UPSTREAM: kernel/sched/psi.c: simplify cgroup_move_task()
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59
60 #include "internal.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64
65 struct scan_control {
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
71
72 /* Allocation order */
73 int order;
74
75 /*
76 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * are scanned.
78 */
79 nodemask_t *nodemask;
80
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
86
87 /* Scan (total_size >> priority) pages at once */
88 int priority;
89
90 /* The highest zone to isolate pages for reclaim from */
91 enum zone_type reclaim_idx;
92
93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
94 unsigned int may_writepage:1;
95
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
98
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
101
102 /*
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
106 */
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
109
110 unsigned int hibernation_mode:1;
111
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
114
115 /* Incremented by the number of inactive pages that were scanned */
116 unsigned long nr_scanned;
117
118 /* Number of pages freed so far during a call to shrink_zones() */
119 unsigned long nr_reclaimed;
120 };
121
122 #ifdef ARCH_HAS_PREFETCH
123 #define prefetch_prev_lru_page(_page, _base, _field) \
124 do { \
125 if ((_page)->lru.prev != _base) { \
126 struct page *prev; \
127 \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetch(&prev->_field); \
130 } \
131 } while (0)
132 #else
133 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
134 #endif
135
136 #ifdef ARCH_HAS_PREFETCHW
137 #define prefetchw_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetchw(&prev->_field); \
144 } \
145 } while (0)
146 #else
147 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149
150 /*
151 * From 0 .. 100. Higher means more swappy.
152 */
153 int vm_swappiness = 60;
154 /*
155 * The total number of pages which are beyond the high watermark within all
156 * zones.
157 */
158 unsigned long vm_total_pages;
159
160 static LIST_HEAD(shrinker_list);
161 static DECLARE_RWSEM(shrinker_rwsem);
162
163 #ifdef CONFIG_MEMCG
164 static bool global_reclaim(struct scan_control *sc)
165 {
166 return !sc->target_mem_cgroup;
167 }
168
169 /**
170 * sane_reclaim - is the usual dirty throttling mechanism operational?
171 * @sc: scan_control in question
172 *
173 * The normal page dirty throttling mechanism in balance_dirty_pages() is
174 * completely broken with the legacy memcg and direct stalling in
175 * shrink_page_list() is used for throttling instead, which lacks all the
176 * niceties such as fairness, adaptive pausing, bandwidth proportional
177 * allocation and configurability.
178 *
179 * This function tests whether the vmscan currently in progress can assume
180 * that the normal dirty throttling mechanism is operational.
181 */
182 static bool sane_reclaim(struct scan_control *sc)
183 {
184 struct mem_cgroup *memcg = sc->target_mem_cgroup;
185
186 if (!memcg)
187 return true;
188 #ifdef CONFIG_CGROUP_WRITEBACK
189 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
190 return true;
191 #endif
192 return false;
193 }
194 #else
195 static bool global_reclaim(struct scan_control *sc)
196 {
197 return true;
198 }
199
200 static bool sane_reclaim(struct scan_control *sc)
201 {
202 return true;
203 }
204 #endif
205
206 /*
207 * This misses isolated pages which are not accounted for to save counters.
208 * As the data only determines if reclaim or compaction continues, it is
209 * not expected that isolated pages will be a dominating factor.
210 */
211 unsigned long zone_reclaimable_pages(struct zone *zone)
212 {
213 unsigned long nr;
214
215 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
216 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
217 if (get_nr_swap_pages() > 0)
218 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
219 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
220
221 return nr;
222 }
223
224 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
225 {
226 unsigned long nr;
227
228 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
230 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
231
232 if (get_nr_swap_pages() > 0)
233 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
235 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
236
237 return nr;
238 }
239
240 /**
241 * lruvec_lru_size - Returns the number of pages on the given LRU list.
242 * @lruvec: lru vector
243 * @lru: lru to use
244 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
245 */
246 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
247 {
248 unsigned long lru_size;
249 int zid;
250
251 if (!mem_cgroup_disabled())
252 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
253 else
254 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
255
256 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
257 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
258 unsigned long size;
259
260 if (!managed_zone(zone))
261 continue;
262
263 if (!mem_cgroup_disabled())
264 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
265 else
266 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
267 NR_ZONE_LRU_BASE + lru);
268 lru_size -= min(size, lru_size);
269 }
270
271 return lru_size;
272
273 }
274
275 /*
276 * Add a shrinker callback to be called from the vm.
277 */
278 int register_shrinker(struct shrinker *shrinker)
279 {
280 size_t size = sizeof(*shrinker->nr_deferred);
281
282 if (shrinker->flags & SHRINKER_NUMA_AWARE)
283 size *= nr_node_ids;
284
285 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
286 if (!shrinker->nr_deferred)
287 return -ENOMEM;
288
289 down_write(&shrinker_rwsem);
290 list_add_tail(&shrinker->list, &shrinker_list);
291 up_write(&shrinker_rwsem);
292 return 0;
293 }
294 EXPORT_SYMBOL(register_shrinker);
295
296 /*
297 * Remove one
298 */
299 void unregister_shrinker(struct shrinker *shrinker)
300 {
301 if (!shrinker->nr_deferred)
302 return;
303 down_write(&shrinker_rwsem);
304 list_del(&shrinker->list);
305 up_write(&shrinker_rwsem);
306 kfree(shrinker->nr_deferred);
307 shrinker->nr_deferred = NULL;
308 }
309 EXPORT_SYMBOL(unregister_shrinker);
310
311 #define SHRINK_BATCH 128
312
313 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
314 struct shrinker *shrinker,
315 unsigned long nr_scanned,
316 unsigned long nr_eligible)
317 {
318 unsigned long freed = 0;
319 unsigned long long delta;
320 long total_scan;
321 long freeable;
322 long nr;
323 long new_nr;
324 int nid = shrinkctl->nid;
325 long batch_size = shrinker->batch ? shrinker->batch
326 : SHRINK_BATCH;
327 long scanned = 0, next_deferred;
328
329 freeable = shrinker->count_objects(shrinker, shrinkctl);
330 if (freeable == 0)
331 return 0;
332
333 /*
334 * copy the current shrinker scan count into a local variable
335 * and zero it so that other concurrent shrinker invocations
336 * don't also do this scanning work.
337 */
338 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
339
340 total_scan = nr;
341 delta = (4 * nr_scanned) / shrinker->seeks;
342 delta *= freeable;
343 do_div(delta, nr_eligible + 1);
344 total_scan += delta;
345 if (total_scan < 0) {
346 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
347 shrinker->scan_objects, total_scan);
348 total_scan = freeable;
349 next_deferred = nr;
350 } else
351 next_deferred = total_scan;
352
353 /*
354 * We need to avoid excessive windup on filesystem shrinkers
355 * due to large numbers of GFP_NOFS allocations causing the
356 * shrinkers to return -1 all the time. This results in a large
357 * nr being built up so when a shrink that can do some work
358 * comes along it empties the entire cache due to nr >>>
359 * freeable. This is bad for sustaining a working set in
360 * memory.
361 *
362 * Hence only allow the shrinker to scan the entire cache when
363 * a large delta change is calculated directly.
364 */
365 if (delta < freeable / 4)
366 total_scan = min(total_scan, freeable / 2);
367
368 /*
369 * Avoid risking looping forever due to too large nr value:
370 * never try to free more than twice the estimate number of
371 * freeable entries.
372 */
373 if (total_scan > freeable * 2)
374 total_scan = freeable * 2;
375
376 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
377 nr_scanned, nr_eligible,
378 freeable, delta, total_scan);
379
380 /*
381 * Normally, we should not scan less than batch_size objects in one
382 * pass to avoid too frequent shrinker calls, but if the slab has less
383 * than batch_size objects in total and we are really tight on memory,
384 * we will try to reclaim all available objects, otherwise we can end
385 * up failing allocations although there are plenty of reclaimable
386 * objects spread over several slabs with usage less than the
387 * batch_size.
388 *
389 * We detect the "tight on memory" situations by looking at the total
390 * number of objects we want to scan (total_scan). If it is greater
391 * than the total number of objects on slab (freeable), we must be
392 * scanning at high prio and therefore should try to reclaim as much as
393 * possible.
394 */
395 while (total_scan >= batch_size ||
396 total_scan >= freeable) {
397 unsigned long ret;
398 unsigned long nr_to_scan = min(batch_size, total_scan);
399
400 shrinkctl->nr_to_scan = nr_to_scan;
401 shrinkctl->nr_scanned = nr_to_scan;
402 ret = shrinker->scan_objects(shrinker, shrinkctl);
403 if (ret == SHRINK_STOP)
404 break;
405 freed += ret;
406
407 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
408 total_scan -= shrinkctl->nr_scanned;
409 scanned += shrinkctl->nr_scanned;
410
411 cond_resched();
412 }
413
414 if (next_deferred >= scanned)
415 next_deferred -= scanned;
416 else
417 next_deferred = 0;
418 /*
419 * move the unused scan count back into the shrinker in a
420 * manner that handles concurrent updates. If we exhausted the
421 * scan, there is no need to do an update.
422 */
423 if (next_deferred > 0)
424 new_nr = atomic_long_add_return(next_deferred,
425 &shrinker->nr_deferred[nid]);
426 else
427 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
428
429 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
430 return freed;
431 }
432
433 /**
434 * shrink_slab - shrink slab caches
435 * @gfp_mask: allocation context
436 * @nid: node whose slab caches to target
437 * @memcg: memory cgroup whose slab caches to target
438 * @nr_scanned: pressure numerator
439 * @nr_eligible: pressure denominator
440 *
441 * Call the shrink functions to age shrinkable caches.
442 *
443 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
444 * unaware shrinkers will receive a node id of 0 instead.
445 *
446 * @memcg specifies the memory cgroup to target. If it is not NULL,
447 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
448 * objects from the memory cgroup specified. Otherwise, only unaware
449 * shrinkers are called.
450 *
451 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
452 * the available objects should be scanned. Page reclaim for example
453 * passes the number of pages scanned and the number of pages on the
454 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
455 * when it encountered mapped pages. The ratio is further biased by
456 * the ->seeks setting of the shrink function, which indicates the
457 * cost to recreate an object relative to that of an LRU page.
458 *
459 * Returns the number of reclaimed slab objects.
460 */
461 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
462 struct mem_cgroup *memcg,
463 unsigned long nr_scanned,
464 unsigned long nr_eligible)
465 {
466 struct shrinker *shrinker;
467 unsigned long freed = 0;
468
469 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
470 return 0;
471
472 if (nr_scanned == 0)
473 nr_scanned = SWAP_CLUSTER_MAX;
474
475 if (!down_read_trylock(&shrinker_rwsem)) {
476 /*
477 * If we would return 0, our callers would understand that we
478 * have nothing else to shrink and give up trying. By returning
479 * 1 we keep it going and assume we'll be able to shrink next
480 * time.
481 */
482 freed = 1;
483 goto out;
484 }
485
486 list_for_each_entry(shrinker, &shrinker_list, list) {
487 struct shrink_control sc = {
488 .gfp_mask = gfp_mask,
489 .nid = nid,
490 .memcg = memcg,
491 };
492
493 /*
494 * If kernel memory accounting is disabled, we ignore
495 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
496 * passing NULL for memcg.
