /* try to reclaim the page below */
1118 }
1119
1120 /*
1121 * Anonymous process memory has backing store?
1122 * Try to allocate it some swap space here.
1123 * Lazyfree page could be freed directly
1124 */
1125 if (PageAnon(page) && PageSwapBacked(page) &&
1126 !PageSwapCache(page)) {
1127 if (!(sc->gfp_mask & __GFP_IO))
1128 goto keep_locked;
1129 if (!add_to_swap(page, page_list))
1130 goto activate_locked;
1131 may_enter_fs = 1;
1132
1133 /* Adding to swap updated mapping */
1134 mapping = page_mapping(page);
1135 } else if (unlikely(PageTransHuge(page))) {
1136 /* Split file THP */
1137 if (split_huge_page_to_list(page, page_list))
1138 goto keep_locked;
1139 }
1140
1141 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1142
1143 /*
1144 * The page is mapped into the page tables of one or more
1145 * processes. Try to unmap it here.
1146 */
1147 if (page_mapped(page)) {
1148 switch (ret = try_to_unmap(page,
1149 ttu_flags | TTU_BATCH_FLUSH)) {
1150 case SWAP_FAIL:
1151 nr_unmap_fail++;
1152 goto activate_locked;
1153 case SWAP_AGAIN:
1154 goto keep_locked;
1155 case SWAP_MLOCK:
1156 goto cull_mlocked;
1157 case SWAP_SUCCESS:
1158 ; /* try to free the page below */
1159 }
1160 }
1161
1162 if (PageDirty(page)) {
1163 /*
1164 * Only kswapd can writeback filesystem pages
1165 * to avoid risk of stack overflow. But avoid
1166 * injecting inefficient single-page IO into
1167 * flusher writeback as much as possible: only
1168 * write pages when we've encountered many
1169 * dirty pages, and when we've already scanned
1170 * the rest of the LRU for clean pages and see
1171 * the same dirty pages again (PageReclaim).
1172 */
1173 if (page_is_file_cache(page) &&
1174 (!current_is_kswapd() || !PageReclaim(page) ||
1175 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1176 /*
1177 * Immediately reclaim when written back.
1178 * Similar in principal to deactivate_page()
1179 * except we already have the page isolated
1180 * and know it's dirty
1181 */
1182 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1183 SetPageReclaim(page);
1184
1185 goto activate_locked;
1186 }
1187
1188 if (references == PAGEREF_RECLAIM_CLEAN)
1189 goto keep_locked;
1190 if (!may_enter_fs)
1191 goto keep_locked;
1192 if (!sc->may_writepage)
1193 goto keep_locked;
1194
1195 /*
1196 * Page is dirty. Flush the TLB if a writable entry
1197 * potentially exists to avoid CPU writes after IO
1198 * starts and then write it out here.
1199 */
1200 try_to_unmap_flush_dirty();
1201 switch (pageout(page, mapping, sc)) {
1202 case PAGE_KEEP:
1203 goto keep_locked;
1204 case PAGE_ACTIVATE:
1205 goto activate_locked;
1206 case PAGE_SUCCESS:
1207 if (PageWriteback(page))
1208 goto keep;
1209 if (PageDirty(page))
1210 goto keep;
1211
1212 /*
1213 * A synchronous write - probably a ramdisk. Go
1214 * ahead and try to reclaim the page.
1215 */
1216 if (!trylock_page(page))
1217 goto keep;
1218 if (PageDirty(page) || PageWriteback(page))
1219 goto keep_locked;
1220 mapping = page_mapping(page);
1221 case PAGE_CLEAN:
1222 ; /* try to free the page below */
1223 }
1224 }
1225
1226 /*
1227 * If the page has buffers, try to free the buffer mappings
1228 * associated with this page. If we succeed we try to free
1229 * the page as well.
1230 *
1231 * We do this even if the page is PageDirty().
1232 * try_to_release_page() does not perform I/O, but it is
1233 * possible for a page to have PageDirty set, but it is actually
1234 * clean (all its buffers are clean). This happens if the
1235 * buffers were written out directly, with submit_bh(). ext3
1236 * will do this, as well as the blockdev mapping.
1237 * try_to_release_page() will discover that cleanness and will
1238 * drop the buffers and mark the page clean - it can be freed.
1239 *
1240 * Rarely, pages can have buffers and no ->mapping. These are
1241 * the pages which were not successfully invalidated in
1242 * truncate_complete_page(). We try to drop those buffers here
1243 * and if that worked, and the page is no longer mapped into
1244 * process address space (page_count == 1) it can be freed.
1245 * Otherwise, leave the page on the LRU so it is swappable.
1246 */
1247 if (page_has_private(page)) {
1248 if (!try_to_release_page(page, sc->gfp_mask))
1249 goto activate_locked;
1250 if (!mapping && page_count(page) == 1) {
1251 unlock_page(page);
1252 if (put_page_testzero(page))
1253 goto free_it;
1254 else {
1255 /*
1256 * rare race with speculative reference.
1257 * the speculative reference will free
1258 * this page shortly, so we may
1259 * increment nr_reclaimed here (and
1260 * leave it off the LRU).
1261 */
1262 nr_reclaimed++;
1263 continue;
1264 }
1265 }
1266 }
1267
1268 if (PageAnon(page) && !PageSwapBacked(page)) {
1269 /* follow __remove_mapping for reference */
1270 if (!page_ref_freeze(page, 1))
1271 goto keep_locked;
1272 if (PageDirty(page)) {
1273 page_ref_unfreeze(page, 1);
1274 goto keep_locked;
1275 }
1276
1277 count_vm_event(PGLAZYFREED);
1278 } else if (!mapping || !__remove_mapping(mapping, page, true))
1279 goto keep_locked;
1280 /*
1281 * At this point, we have no other references and there is
1282 * no way to pick any more up (removed from LRU, removed
1283 * from pagecache). Can use non-atomic bitops now (and
1284 * we obviously don't have to worry about waking up a process
1285 * waiting on the page lock, because there are no references.
1286 */
1287 __ClearPageLocked(page);
1288 free_it:
1289 nr_reclaimed++;
1290
1291 /*
1292 * Is there need to periodically free_page_list? It would
1293 * appear not as the counts should be low
1294 */
1295 list_add(&page->lru, &free_pages);
1296 continue;
1297
1298 cull_mlocked:
1299 if (PageSwapCache(page))
1300 try_to_free_swap(page);
1301 unlock_page(page);
1302 list_add(&page->lru, &ret_pages);
1303 continue;
1304
1305 activate_locked:
1306 /* Not a candidate for swapping, so reclaim swap space. */
1307 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1308 try_to_free_swap(page);
1309 VM_BUG_ON_PAGE(PageActive(page), page);
1310 SetPageActive(page);
1311 pgactivate++;
1312 keep_locked:
1313 unlock_page(page);
1314 keep:
1315 list_add(&page->lru, &ret_pages);
1316 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1317 }
1318
1319 mem_cgroup_uncharge_list(&free_pages);
1320 try_to_unmap_flush();
1321 free_hot_cold_page_list(&free_pages, true);
1322
1323 list_splice(&ret_pages, page_list);
1324 count_vm_events(PGACTIVATE, pgactivate);
1325
1326 if (stat) {
1327 stat->nr_dirty = nr_dirty;
1328 stat->nr_congested = nr_congested;
1329 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1330 stat->nr_writeback = nr_writeback;
1331 stat->nr_immediate = nr_immediate;
1332 stat->nr_activate = pgactivate;
1333 stat->nr_ref_keep = nr_ref_keep;
1334 stat->nr_unmap_fail = nr_unmap_fail;
1335 }
1336 return nr_reclaimed;
1337 }
1338
1339 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1340 struct list_head *page_list)
1341 {
1342 struct scan_control sc = {
1343 .gfp_mask = GFP_KERNEL,
1344 .priority = DEF_PRIORITY,
1345 .may_unmap = 1,
1346 };
1347 unsigned long ret;
1348 struct page *page, *next;
1349 LIST_HEAD(clean_pages);
1350
1351 list_for_each_entry_safe(page, next, page_list, lru) {
1352 if (page_is_file_cache(page) && !PageDirty(page) &&
1353 !__PageMovable(page)) {
1354 ClearPageActive(page);
1355 list_move(&page->lru, &clean_pages);
1356 }
1357 }
1358
1359 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1360 TTU_IGNORE_ACCESS, NULL, true);
1361 list_splice(&clean_pages, page_list);
1362 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1363 return ret;
1364 }
1365
1366 /*
1367 * Attempt to remove the specified page from its LRU. Only take this page
1368 * if it is of the appropriate PageActive status. Pages which are being
1369 * freed elsewhere are also ignored.
1370 *
1371 * page: page to consider
1372 * mode: one of the LRU isolation modes defined above
1373 *
1374 * returns 0 on success, -ve errno on failure.
1375 */
1376 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1377 {
1378 int ret = -EINVAL;
1379
1380 /* Only take pages on the LRU. */
1381 if (!PageLRU(page))
1382 return ret;
1383
1384 /* Compaction should not handle unevictable pages but CMA can do so */
1385 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1386 return ret;
1387
1388 ret = -EBUSY;
1389
1390 /*
1391 * To minimise LRU disruption, the caller can indicate that it only
1392 * wants to isolate pages it will be able to operate on without
1393 * blocking - clean pages for the most part.
1394 *
1395 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1396 * that it is possible to migrate without blocking
1397 */
1398 if (mode & ISOLATE_ASYNC_MIGRATE) {
1399 /* All the caller can do on PageWriteback is block */
1400 if (PageWriteback(page))
1401 return ret;
1402
1403 if (PageDirty(page)) {
1404 struct address_space *mapping;
1405
1406 /*
1407 * Only pages without mappings or that have a
1408 * ->migratepage callback are possible to migrate
1409 * without blocking
1410 */
1411 mapping = page_mapping(page);
1412 if (mapping && !mapping->a_ops->migratepage)
1413 return ret;
1414 }
1415 }
1416
1417 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1418 return ret;
1419
1420 if (likely(get_page_unless_zero(page))) {
1421 /*
1422 * Be careful not to clear PageLRU until after we're
1423 * sure the page is not being freed elsewhere -- the
1424 * page release code relies on it.
1425 */
1426 ClearPageLRU(page);
1427 ret = 0;
1428 }
1429
1430 return ret;
1431 }
1432
1433
1434 /*
1435 * Update LRU sizes after isolating pages. The LRU size updates must
1436 * be complete before mem_cgroup_update_lru_size due to a santity check.
1437 */
1438 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1439 enum lru_list lru, unsigned long *nr_zone_taken)
1440 {
1441 int zid;
1442
1443 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1444 if (!nr_zone_taken[zid])
1445 continue;
1446
1447 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1448 #ifdef CONFIG_MEMCG
1449 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1450 #endif
1451 }
1452
1453 }
1454
1455 /*
1456 * zone_lru_lock is heavily contended. Some of the functions that
1457 * shrink the lists perform better by taking out a batch of pages
1458 * and working on them outside the LRU lock.