497 */
498 if (memcg_kmem_enabled() &&
499 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
500 continue;
501
502 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
503 sc.nid = 0;
504
505 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
506 }
507
508 up_read(&shrinker_rwsem);
509 out:
510 cond_resched();
511 return freed;
512 }
513
514 void drop_slab_node(int nid)
515 {
516 unsigned long freed;
517
518 do {
519 struct mem_cgroup *memcg = NULL;
520
521 freed = 0;
522 do {
523 freed += shrink_slab(GFP_KERNEL, nid, memcg,
524 1000, 1000);
525 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
526 } while (freed > 10);
527 }
528
529 void drop_slab(void)
530 {
531 int nid;
532
533 for_each_online_node(nid)
534 drop_slab_node(nid);
535 }
536
537 static inline int is_page_cache_freeable(struct page *page)
538 {
539 /*
540 * A freeable page cache page is referenced only by the caller
541 * that isolated the page, the page cache radix tree and
542 * optional buffer heads at page->private.
543 */
544 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
545 HPAGE_PMD_NR : 1;
546 return page_count(page) - page_has_private(page) == 1 + radix_pins;
547 }
548
549 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
550 {
551 if (current->flags & PF_SWAPWRITE)
552 return 1;
553 if (!inode_write_congested(inode))
554 return 1;
555 if (inode_to_bdi(inode) == current->backing_dev_info)
556 return 1;
557 return 0;
558 }
559
560 /*
561 * We detected a synchronous write error writing a page out. Probably
562 * -ENOSPC. We need to propagate that into the address_space for a subsequent
563 * fsync(), msync() or close().
564 *
565 * The tricky part is that after writepage we cannot touch the mapping: nothing
566 * prevents it from being freed up. But we have a ref on the page and once
567 * that page is locked, the mapping is pinned.
568 *
569 * We're allowed to run sleeping lock_page() here because we know the caller has
570 * __GFP_FS.
571 */
572 static void handle_write_error(struct address_space *mapping,
573 struct page *page, int error)
574 {
575 lock_page(page);
576 if (page_mapping(page) == mapping)
577 mapping_set_error(mapping, error);
578 unlock_page(page);
579 }
580
581 /* possible outcome of pageout() */
582 typedef enum {
583 /* failed to write page out, page is locked */
584 PAGE_KEEP,
585 /* move page to the active list, page is locked */
586 PAGE_ACTIVATE,
587 /* page has been sent to the disk successfully, page is unlocked */
588 PAGE_SUCCESS,
589 /* page is clean and locked */
590 PAGE_CLEAN,
591 } pageout_t;
592
593 /*
594 * pageout is called by shrink_page_list() for each dirty page.
595 * Calls ->writepage().
596 */
597 static pageout_t pageout(struct page *page, struct address_space *mapping,
598 struct scan_control *sc)
599 {
600 /*
601 * If the page is dirty, only perform writeback if that write
602 * will be non-blocking. To prevent this allocation from being
603 * stalled by pagecache activity. But note that there may be
604 * stalls if we need to run get_block(). We could test
605 * PagePrivate for that.
606 *
607 * If this process is currently in __generic_file_write_iter() against
608 * this page's queue, we can perform writeback even if that
609 * will block.
610 *
611 * If the page is swapcache, write it back even if that would
612 * block, for some throttling. This happens by accident, because
613 * swap_backing_dev_info is bust: it doesn't reflect the
614 * congestion state of the swapdevs. Easy to fix, if needed.
615 */
616 if (!is_page_cache_freeable(page))
617 return PAGE_KEEP;
618 if (!mapping) {
619 /*
620 * Some data journaling orphaned pages can have
621 * page->mapping == NULL while being dirty with clean buffers.
622 */
623 if (page_has_private(page)) {
624 if (try_to_free_buffers(page)) {
625 ClearPageDirty(page);
626 pr_info("%s: orphaned page\n", __func__);
627 return PAGE_CLEAN;
628 }
629 }
630 return PAGE_KEEP;
631 }
632 if (mapping->a_ops->writepage == NULL)
633 return PAGE_ACTIVATE;
634 if (!may_write_to_inode(mapping->host, sc))
635 return PAGE_KEEP;
636
637 if (clear_page_dirty_for_io(page)) {
638 int res;
639 struct writeback_control wbc = {
640 .sync_mode = WB_SYNC_NONE,
641 .nr_to_write = SWAP_CLUSTER_MAX,
642 .range_start = 0,
643 .range_end = LLONG_MAX,
644 .for_reclaim = 1,
645 };
646
647 SetPageReclaim(page);
648 res = mapping->a_ops->writepage(page, &wbc);
649 if (res < 0)
650 handle_write_error(mapping, page, res);
651 if (res == AOP_WRITEPAGE_ACTIVATE) {
652 ClearPageReclaim(page);
653 return PAGE_ACTIVATE;
654 }
655
656 if (!PageWriteback(page)) {
657 /* synchronous write or broken a_ops? */
658 ClearPageReclaim(page);
659 }
660 trace_mm_vmscan_writepage(page);
661 inc_node_page_state(page, NR_VMSCAN_WRITE);
662 return PAGE_SUCCESS;
663 }
664
665 return PAGE_CLEAN;
666 }
667
668 /*
669 * Same as remove_mapping, but if the page is removed from the mapping, it
670 * gets returned with a refcount of 0.
671 */
672 static int __remove_mapping(struct address_space *mapping, struct page *page,
673 bool reclaimed)
674 {
675 unsigned long flags;
676 int refcount;
677
678 BUG_ON(!PageLocked(page));
679 BUG_ON(mapping != page_mapping(page));
680
681 spin_lock_irqsave(&mapping->tree_lock, flags);
682 /*
683 * The non racy check for a busy page.
684 *
685 * Must be careful with the order of the tests. When someone has
686 * a ref to the page, it may be possible that they dirty it then
687 * drop the reference. So if PageDirty is tested before page_count
688 * here, then the following race may occur:
689 *
690 * get_user_pages(&page);
691 * [user mapping goes away]
692 * write_to(page);
693 * !PageDirty(page) [good]
694 * SetPageDirty(page);
695 * put_page(page);
696 * !page_count(page) [good, discard it]
697 *
698 * [oops, our write_to data is lost]
699 *
700 * Reversing the order of the tests ensures such a situation cannot
701 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
702 * load is not satisfied before that of page->_refcount.
703 *
704 * Note that if SetPageDirty is always performed via set_page_dirty,
705 * and thus under tree_lock, then this ordering is not required.
706 */
707 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
708 refcount = 1 + HPAGE_PMD_NR;
709 else
710 refcount = 2;
711 if (!page_ref_freeze(page, refcount))
712 goto cannot_free;
713 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
714 if (unlikely(PageDirty(page))) {
715 page_ref_unfreeze(page, refcount);
716 goto cannot_free;
717 }
718
719 if (PageSwapCache(page)) {
720 swp_entry_t swap = { .val = page_private(page) };
721 mem_cgroup_swapout(page, swap);
722 __delete_from_swap_cache(page);
723 spin_unlock_irqrestore(&mapping->tree_lock, flags);
724 put_swap_page(page, swap);
725 } else {
726 void (*freepage)(struct page *);
727 void *shadow = NULL;
728
729 freepage = mapping->a_ops->freepage;
730 /*
731 * Remember a shadow entry for reclaimed file cache in
732 * order to detect refaults, thus thrashing, later on.
733 *
734 * But don't store shadows in an address space that is
735 * already exiting. This is not just an optizimation,
736 * inode reclaim needs to empty out the radix tree or
737 * the nodes are lost. Don't plant shadows behind its
738 * back.
739 *
740 * We also don't store shadows for DAX mappings because the
741 * only page cache pages found in these are zero pages
742 * covering holes, and because we don't want to mix DAX
743 * exceptional entries and shadow exceptional entries in the
744 * same page_tree.
745 */
746 if (reclaimed && page_is_file_cache(page) &&
747 !mapping_exiting(mapping) && !dax_mapping(mapping))
748 shadow = workingset_eviction(mapping, page);
749 __delete_from_page_cache(page, shadow);
750 spin_unlock_irqrestore(&mapping->tree_lock, flags);
751
752 if (freepage != NULL)
753 freepage(page);
754 }
755
756 return 1;
757
758 cannot_free:
759 spin_unlock_irqrestore(&mapping->tree_lock, flags);
760 return 0;
761 }
762
763 /*
764 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
765 * someone else has a ref on the page, abort and return 0. If it was
766 * successfully detached, return 1. Assumes the caller has a single ref on
767 * this page.
768 */
769 int remove_mapping(struct address_space *mapping, struct page *page)
770 {
771 if (__remove_mapping(mapping, page, false)) {
772 /*
773 * Unfreezing the refcount with 1 rather than 2 effectively
774 * drops the pagecache ref for us without requiring another
775 * atomic operation.
776 */
777 page_ref_unfreeze(page, 1);
778 return 1;
779 }
780 return 0;
781 }
782
783 /**
784 * putback_lru_page - put previously isolated page onto appropriate LRU list
785 * @page: page to be put back to appropriate lru list
786 *
787 * Add previously isolated @page to appropriate LRU list.
788 * Page may still be unevictable for other reasons.
789 *
790 * lru_lock must not be held, interrupts must be enabled.
791 */
792 void putback_lru_page(struct page *page)
793 {
794 bool is_unevictable;
795 int was_unevictable = PageUnevictable(page);
796
797 VM_BUG_ON_PAGE(PageLRU(page), page);
798
799 redo:
800 ClearPageUnevictable(page);
801
802 if (page_evictable(page)) {
803 /*
804 * For evictable pages, we can use the cache.
805 * In event of a race, worst case is we end up with an
806 * unevictable page on [in]active list.
807 * We know how to handle that.
808 */
809 is_unevictable = false;
810 lru_cache_add(page);
811 } else {
812 /*
813 * Put unevictable pages directly on zone's unevictable
814 * list.
815 */
816 is_unevictable = true;
817 add_page_to_unevictable_list(page);
818 /*
819 * When racing with an mlock or AS_UNEVICTABLE clearing
820 * (page is unlocked) make sure that if the other thread
821 * does not observe our setting of PG_lru and fails
822 * isolation/check_move_unevictable_pages,
823 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
824 * the page back to the evictable list.
825 *
826 * The other side is TestClearPageMlocked() or shmem_lock().
827 */
828 smp_mb();
829 }
830
831 /*
832 * page's status can change while we move it among lru. If an evictable
833 * page is on unevictable list, it never be freed. To avoid that,
834 * check after we added it to the list, again.
835 */
836 if (is_unevictable && page_evictable(page)) {
837 if (!isolate_lru_page(page)) {
838 put_page(page);
839 goto redo;
840 }
841 /* This means someone else dropped this page from LRU
842 * So, it will be freed or putback to LRU again. There is
843 * nothing to do here.
844 */
845 }
846
847 if (was_unevictable && !is_unevictable)
848 count_vm_event(UNEVICTABLE_PGRESCUED);
849 else if (!was_unevictable && is_unevictable)
850 count_vm_event(UNEVICTABLE_PGCULLED);
851
852 put_page(page); /* drop ref from isolate */
853 }
854
855 enum page_references {
856 PAGEREF_RECLAIM,
857 PAGEREF_RECLAIM_CLEAN,
858 PAGEREF_KEEP,
859 PAGEREF_ACTIVATE,
860 };
861
862 static enum page_references page_check_references(struct page *page,
863 struct scan_control *sc)
864 {
865 int referenced_ptes, referenced_page;
866 unsigned long vm_flags;
867
868 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
869 &vm_flags);
870 referenced_page = TestClearPageReferenced(page);
871
872 /*
873 * Mlock lost the isolation race with us. Let try_to_unmap()
874 * move the page to the unevictable list.
875 */
876 if (vm_flags & VM_LOCKED)
877 return PAGEREF_RECLAIM;
878
879 if (referenced_ptes) {
880 if (PageSwapBacked(page))
881 return PAGEREF_ACTIVATE;
882 /*
883 * All mapped pages start out with page table
884 * references from the instantiating fault, so we need
885 * to look twice if a mapped file page is used more
886 * than once.
887 *
888 * Mark it and spare it for another trip around the
889 * inactive list. Another page table reference will
890 * lead to its activation.
891 *
892 * Note: the mark is set for activated pages as well
893 * so that recently deactivated but used pages are
894 * quickly recovered.
895 */
896 SetPageReferenced(page);
897
898 if (referenced_page || referenced_ptes > 1)
899 return PAGEREF_ACTIVATE;
900
901 /*
902 * Activate file-backed executable pages after first usage.
903 */
904 if (vm_flags & VM_EXEC)
905 return PAGEREF_ACTIVATE;
906
907 return PAGEREF_KEEP;
908 }
909
910 /* Reclaim if clean, defer dirty pages to writeback */
911 if (referenced_page && !PageSwapBacked(page))
912 return PAGEREF_RECLAIM_CLEAN;
913
914 return PAGEREF_RECLAIM;
915 }
916
917 /* Check if a page is dirty or under writeback */
918 static void page_check_dirty_writeback(struct page *page,
919 bool *dirty, bool *writeback)
920 {
921 struct address_space *mapping;
922
923 /*
924 * Anonymous pages are not handled by flushers and must be written
925 * from reclaim context. Do not stall reclaim based on them
926 */
927 if (!page_is_file_cache(page) ||
928 (PageAnon(page) && !PageSwapBacked(page))) {
929 *dirty = false;
930 *writeback = false;
931 return;
932 }
933
934 /* By default assume that the page flags are accurate */
935 *dirty = PageDirty(page);
936 *writeback = PageWriteback(page);
937
938 /* Verify dirty/writeback state if the filesystem supports it */
939 if (!page_has_private(page))
940 return;
941
942 mapping = page_mapping(page);
943 if (mapping && mapping->a_ops->is_dirty_writeback)
944 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
945 }
946
947 struct reclaim_stat {
948 unsigned nr_dirty;
949 unsigned nr_unqueued_dirty;
950 unsigned nr_congested;
951 unsigned nr_writeback;
952 unsigned nr_immediate;
953 unsigned nr_activate;
954 unsigned nr_ref_keep;
955 unsigned nr_unmap_fail;
956 };
957
958 /*
959 * shrink_page_list() returns the number of reclaimed pages
960 */
961 static unsigned long shrink_page_list(struct list_head *page_list,
962 struct pglist_data *pgdat,
963 struct scan_control *sc,
964 enum ttu_flags ttu_flags,
965 struct reclaim_stat *stat,
966 bool force_reclaim)
967 {
968 LIST_HEAD(ret_pages);
969 LIST_HEAD(free_pages);
970 int pgactivate = 0;
971 unsigned nr_unqueued_dirty = 0;
972 unsigned nr_dirty = 0;
973 unsigned nr_congested = 0;
974 unsigned nr_reclaimed = 0;
975 unsigned nr_writeback = 0;
976 unsigned nr_immediate = 0;
977 unsigned nr_ref_keep = 0;
978 unsigned nr_unmap_fail = 0;
979
980 cond_resched();
981
982 while (!list_empty(page_list)) {
983 struct address_space *mapping;
984 struct page *page;
985 int may_enter_fs;
986 enum page_references references = PAGEREF_RECLAIM_CLEAN;
987 bool dirty, writeback;
988
989 cond_resched();
990
991 page = lru_to_page(page_list);
992 list_del(&page->lru);
993
994 if (!trylock_page(page))
995 goto keep;
996
997 VM_BUG_ON_PAGE(PageActive(page), page);
998
999 sc->nr_scanned++;
1000
1001 if (unlikely(!page_evictable(page)))
1002 goto activate_locked;
1003
1004 if (!sc->may_unmap && page_mapped(page))
1005 goto keep_locked;
1006
1007 /* Double the slab pressure for mapped and swapcache pages */
1008 if ((page_mapped(page) || PageSwapCache(page)) &&
1009 !(PageAnon(page) && !PageSwapBacked(page)))
1010 sc->nr_scanned++;
1011
1012 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1013 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1014
1015 /*
1016 * The number of dirty pages determines if a zone is marked
1017 * reclaim_congested which affects wait_iff_congested. kswapd
1018 * will stall and start writing pages if the tail of the LRU
1019 * is all dirty unqueued pages.
1020 */
1021 page_check_dirty_writeback(page, &dirty, &writeback);
1022 if (dirty || writeback)
1023 nr_dirty++;
1024
1025 if (dirty && !writeback)
1026 nr_unqueued_dirty++;
1027
1028 /*
1029 * Treat this page as congested if the underlying BDI is or if
1030 * pages are cycling through the LRU so quickly that the
1031 * pages marked for immediate reclaim are making it to the
1032 * end of the LRU a second time.
1033 */
1034 mapping = page_mapping(page);
1035 if (((dirty || writeback) && mapping &&
1036 inode_write_congested(mapping->host)) ||
1037 (writeback && PageReclaim(page)))
1038 nr_congested++;
1039
1040 /*
1041 * If a page at the tail of the LRU is under writeback, there
1042 * are three cases to consider.
1043 *
1044 * 1) If reclaim is encountering an excessive number of pages
1045 * under writeback and this page is both under writeback and
1046 * PageReclaim then it indicates that pages are being queued
1047 * for IO but are being recycled through the LRU before the
1048 * IO can complete. Waiting on the page itself risks an
1049 * indefinite stall if it is impossible to writeback the
1050 * page due to IO error or disconnected storage so instead
1051 * note that the LRU is being scanned too quickly and the
1052 * caller can stall after page list has been processed.
1053 *
1054 * 2) Global or new memcg reclaim encounters a page that is
1055 * not marked for immediate reclaim, or the caller does not
1056 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1057 * not to fs). In this case mark the page for immediate
1058 * reclaim and continue scanning.
1059 *
1060 * Require may_enter_fs because we would wait on fs, which
1061 * may not have submitted IO yet. And the loop driver might
1062 * enter reclaim, and deadlock if it waits on a page for
1063 * which it is needed to do the write (loop masks off
1064 * __GFP_IO|__GFP_FS for this reason); but more thought
1065 * would probably show more reasons.
1066 *
1067 * 3) Legacy memcg encounters a page that is already marked
1068 * PageReclaim. memcg does not have any dirty pages
1069 * throttling so we could easily OOM just because too many
1070 * pages are in writeback and there is nothing else to
1071 * reclaim. Wait for the writeback to complete.
1072 *
1073 * In cases 1) and 2) we activate the pages to get them out of
1074 * the way while we continue scanning for clean pages on the
1075 * inactive list and refilling from the active list. The
1076 * observation here is that waiting for disk writes is more
1077 * expensive than potentially causing reloads down the line.
1078 * Since they're marked for immediate reclaim, they won't put
1079 * memory pressure on the cache working set any longer than it
1080 * takes to write them to disk.
1081 */
1082 if (PageWriteback(page)) {
1083 /* Case 1 above */
1084 if (current_is_kswapd() &&
1085 PageReclaim(page) &&
1086 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1087 nr_immediate++;
1088 goto activate_locked;
1089
1090 /* Case 2 above */
1091 } else if (sane_reclaim(sc) ||
1092 !PageReclaim(page) || !may_enter_fs) {
1093 /*
1094 * This is slightly racy - end_page_writeback()
1095 * might have just cleared PageReclaim, then
1096 * setting PageReclaim here end up interpreted
1097 * as PageReadahead - but that does not matter
1098 * enough to care. What we do want is for this
1099 * page to have PageReclaim set next time memcg
1100 * reclaim reaches the tests above, so it will
1101 * then wait_on_page_writeback() to avoid OOM;
1102 * and it's also appropriate in global reclaim.
1103 */
1104 SetPageReclaim(page);
1105 nr_writeback++;
1106 goto activate_locked;
1107
1108 /* Case 3 above */
1109 } else {
1110 unlock_page(page);
1111 wait_on_page_writeback(page);
1112 /* then go back and try same page again */
1113 list_add_tail(&page->lru, page_list);
1114 continue;
1115 }
1116 }
1117
1118 if (!force_reclaim)
1119 references = page_check_references(page, sc);
1120
1121 switch (references) {
1122 case PAGEREF_ACTIVATE:
1123 goto activate_locked;
1124 case PAGEREF_KEEP:
1125 nr_ref_keep++;
1126 goto keep_locked;
1127 case PAGEREF_RECLAIM:
1128 case PAGEREF_RECLAIM_CLEAN:
1129 ; /* try to reclaim the page below */
1130 }
1131
1132 /*
1133 * Anonymous process memory has backing store?
1134 * Try to allocate it some swap space here.
1135 * Lazyfree page could be freed directly
1136 */
1137 if (PageAnon(page) && PageSwapBacked(page)) {
1138 if (!PageSwapCache(page)) {
1139 if (!(sc->gfp_mask & __GFP_IO))
1140 goto keep_locked;
1141 if (PageTransHuge(page)) {
1142 /* cannot split THP, skip it */
1143 if (!can_split_huge_page(page, NULL))
1144 goto activate_locked;
1145 /*
1146 * Split pages without a PMD map right
1147 * away. Chances are some or all of the
1148 * tail pages can be freed without IO.
1149 */
1150 if (!compound_mapcount(page) &&
1151 split_huge_page_to_list(page,
1152 page_list))
1153 goto activate_locked;
1154 }
1155 if (!add_to_swap(page)) {
1156 if (!PageTransHuge(page))
1157 goto activate_locked;
1158 /* Fallback to swap normal pages */
1159 if (split_huge_page_to_list(page,
1160 page_list))
1161 goto activate_locked;
1162 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1163 count_vm_event(THP_SWPOUT_FALLBACK);
1164 #endif
1165 if (!add_to_swap(page))
1166 goto activate_locked;
1167 }
1168
1169 may_enter_fs = 1;
1170
1171 /* Adding to swap updated mapping */
1172 mapping = page_mapping(page);
1173 }
1174 } else if (unlikely(PageTransHuge(page))) {
1175 /* Split file THP */
1176 if (split_huge_page_to_list(page, page_list))
1177 goto keep_locked;
1178 }
1179
1180 /*
1181 * The page is mapped into the page tables of one or more
1182 * processes. Try to unmap it here.