1459 *
1460 * For pagecache intensive workloads, this function is the hottest
1461 * spot in the kernel (apart from copy_*_user functions).
1462 *
1463 * Appropriate locks must be held before calling this function.
1464 *
1465 * @nr_to_scan: The number of pages to look through on the list.
1466 * @lruvec: The LRU vector to pull pages from.
1467 * @dst: The temp list to put pages on to.
1468 * @nr_scanned: The number of pages that were scanned.
1469 * @sc: The scan_control struct for this reclaim session
1470 * @mode: One of the LRU isolation modes
1471 * @lru: LRU list id for isolating
1472 *
1473 * returns how many pages were moved onto *@dst.
1474 */
1475 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1476 struct lruvec *lruvec, struct list_head *dst,
1477 unsigned long *nr_scanned, struct scan_control *sc,
1478 isolate_mode_t mode, enum lru_list lru)
1479 {
1480 struct list_head *src = &lruvec->lists[lru];
1481 unsigned long nr_taken = 0;
1482 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1483 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1484 unsigned long skipped = 0;
1485 unsigned long scan, nr_pages;
1486 LIST_HEAD(pages_skipped);
1487
1488 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1489 !list_empty(src); scan++) {
1490 struct page *page;
1491
1492 page = lru_to_page(src);
1493 prefetchw_prev_lru_page(page, src, flags);
1494
1495 VM_BUG_ON_PAGE(!PageLRU(page), page);
1496
1497 if (page_zonenum(page) > sc->reclaim_idx) {
1498 list_move(&page->lru, &pages_skipped);
1499 nr_skipped[page_zonenum(page)]++;
1500 continue;
1501 }
1502
1503 switch (__isolate_lru_page(page, mode)) {
1504 case 0:
1505 nr_pages = hpage_nr_pages(page);
1506 nr_taken += nr_pages;
1507 nr_zone_taken[page_zonenum(page)] += nr_pages;
1508 list_move(&page->lru, dst);
1509 break;
1510
1511 case -EBUSY:
1512 /* else it is being freed elsewhere */
1513 list_move(&page->lru, src);
1514 continue;
1515
1516 default:
1517 BUG();
1518 }
1519 }
1520
1521 /*
1522 * Splice any skipped pages to the start of the LRU list. Note that
1523 * this disrupts the LRU order when reclaiming for lower zones but
1524 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1525 * scanning would soon rescan the same pages to skip and put the
1526 * system at risk of premature OOM.
1527 */
1528 if (!list_empty(&pages_skipped)) {
1529 int zid;
1530
1531 list_splice(&pages_skipped, src);
1532 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1533 if (!nr_skipped[zid])
1534 continue;
1535
1536 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1537 skipped += nr_skipped[zid];
1538 }
1539 }
1540 *nr_scanned = scan;
1541 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1542 scan, skipped, nr_taken, mode, lru);
1543 update_lru_sizes(lruvec, lru, nr_zone_taken);
1544 return nr_taken;
1545 }
1546
1547 /**
1548 * isolate_lru_page - tries to isolate a page from its LRU list
1549 * @page: page to isolate from its LRU list
1550 *
1551 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1552 * vmstat statistic corresponding to whatever LRU list the page was on.
1553 *
1554 * Returns 0 if the page was removed from an LRU list.
1555 * Returns -EBUSY if the page was not on an LRU list.
1556 *
1557 * The returned page will have PageLRU() cleared. If it was found on
1558 * the active list, it will have PageActive set. If it was found on
1559 * the unevictable list, it will have the PageUnevictable bit set. That flag
1560 * may need to be cleared by the caller before letting the page go.
1561 *
1562 * The vmstat statistic corresponding to the list on which the page was
1563 * found will be decremented.
1564 *
1565 * Restrictions:
1566 * (1) Must be called with an elevated refcount on the page. This is a
1567 * fundamentnal difference from isolate_lru_pages (which is called
1568 * without a stable reference).
1569 * (2) the lru_lock must not be held.
1570 * (3) interrupts must be enabled.
1571 */
1572 int isolate_lru_page(struct page *page)
1573 {
1574 int ret = -EBUSY;
1575
1576 VM_BUG_ON_PAGE(!page_count(page), page);
1577 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1578
1579 if (PageLRU(page)) {
1580 struct zone *zone = page_zone(page);
1581 struct lruvec *lruvec;
1582
1583 spin_lock_irq(zone_lru_lock(zone));
1584 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1585 if (PageLRU(page)) {
1586 int lru = page_lru(page);
1587 get_page(page);
1588 ClearPageLRU(page);
1589 del_page_from_lru_list(page, lruvec, lru);
1590 ret = 0;
1591 }
1592 spin_unlock_irq(zone_lru_lock(zone));
1593 }
1594 return ret;
1595 }
1596
1597 /*
1598 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1599 * then get resheduled. When there are massive number of tasks doing page
1600 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1601 * the LRU list will go small and be scanned faster than necessary, leading to
1602 * unnecessary swapping, thrashing and OOM.
1603 */
1604 static int too_many_isolated(struct pglist_data *pgdat, int file,
1605 struct scan_control *sc)
1606 {
1607 unsigned long inactive, isolated;
1608
1609 if (current_is_kswapd())
1610 return 0;
1611
1612 if (!sane_reclaim(sc))
1613 return 0;
1614
1615 if (file) {
1616 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1617 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1618 } else {
1619 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1620 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1621 }
1622
1623 /*
1624 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1625 * won't get blocked by normal direct-reclaimers, forming a circular
1626 * deadlock.
1627 */
1628 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1629 inactive >>= 3;
1630
1631 return isolated > inactive;
1632 }
1633
1634 static noinline_for_stack void
1635 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1636 {
1637 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1638 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1639 LIST_HEAD(pages_to_free);
1640
1641 /*
1642 * Put back any unfreeable pages.
1643 */
1644 while (!list_empty(page_list)) {
1645 struct page *page = lru_to_page(page_list);
1646 int lru;
1647
1648 VM_BUG_ON_PAGE(PageLRU(page), page);
1649 list_del(&page->lru);
1650 if (unlikely(!page_evictable(page))) {
1651 spin_unlock_irq(&pgdat->lru_lock);
1652 putback_lru_page(page);
1653 spin_lock_irq(&pgdat->lru_lock);
1654 continue;
1655 }
1656
1657 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1658
1659 SetPageLRU(page);
1660 lru = page_lru(page);
1661 add_page_to_lru_list(page, lruvec, lru);
1662
1663 if (is_active_lru(lru)) {
1664 int file = is_file_lru(lru);
1665 int numpages = hpage_nr_pages(page);
1666 reclaim_stat->recent_rotated[file] += numpages;
1667 }
1668 if (put_page_testzero(page)) {
1669 __ClearPageLRU(page);
1670 __ClearPageActive(page);
1671 del_page_from_lru_list(page, lruvec, lru);
1672
1673 if (unlikely(PageCompound(page))) {
1674 spin_unlock_irq(&pgdat->lru_lock);
1675 mem_cgroup_uncharge(page);
1676 (*get_compound_page_dtor(page))(page);
1677 spin_lock_irq(&pgdat->lru_lock);
1678 } else
1679 list_add(&page->lru, &pages_to_free);
1680 }
1681 }
1682
1683 /*
1684 * To save our caller's stack, now use input list for pages to free.
1685 */
1686 list_splice(&pages_to_free, page_list);
1687 }
1688
1689 /*
1690 * If a kernel thread (such as nfsd for loop-back mounts) services
1691 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1692 * In that case we should only throttle if the backing device it is
1693 * writing to is congested. In other cases it is safe to throttle.
1694 */
1695 static int current_may_throttle(void)
1696 {
1697 return !(current->flags & PF_LESS_THROTTLE) ||
1698 current->backing_dev_info == NULL ||
1699 bdi_write_congested(current->backing_dev_info);
1700 }
1701
1702 /*
1703 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1704 * of reclaimed pages
1705 */
1706 static noinline_for_stack unsigned long
1707 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1708 struct scan_control *sc, enum lru_list lru)
1709 {
1710 LIST_HEAD(page_list);
1711 unsigned long nr_scanned;
1712 unsigned long nr_reclaimed = 0;
1713 unsigned long nr_taken;
1714 struct reclaim_stat stat = {};
1715 isolate_mode_t isolate_mode = 0;
1716 int file = is_file_lru(lru);
1717 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1718 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1719
1720 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1721 congestion_wait(BLK_RW_ASYNC, HZ/10);
1722
1723 /* We are about to die and free our memory. Return now. */
1724 if (fatal_signal_pending(current))
1725 return SWAP_CLUSTER_MAX;
1726 }
1727
1728 lru_add_drain();
1729
1730 if (!sc->may_unmap)
1731 isolate_mode |= ISOLATE_UNMAPPED;
1732
1733 spin_lock_irq(&pgdat->lru_lock);
1734
1735 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1736 &nr_scanned, sc, isolate_mode, lru);
1737
1738 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1739 reclaim_stat->recent_scanned[file] += nr_taken;
1740
1741 if (global_reclaim(sc)) {
1742 if (current_is_kswapd())
1743 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1744 else
1745 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1746 }
1747 spin_unlock_irq(&pgdat->lru_lock);
1748
1749 if (nr_taken == 0)
1750 return 0;
1751
1752 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1753 &stat, false);
1754
1755 spin_lock_irq(&pgdat->lru_lock);
1756
1757 if (global_reclaim(sc)) {
1758 if (current_is_kswapd())
1759 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1760 else
1761 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1762 }
1763
1764 putback_inactive_pages(lruvec, &page_list);
1765
1766 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1767
1768 spin_unlock_irq(&pgdat->lru_lock);
1769
1770 mem_cgroup_uncharge_list(&page_list);
1771 free_hot_cold_page_list(&page_list, true);
1772
1773 /*
1774 * If reclaim is isolating dirty pages under writeback, it implies
1775 * that the long-lived page allocation rate is exceeding the page
1776 * laundering rate. Either the global limits are not being effective
1777 * at throttling processes due to the page distribution throughout
1778 * zones or there is heavy usage of a slow backing device. The
1779 * only option is to throttle from reclaim context which is not ideal
1780 * as there is no guarantee the dirtying process is throttled in the
1781 * same way balance_dirty_pages() manages.
1782 *
1783 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1784 * of pages under pages flagged for immediate reclaim and stall if any
1785 * are encountered in the nr_immediate check below.
1786 */
1787 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1788 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1789
1790 /*
1791 * Legacy memcg will stall in page writeback so avoid forcibly
1792 * stalling here.