1183 */
1184 if (page_mapped(page)) {
1185 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1186
1187 if (unlikely(PageTransHuge(page)))
1188 flags |= TTU_SPLIT_HUGE_PMD;
1189 if (!try_to_unmap(page, flags)) {
1190 nr_unmap_fail++;
1191 goto activate_locked;
1192 }
1193 }
1194
1195 if (PageDirty(page)) {
1196 /*
1197 * Only kswapd can writeback filesystem pages
1198 * to avoid risk of stack overflow. But avoid
1199 * injecting inefficient single-page IO into
1200 * flusher writeback as much as possible: only
1201 * write pages when we've encountered many
1202 * dirty pages, and when we've already scanned
1203 * the rest of the LRU for clean pages and see
1204 * the same dirty pages again (PageReclaim).
1205 */
1206 if (page_is_file_cache(page) &&
1207 (!current_is_kswapd() || !PageReclaim(page) ||
1208 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1209 /*
1210 * Immediately reclaim when written back.
1211 * Similar in principal to deactivate_page()
1212 * except we already have the page isolated
1213 * and know it's dirty
1214 */
1215 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1216 SetPageReclaim(page);
1217
1218 goto activate_locked;
1219 }
1220
1221 if (references == PAGEREF_RECLAIM_CLEAN)
1222 goto keep_locked;
1223 if (!may_enter_fs)
1224 goto keep_locked;
1225 if (!sc->may_writepage)
1226 goto keep_locked;
1227
1228 /*
1229 * Page is dirty. Flush the TLB if a writable entry
1230 * potentially exists to avoid CPU writes after IO
1231 * starts and then write it out here.
1232 */
1233 try_to_unmap_flush_dirty();
1234 switch (pageout(page, mapping, sc)) {
1235 case PAGE_KEEP:
1236 goto keep_locked;
1237 case PAGE_ACTIVATE:
1238 goto activate_locked;
1239 case PAGE_SUCCESS:
1240 if (PageWriteback(page))
1241 goto keep;
1242 if (PageDirty(page))
1243 goto keep;
1244
1245 /*
1246 * A synchronous write - probably a ramdisk. Go
1247 * ahead and try to reclaim the page.
1248 */
1249 if (!trylock_page(page))
1250 goto keep;
1251 if (PageDirty(page) || PageWriteback(page))
1252 goto keep_locked;
1253 mapping = page_mapping(page);
1254 case PAGE_CLEAN:
1255 ; /* try to free the page below */
1256 }
1257 }
1258
1259 /*
1260 * If the page has buffers, try to free the buffer mappings
1261 * associated with this page. If we succeed we try to free
1262 * the page as well.
1263 *
1264 * We do this even if the page is PageDirty().
1265 * try_to_release_page() does not perform I/O, but it is
1266 * possible for a page to have PageDirty set, but it is actually
1267 * clean (all its buffers are clean). This happens if the
1268 * buffers were written out directly, with submit_bh(). ext3
1269 * will do this, as well as the blockdev mapping.
1270 * try_to_release_page() will discover that cleanness and will
1271 * drop the buffers and mark the page clean - it can be freed.
1272 *
1273 * Rarely, pages can have buffers and no ->mapping. These are
1274 * the pages which were not successfully invalidated in
1275 * truncate_complete_page(). We try to drop those buffers here
1276 * and if that worked, and the page is no longer mapped into
1277 * process address space (page_count == 1) it can be freed.
1278 * Otherwise, leave the page on the LRU so it is swappable.
1279 */
1280 if (page_has_private(page)) {
1281 if (!try_to_release_page(page, sc->gfp_mask))
1282 goto activate_locked;
1283 if (!mapping && page_count(page) == 1) {
1284 unlock_page(page);
1285 if (put_page_testzero(page))
1286 goto free_it;
1287 else {
1288 /*
1289 * rare race with speculative reference.
1290 * the speculative reference will free
1291 * this page shortly, so we may
1292 * increment nr_reclaimed here (and
1293 * leave it off the LRU).
1294 */
1295 nr_reclaimed++;
1296 continue;
1297 }
1298 }
1299 }
1300
1301 if (PageAnon(page) && !PageSwapBacked(page)) {
1302 /* follow __remove_mapping for reference */
1303 if (!page_ref_freeze(page, 1))
1304 goto keep_locked;
1305 if (PageDirty(page)) {
1306 page_ref_unfreeze(page, 1);
1307 goto keep_locked;
1308 }
1309
1310 count_vm_event(PGLAZYFREED);
1311 count_memcg_page_event(page, PGLAZYFREED);
1312 } else if (!mapping || !__remove_mapping(mapping, page, true))
1313 goto keep_locked;
1314 /*
1315 * At this point, we have no other references and there is
1316 * no way to pick any more up (removed from LRU, removed
1317 * from pagecache). Can use non-atomic bitops now (and
1318 * we obviously don't have to worry about waking up a process
1319 * waiting on the page lock, because there are no references.
1320 */
1321 __ClearPageLocked(page);
1322 free_it:
1323 nr_reclaimed++;
1324
1325 /*
1326 * Is there need to periodically free_page_list? It would
1327 * appear not as the counts should be low
1328 */
1329 if (unlikely(PageTransHuge(page))) {
1330 mem_cgroup_uncharge(page);
1331 (*get_compound_page_dtor(page))(page);
1332 } else
1333 list_add(&page->lru, &free_pages);
1334 continue;
1335
1336 activate_locked:
1337 /* Not a candidate for swapping, so reclaim swap space. */
1338 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1339 PageMlocked(page)))
1340 try_to_free_swap(page);
1341 VM_BUG_ON_PAGE(PageActive(page), page);
1342 if (!PageMlocked(page)) {
1343 SetPageActive(page);
1344 pgactivate++;
1345 count_memcg_page_event(page, PGACTIVATE);
1346 }
1347 keep_locked:
1348 unlock_page(page);
1349 keep:
1350 list_add(&page->lru, &ret_pages);
1351 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1352 }
1353
1354 mem_cgroup_uncharge_list(&free_pages);
1355 try_to_unmap_flush();
1356 free_hot_cold_page_list(&free_pages, true);
1357
1358 list_splice(&ret_pages, page_list);
1359 count_vm_events(PGACTIVATE, pgactivate);
1360
1361 if (stat) {
1362 stat->nr_dirty = nr_dirty;
1363 stat->nr_congested = nr_congested;
1364 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1365 stat->nr_writeback = nr_writeback;
1366 stat->nr_immediate = nr_immediate;
1367 stat->nr_activate = pgactivate;
1368 stat->nr_ref_keep = nr_ref_keep;
1369 stat->nr_unmap_fail = nr_unmap_fail;
1370 }
1371 return nr_reclaimed;
1372 }
1373
1374 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1375 struct list_head *page_list)
1376 {
1377 struct scan_control sc = {
1378 .gfp_mask = GFP_KERNEL,
1379 .priority = DEF_PRIORITY,
1380 .may_unmap = 1,
1381 };
1382 unsigned long ret;
1383 struct page *page, *next;
1384 LIST_HEAD(clean_pages);
1385
1386 list_for_each_entry_safe(page, next, page_list, lru) {
1387 if (page_is_file_cache(page) && !PageDirty(page) &&
1388 !__PageMovable(page)) {
1389 ClearPageActive(page);
1390 list_move(&page->lru, &clean_pages);
1391 }
1392 }
1393
1394 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1395 TTU_IGNORE_ACCESS, NULL, true);
1396 list_splice(&clean_pages, page_list);
1397 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1398 return ret;
1399 }
1400
1401 /*
1402 * Attempt to remove the specified page from its LRU. Only take this page
1403 * if it is of the appropriate PageActive status. Pages which are being
1404 * freed elsewhere are also ignored.
1405 *
1406 * page: page to consider
1407 * mode: one of the LRU isolation modes defined above
1408 *
1409 * returns 0 on success, -ve errno on failure.
1410 */
1411 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1412 {
1413 int ret = -EINVAL;
1414
1415 /* Only take pages on the LRU. */
1416 if (!PageLRU(page))
1417 return ret;
1418
1419 /* Compaction should not handle unevictable pages but CMA can do so */
1420 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1421 return ret;
1422
1423 ret = -EBUSY;
1424
1425 /*
1426 * To minimise LRU disruption, the caller can indicate that it only
1427 * wants to isolate pages it will be able to operate on without
1428 * blocking - clean pages for the most part.
1429 *
1430 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1431 * that it is possible to migrate without blocking
1432 */
1433 if (mode & ISOLATE_ASYNC_MIGRATE) {
1434 /* All the caller can do on PageWriteback is block */
1435 if (PageWriteback(page))
1436 return ret;
1437
1438 if (PageDirty(page)) {
1439 struct address_space *mapping;
1440 bool migrate_dirty;
1441
1442 /*
1443 * Only pages without mappings or that have a
1444 * ->migratepage callback are possible to migrate
1445 * without blocking. However, we can be racing with
1446 * truncation so it's necessary to lock the page
1447 * to stabilise the mapping as truncation holds
1448 * the page lock until after the page is removed
1449 * from the page cache.
1450 */
1451 if (!trylock_page(page))
1452 return ret;
1453
1454 mapping = page_mapping(page);
1455 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1456 unlock_page(page);
1457 if (!migrate_dirty)
1458 return ret;
1459 }
1460 }
1461
1462 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1463 return ret;
1464
1465 if (likely(get_page_unless_zero(page))) {
1466 /*
1467 * Be careful not to clear PageLRU until after we're
1468 * sure the page is not being freed elsewhere -- the
1469 * page release code relies on it.
1470 */
1471 ClearPageLRU(page);
1472 ret = 0;
1473 }
1474
1475 return ret;
1476 }
1477
1478
1479 /*
1480 * Update LRU sizes after isolating pages. The LRU size updates must
1481 * be complete before mem_cgroup_update_lru_size due to a santity check.
1482 */
1483 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1484 enum lru_list lru, unsigned long *nr_zone_taken)
1485 {
1486 int zid;
1487
1488 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1489 if (!nr_zone_taken[zid])
1490 continue;
1491
1492 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1493 #ifdef CONFIG_MEMCG
1494 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1495 #endif
1496 }
1497
1498 }
1499
1500 /*
1501 * zone_lru_lock is heavily contended. Some of the functions that
1502 * shrink the lists perform better by taking out a batch of pages
1503 * and working on them outside the LRU lock.
1504 *
1505 * For pagecache intensive workloads, this function is the hottest
1506 * spot in the kernel (apart from copy_*_user functions).
1507 *
1508 * Appropriate locks must be held before calling this function.
1509 *
1510 * @nr_to_scan: The number of eligible pages to look through on the list.
1511 * @lruvec: The LRU vector to pull pages from.
1512 * @dst: The temp list to put pages on to.
1513 * @nr_scanned: The number of pages that were scanned.