1793 */
1794 if (sane_reclaim(sc)) {
1795 /*
1796 * Tag a zone as congested if all the dirty pages scanned were
1797 * backed by a congested BDI and wait_iff_congested will stall.
1798 */
1799 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1800 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1801
1802 /*
1803 * If dirty pages are scanned that are not queued for IO, it
1804 * implies that flushers are not doing their job. This can
1805 * happen when memory pressure pushes dirty pages to the end of
1806 * the LRU before the dirty limits are breached and the dirty
1807 * data has expired. It can also happen when the proportion of
1808 * dirty pages grows not through writes but through memory
1809 * pressure reclaiming all the clean cache. And in some cases,
1810 * the flushers simply cannot keep up with the allocation
1811 * rate. Nudge the flusher threads in case they are asleep, but
1812 * also allow kswapd to start writing pages during reclaim.
1813 */
1814 if (stat.nr_unqueued_dirty == nr_taken) {
1815 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1816 set_bit(PGDAT_DIRTY, &pgdat->flags);
1817 }
1818
1819 /*
1820 * If kswapd scans pages marked marked for immediate
1821 * reclaim and under writeback (nr_immediate), it implies
1822 * that pages are cycling through the LRU faster than
1823 * they are written so also forcibly stall.
1824 */
1825 if (stat.nr_immediate && current_may_throttle())
1826 congestion_wait(BLK_RW_ASYNC, HZ/10);
1827 }
1828
1829 /*
1830 * Stall direct reclaim for IO completions if underlying BDIs or zone
1831 * is congested. Allow kswapd to continue until it starts encountering
1832 * unqueued dirty pages or cycling through the LRU too quickly.
1833 */
1834 if (!sc->hibernation_mode && !current_is_kswapd() &&
1835 current_may_throttle())
1836 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1837
1838 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1839 nr_scanned, nr_reclaimed,
1840 stat.nr_dirty, stat.nr_writeback,
1841 stat.nr_congested, stat.nr_immediate,
1842 stat.nr_activate, stat.nr_ref_keep,
1843 stat.nr_unmap_fail,
1844 sc->priority, file);
1845 return nr_reclaimed;
1846 }
1847
1848 /*
1849 * This moves pages from the active list to the inactive list.
1850 *
1851 * We move them the other way if the page is referenced by one or more
1852 * processes, from rmap.
1853 *
1854 * If the pages are mostly unmapped, the processing is fast and it is
1855 * appropriate to hold zone_lru_lock across the whole operation. But if
1856 * the pages are mapped, the processing is slow (page_referenced()) so we
1857 * should drop zone_lru_lock around each page. It's impossible to balance
1858 * this, so instead we remove the pages from the LRU while processing them.
1859 * It is safe to rely on PG_active against the non-LRU pages in here because
1860 * nobody will play with that bit on a non-LRU page.
1861 *
1862 * The downside is that we have to touch page->_refcount against each page.
1863 * But we had to alter page->flags anyway.
1864 *
1865 * Returns the number of pages moved to the given lru.
1866 */
1867
1868 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1869 struct list_head *list,
1870 struct list_head *pages_to_free,
1871 enum lru_list lru)
1872 {
1873 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1874 struct page *page;
1875 int nr_pages;
1876 int nr_moved = 0;
1877
1878 while (!list_empty(list)) {
1879 page = lru_to_page(list);
1880 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1881
1882 VM_BUG_ON_PAGE(PageLRU(page), page);
1883 SetPageLRU(page);
1884
1885 nr_pages = hpage_nr_pages(page);
1886 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1887 list_move(&page->lru, &lruvec->lists[lru]);
1888
1889 if (put_page_testzero(page)) {
1890 __ClearPageLRU(page);
1891 __ClearPageActive(page);
1892 del_page_from_lru_list(page, lruvec, lru);
1893
1894 if (unlikely(PageCompound(page))) {
1895 spin_unlock_irq(&pgdat->lru_lock);
1896 mem_cgroup_uncharge(page);
1897 (*get_compound_page_dtor(page))(page);
1898 spin_lock_irq(&pgdat->lru_lock);
1899 } else
1900 list_add(&page->lru, pages_to_free);
1901 } else {
1902 nr_moved += nr_pages;
1903 }
1904 }
1905
1906 if (!is_active_lru(lru))
1907 __count_vm_events(PGDEACTIVATE, nr_moved);
1908
1909 return nr_moved;
1910 }
1911
1912 static void shrink_active_list(unsigned long nr_to_scan,
1913 struct lruvec *lruvec,
1914 struct scan_control *sc,
1915 enum lru_list lru)
1916 {
1917 unsigned long nr_taken;
1918 unsigned long nr_scanned;
1919 unsigned long vm_flags;
1920 LIST_HEAD(l_hold); /* The pages which were snipped off */
1921 LIST_HEAD(l_active);
1922 LIST_HEAD(l_inactive);
1923 struct page *page;
1924 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1925 unsigned nr_deactivate, nr_activate;
1926 unsigned nr_rotated = 0;
1927 isolate_mode_t isolate_mode = 0;
1928 int file = is_file_lru(lru);
1929 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1930
1931 lru_add_drain();
1932
1933 if (!sc->may_unmap)
1934 isolate_mode |= ISOLATE_UNMAPPED;
1935
1936 spin_lock_irq(&pgdat->lru_lock);
1937
1938 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1939 &nr_scanned, sc, isolate_mode, lru);
1940
1941 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1942 reclaim_stat->recent_scanned[file] += nr_taken;
1943
1944 __count_vm_events(PGREFILL, nr_scanned);
1945
1946 spin_unlock_irq(&pgdat->lru_lock);
1947
1948 while (!list_empty(&l_hold)) {
1949 cond_resched();
1950 page = lru_to_page(&l_hold);
1951 list_del(&page->lru);
1952
1953 if (unlikely(!page_evictable(page))) {
1954 putback_lru_page(page);
1955 continue;
1956 }
1957
1958 if (unlikely(buffer_heads_over_limit)) {
1959 if (page_has_private(page) && trylock_page(page)) {
1960 if (page_has_private(page))
1961 try_to_release_page(page, 0);
1962 unlock_page(page);
1963 }
1964 }
1965
1966 if (page_referenced(page, 0, sc->target_mem_cgroup,
1967 &vm_flags)) {
1968 nr_rotated += hpage_nr_pages(page);
1969 /*
1970 * Identify referenced, file-backed active pages and
1971 * give them one more trip around the active list. So
1972 * that executable code get better chances to stay in
1973 * memory under moderate memory pressure. Anon pages
1974 * are not likely to be evicted by use-once streaming
1975 * IO, plus JVM can create lots of anon VM_EXEC pages,
1976 * so we ignore them here.
1977 */
1978 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1979 list_add(&page->lru, &l_active);
1980 continue;
1981 }
1982 }
1983
1984 ClearPageActive(page); /* we are de-activating */
1985 list_add(&page->lru, &l_inactive);
1986 }
1987
1988 /*
1989 * Move pages back to the lru list.
1990 */
1991 spin_lock_irq(&pgdat->lru_lock);
1992 /*
1993 * Count referenced pages from currently used mappings as rotated,
1994 * even though only some of them are actually re-activated. This
1995 * helps balance scan pressure between file and anonymous pages in
1996 * get_scan_count.
1997 */
1998 reclaim_stat->recent_rotated[file] += nr_rotated;
1999
2000 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2001 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2002 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2003 spin_unlock_irq(&pgdat->lru_lock);
2004
2005 mem_cgroup_uncharge_list(&l_hold);
2006 free_hot_cold_page_list(&l_hold, true);
2007 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2008 nr_deactivate, nr_rotated, sc->priority, file);
2009 }
2010
2011 /*
2012 * The inactive anon list should be small enough that the VM never has
2013 * to do too much work.
2014 *
2015 * The inactive file list should be small enough to leave most memory
2016 * to the established workingset on the scan-resistant active list,
2017 * but large enough to avoid thrashing the aggregate readahead window.
2018 *
2019 * Both inactive lists should also be large enough that each inactive
2020 * page has a chance to be referenced again before it is reclaimed.
2021 *
2022 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2023 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2024 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2025 *
2026 * total target max
2027 * memory ratio inactive
2028 * -------------------------------------
2029 * 10MB 1 5MB
2030 * 100MB 1 50MB
2031 * 1GB 3 250MB
2032 * 10GB 10 0.9GB
2033 * 100GB 31 3GB
2034 * 1TB 101 10GB
2035 * 10TB 320 32GB
2036 */
2037 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2038 struct scan_control *sc, bool trace)
2039 {
2040 unsigned long inactive_ratio;
2041 unsigned long inactive, active;
2042 enum lru_list inactive_lru = file * LRU_FILE;
2043 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2044 unsigned long gb;
2045
2046 /*
2047 * If we don't have swap space, anonymous page deactivation
2048 * is pointless.
2049 */
2050 if (!file && !total_swap_pages)
2051 return false;
2052
2053 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2054 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2055
2056 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2057 if (gb)
2058 inactive_ratio = int_sqrt(10 * gb);
2059 else
2060 inactive_ratio = 1;
2061
2062 if (trace)
2063 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2064 sc->reclaim_idx,
2065 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2066 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2067 inactive_ratio, file);
2068
2069 return inactive * inactive_ratio < active;
2070 }
2071
2072 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2073 struct lruvec *lruvec, struct scan_control *sc)
2074 {
2075 if (is_active_lru(lru)) {
2076 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2077 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2078 return 0;
2079 }
2080
2081 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2082 }
2083
2084 enum scan_balance {
2085 SCAN_EQUAL,
2086 SCAN_FRACT,
2087 SCAN_ANON,
2088 SCAN_FILE,
2089 };
2090
2091 /*
2092 * Determine how aggressively the anon and file LRU lists should be
2093 * scanned. The relative value of each set of LRU lists is determined
2094 * by looking at the fraction of the pages scanned we did rotate back
2095 * onto the active list instead of evict.
2096 *
2097 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2098 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2099 */
2100 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2101 struct scan_control *sc, unsigned long *nr,
2102 unsigned long *lru_pages)
2103 {
2104 int swappiness = mem_cgroup_swappiness(memcg);
2105 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2106 u64 fraction[2];
2107 u64 denominator = 0; /* gcc */
2108 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2109 unsigned long anon_prio, file_prio;
2110 enum scan_balance scan_balance;
2111 unsigned long anon, file;
2112 unsigned long ap, fp;
2113 enum lru_list lru;
2114
2115 /* If we have no swap space, do not bother scanning anon pages. */
2116 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2117 scan_balance = SCAN_FILE;
2118 goto out;
2119 }
2120
2121 /*
2122 * Global reclaim will swap to prevent OOM even with no
2123 * swappiness, but memcg users want to use this knob to
2124 * disable swapping for individual groups completely when
2125 * using the memory controller's swap limit feature would be
2126 * too expensive.