1514 * @sc: The scan_control struct for this reclaim session
1515 * @mode: One of the LRU isolation modes
1516 * @lru: LRU list id for isolating
1517 *
1518 * returns how many pages were moved onto *@dst.
1519 */
1520 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1521 struct lruvec *lruvec, struct list_head *dst,
1522 unsigned long *nr_scanned, struct scan_control *sc,
1523 isolate_mode_t mode, enum lru_list lru)
1524 {
1525 struct list_head *src = &lruvec->lists[lru];
1526 unsigned long nr_taken = 0;
1527 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1528 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1529 unsigned long skipped = 0;
1530 unsigned long scan, total_scan, nr_pages;
1531 LIST_HEAD(pages_skipped);
1532
1533 scan = 0;
1534 for (total_scan = 0;
1535 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1536 total_scan++) {
1537 struct page *page;
1538
1539 page = lru_to_page(src);
1540 prefetchw_prev_lru_page(page, src, flags);
1541
1542 VM_BUG_ON_PAGE(!PageLRU(page), page);
1543
1544 if (page_zonenum(page) > sc->reclaim_idx) {
1545 list_move(&page->lru, &pages_skipped);
1546 nr_skipped[page_zonenum(page)]++;
1547 continue;
1548 }
1549
1550 /*
1551 * Do not count skipped pages because that makes the function
1552 * return with no isolated pages if the LRU mostly contains
1553 * ineligible pages. This causes the VM to not reclaim any
1554 * pages, triggering a premature OOM.
1555 */
1556 scan++;
1557 switch (__isolate_lru_page(page, mode)) {
1558 case 0:
1559 nr_pages = hpage_nr_pages(page);
1560 nr_taken += nr_pages;
1561 nr_zone_taken[page_zonenum(page)] += nr_pages;
1562 list_move(&page->lru, dst);
1563 break;
1564
1565 case -EBUSY:
1566 /* else it is being freed elsewhere */
1567 list_move(&page->lru, src);
1568 continue;
1569
1570 default:
1571 BUG();
1572 }
1573 }
1574
1575 /*
1576 * Splice any skipped pages to the start of the LRU list. Note that
1577 * this disrupts the LRU order when reclaiming for lower zones but
1578 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1579 * scanning would soon rescan the same pages to skip and put the
1580 * system at risk of premature OOM.
1581 */
1582 if (!list_empty(&pages_skipped)) {
1583 int zid;
1584
1585 list_splice(&pages_skipped, src);
1586 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1587 if (!nr_skipped[zid])
1588 continue;
1589
1590 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1591 skipped += nr_skipped[zid];
1592 }
1593 }
1594 *nr_scanned = total_scan;
1595 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1596 total_scan, skipped, nr_taken, mode, lru);
1597 update_lru_sizes(lruvec, lru, nr_zone_taken);
1598 return nr_taken;
1599 }
1600
1601 /**
1602 * isolate_lru_page - tries to isolate a page from its LRU list
1603 * @page: page to isolate from its LRU list
1604 *
1605 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1606 * vmstat statistic corresponding to whatever LRU list the page was on.
1607 *
1608 * Returns 0 if the page was removed from an LRU list.
1609 * Returns -EBUSY if the page was not on an LRU list.
1610 *
1611 * The returned page will have PageLRU() cleared. If it was found on
1612 * the active list, it will have PageActive set. If it was found on
1613 * the unevictable list, it will have the PageUnevictable bit set. That flag
1614 * may need to be cleared by the caller before letting the page go.
1615 *
1616 * The vmstat statistic corresponding to the list on which the page was
1617 * found will be decremented.
1618 *
1619 * Restrictions:
1620 * (1) Must be called with an elevated refcount on the page. This is a
1621 * fundamentnal difference from isolate_lru_pages (which is called
1622 * without a stable reference).
1623 * (2) the lru_lock must not be held.
1624 * (3) interrupts must be enabled.
1625 */
1626 int isolate_lru_page(struct page *page)
1627 {
1628 int ret = -EBUSY;
1629
1630 VM_BUG_ON_PAGE(!page_count(page), page);
1631 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1632
1633 if (PageLRU(page)) {
1634 struct zone *zone = page_zone(page);
1635 struct lruvec *lruvec;
1636
1637 spin_lock_irq(zone_lru_lock(zone));
1638 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1639 if (PageLRU(page)) {
1640 int lru = page_lru(page);
1641 get_page(page);
1642 ClearPageLRU(page);
1643 del_page_from_lru_list(page, lruvec, lru);
1644 ret = 0;
1645 }
1646 spin_unlock_irq(zone_lru_lock(zone));
1647 }
1648 return ret;
1649 }
1650
1651 /*
1652 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1653 * then get resheduled. When there are massive number of tasks doing page
1654 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1655 * the LRU list will go small and be scanned faster than necessary, leading to
1656 * unnecessary swapping, thrashing and OOM.
1657 */
1658 static int too_many_isolated(struct pglist_data *pgdat, int file,
1659 struct scan_control *sc)
1660 {
1661 unsigned long inactive, isolated;
1662
1663 if (current_is_kswapd())
1664 return 0;
1665
1666 if (!sane_reclaim(sc))
1667 return 0;
1668
1669 if (file) {
1670 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1671 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1672 } else {
1673 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1674 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1675 }
1676
1677 /*
1678 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1679 * won't get blocked by normal direct-reclaimers, forming a circular
1680 * deadlock.
1681 */
1682 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1683 inactive >>= 3;
1684
1685 return isolated > inactive;
1686 }
1687
1688 static noinline_for_stack void
1689 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1690 {
1691 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1692 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1693 LIST_HEAD(pages_to_free);
1694
1695 /*
1696 * Put back any unfreeable pages.
1697 */
1698 while (!list_empty(page_list)) {
1699 struct page *page = lru_to_page(page_list);
1700 int lru;
1701
1702 VM_BUG_ON_PAGE(PageLRU(page), page);
1703 list_del(&page->lru);
1704 if (unlikely(!page_evictable(page))) {
1705 spin_unlock_irq(&pgdat->lru_lock);
1706 putback_lru_page(page);
1707 spin_lock_irq(&pgdat->lru_lock);
1708 continue;
1709 }
1710
1711 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1712
1713 SetPageLRU(page);
1714 lru = page_lru(page);
1715 add_page_to_lru_list(page, lruvec, lru);
1716
1717 if (is_active_lru(lru)) {
1718 int file = is_file_lru(lru);
1719 int numpages = hpage_nr_pages(page);
1720 reclaim_stat->recent_rotated[file] += numpages;
1721 }
1722 if (put_page_testzero(page)) {
1723 __ClearPageLRU(page);
1724 __ClearPageActive(page);
1725 del_page_from_lru_list(page, lruvec, lru);
1726
1727 if (unlikely(PageCompound(page))) {
1728 spin_unlock_irq(&pgdat->lru_lock);
1729 mem_cgroup_uncharge(page);
1730 (*get_compound_page_dtor(page))(page);
1731 spin_lock_irq(&pgdat->lru_lock);
1732 } else
1733 list_add(&page->lru, &pages_to_free);
1734 }
1735 }
1736
1737 /*
1738 * To save our caller's stack, now use input list for pages to free.
1739 */
1740 list_splice(&pages_to_free, page_list);
1741 }
1742
1743 /*
1744 * If a kernel thread (such as nfsd for loop-back mounts) services
1745 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1746 * In that case we should only throttle if the backing device it is
1747 * writing to is congested. In other cases it is safe to throttle.
1748 */
1749 static int current_may_throttle(void)
1750 {
1751 return !(current->flags & PF_LESS_THROTTLE) ||
1752 current->backing_dev_info == NULL ||
1753 bdi_write_congested(current->backing_dev_info);
1754 }
1755
1756 /*
1757 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1758 * of reclaimed pages
1759 */
1760 static noinline_for_stack unsigned long
1761 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1762 struct scan_control *sc, enum lru_list lru)
1763 {
1764 LIST_HEAD(page_list);
1765 unsigned long nr_scanned;
1766 unsigned long nr_reclaimed = 0;
1767 unsigned long nr_taken;
1768 struct reclaim_stat stat = {};
1769 isolate_mode_t isolate_mode = 0;
1770 int file = is_file_lru(lru);
1771 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1772 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1773 bool stalled = false;
1774
1775 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1776 if (stalled)
1777 return 0;
1778
1779 /* wait a bit for the reclaimer. */
1780 msleep(100);
1781 stalled = true;
1782
1783 /* We are about to die and free our memory. Return now. */
1784 if (fatal_signal_pending(current))
1785 return SWAP_CLUSTER_MAX;
1786 }
1787
1788 lru_add_drain();
1789
1790 if (!sc->may_unmap)
1791 isolate_mode |= ISOLATE_UNMAPPED;
1792
1793 spin_lock_irq(&pgdat->lru_lock);
1794
1795 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1796 &nr_scanned, sc, isolate_mode, lru);
1797
1798 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1799 reclaim_stat->recent_scanned[file] += nr_taken;
1800
1801 if (current_is_kswapd()) {
1802 if (global_reclaim(sc))
1803 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1804 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1805 nr_scanned);
1806 } else {
1807 if (global_reclaim(sc))
1808 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1809 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1810 nr_scanned);
1811 }
1812 spin_unlock_irq(&pgdat->lru_lock);
1813
1814 if (nr_taken == 0)
1815 return 0;
1816
1817 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1818 &stat, false);
1819
1820 spin_lock_irq(&pgdat->lru_lock);
1821
1822 if (current_is_kswapd()) {
1823 if (global_reclaim(sc))
1824 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1825 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1826 nr_reclaimed);
1827 } else {
1828 if (global_reclaim(sc))
1829 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1830 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1831 nr_reclaimed);
1832 }
1833
1834 putback_inactive_pages(lruvec, &page_list);
1835
1836 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1837
1838 spin_unlock_irq(&pgdat->lru_lock);
1839
1840 mem_cgroup_uncharge_list(&page_list);
1841 free_hot_cold_page_list(&page_list, true);
1842
1843 /*
1844 * If reclaim is isolating dirty pages under writeback, it implies
1845 * that the long-lived page allocation rate is exceeding the page
1846 * laundering rate. Either the global limits are not being effective
1847 * at throttling processes due to the page distribution throughout
1848 * zones or there is heavy usage of a slow backing device. The
1849 * only option is to throttle from reclaim context which is not ideal
1850 * as there is no guarantee the dirtying process is throttled in the
1851 * same way balance_dirty_pages() manages.
1852 *
1853 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1854 * of pages under pages flagged for immediate reclaim and stall if any
1855 * are encountered in the nr_immediate check below.
1856 */
1857 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1858 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1859
1860 /*
1861 * If dirty pages are scanned that are not queued for IO, it
1862 * implies that flushers are not doing their job. This can
1863 * happen when memory pressure pushes dirty pages to the end of
1864 * the LRU before the dirty limits are breached and the dirty
1865 * data has expired. It can also happen when the proportion of
1866 * dirty pages grows not through writes but through memory
1867 * pressure reclaiming all the clean cache. And in some cases,
1868 * the flushers simply cannot keep up with the allocation
1869 * rate. Nudge the flusher threads in case they are asleep.