2127 */
2128 if (!global_reclaim(sc) && !swappiness) {
2129 scan_balance = SCAN_FILE;
2130 goto out;
2131 }
2132
2133 /*
2134 * Do not apply any pressure balancing cleverness when the
2135 * system is close to OOM, scan both anon and file equally
2136 * (unless the swappiness setting disagrees with swapping).
2137 */
2138 if (!sc->priority && swappiness) {
2139 scan_balance = SCAN_EQUAL;
2140 goto out;
2141 }
2142
2143 /*
2144 * Prevent the reclaimer from falling into the cache trap: as
2145 * cache pages start out inactive, every cache fault will tip
2146 * the scan balance towards the file LRU. And as the file LRU
2147 * shrinks, so does the window for rotation from references.
2148 * This means we have a runaway feedback loop where a tiny
2149 * thrashing file LRU becomes infinitely more attractive than
2150 * anon pages. Try to detect this based on file LRU size.
2151 */
2152 if (global_reclaim(sc)) {
2153 unsigned long pgdatfile;
2154 unsigned long pgdatfree;
2155 int z;
2156 unsigned long total_high_wmark = 0;
2157
2158 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2159 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2160 node_page_state(pgdat, NR_INACTIVE_FILE);
2161
2162 for (z = 0; z < MAX_NR_ZONES; z++) {
2163 struct zone *zone = &pgdat->node_zones[z];
2164 if (!managed_zone(zone))
2165 continue;
2166
2167 total_high_wmark += high_wmark_pages(zone);
2168 }
2169
2170 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2171 scan_balance = SCAN_ANON;
2172 goto out;
2173 }
2174 }
2175
2176 /*
2177 * If there is enough inactive page cache, i.e. if the size of the
2178 * inactive list is greater than that of the active list *and* the
2179 * inactive list actually has some pages to scan on this priority, we
2180 * do not reclaim anything from the anonymous working set right now.
2181 * Without the second condition we could end up never scanning an
2182 * lruvec even if it has plenty of old anonymous pages unless the
2183 * system is under heavy pressure.
2184 */
2185 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2186 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2187 scan_balance = SCAN_FILE;
2188 goto out;
2189 }
2190
2191 scan_balance = SCAN_FRACT;
2192
2193 /*
2194 * With swappiness at 100, anonymous and file have the same priority.
2195 * This scanning priority is essentially the inverse of IO cost.
2196 */
2197 anon_prio = swappiness;
2198 file_prio = 200 - anon_prio;
2199
2200 /*
2201 * OK, so we have swap space and a fair amount of page cache
2202 * pages. We use the recently rotated / recently scanned
2203 * ratios to determine how valuable each cache is.
2204 *
2205 * Because workloads change over time (and to avoid overflow)
2206 * we keep these statistics as a floating average, which ends
2207 * up weighing recent references more than old ones.
2208 *
2209 * anon in [0], file in [1]
2210 */
2211
2212 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2213 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2214 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2215 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2216
2217 spin_lock_irq(&pgdat->lru_lock);
2218 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2219 reclaim_stat->recent_scanned[0] /= 2;
2220 reclaim_stat->recent_rotated[0] /= 2;
2221 }
2222
2223 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2224 reclaim_stat->recent_scanned[1] /= 2;
2225 reclaim_stat->recent_rotated[1] /= 2;
2226 }
2227
2228 /*
2229 * The amount of pressure on anon vs file pages is inversely
2230 * proportional to the fraction of recently scanned pages on
2231 * each list that were recently referenced and in active use.
2232 */
2233 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2234 ap /= reclaim_stat->recent_rotated[0] + 1;
2235
2236 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2237 fp /= reclaim_stat->recent_rotated[1] + 1;
2238 spin_unlock_irq(&pgdat->lru_lock);
2239
2240 fraction[0] = ap;
2241 fraction[1] = fp;
2242 denominator = ap + fp + 1;
2243 out:
2244 *lru_pages = 0;
2245 for_each_evictable_lru(lru) {
2246 int file = is_file_lru(lru);
2247 unsigned long size;
2248 unsigned long scan;
2249
2250 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2251 scan = size >> sc->priority;
2252 /*
2253 * If the cgroup's already been deleted, make sure to
2254 * scrape out the remaining cache.
2255 */
2256 if (!scan && !mem_cgroup_online(memcg))
2257 scan = min(size, SWAP_CLUSTER_MAX);
2258
2259 switch (scan_balance) {
2260 case SCAN_EQUAL:
2261 /* Scan lists relative to size */
2262 break;
2263 case SCAN_FRACT:
2264 /*
2265 * Scan types proportional to swappiness and
2266 * their relative recent reclaim efficiency.
2267 */
2268 scan = div64_u64(scan * fraction[file],
2269 denominator);
2270 break;
2271 case SCAN_FILE:
2272 case SCAN_ANON:
2273 /* Scan one type exclusively */
2274 if ((scan_balance == SCAN_FILE) != file) {
2275 size = 0;
2276 scan = 0;
2277 }
2278 break;
2279 default:
2280 /* Look ma, no brain */
2281 BUG();
2282 }
2283
2284 *lru_pages += size;
2285 nr[lru] = scan;
2286 }
2287 }
2288
2289 /*
2290 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2291 */
2292 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2293 struct scan_control *sc, unsigned long *lru_pages)
2294 {
2295 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2296 unsigned long nr[NR_LRU_LISTS];
2297 unsigned long targets[NR_LRU_LISTS];
2298 unsigned long nr_to_scan;
2299 enum lru_list lru;
2300 unsigned long nr_reclaimed = 0;
2301 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2302 struct blk_plug plug;
2303 bool scan_adjusted;
2304
2305 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2306
2307 /* Record the original scan target for proportional adjustments later */
2308 memcpy(targets, nr, sizeof(nr));
2309
2310 /*
2311 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2312 * event that can occur when there is little memory pressure e.g.
2313 * multiple streaming readers/writers. Hence, we do not abort scanning
2314 * when the requested number of pages are reclaimed when scanning at
2315 * DEF_PRIORITY on the assumption that the fact we are direct
2316 * reclaiming implies that kswapd is not keeping up and it is best to
2317 * do a batch of work at once. For memcg reclaim one check is made to
2318 * abort proportional reclaim if either the file or anon lru has already
2319 * dropped to zero at the first pass.
2320 */
2321 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2322 sc->priority == DEF_PRIORITY);
2323
2324 blk_start_plug(&plug);
2325 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2326 nr[LRU_INACTIVE_FILE]) {
2327 unsigned long nr_anon, nr_file, percentage;
2328 unsigned long nr_scanned;
2329
2330 for_each_evictable_lru(lru) {
2331 if (nr[lru]) {
2332 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2333 nr[lru] -= nr_to_scan;
2334
2335 nr_reclaimed += shrink_list(lru, nr_to_scan,
2336 lruvec, sc);
2337 }
2338 }
2339
2340 cond_resched();
2341
2342 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2343 continue;
2344
2345 /*
2346 * For kswapd and memcg, reclaim at least the number of pages
2347 * requested. Ensure that the anon and file LRUs are scanned
2348 * proportionally what was requested by get_scan_count(). We
2349 * stop reclaiming one LRU and reduce the amount scanning
2350 * proportional to the original scan target.
2351 */
2352 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2353 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2354
2355 /*
2356 * It's just vindictive to attack the larger once the smaller
2357 * has gone to zero. And given the way we stop scanning the
2358 * smaller below, this makes sure that we only make one nudge
2359 * towards proportionality once we've got nr_to_reclaim.
2360 */
2361 if (!nr_file || !nr_anon)
2362 break;
2363
2364 if (nr_file > nr_anon) {
2365 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2366 targets[LRU_ACTIVE_ANON] + 1;
2367 lru = LRU_BASE;
2368 percentage = nr_anon * 100 / scan_target;
2369 } else {
2370 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2371 targets[LRU_ACTIVE_FILE] + 1;
2372 lru = LRU_FILE;
2373 percentage = nr_file * 100 / scan_target;
2374 }
2375
2376 /* Stop scanning the smaller of the LRU */
2377 nr[lru] = 0;
2378 nr[lru + LRU_ACTIVE] = 0;
2379
2380 /*
2381 * Recalculate the other LRU scan count based on its original
2382 * scan target and the percentage scanning already complete
2383 */
2384 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2385 nr_scanned = targets[lru] - nr[lru];
2386 nr[lru] = targets[lru] * (100 - percentage) / 100;
2387 nr[lru] -= min(nr[lru], nr_scanned);
2388
2389 lru += LRU_ACTIVE;
2390 nr_scanned = targets[lru] - nr[lru];
2391 nr[lru] = targets[lru] * (100 - percentage) / 100;
2392 nr[lru] -= min(nr[lru], nr_scanned);
2393
2394 scan_adjusted = true;
2395 }
2396 blk_finish_plug(&plug);
2397 sc->nr_reclaimed += nr_reclaimed;
2398
2399 /*
2400 * Even if we did not try to evict anon pages at all, we want to
2401 * rebalance the anon lru active/inactive ratio.
2402 */
2403 if (inactive_list_is_low(lruvec, false, sc, true))
2404 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2405 sc, LRU_ACTIVE_ANON);
2406 }
2407
2408 /* Use reclaim/compaction for costly allocs or under memory pressure */
2409 static bool in_reclaim_compaction(struct scan_control *sc)
2410 {
2411 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2412 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2413 sc->priority < DEF_PRIORITY - 2))
2414 return true;
2415
2416 return false;
2417 }
2418
2419 /*
2420 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2421 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2422 * true if more pages should be reclaimed such that when the page allocator
2423 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2424 * It will give up earlier than that if there is difficulty reclaiming pages.