1870 */
1871 if (stat.nr_unqueued_dirty == nr_taken)
1872 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1873
1874 /*
1875 * Legacy memcg will stall in page writeback so avoid forcibly
1876 * stalling here.
1877 */
1878 if (sane_reclaim(sc)) {
1879 /*
1880 * Tag a zone as congested if all the dirty pages scanned were
1881 * backed by a congested BDI and wait_iff_congested will stall.
1882 */
1883 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1884 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1885
1886 /* Allow kswapd to start writing pages during reclaim. */
1887 if (stat.nr_unqueued_dirty == nr_taken)
1888 set_bit(PGDAT_DIRTY, &pgdat->flags);
1889
1890 /*
1891 * If kswapd scans pages marked marked for immediate
1892 * reclaim and under writeback (nr_immediate), it implies
1893 * that pages are cycling through the LRU faster than
1894 * they are written so also forcibly stall.
1895 */
1896 if (stat.nr_immediate && current_may_throttle())
1897 congestion_wait(BLK_RW_ASYNC, HZ/10);
1898 }
1899
1900 /*
1901 * Stall direct reclaim for IO completions if underlying BDIs or zone
1902 * is congested. Allow kswapd to continue until it starts encountering
1903 * unqueued dirty pages or cycling through the LRU too quickly.
1904 */
1905 if (!sc->hibernation_mode && !current_is_kswapd() &&
1906 current_may_throttle())
1907 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1908
1909 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1910 nr_scanned, nr_reclaimed,
1911 stat.nr_dirty, stat.nr_writeback,
1912 stat.nr_congested, stat.nr_immediate,
1913 stat.nr_activate, stat.nr_ref_keep,
1914 stat.nr_unmap_fail,
1915 sc->priority, file);
1916 return nr_reclaimed;
1917 }
1918
1919 /*
1920 * This moves pages from the active list to the inactive list.
1921 *
1922 * We move them the other way if the page is referenced by one or more
1923 * processes, from rmap.
1924 *
1925 * If the pages are mostly unmapped, the processing is fast and it is
1926 * appropriate to hold zone_lru_lock across the whole operation. But if
1927 * the pages are mapped, the processing is slow (page_referenced()) so we
1928 * should drop zone_lru_lock around each page. It's impossible to balance
1929 * this, so instead we remove the pages from the LRU while processing them.
1930 * It is safe to rely on PG_active against the non-LRU pages in here because
1931 * nobody will play with that bit on a non-LRU page.
1932 *
1933 * The downside is that we have to touch page->_refcount against each page.
1934 * But we had to alter page->flags anyway.
1935 *
1936 * Returns the number of pages moved to the given lru.
1937 */
1938
1939 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1940 struct list_head *list,
1941 struct list_head *pages_to_free,
1942 enum lru_list lru)
1943 {
1944 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1945 struct page *page;
1946 int nr_pages;
1947 int nr_moved = 0;
1948
1949 while (!list_empty(list)) {
1950 page = lru_to_page(list);
1951 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1952
1953 VM_BUG_ON_PAGE(PageLRU(page), page);
1954 SetPageLRU(page);
1955
1956 nr_pages = hpage_nr_pages(page);
1957 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1958 list_move(&page->lru, &lruvec->lists[lru]);
1959
1960 if (put_page_testzero(page)) {
1961 __ClearPageLRU(page);
1962 __ClearPageActive(page);
1963 del_page_from_lru_list(page, lruvec, lru);
1964
1965 if (unlikely(PageCompound(page))) {
1966 spin_unlock_irq(&pgdat->lru_lock);
1967 mem_cgroup_uncharge(page);
1968 (*get_compound_page_dtor(page))(page);
1969 spin_lock_irq(&pgdat->lru_lock);
1970 } else
1971 list_add(&page->lru, pages_to_free);
1972 } else {
1973 nr_moved += nr_pages;
1974 }
1975 }
1976
1977 if (!is_active_lru(lru)) {
1978 __count_vm_events(PGDEACTIVATE, nr_moved);
1979 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1980 nr_moved);
1981 }
1982
1983 return nr_moved;
1984 }
1985
1986 static void shrink_active_list(unsigned long nr_to_scan,
1987 struct lruvec *lruvec,
1988 struct scan_control *sc,
1989 enum lru_list lru)
1990 {
1991 unsigned long nr_taken;
1992 unsigned long nr_scanned;
1993 unsigned long vm_flags;
1994 LIST_HEAD(l_hold); /* The pages which were snipped off */
1995 LIST_HEAD(l_active);
1996 LIST_HEAD(l_inactive);
1997 struct page *page;
1998 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1999 unsigned nr_deactivate, nr_activate;
2000 unsigned nr_rotated = 0;
2001 isolate_mode_t isolate_mode = 0;
2002 int file = is_file_lru(lru);
2003 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2004
2005 lru_add_drain();
2006
2007 if (!sc->may_unmap)
2008 isolate_mode |= ISOLATE_UNMAPPED;
2009
2010 spin_lock_irq(&pgdat->lru_lock);
2011
2012 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2013 &nr_scanned, sc, isolate_mode, lru);
2014
2015 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2016 reclaim_stat->recent_scanned[file] += nr_taken;
2017
2018 __count_vm_events(PGREFILL, nr_scanned);
2019 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2020
2021 spin_unlock_irq(&pgdat->lru_lock);
2022
2023 while (!list_empty(&l_hold)) {
2024 cond_resched();
2025 page = lru_to_page(&l_hold);
2026 list_del(&page->lru);
2027
2028 if (unlikely(!page_evictable(page))) {
2029 putback_lru_page(page);
2030 continue;
2031 }
2032
2033 if (unlikely(buffer_heads_over_limit)) {
2034 if (page_has_private(page) && trylock_page(page)) {
2035 if (page_has_private(page))
2036 try_to_release_page(page, 0);
2037 unlock_page(page);
2038 }
2039 }
2040
2041 if (page_referenced(page, 0, sc->target_mem_cgroup,
2042 &vm_flags)) {
2043 nr_rotated += hpage_nr_pages(page);
2044 /*
2045 * Identify referenced, file-backed active pages and
2046 * give them one more trip around the active list. So
2047 * that executable code get better chances to stay in
2048 * memory under moderate memory pressure. Anon pages
2049 * are not likely to be evicted by use-once streaming
2050 * IO, plus JVM can create lots of anon VM_EXEC pages,
2051 * so we ignore them here.
2052 */
2053 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2054 list_add(&page->lru, &l_active);
2055 continue;
2056 }
2057 }
2058
2059 ClearPageActive(page); /* we are de-activating */
2060 SetPageWorkingset(page);
2061 list_add(&page->lru, &l_inactive);
2062 }
2063
2064 /*
2065 * Move pages back to the lru list.
2066 */
2067 spin_lock_irq(&pgdat->lru_lock);
2068 /*
2069 * Count referenced pages from currently used mappings as rotated,
2070 * even though only some of them are actually re-activated. This
2071 * helps balance scan pressure between file and anonymous pages in
2072 * get_scan_count.
2073 */
2074 reclaim_stat->recent_rotated[file] += nr_rotated;
2075
2076 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2077 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2078 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2079 spin_unlock_irq(&pgdat->lru_lock);
2080
2081 mem_cgroup_uncharge_list(&l_hold);
2082 free_hot_cold_page_list(&l_hold, true);
2083 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2084 nr_deactivate, nr_rotated, sc->priority, file);
2085 }
2086
2087 /*
2088 * The inactive anon list should be small enough that the VM never has
2089 * to do too much work.
2090 *
2091 * The inactive file list should be small enough to leave most memory
2092 * to the established workingset on the scan-resistant active list,
2093 * but large enough to avoid thrashing the aggregate readahead window.
2094 *
2095 * Both inactive lists should also be large enough that each inactive
2096 * page has a chance to be referenced again before it is reclaimed.
2097 *
2098 * If that fails and refaulting is observed, the inactive list grows.
2099 *
2100 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2101 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2102 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2103 *
2104 * total target max
2105 * memory ratio inactive
2106 * -------------------------------------
2107 * 10MB 1 5MB
2108 * 100MB 1 50MB
2109 * 1GB 3 250MB
2110 * 10GB 10 0.9GB
2111 * 100GB 31 3GB
2112 * 1TB 101 10GB
2113 * 10TB 320 32GB
2114 */
2115 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2116 struct mem_cgroup *memcg,
2117 struct scan_control *sc, bool actual_reclaim)
2118 {
2119 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2120 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2121 enum lru_list inactive_lru = file * LRU_FILE;
2122 unsigned long inactive, active;
2123 unsigned long inactive_ratio;
2124 unsigned long refaults;
2125 unsigned long gb;
2126
2127 /*
2128 * If we don't have swap space, anonymous page deactivation
2129 * is pointless.
2130 */
2131 if (!file && !total_swap_pages)
2132 return false;
2133
2134 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2135 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2136
2137 if (memcg)
2138 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2139 else
2140 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2141
2142 /*
2143 * When refaults are being observed, it means a new workingset
2144 * is being established. Disable active list protection to get
2145 * rid of the stale workingset quickly.
2146 */
2147 if (file && actual_reclaim && lruvec->refaults != refaults) {
2148 inactive_ratio = 0;
2149 } else {
2150 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2151 if (gb)
2152 inactive_ratio = int_sqrt(10 * gb);
2153 else
2154 inactive_ratio = 1;
2155 }
2156
2157 if (actual_reclaim)
2158 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2159 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2160 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2161 inactive_ratio, file);
2162
2163 return inactive * inactive_ratio < active;
2164 }
2165
2166 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2167 struct lruvec *lruvec, struct mem_cgroup *memcg,
2168 struct scan_control *sc)
2169 {
2170 if (is_active_lru(lru)) {
2171 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2172 memcg, sc, true))
2173 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2174 return 0;
2175 }
2176
2177 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2178 }
2179
2180 enum scan_balance {
2181 SCAN_EQUAL,
2182 SCAN_FRACT,
2183 SCAN_ANON,
2184 SCAN_FILE,
2185 };
2186
2187 /*
2188 * Determine how aggressively the anon and file LRU lists should be
2189 * scanned. The relative value of each set of LRU lists is determined
2190 * by looking at the fraction of the pages scanned we did rotate back
2191 * onto the active list instead of evict.
2192 *
2193 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2194 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2195 */
2196 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2197 struct scan_control *sc, unsigned long *nr,
2198 unsigned long *lru_pages)
2199 {
2200 int swappiness = mem_cgroup_swappiness(memcg);
2201 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2202 u64 fraction[2];
2203 u64 denominator = 0; /* gcc */
2204 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2205 unsigned long anon_prio, file_prio;
2206 enum scan_balance scan_balance;
2207 unsigned long anon, file;
2208 unsigned long ap, fp;
2209 enum lru_list lru;
2210
2211 /* If we have no swap space, do not bother scanning anon pages. */
2212 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2213 scan_balance = SCAN_FILE;
2214 goto out;
2215 }
2216
2217 /*
2218 * Global reclaim will swap to prevent OOM even with no
2219 * swappiness, but memcg users want to use this knob to
2220 * disable swapping for individual groups completely when
2221 * using the memory controller's swap limit feature would be
2222 * too expensive.
2223 */
2224 if (!global_reclaim(sc) && !swappiness) {
2225 scan_balance = SCAN_FILE;
2226 goto out;
2227 }
2228
2229 /*
2230 * Do not apply any pressure balancing cleverness when the
2231 * system is close to OOM, scan both anon and file equally
2232 * (unless the swappiness setting disagrees with swapping).
2233 */
2234 if (!sc->priority && swappiness) {
2235 scan_balance = SCAN_EQUAL;
2236 goto out;
2237 }
2238
2239 /*
2240 * Prevent the reclaimer from falling into the cache trap: as
2241 * cache pages start out inactive, every cache fault will tip
2242 * the scan balance towards the file LRU. And as the file LRU
2243 * shrinks, so does the window for rotation from references.
2244 * This means we have a runaway feedback loop where a tiny
2245 * thrashing file LRU becomes infinitely more attractive than
2246 * anon pages. Try to detect this based on file LRU size.
2247 */
2248 if (global_reclaim(sc)) {
2249 unsigned long pgdatfile;
2250 unsigned long pgdatfree;
2251 int z;
2252 unsigned long total_high_wmark = 0;
2253
2254 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2255 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2256 node_page_state(pgdat, NR_INACTIVE_FILE);
2257
2258 for (z = 0; z < MAX_NR_ZONES; z++) {
2259 struct zone *zone = &pgdat->node_zones[z];
2260 if (!managed_zone(zone))
2261 continue;
2262
2263 total_high_wmark += high_wmark_pages(zone);
2264 }
2265
2266 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2267 /*
2268 * Force SCAN_ANON if there are enough inactive
2269 * anonymous pages on the LRU in eligible zones.
2270 * Otherwise, the small LRU gets thrashed.
2271 */
2272 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2273 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2274 >> sc->priority) {
2275 scan_balance = SCAN_ANON;
2276 goto out;
2277 }
2278 }
2279 }
2280
2281 /*
2282 * If there is enough inactive page cache, i.e. if the size of the
2283 * inactive list is greater than that of the active list *and* the
2284 * inactive list actually has some pages to scan on this priority, we
2285 * do not reclaim anything from the anonymous working set right now.
2286 * Without the second condition we could end up never scanning an
2287 * lruvec even if it has plenty of old anonymous pages unless the
2288 * system is under heavy pressure.
2289 */
2290 if (!IS_ENABLED(CONFIG_BALANCE_ANON_FILE_RECLAIM) &&
2291 !inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2292 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2293 scan_balance = SCAN_FILE;
2294 goto out;
2295 }
2296
2297 scan_balance = SCAN_FRACT;
2298
2299 /*
2300 * With swappiness at 100, anonymous and file have the same priority.
2301 * This scanning priority is essentially the inverse of IO cost.
2302 */
2303 anon_prio = swappiness;
2304 file_prio = 200 - anon_prio;
2305
2306 /*
2307 * OK, so we have swap space and a fair amount of page cache
2308 * pages. We use the recently rotated / recently scanned
2309 * ratios to determine how valuable each cache is.
2310 *
2311 * Because workloads change over time (and to avoid overflow)
2312 * we keep these statistics as a floating average, which ends
2313 * up weighing recent references more than old ones.
2314 *
2315 * anon in [0], file in [1]
2316 */
2317
2318 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2319 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2320 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2321 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2322
2323 spin_lock_irq(&pgdat->lru_lock);
2324 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2325 reclaim_stat->recent_scanned[0] /= 2;
2326 reclaim_stat->recent_rotated[0] /= 2;
2327 }
2328
2329 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2330 reclaim_stat->recent_scanned[1] /= 2;
2331 reclaim_stat->recent_rotated[1] /= 2;
2332 }
2333
2334 /*
2335 * The amount of pressure on anon vs file pages is inversely
2336 * proportional to the fraction of recently scanned pages on
2337 * each list that were recently referenced and in active use.
2338 */
2339 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2340 ap /= reclaim_stat->recent_rotated[0] + 1;
2341
2342 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2343 fp /= reclaim_stat->recent_rotated[1] + 1;
2344 spin_unlock_irq(&pgdat->lru_lock);
2345
2346 fraction[0] = ap;
2347 fraction[1] = fp;
2348 denominator = ap + fp + 1;
2349 out:
2350 *lru_pages = 0;
2351 for_each_evictable_lru(lru) {
2352 int file = is_file_lru(lru);
2353 unsigned long size;
2354 unsigned long scan;
2355
2356 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2357 scan = size >> sc->priority;
2358 /*
2359 * If the cgroup's already been deleted, make sure to
2360 * scrape out the remaining cache.
2361 */
2362 if (!scan && !mem_cgroup_online(memcg))
2363 scan = min(size, SWAP_CLUSTER_MAX);
2364
2365 switch (scan_balance) {
2366 case SCAN_EQUAL:
2367 /* Scan lists relative to size */
2368 break;
2369 case SCAN_FRACT:
2370 /*
2371 * Scan types proportional to swappiness and
2372 * their relative recent reclaim efficiency.
2373 * Make sure we don't miss the last page
2374 * because of a round-off error.
2375 */
2376 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2377 denominator);
2378 break;
2379 case SCAN_FILE:
2380 case SCAN_ANON:
2381 /* Scan one type exclusively */
2382 if ((scan_balance == SCAN_FILE) != file) {
2383 size = 0;
2384 scan = 0;
2385 }
2386 break;
2387 default:
2388 /* Look ma, no brain */
2389 BUG();
2390 }
2391
2392 *lru_pages += size;
2393 nr[lru] = scan;
2394 }
2395 }
2396
2397 /*
2398 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2399 */
2400 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2401 struct scan_control *sc, unsigned long *lru_pages)
2402 {
2403 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2404 unsigned long nr[NR_LRU_LISTS];
2405 unsigned long targets[NR_LRU_LISTS];
2406 unsigned long nr_to_scan;
2407 enum lru_list lru;
2408 unsigned long nr_reclaimed = 0;
2409 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2410 struct blk_plug plug;
2411 bool scan_adjusted;
2412
2413 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2414
2415 /* Record the original scan target for proportional adjustments later */
2416 memcpy(targets, nr, sizeof(nr));
2417
2418 /*
2419 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2420 * event that can occur when there is little memory pressure e.g.
2421 * multiple streaming readers/writers. Hence, we do not abort scanning
2422 * when the requested number of pages are reclaimed when scanning at
2423 * DEF_PRIORITY on the assumption that the fact we are direct
2424 * reclaiming implies that kswapd is not keeping up and it is best to
2425 * do a batch of work at once. For memcg reclaim one check is made to
2426 * abort proportional reclaim if either the file or anon lru has already
2427 * dropped to zero at the first pass.
2428 */
2429 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2430 sc->priority == DEF_PRIORITY);
2431
2432 blk_start_plug(&plug);
2433 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2434 nr[LRU_INACTIVE_FILE]) {
2435 unsigned long nr_anon, nr_file, percentage;
2436 unsigned long nr_scanned;
2437
2438 for_each_evictable_lru(lru) {
2439 if (nr[lru]) {
2440 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2441 nr[lru] -= nr_to_scan;
2442
2443 nr_reclaimed += shrink_list(lru, nr_to_scan,
2444 lruvec, memcg, sc);
2445 }
2446 }
2447
2448 cond_resched();
2449
2450 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2451 continue;
2452
2453 /*
2454 * For kswapd and memcg, reclaim at least the number of pages
2455 * requested. Ensure that the anon and file LRUs are scanned
2456 * proportionally what was requested by get_scan_count(). We
2457 * stop reclaiming one LRU and reduce the amount scanning
2458 * proportional to the original scan target.
2459 */
2460 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2461 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2462
2463 /*
2464 * It's just vindictive to attack the larger once the smaller
2465 * has gone to zero. And given the way we stop scanning the
2466 * smaller below, this makes sure that we only make one nudge
2467 * towards proportionality once we've got nr_to_reclaim.
2468 */
2469 if (!nr_file || !nr_anon)
2470 break;
2471
2472 if (nr_file > nr_anon) {
2473 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2474 targets[LRU_ACTIVE_ANON] + 1;
2475 lru = LRU_BASE;
2476 percentage = nr_anon * 100 / scan_target;
2477 } else {
2478 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2479 targets[LRU_ACTIVE_FILE] + 1;
2480 lru = LRU_FILE;
2481 percentage = nr_file * 100 / scan_target;
2482 }
2483
2484 /* Stop scanning the smaller of the LRU */
2485 nr[lru] = 0;
2486 nr[lru + LRU_ACTIVE] = 0;
2487
2488 /*
2489 * Recalculate the other LRU scan count based on its original
2490 * scan target and the percentage scanning already complete
2491 */
2492 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2493 nr_scanned = targets[lru] - nr[lru];
2494 nr[lru] = targets[lru] * (100 - percentage) / 100;
2495 nr[lru] -= min(nr[lru], nr_scanned);
2496
2497 lru += LRU_ACTIVE;
2498 nr_scanned = targets[lru] - nr[lru];
2499 nr[lru] = targets[lru] * (100 - percentage) / 100;
2500 nr[lru] -= min(nr[lru], nr_scanned);
2501
2502 scan_adjusted = true;
2503 }
2504 blk_finish_plug(&plug);
2505 sc->nr_reclaimed += nr_reclaimed;
2506
2507 /*
2508 * Even if we did not try to evict anon pages at all, we want to
2509 * rebalance the anon lru active/inactive ratio.
2510 */
2511 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2512 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2513 sc, LRU_ACTIVE_ANON);
2514 }
2515
2516 /* Use reclaim/compaction for costly allocs or under memory pressure */
2517 static bool in_reclaim_compaction(struct scan_control *sc)
2518 {
2519 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2520 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2521 sc->priority < DEF_PRIORITY - 2))
2522 return true;
2523
2524 return false;
2525 }
2526
2527 /*
2528 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2529 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2530 * true if more pages should be reclaimed such that when the page allocator
2531 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2532 * It will give up earlier than that if there is difficulty reclaiming pages.