2425 */
2426 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2427 unsigned long nr_reclaimed,
2428 unsigned long nr_scanned,
2429 struct scan_control *sc)
2430 {
2431 unsigned long pages_for_compaction;
2432 unsigned long inactive_lru_pages;
2433 int z;
2434
2435 /* If not in reclaim/compaction mode, stop */
2436 if (!in_reclaim_compaction(sc))
2437 return false;
2438
2439 /* Consider stopping depending on scan and reclaim activity */
2440 if (sc->gfp_mask & __GFP_REPEAT) {
2441 /*
2442 * For __GFP_REPEAT allocations, stop reclaiming if the
2443 * full LRU list has been scanned and we are still failing
2444 * to reclaim pages. This full LRU scan is potentially
2445 * expensive but a __GFP_REPEAT caller really wants to succeed
2446 */
2447 if (!nr_reclaimed && !nr_scanned)
2448 return false;
2449 } else {
2450 /*
2451 * For non-__GFP_REPEAT allocations which can presumably
2452 * fail without consequence, stop if we failed to reclaim
2453 * any pages from the last SWAP_CLUSTER_MAX number of
2454 * pages that were scanned. This will return to the
2455 * caller faster at the risk reclaim/compaction and
2456 * the resulting allocation attempt fails
2457 */
2458 if (!nr_reclaimed)
2459 return false;
2460 }
2461
2462 /*
2463 * If we have not reclaimed enough pages for compaction and the
2464 * inactive lists are large enough, continue reclaiming
2465 */
2466 pages_for_compaction = compact_gap(sc->order);
2467 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2468 if (get_nr_swap_pages() > 0)
2469 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2470 if (sc->nr_reclaimed < pages_for_compaction &&
2471 inactive_lru_pages > pages_for_compaction)
2472 return true;
2473
2474 /* If compaction would go ahead or the allocation would succeed, stop */
2475 for (z = 0; z <= sc->reclaim_idx; z++) {
2476 struct zone *zone = &pgdat->node_zones[z];
2477 if (!managed_zone(zone))
2478 continue;
2479
2480 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2481 case COMPACT_SUCCESS:
2482 case COMPACT_CONTINUE:
2483 return false;
2484 default:
2485 /* check next zone */
2486 ;
2487 }
2488 }
2489 return true;
2490 }
2491
2492 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2493 {
2494 struct reclaim_state *reclaim_state = current->reclaim_state;
2495 unsigned long nr_reclaimed, nr_scanned;
2496 bool reclaimable = false;
2497
2498 do {
2499 struct mem_cgroup *root = sc->target_mem_cgroup;
2500 struct mem_cgroup_reclaim_cookie reclaim = {
2501 .pgdat = pgdat,
2502 .priority = sc->priority,
2503 };
2504 unsigned long node_lru_pages = 0;
2505 struct mem_cgroup *memcg;
2506
2507 nr_reclaimed = sc->nr_reclaimed;
2508 nr_scanned = sc->nr_scanned;
2509
2510 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2511 do {
2512 unsigned long lru_pages;
2513 unsigned long reclaimed;
2514 unsigned long scanned;
2515
2516 if (mem_cgroup_low(root, memcg)) {
2517 if (!sc->memcg_low_reclaim) {
2518 sc->memcg_low_skipped = 1;
2519 continue;
2520 }
2521 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2522 }
2523
2524 reclaimed = sc->nr_reclaimed;
2525 scanned = sc->nr_scanned;
2526
2527 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2528 node_lru_pages += lru_pages;
2529
2530 if (memcg)
2531 shrink_slab(sc->gfp_mask, pgdat->node_id,
2532 memcg, sc->nr_scanned - scanned,
2533 lru_pages);
2534
2535 /* Record the group's reclaim efficiency */
2536 vmpressure(sc->gfp_mask, memcg, false,
2537 sc->nr_scanned - scanned,
2538 sc->nr_reclaimed - reclaimed);
2539
2540 /*
2541 * Direct reclaim and kswapd have to scan all memory
2542 * cgroups to fulfill the overall scan target for the
2543 * node.
2544 *
2545 * Limit reclaim, on the other hand, only cares about
2546 * nr_to_reclaim pages to be reclaimed and it will
2547 * retry with decreasing priority if one round over the
2548 * whole hierarchy is not sufficient.
2549 */
2550 if (!global_reclaim(sc) &&
2551 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2552 mem_cgroup_iter_break(root, memcg);
2553 break;
2554 }
2555 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2556
2557 /*
2558 * Shrink the slab caches in the same proportion that
2559 * the eligible LRU pages were scanned.
2560 */
2561 if (global_reclaim(sc))
2562 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2563 sc->nr_scanned - nr_scanned,
2564 node_lru_pages);
2565
2566 if (reclaim_state) {
2567 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2568 reclaim_state->reclaimed_slab = 0;
2569 }
2570
2571 /* Record the subtree's reclaim efficiency */
2572 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2573 sc->nr_scanned - nr_scanned,
2574 sc->nr_reclaimed - nr_reclaimed);
2575
2576 if (sc->nr_reclaimed - nr_reclaimed)
2577 reclaimable = true;
2578
2579 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2580 sc->nr_scanned - nr_scanned, sc));
2581
2582 /*
2583 * Kswapd gives up on balancing particular nodes after too
2584 * many failures to reclaim anything from them and goes to
2585 * sleep. On reclaim progress, reset the failure counter. A
2586 * successful direct reclaim run will revive a dormant kswapd.
2587 */
2588 if (reclaimable)
2589 pgdat->kswapd_failures = 0;
2590
2591 return reclaimable;
2592 }
2593
2594 /*
2595 * Returns true if compaction should go ahead for a costly-order request, or
2596 * the allocation would already succeed without compaction. Return false if we
2597 * should reclaim first.
2598 */
2599 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2600 {
2601 unsigned long watermark;
2602 enum compact_result suitable;
2603
2604 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2605 if (suitable == COMPACT_SUCCESS)
2606 /* Allocation should succeed already. Don't reclaim. */
2607 return true;
2608 if (suitable == COMPACT_SKIPPED)
2609 /* Compaction cannot yet proceed. Do reclaim. */
2610 return false;
2611
2612 /*
2613 * Compaction is already possible, but it takes time to run and there
2614 * are potentially other callers using the pages just freed. So proceed
2615 * with reclaim to make a buffer of free pages available to give
2616 * compaction a reasonable chance of completing and allocating the page.
2617 * Note that we won't actually reclaim the whole buffer in one attempt
2618 * as the target watermark in should_continue_reclaim() is lower. But if
2619 * we are already above the high+gap watermark, don't reclaim at all.
2620 */
2621 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2622
2623 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2624 }
2625
2626 /*
2627 * This is the direct reclaim path, for page-allocating processes. We only
2628 * try to reclaim pages from zones which will satisfy the caller's allocation
2629 * request.
2630 *
2631 * If a zone is deemed to be full of pinned pages then just give it a light
2632 * scan then give up on it.
2633 */
2634 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2635 {
2636 struct zoneref *z;
2637 struct zone *zone;
2638 unsigned long nr_soft_reclaimed;
2639 unsigned long nr_soft_scanned;
2640 gfp_t orig_mask;
2641 pg_data_t *last_pgdat = NULL;
2642
2643 /*
2644 * If the number of buffer_heads in the machine exceeds the maximum
2645 * allowed level, force direct reclaim to scan the highmem zone as
2646 * highmem pages could be pinning lowmem pages storing buffer_heads
2647 */
2648 orig_mask = sc->gfp_mask;
2649 if (buffer_heads_over_limit) {
2650 sc->gfp_mask |= __GFP_HIGHMEM;
2651 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2652 }
2653
2654 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2655 sc->reclaim_idx, sc->nodemask) {
2656 /*
2657 * Take care memory controller reclaiming has small influence
2658 * to global LRU.
2659 */
2660 if (global_reclaim(sc)) {
2661 if (!cpuset_zone_allowed(zone,
2662 GFP_KERNEL | __GFP_HARDWALL))
2663 continue;
2664
2665 /*
2666 * If we already have plenty of memory free for
2667 * compaction in this zone, don't free any more.
2668 * Even though compaction is invoked for any
2669 * non-zero order, only frequent costly order
2670 * reclamation is disruptive enough to become a
2671 * noticeable problem, like transparent huge
2672 * page allocations.
2673 */
2674 if (IS_ENABLED(CONFIG_COMPACTION) &&
2675 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2676 compaction_ready(zone, sc)) {
2677 sc->compaction_ready = true;
2678 continue;
2679 }
2680
2681 /*
2682 * Shrink each node in the zonelist once. If the
2683 * zonelist is ordered by zone (not the default) then a
2684 * node may be shrunk multiple times but in that case
2685 * the user prefers lower zones being preserved.
2686 */
2687 if (zone->zone_pgdat == last_pgdat)
2688 continue;
2689
2690 /*
2691 * This steals pages from memory cgroups over softlimit
2692 * and returns the number of reclaimed pages and
2693 * scanned pages. This works for global memory pressure
2694 * and balancing, not for a memcg's limit.
2695 */
2696 nr_soft_scanned = 0;
2697 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2698 sc->order, sc->gfp_mask,
2699 &nr_soft_scanned);
2700 sc->nr_reclaimed += nr_soft_reclaimed;
2701 sc->nr_scanned += nr_soft_scanned;
2702 /* need some check for avoid more shrink_zone() */
2703 }
2704
2705 /* See comment about same check for global reclaim above */
2706 if (zone->zone_pgdat == last_pgdat)
2707 continue;
2708 last_pgdat = zone->zone_pgdat;
2709 shrink_node(zone->zone_pgdat, sc);
2710 }
2711
2712 /*
2713 * Restore to original mask to avoid the impact on the caller if we
2714 * promoted it to __GFP_HIGHMEM.
2715 */
2716 sc->gfp_mask = orig_mask;
2717 }
2718
2719 /*
2720 * This is the main entry point to direct page reclaim.
2721 *
2722 * If a full scan of the inactive list fails to free enough memory then we
2723 * are "out of memory" and something needs to be killed.
2724 *
2725 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2726 * high - the zone may be full of dirty or under-writeback pages, which this
2727 * caller can't do much about. We kick the writeback threads and take explicit
2728 * naps in the hope that some of these pages can be written. But if the
2729 * allocating task holds filesystem locks which prevent writeout this might not
2730 * work, and the allocation attempt will fail.
2731 *
2732 * returns: 0, if no pages reclaimed
2733 * else, the number of pages reclaimed
2734 */
2735 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2736 struct scan_control *sc)
2737 {
2738 int initial_priority = sc->priority;
2739 retry:
2740 delayacct_freepages_start();
2741
2742 if (global_reclaim(sc))
2743 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2744
2745 do {
2746 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2747 sc->priority);
2748 sc->nr_scanned = 0;
2749 shrink_zones(zonelist, sc);
2750
2751 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2752 break;
2753
2754 if (sc->compaction_ready)
2755 break;
2756
2757 /*
2758 * If we're getting trouble reclaiming, start doing
2759 * writepage even in laptop mode.
2760 */
2761 if (sc->priority < DEF_PRIORITY - 2)
2762 sc->may_writepage = 1;
2763 } while (--sc->priority >= 0);
2764
2765 delayacct_freepages_end();
2766
2767 if (sc->nr_reclaimed)
2768 return sc->nr_reclaimed;
2769
2770 /* Aborted reclaim to try compaction? don't OOM, then */
2771 if (sc->compaction_ready)
2772 return 1;
2773
2774 /* Untapped cgroup reserves? Don't OOM, retry. */
2775 if (sc->memcg_low_skipped) {
2776 sc->priority = initial_priority;
2777 sc->memcg_low_reclaim = 1;
2778 sc->memcg_low_skipped = 0;
2779 goto retry;
2780 }
2781
2782 return 0;
2783 }
2784
2785 static bool allow_direct_reclaim(pg_data_t *pgdat)
2786 {
2787 struct zone *zone;
2788 unsigned long pfmemalloc_reserve = 0;
2789 unsigned long free_pages = 0;
2790 int i;
2791 bool wmark_ok;
2792
2793 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2794 return true;
2795
2796 for (i = 0; i <= ZONE_NORMAL; i++) {
2797 zone = &pgdat->node_zones[i];
2798 if (!managed_zone(zone))
2799 continue;
2800
2801 if (!zone_reclaimable_pages(zone))
2802 continue;
2803
2804 pfmemalloc_reserve += min_wmark_pages(zone);
2805 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2806 }
2807
2808 /* If there are no reserves (unexpected config) then do not throttle */
2809 if (!pfmemalloc_reserve)
2810 return true;
2811
2812 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2813
2814 /* kswapd must be awake if processes are being throttled */
2815 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2816 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2817 (enum zone_type)ZONE_NORMAL);
2818 wake_up_interruptible(&pgdat->kswapd_wait);
2819 }
2820
2821 return wmark_ok;
2822 }
2823
2824 /*
2825 * Throttle direct reclaimers if backing storage is backed by the network
2826 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2827 * depleted. kswapd will continue to make progress and wake the processes
2828 * when the low watermark is reached.
2829 *
2830 * Returns true if a fatal signal was delivered during throttling. If this
2831 * happens, the page allocator should not consider triggering the OOM killer.
2832 */
2833 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2834 nodemask_t *nodemask)
2835 {
2836 struct zoneref *z;
2837 struct zone *zone;
2838 pg_data_t *pgdat = NULL;
2839
2840 /*
2841 * Kernel threads should not be throttled as they may be indirectly
2842 * responsible for cleaning pages necessary for reclaim to make forward
2843 * progress. kjournald for example may enter direct reclaim while
2844 * committing a transaction where throttling it could forcing other
2845 * processes to block on log_wait_commit().
2846 */
2847 if (current->flags & PF_KTHREAD)
2848 goto out;
2849
2850 /*
2851 * If a fatal signal is pending, this process should not throttle.
2852 * It should return quickly so it can exit and free its memory
2853 */
2854 if (fatal_signal_pending(current))
2855 goto out;
2856
2857 /*
2858 * Check if the pfmemalloc reserves are ok by finding the first node
2859 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2860 * GFP_KERNEL will be required for allocating network buffers when
2861 * swapping over the network so ZONE_HIGHMEM is unusable.
2862 *
2863 * Throttling is based on the first usable node and throttled processes
2864 * wait on a queue until kswapd makes progress and wakes them. There
2865 * is an affinity then between processes waking up and where reclaim
2866 * progress has been made assuming the process wakes on the same node.
2867 * More importantly, processes running on remote nodes will not compete
2868 * for remote pfmemalloc reserves and processes on different nodes
2869 * should make reasonable progress.
2870 */
2871 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2872 gfp_zone(gfp_mask), nodemask) {
2873 if (zone_idx(zone) > ZONE_NORMAL)
2874 continue;
2875
2876 /* Throttle based on the first usable node */
2877 pgdat = zone->zone_pgdat;
2878 if (allow_direct_reclaim(pgdat))
2879 goto out;
2880 break;
2881 }
2882
2883 /* If no zone was usable by the allocation flags then do not throttle */
2884 if (!pgdat)
2885 goto out;
2886
2887 /* Account for the throttling */
2888 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2889
2890 /*
2891 * If the caller cannot enter the filesystem, it's possible that it
2892 * is due to the caller holding an FS lock or performing a journal
2893 * transaction in the case of a filesystem like ext[3|4]. In this case,
2894 * it is not safe to block on pfmemalloc_wait as kswapd could be
2895 * blocked waiting on the same lock. Instead, throttle for up to a
2896 * second before continuing.
2897 */
2898 if (!(gfp_mask & __GFP_FS)) {
2899 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2900 allow_direct_reclaim(pgdat), HZ);
2901
2902 goto check_pending;
2903 }
2904
2905 /* Throttle until kswapd wakes the process */
2906 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2907 allow_direct_reclaim(pgdat));
2908
2909 check_pending:
2910 if (fatal_signal_pending(current))
2911 return true;
2912
2913 out:
2914 return false;
2915 }
2916
2917 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2918 gfp_t gfp_mask, nodemask_t *nodemask)
2919 {
2920 unsigned long nr_reclaimed;
2921 struct scan_control sc = {
2922 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2923 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
2924 .reclaim_idx = gfp_zone(gfp_mask),
2925 .order = order,
2926 .nodemask = nodemask,
2927 .priority = DEF_PRIORITY,
2928 .may_writepage = !laptop_mode,
2929 .may_unmap = 1,
2930 .may_swap = 1,
2931 };
2932
2933 /*
2934 * Do not enter reclaim if fatal signal was delivered while throttled.
2935 * 1 is returned so that the page allocator does not OOM kill at this
2936 * point.
2937 */
2938 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2939 return 1;
2940
2941 trace_mm_vmscan_direct_reclaim_begin(order,
2942 sc.may_writepage,
2943 gfp_mask,
2944 sc.reclaim_idx);
2945
2946 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2947
2948 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2949
2950 return nr_reclaimed;
2951 }
2952
2953 #ifdef CONFIG_MEMCG
2954
2955 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2956 gfp_t gfp_mask, bool noswap,
2957 pg_data_t *pgdat,
2958 unsigned long *nr_scanned)
2959 {
2960 struct scan_control sc = {
2961 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2962 .target_mem_cgroup = memcg,
2963 .may_writepage = !laptop_mode,
2964 .may_unmap = 1,
2965 .reclaim_idx = MAX_NR_ZONES - 1,
2966 .may_swap = !noswap,
2967 };
2968 unsigned long lru_pages;
2969
2970 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2971 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2972
2973 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2974 sc.may_writepage,
2975 sc.gfp_mask,
2976 sc.reclaim_idx);
2977
2978 /*
2979 * NOTE: Although we can get the priority field, using it
2980 * here is not a good idea, since it limits the pages we can scan.
2981 * if we don't reclaim here, the shrink_node from balance_pgdat
2982 * will pick up pages from other mem cgroup's as well. We hack
2983 * the priority and make it zero.
2984 */
2985 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2986
2987 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2988
2989 *nr_scanned = sc.nr_scanned;
2990 return sc.nr_reclaimed;
2991 }
2992
2993 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2994 unsigned long nr_pages,
2995 gfp_t gfp_mask,
2996 bool may_swap)
2997 {
2998 struct zonelist *zonelist;
2999 unsigned long nr_reclaimed;
3000 int nid;
3001 struct scan_control sc = {
3002 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3003 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3004 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3005 .reclaim_idx = MAX_NR_ZONES - 1,
3006 .target_mem_cgroup = memcg,
3007 .priority = DEF_PRIORITY,
3008 .may_writepage = !laptop_mode,
3009 .may_unmap = 1,
3010 .may_swap = may_swap,
3011 };
3012
3013 /*
3014 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3015 * take care of from where we get pages. So the node where we start the
3016 * scan does not need to be the current node.
3017 */
3018 nid = mem_cgroup_select_victim_node(memcg);
3019
3020 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3021
3022 trace_mm_vmscan_memcg_reclaim_begin(0,
3023 sc.may_writepage,
3024 sc.gfp_mask,
3025 sc.reclaim_idx);
3026
3027 current->flags |= PF_MEMALLOC;
3028 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3029 current->flags &= ~PF_MEMALLOC;
3030
3031 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3032
3033 return nr_reclaimed;
3034 }
3035 #endif
3036
3037 static void age_active_anon(struct pglist_data *pgdat,
3038 struct scan_control *sc)
3039 {
3040 struct mem_cgroup *memcg;
3041
3042 if (!total_swap_pages)
3043 return;
3044
3045 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3046 do {
3047 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3048
3049 if (inactive_list_is_low(lruvec, false, sc, true))
3050 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3051 sc, LRU_ACTIVE_ANON);
3052
3053 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3054 } while (memcg);
3055 }
3056
3057 /*
3058 * Returns true if there is an eligible zone balanced for the request order
3059 * and classzone_idx
3060 */
3061 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3062 {
3063 int i;
3064 unsigned long mark = -1;
3065 struct zone *zone;
3066
3067 for (i = 0; i <= classzone_idx; i++) {
3068 zone = pgdat->node_zones + i;
3069
3070 if (!managed_zone(zone))
3071 continue;
3072
3073 mark = high_wmark_pages(zone);
3074 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3075 return true;
3076 }
3077
3078 /*
3079 * If a node has no populated zone within classzone_idx, it does not
3080 * need balancing by definition. This can happen if a zone-restricted
3081 * allocation tries to wake a remote kswapd.
3082 */
3083 if (mark == -1)
3084 return true;
3085
3086 return false;
3087 }
3088
3089 /* Clear pgdat state for congested, dirty or under writeback. */
3090 static void clear_pgdat_congested(pg_data_t *pgdat)
3091 {
3092 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3093 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3094 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3095 }
3096
3097 /*
3098 * Prepare kswapd for sleeping. This verifies that there are no processes
3099 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3100 *
3101 * Returns true if kswapd is ready to sleep
3102 */
3103 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3104 {
3105 /*
3106 * The throttled processes are normally woken up in balance_pgdat() as
3107 * soon as allow_direct_reclaim() is true. But there is a potential
3108 * race between when kswapd checks the watermarks and a process gets
3109 * throttled. There is also a potential race if processes get
3110 * throttled, kswapd wakes, a large process exits thereby balancing the
3111 * zones, which causes kswapd to exit balance_pgdat() before reaching
3112 * the wake up checks. If kswapd is going to sleep, no process should
3113 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3114 * the wake up is premature, processes will wake kswapd and get
3115 * throttled again. The difference from wake ups in balance_pgdat() is
3116 * that here we are under prepare_to_wait().
3117 */
3118 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3119 wake_up_all(&pgdat->pfmemalloc_wait);
3120
3121 /* Hopeless node, leave it to direct reclaim */
3122 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3123 return true;
3124
3125 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3126 clear_pgdat_congested(pgdat);
3127 return true;
3128 }
3129
3130 return false;
3131 }
3132
3133 /*
3134 * kswapd shrinks a node of pages that are at or below the highest usable
3135 * zone that is currently unbalanced.
3136 *
3137 * Returns true if kswapd scanned at least the requested number of pages to
3138 * reclaim or if the lack of progress was due to pages under writeback.
3139 * This is used to determine if the scanning priority needs to be raised.
3140 */
3141 static bool kswapd_shrink_node(pg_data_t *pgdat,
3142 struct scan_control *sc)
3143 {
3144 struct zone *zone;
3145 int z;
3146
3147 /* Reclaim a number of pages proportional to the number of zones */
3148 sc->nr_to_reclaim = 0;
3149 for (z = 0; z <= sc->reclaim_idx; z++) {
3150 zone = pgdat->node_zones + z;
3151 if (!managed_zone(zone))
3152 continue;
3153
3154 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3155 }
3156
3157 /*
3158 * Historically care was taken to put equal pressure on all zones but
3159 * now pressure is applied based on node LRU order.
3160 */
3161 shrink_node(pgdat, sc);
3162
3163 /*
3164 * Fragmentation may mean that the system cannot be rebalanced for
3165 * high-order allocations. If twice the allocation size has been
3166 * reclaimed then recheck watermarks only at order-0 to prevent
3167 * excessive reclaim. Assume that a process requested a high-order
3168 * can direct reclaim/compact.
3169 */
3170 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3171 sc->order = 0;
3172
3173 return sc->nr_scanned >= sc->nr_to_reclaim;
3174 }
3175
3176 /*
3177 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3178 * that are eligible for use by the caller until at least one zone is
3179 * balanced.
3180 *
3181 * Returns the order kswapd finished reclaiming at.
3182 *
3183 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3184 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3185 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3186 * or lower is eligible for reclaim until at least one usable zone is
3187 * balanced.
3188 */
3189 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3190 {
3191 int i;
3192 unsigned long nr_soft_reclaimed;
3193 unsigned long nr_soft_scanned;
3194 struct zone *zone;
3195 struct scan_control sc = {
3196 .gfp_mask = GFP_KERNEL,
3197 .order = order,
3198 .priority = DEF_PRIORITY,
3199 .may_writepage = !laptop_mode,
3200 .may_unmap = 1,
3201 .may_swap = 1,
3202 };
3203 count_vm_event(PAGEOUTRUN);
3204
3205 do {
3206 unsigned long nr_reclaimed = sc.nr_reclaimed;
3207 bool raise_priority = true;
3208
3209 sc.reclaim_idx = classzone_idx;
3210
3211 /*
3212 * If the number of buffer_heads exceeds the maximum allowed
3213 * then consider reclaiming from all zones. This has a dual
3214 * purpose -- on 64-bit systems it is expected that
3215 * buffer_heads are stripped during active rotation. On 32-bit
3216 * systems, highmem pages can pin lowmem memory and shrinking
3217 * buffers can relieve lowmem pressure. Reclaim may still not
3218 * go ahead if all eligible zones for the original allocation
3219 * request are balanced to avoid excessive reclaim from kswapd.
3220 */
3221 if (buffer_heads_over_limit) {
3222 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3223 zone = pgdat->node_zones + i;
3224 if (!managed_zone(zone))
3225 continue;
3226
3227 sc.reclaim_idx = i;
3228 break;
3229 }
3230 }
3231
3232 /*
3233 * Only reclaim if there are no eligible zones. Note that
3234 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3235 * have adjusted it.
3236 */
3237 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3238 goto out;
3239
3240 /*
3241 * Do some background aging of the anon list, to give
3242 * pages a chance to be referenced before reclaiming. All
3243 * pages are rotated regardless of classzone as this is
3244 * about consistent aging.
3245 */
3246 age_active_anon(pgdat, &sc);
3247
3248 /*
3249 * If we're getting trouble reclaiming, start doing writepage
3250 * even in laptop mode.
3251 */
3252 if (sc.priority < DEF_PRIORITY - 2)
3253 sc.may_writepage = 1;
3254
3255 /* Call soft limit reclaim before calling shrink_node. */
3256 sc.nr_scanned = 0;
3257 nr_soft_scanned = 0;
3258 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3259 sc.gfp_mask, &nr_soft_scanned);
3260 sc.nr_reclaimed += nr_soft_reclaimed;
3261
3262 /*
3263 * There should be no need to raise the scanning priority if
3264 * enough pages are already being scanned that that high
3265 * watermark would be met at 100% efficiency.
3266 */
3267 if (kswapd_shrink_node(pgdat, &sc))
3268 raise_priority = false;
3269
3270 /*
3271 * If the low watermark is met there is no need for processes
3272 * to be throttled on pfmemalloc_wait as they should not be
3273 * able to safely make forward progress. Wake them
3274 */
3275 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3276 allow_direct_reclaim(pgdat))
3277 wake_up_all(&pgdat->pfmemalloc_wait);
3278
3279 /* Check if kswapd should be suspending */
3280 if (try_to_freeze() || kthread_should_stop())
3281 break;
3282
3283 /*
3284 * Raise priority if scanning rate is too low or there was no
3285 * progress in reclaiming pages
3286 */
3287 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3288 if (raise_priority || !nr_reclaimed)
3289 sc.priority--;
3290 } while (sc.priority >= 1);
3291
3292 if (!sc.nr_reclaimed)
3293 pgdat->kswapd_failures++;
3294
3295 out:
3296 /*
3297 * Return the order kswapd stopped reclaiming at as
3298 * prepare_kswapd_sleep() takes it into account. If another caller
3299 * entered the allocator slow path while kswapd was awake, order will
3300 * remain at the higher level.
3301 */
3302 return sc.order;
3303 }
3304
3305 /*
3306 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3307 * allocation request woke kswapd for. When kswapd has not woken recently,
3308 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3309 * given classzone and returns it or the highest classzone index kswapd
3310 * was recently woke for.
3311 */
3312 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3313 enum zone_type classzone_idx)
3314 {
3315 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3316 return classzone_idx;
3317
3318 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3319 }
3320
3321 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3322 unsigned int classzone_idx)
3323 {
3324 long remaining = 0;
3325 DEFINE_WAIT(wait);
3326
3327 if (freezing(current) || kthread_should_stop())
3328 return;
3329
3330 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3331
3332 /*
3333 * Try to sleep for a short interval. Note that kcompactd will only be
3334 * woken if it is possible to sleep for a short interval. This is
3335 * deliberate on the assumption that if reclaim cannot keep an
3336 * eligible zone balanced that it's also unlikely that compaction will
3337 * succeed.
3338 */
3339 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3340 /*
3341 * Compaction records what page blocks it recently failed to
3342 * isolate pages from and skips them in the future scanning.
3343 * When kswapd is going to sleep, it is reasonable to assume
3344 * that pages and compaction may succeed so reset the cache.
3345 */
3346 reset_isolation_suitable(pgdat);
3347
3348 /*
3349 * We have freed the memory, now we should compact it to make
3350 * allocation of the requested order possible.
3351 */
3352 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3353
3354 remaining = schedule_timeout(HZ/10);
3355
3356 /*
3357 * If woken prematurely then reset kswapd_classzone_idx and
3358 * order. The values will either be from a wakeup request or
3359 * the previous request that slept prematurely.
3360 */
3361 if (remaining) {
3362 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3363 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3364 }
3365
3366 finish_wait(&pgdat->kswapd_wait, &wait);
3367 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3368 }
3369
3370 /*
3371 * After a short sleep, check if it was a premature sleep. If not, then
3372 * go fully to sleep until explicitly woken up.
3373 */
3374 if (!remaining &&
3375 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3376 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3377
3378 /*
3379 * vmstat counters are not perfectly accurate and the estimated
3380 * value for counters such as NR_FREE_PAGES can deviate from the
3381 * true value by nr_online_cpus * threshold. To avoid the zone
3382 * watermarks being breached while under pressure, we reduce the
3383 * per-cpu vmstat threshold while kswapd is awake and restore
3384 * them before going back to sleep.
3385 */
3386 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3387
3388 if (!kthread_should_stop())
3389 schedule();
3390
3391 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3392 } else {
3393 if (remaining)
3394 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3395 else
3396 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3397 }
3398 finish_wait(&pgdat->kswapd_wait, &wait);
3399 }
3400
3401 /*
3402 * The background pageout daemon, started as a kernel thread
3403 * from the init process.
3404 *
3405 * This basically trickles out pages so that we have _some_
3406 * free memory available even if there is no other activity
3407 * that frees anything up. This is needed for things like routing
3408 * etc, where we otherwise might have all activity going on in
3409 * asynchronous contexts that cannot page things out.
3410 *
3411 * If there are applications that are active memory-allocators
3412 * (most normal use), this basically shouldn't matter.
3413 */
3414 static int kswapd(void *p)
3415 {
3416 unsigned int alloc_order, reclaim_order;
3417 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3418 pg_data_t *pgdat = (pg_data_t*)p;
3419 struct task_struct *tsk = current;
3420
3421 struct reclaim_state reclaim_state = {
3422 .reclaimed_slab = 0,
3423 };
3424 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3425
3426 lockdep_set_current_reclaim_state(GFP_KERNEL);
3427
3428 if (!cpumask_empty(cpumask))
3429 set_cpus_allowed_ptr(tsk, cpumask);
3430 current->reclaim_state = &reclaim_state;
3431
3432 /*
3433 * Tell the memory management that we're a "memory allocator",
3434 * and that if we need more memory we should get access to it
3435 * regardless (see "__alloc_pages()"). "kswapd" should
3436 * never get caught in the normal page freeing logic.
3437 *
3438 * (Kswapd normally doesn't need memory anyway, but sometimes
3439 * you need a small amount of memory in order to be able to
3440 * page out something else, and this flag essentially protects
3441 * us from recursively trying to free more memory as we're
3442 * trying to free the first piece of memory in the first place).
3443 */
3444 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3445 set_freezable();
3446
3447 pgdat->kswapd_order = 0;
3448 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3449 for ( ; ; ) {
3450 bool ret;
3451
3452 alloc_order = reclaim_order = pgdat->kswapd_order;
3453 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3454
3455 kswapd_try_sleep:
3456 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3457 classzone_idx);
3458
3459 /* Read the new order and classzone_idx */
3460 alloc_order = reclaim_order = pgdat->kswapd_order;
3461 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3462 pgdat->kswapd_order = 0;
3463 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3464
3465 ret = try_to_freeze();
3466 if (kthread_should_stop())
3467 break;
3468
3469 /*
3470 * We can speed up thawing tasks if we don't call balance_pgdat
3471 * after returning from the refrigerator
3472 */
3473 if (ret)
3474 continue;
3475
3476 /*
3477 * Reclaim begins at the requested order but if a high-order
3478 * reclaim fails then kswapd falls back to reclaiming for
3479 * order-0. If that happens, kswapd will consider sleeping
3480 * for the order it finished reclaiming at (reclaim_order)
3481 * but kcompactd is woken to compact for the original
3482 * request (alloc_order).
3483 */
3484 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3485 alloc_order);
3486 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3487 if (reclaim_order < alloc_order)
3488 goto kswapd_try_sleep;
3489 }
3490
3491 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3492 current->reclaim_state = NULL;
3493 lockdep_clear_current_reclaim_state();
3494
3495 return 0;
3496 }
3497
3498 /*
3499 * A zone is low on free memory, so wake its kswapd task to service it.
3500 */
3501 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3502 {
3503 pg_data_t *pgdat;
3504
3505 if (!managed_zone(zone))
3506 return;
3507
3508 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3509 return;
3510 pgdat = zone->zone_pgdat;
3511 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3512 classzone_idx);
3513 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3514 if (!waitqueue_active(&pgdat->kswapd_wait))
3515 return;
3516
3517 /* Hopeless node, leave it to direct reclaim */
3518 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3519 return;
3520
3521 if (pgdat_balanced(pgdat, order, classzone_idx))
3522 return;
3523
3524 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3525 wake_up_interruptible(&pgdat->kswapd_wait);
3526 }
3527
3528 #ifdef CONFIG_HIBERNATION
3529 /*
3530 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3531 * freed pages.
3532 *
3533 * Rather than trying to age LRUs the aim is to preserve the overall
3534 * LRU order by reclaiming preferentially
3535 * inactive > active > active referenced > active mapped
3536 */
3537 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3538 {
3539 struct reclaim_state reclaim_state;
3540 struct scan_control sc = {
3541 .nr_to_reclaim = nr_to_reclaim,
3542 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3543 .reclaim_idx = MAX_NR_ZONES - 1,
3544 .priority = DEF_PRIORITY,
3545 .may_writepage = 1,
3546 .may_unmap = 1,
3547 .may_swap = 1,
3548 .hibernation_mode = 1,
3549 };
3550 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3551 struct task_struct *p = current;
3552 unsigned long nr_reclaimed;
3553
3554 p->flags |= PF_MEMALLOC;
3555 lockdep_set_current_reclaim_state(sc.gfp_mask);
3556 reclaim_state.reclaimed_slab = 0;
3557 p->reclaim_state = &reclaim_state;
3558
3559 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3560
3561 p->reclaim_state = NULL;
3562 lockdep_clear_current_reclaim_state();
3563 p->flags &= ~PF_MEMALLOC;
3564
3565 return nr_reclaimed;
3566 }
3567 #endif /* CONFIG_HIBERNATION */
3568
3569 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3570 not required for correctness. So if the last cpu in a node goes
3571 away, we get changed to run anywhere: as the first one comes back,
3572 restore their cpu bindings. */
3573 static int kswapd_cpu_online(unsigned int cpu)
3574 {
3575 int nid;
3576
3577 for_each_node_state(nid, N_MEMORY) {
3578 pg_data_t *pgdat = NODE_DATA(nid);
3579 const struct cpumask *mask;
3580
3581 mask = cpumask_of_node(pgdat->node_id);
3582
3583 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3584 /* One of our CPUs online: restore mask */
3585 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3586 }
3587 return 0;
3588 }
3589
3590 /*
3591 * This kswapd start function will be called by init and node-hot-add.
3592 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3593 */
3594 int kswapd_run(int nid)
3595 {
3596 pg_data_t *pgdat = NODE_DATA(nid);
3597 int ret = 0;
3598
3599 if (pgdat->kswapd)
3600 return 0;
3601
3602 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3603 if (IS_ERR(pgdat->kswapd)) {
3604 /* failure at boot is fatal */
3605 BUG_ON(system_state == SYSTEM_BOOTING);
3606 pr_err("Failed to start kswapd on node %d\n", nid);
3607 ret = PTR_ERR(pgdat->kswapd);
3608 pgdat->kswapd = NULL;
3609 }
3610 return ret;
3611 }
3612
3613 /*
3614 * Called by memory hotplug when all memory in a node is offlined. Caller must
3615 * hold mem_hotplug_begin/end().
3616 */
3617 void kswapd_stop(int nid)
3618 {
3619 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3620
3621 if (kswapd) {
3622 kthread_stop(kswapd);
3623 NODE_DATA(nid)->kswapd = NULL;
3624 }
3625 }
3626
3627 static int __init kswapd_init(void)
3628 {
3629 int nid, ret;
3630
3631 swap_setup();
3632 for_each_node_state(nid, N_MEMORY)
3633 kswapd_run(nid);
3634 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3635 "mm/vmscan:online", kswapd_cpu_online,
3636 NULL);
3637 WARN_ON(ret < 0);
3638 return 0;
3639 }
3640
3641 module_init(kswapd_init)
3642
3643 #ifdef CONFIG_NUMA
3644 /*
3645 * Node reclaim mode
3646 *
3647 * If non-zero call node_reclaim when the number of free pages falls below
3648 * the watermarks.
3649 */
3650 int node_reclaim_mode __read_mostly;
3651
3652 #define RECLAIM_OFF 0
3653 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3654 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3655 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3656
3657 /*
3658 * Priority for NODE_RECLAIM. This determines the fraction of pages
3659 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3660 * a zone.
3661 */
3662 #define NODE_RECLAIM_PRIORITY 4
3663
3664 /*
3665 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3666 * occur.
3667 */
3668 int sysctl_min_unmapped_ratio = 1;
3669
3670 /*
3671 * If the number of slab pages in a zone grows beyond this percentage then
3672 * slab reclaim needs to occur.
3673 */
3674 int sysctl_min_slab_ratio = 5;
3675
3676 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3677 {
3678 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3679 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3680 node_page_state(pgdat, NR_ACTIVE_FILE);
3681
3682 /*
3683 * It's possible for there to be more file mapped pages than
3684 * accounted for by the pages on the file LRU lists because
3685 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3686 */
3687 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3688 }
3689
3690 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3691 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3692 {
3693 unsigned long nr_pagecache_reclaimable;
3694 unsigned long delta = 0;
3695
3696 /*
3697 * If RECLAIM_UNMAP is set, then all file pages are considered
3698 * potentially reclaimable. Otherwise, we have to worry about
3699 * pages like swapcache and node_unmapped_file_pages() provides
3700 * a better estimate
3701 */
3702 if (node_reclaim_mode & RECLAIM_UNMAP)
3703 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3704 else
3705 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3706
3707 /* If we can't clean pages, remove dirty pages from consideration */
3708 if (!(node_reclaim_mode & RECLAIM_WRITE))
3709 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3710
3711 /* Watch for any possible underflows due to delta */
3712 if (unlikely(delta > nr_pagecache_reclaimable))
3713 delta = nr_pagecache_reclaimable;
3714
3715 return nr_pagecache_reclaimable - delta;
3716 }
3717
3718 /*
3719 * Try to free up some pages from this node through reclaim.
3720 */
3721 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3722 {
3723 /* Minimum pages needed in order to stay on node */
3724 const unsigned long nr_pages = 1 << order;
3725 struct task_struct *p = current;
3726 struct reclaim_state reclaim_state;
3727 int classzone_idx = gfp_zone(gfp_mask);
3728 struct scan_control sc = {
3729 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3730 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
3731 .order = order,
3732 .priority = NODE_RECLAIM_PRIORITY,
3733 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3734 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3735 .may_swap = 1,
3736 .reclaim_idx = classzone_idx,
3737 };
3738
3739 cond_resched();
3740 /*
3741 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3742 * and we also need to be able to write out pages for RECLAIM_WRITE
3743 * and RECLAIM_UNMAP.
3744 */
3745 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3746 lockdep_set_current_reclaim_state(gfp_mask);
3747 reclaim_state.reclaimed_slab = 0;
3748 p->reclaim_state = &reclaim_state;
3749
3750 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3751 /*
3752 * Free memory by calling shrink zone with increasing
3753 * priorities until we have enough memory freed.
3754 */
3755 do {
3756 shrink_node(pgdat, &sc);
3757 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3758 }
3759
3760 p->reclaim_state = NULL;
3761 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3762 lockdep_clear_current_reclaim_state();
3763 return sc.nr_reclaimed >= nr_pages;
3764 }
3765
3766 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3767 {
3768 int ret;
3769
3770 /*
3771 * Node reclaim reclaims unmapped file backed pages and
3772 * slab pages if we are over the defined limits.
3773 *
3774 * A small portion of unmapped file backed pages is needed for
3775 * file I/O otherwise pages read by file I/O will be immediately
3776 * thrown out if the node is overallocated. So we do not reclaim
3777 * if less than a specified percentage of the node is used by
3778 * unmapped file backed pages.
3779 */
3780 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3781 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3782 return NODE_RECLAIM_FULL;
3783
3784 /*
3785 * Do not scan if the allocation should not be delayed.
3786 */
3787 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3788 return NODE_RECLAIM_NOSCAN;
3789
3790 /*
3791 * Only run node reclaim on the local node or on nodes that do not
3792 * have associated processors. This will favor the local processor
3793 * over remote processors and spread off node memory allocations
3794 * as wide as possible.
3795 */
3796 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3797 return NODE_RECLAIM_NOSCAN;
3798
3799 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3800 return NODE_RECLAIM_NOSCAN;
3801
3802 ret = __node_reclaim(pgdat, gfp_mask, order);
3803 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3804
3805 if (!ret)
3806 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3807
3808 return ret;
3809 }
3810 #endif
3811
3812 /*
3813 * page_evictable - test whether a page is evictable
3814 * @page: the page to test
3815 *
3816 * Test whether page is evictable--i.e., should be placed on active/inactive
3817 * lists vs unevictable list.
3818 *
3819 * Reasons page might not be evictable:
3820 * (1) page's mapping marked unevictable
3821 * (2) page is part of an mlocked VMA
3822 *
3823 */
3824 int page_evictable(struct page *page)
3825 {
3826 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3827 }
3828
3829 #ifdef CONFIG_SHMEM
3830 /**
3831 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3832 * @pages: array of pages to check
3833 * @nr_pages: number of pages to check
3834 *
3835 * Checks pages for evictability and moves them to the appropriate lru list.
3836 *
3837 * This function is only used for SysV IPC SHM_UNLOCK.
3838 */
3839 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3840 {
3841 struct lruvec *lruvec;
3842 struct pglist_data *pgdat = NULL;
3843 int pgscanned = 0;
3844 int pgrescued = 0;
3845 int i;
3846
3847 for (i = 0; i < nr_pages; i++) {
3848 struct page *page = pages[i];
3849 struct pglist_data *pagepgdat = page_pgdat(page);
3850
3851 pgscanned++;
3852 if (pagepgdat != pgdat) {
3853 if (pgdat)
3854 spin_unlock_irq(&pgdat->lru_lock);
3855 pgdat = pagepgdat;
3856 spin_lock_irq(&pgdat->lru_lock);
3857 }
3858 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3859
3860 if (!PageLRU(page) || !PageUnevictable(page))
3861 continue;
3862
3863 if (page_evictable(page)) {
3864 enum lru_list lru = page_lru_base_type(page);
3865
3866 VM_BUG_ON_PAGE(PageActive(page), page);
3867 ClearPageUnevictable(page);
3868 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3869 add_page_to_lru_list(page, lruvec, lru);
3870 pgrescued++;
3871 }
3872 }
3873
3874 if (pgdat) {
3875 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3876 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3877 spin_unlock_irq(&pgdat->lru_lock);
3878 }
3879 }
3880 #endif /* CONFIG_SHMEM */