2533 */
2534 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2535 unsigned long nr_reclaimed,
2536 unsigned long nr_scanned,
2537 struct scan_control *sc)
2538 {
2539 unsigned long pages_for_compaction;
2540 unsigned long inactive_lru_pages;
2541 int z;
2542
2543 /* If not in reclaim/compaction mode, stop */
2544 if (!in_reclaim_compaction(sc))
2545 return false;
2546
2547 /* Consider stopping depending on scan and reclaim activity */
2548 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2549 /*
2550 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2551 * full LRU list has been scanned and we are still failing
2552 * to reclaim pages. This full LRU scan is potentially
2553 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2554 */
2555 if (!nr_reclaimed && !nr_scanned)
2556 return false;
2557 } else {
2558 /*
2559 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2560 * fail without consequence, stop if we failed to reclaim
2561 * any pages from the last SWAP_CLUSTER_MAX number of
2562 * pages that were scanned. This will return to the
2563 * caller faster at the risk reclaim/compaction and
2564 * the resulting allocation attempt fails
2565 */
2566 if (!nr_reclaimed)
2567 return false;
2568 }
2569
2570 /*
2571 * If we have not reclaimed enough pages for compaction and the
2572 * inactive lists are large enough, continue reclaiming
2573 */
2574 pages_for_compaction = compact_gap(sc->order);
2575 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2576 if (get_nr_swap_pages() > 0)
2577 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2578 if (sc->nr_reclaimed < pages_for_compaction &&
2579 inactive_lru_pages > pages_for_compaction)
2580 return true;
2581
2582 /* If compaction would go ahead or the allocation would succeed, stop */
2583 for (z = 0; z <= sc->reclaim_idx; z++) {
2584 struct zone *zone = &pgdat->node_zones[z];
2585 if (!managed_zone(zone))
2586 continue;
2587
2588 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2589 case COMPACT_SUCCESS:
2590 case COMPACT_CONTINUE:
2591 return false;
2592 default:
2593 /* check next zone */
2594 ;
2595 }
2596 }
2597 return true;
2598 }
2599
2600 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2601 {
2602 struct reclaim_state *reclaim_state = current->reclaim_state;
2603 unsigned long nr_reclaimed, nr_scanned;
2604 bool reclaimable = false;
2605
2606 do {
2607 struct mem_cgroup *root = sc->target_mem_cgroup;
2608 struct mem_cgroup_reclaim_cookie reclaim = {
2609 .pgdat = pgdat,
2610 .priority = sc->priority,
2611 };
2612 unsigned long node_lru_pages = 0;
2613 struct mem_cgroup *memcg;
2614
2615 nr_reclaimed = sc->nr_reclaimed;
2616 nr_scanned = sc->nr_scanned;
2617
2618 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2619 do {
2620 unsigned long lru_pages;
2621 unsigned long reclaimed;
2622 unsigned long scanned;
2623
2624 if (mem_cgroup_low(root, memcg)) {
2625 if (!sc->memcg_low_reclaim) {
2626 sc->memcg_low_skipped = 1;
2627 continue;
2628 }
2629 mem_cgroup_event(memcg, MEMCG_LOW);
2630 }
2631
2632 reclaimed = sc->nr_reclaimed;
2633 scanned = sc->nr_scanned;
2634
2635 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2636 node_lru_pages += lru_pages;
2637
2638 if (memcg)
2639 shrink_slab(sc->gfp_mask, pgdat->node_id,
2640 memcg, sc->nr_scanned - scanned,
2641 lru_pages);
2642
2643 /* Record the group's reclaim efficiency */
2644 vmpressure(sc->gfp_mask, memcg, false,
2645 sc->nr_scanned - scanned,
2646 sc->nr_reclaimed - reclaimed);
2647
2648 /*
2649 * Direct reclaim and kswapd have to scan all memory
2650 * cgroups to fulfill the overall scan target for the
2651 * node.
2652 *
2653 * Limit reclaim, on the other hand, only cares about
2654 * nr_to_reclaim pages to be reclaimed and it will
2655 * retry with decreasing priority if one round over the
2656 * whole hierarchy is not sufficient.
2657 */
2658 if (!global_reclaim(sc) &&
2659 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2660 mem_cgroup_iter_break(root, memcg);
2661 break;
2662 }
2663 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2664
2665 /*
2666 * Shrink the slab caches in the same proportion that
2667 * the eligible LRU pages were scanned.
2668 */
2669 if (global_reclaim(sc))
2670 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2671 sc->nr_scanned - nr_scanned,
2672 node_lru_pages);
2673
2674 if (reclaim_state) {
2675 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2676 reclaim_state->reclaimed_slab = 0;
2677 }
2678
2679 /* Record the subtree's reclaim efficiency */
2680 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2681 sc->nr_scanned - nr_scanned,
2682 sc->nr_reclaimed - nr_reclaimed);
2683
2684 if (sc->nr_reclaimed - nr_reclaimed)
2685 reclaimable = true;
2686
2687 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2688 sc->nr_scanned - nr_scanned, sc));
2689
2690 /*
2691 * Kswapd gives up on balancing particular nodes after too
2692 * many failures to reclaim anything from them and goes to
2693 * sleep. On reclaim progress, reset the failure counter. A
2694 * successful direct reclaim run will revive a dormant kswapd.
2695 */
2696 if (reclaimable)
2697 pgdat->kswapd_failures = 0;
2698
2699 return reclaimable;
2700 }
2701
2702 /*
2703 * Returns true if compaction should go ahead for a costly-order request, or
2704 * the allocation would already succeed without compaction. Return false if we
2705 * should reclaim first.
2706 */
2707 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2708 {
2709 unsigned long watermark;
2710 enum compact_result suitable;
2711
2712 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2713 if (suitable == COMPACT_SUCCESS)
2714 /* Allocation should succeed already. Don't reclaim. */
2715 return true;
2716 if (suitable == COMPACT_SKIPPED)
2717 /* Compaction cannot yet proceed. Do reclaim. */
2718 return false;
2719
2720 /*
2721 * Compaction is already possible, but it takes time to run and there
2722 * are potentially other callers using the pages just freed. So proceed
2723 * with reclaim to make a buffer of free pages available to give
2724 * compaction a reasonable chance of completing and allocating the page.
2725 * Note that we won't actually reclaim the whole buffer in one attempt
2726 * as the target watermark in should_continue_reclaim() is lower. But if
2727 * we are already above the high+gap watermark, don't reclaim at all.
2728 */
2729 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2730
2731 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2732 }
2733
2734 /*
2735 * This is the direct reclaim path, for page-allocating processes. We only
2736 * try to reclaim pages from zones which will satisfy the caller's allocation
2737 * request.
2738 *
2739 * If a zone is deemed to be full of pinned pages then just give it a light
2740 * scan then give up on it.
2741 */
2742 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2743 {
2744 struct zoneref *z;
2745 struct zone *zone;
2746 unsigned long nr_soft_reclaimed;
2747 unsigned long nr_soft_scanned;
2748 gfp_t orig_mask;
2749 pg_data_t *last_pgdat = NULL;
2750
2751 /*
2752 * If the number of buffer_heads in the machine exceeds the maximum
2753 * allowed level, force direct reclaim to scan the highmem zone as
2754 * highmem pages could be pinning lowmem pages storing buffer_heads
2755 */
2756 orig_mask = sc->gfp_mask;
2757 if (buffer_heads_over_limit) {
2758 sc->gfp_mask |= __GFP_HIGHMEM;
2759 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2760 }
2761
2762 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2763 sc->reclaim_idx, sc->nodemask) {
2764 /*
2765 * Take care memory controller reclaiming has small influence
2766 * to global LRU.
2767 */
2768 if (global_reclaim(sc)) {
2769 if (!cpuset_zone_allowed(zone,
2770 GFP_KERNEL | __GFP_HARDWALL))
2771 continue;
2772
2773 /*
2774 * If we already have plenty of memory free for
2775 * compaction in this zone, don't free any more.
2776 * Even though compaction is invoked for any
2777 * non-zero order, only frequent costly order
2778 * reclamation is disruptive enough to become a
2779 * noticeable problem, like transparent huge
2780 * page allocations.
2781 */
2782 if (IS_ENABLED(CONFIG_COMPACTION) &&
2783 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2784 compaction_ready(zone, sc)) {
2785 sc->compaction_ready = true;
2786 continue;
2787 }
2788
2789 /*
2790 * Shrink each node in the zonelist once. If the
2791 * zonelist is ordered by zone (not the default) then a
2792 * node may be shrunk multiple times but in that case
2793 * the user prefers lower zones being preserved.
2794 */
2795 if (zone->zone_pgdat == last_pgdat)
2796 continue;
2797
2798 /*
2799 * This steals pages from memory cgroups over softlimit
2800 * and returns the number of reclaimed pages and
2801 * scanned pages. This works for global memory pressure
2802 * and balancing, not for a memcg's limit.
2803 */
2804 nr_soft_scanned = 0;
2805 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2806 sc->order, sc->gfp_mask,
2807 &nr_soft_scanned);
2808 sc->nr_reclaimed += nr_soft_reclaimed;
2809 sc->nr_scanned += nr_soft_scanned;
2810 /* need some check for avoid more shrink_zone() */
2811 }
2812
2813 /* See comment about same check for global reclaim above */
2814 if (zone->zone_pgdat == last_pgdat)
2815 continue;
2816 last_pgdat = zone->zone_pgdat;
2817 shrink_node(zone->zone_pgdat, sc);
2818 }
2819
2820 /*
2821 * Restore to original mask to avoid the impact on the caller if we
2822 * promoted it to __GFP_HIGHMEM.
2823 */
2824 sc->gfp_mask = orig_mask;
2825 }
2826
2827 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2828 {
2829 struct mem_cgroup *memcg;
2830
2831 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2832 do {
2833 unsigned long refaults;
2834 struct lruvec *lruvec;
2835
2836 if (memcg)
2837 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2838 else
2839 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2840
2841 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2842 lruvec->refaults = refaults;
2843 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2844 }
2845
2846 /*
2847 * This is the main entry point to direct page reclaim.
2848 *
2849 * If a full scan of the inactive list fails to free enough memory then we
2850 * are "out of memory" and something needs to be killed.
2851 *
2852 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2853 * high - the zone may be full of dirty or under-writeback pages, which this
2854 * caller can't do much about. We kick the writeback threads and take explicit
2855 * naps in the hope that some of these pages can be written. But if the
2856 * allocating task holds filesystem locks which prevent writeout this might not
2857 * work, and the allocation attempt will fail.
2858 *
2859 * returns: 0, if no pages reclaimed
2860 * else, the number of pages reclaimed
2861 */
2862 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2863 struct scan_control *sc)
2864 {
2865 int initial_priority = sc->priority;
2866 pg_data_t *last_pgdat;
2867 struct zoneref *z;
2868 struct zone *zone;
2869 retry:
2870 delayacct_freepages_start();
2871
2872 if (global_reclaim(sc))
2873 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2874
2875 do {
2876 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2877 sc->priority);
2878 sc->nr_scanned = 0;
2879 shrink_zones(zonelist, sc);
2880
2881 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2882 break;
2883
2884 if (sc->compaction_ready)
2885 break;
2886
2887 /*
2888 * If we're getting trouble reclaiming, start doing
2889 * writepage even in laptop mode.
2890 */
2891 if (sc->priority < DEF_PRIORITY - 2)
2892 sc->may_writepage = 1;
2893 } while (--sc->priority >= 0);
2894
2895 last_pgdat = NULL;
2896 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2897 sc->nodemask) {
2898 if (zone->zone_pgdat == last_pgdat)
2899 continue;
2900 last_pgdat = zone->zone_pgdat;
2901 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2902 }
2903
2904 delayacct_freepages_end();
2905
2906 if (sc->nr_reclaimed)
2907 return sc->nr_reclaimed;
2908
2909 /* Aborted reclaim to try compaction? don't OOM, then */
2910 if (sc->compaction_ready)
2911 return 1;
2912
2913 /* Untapped cgroup reserves? Don't OOM, retry. */
2914 if (sc->memcg_low_skipped) {
2915 sc->priority = initial_priority;
2916 sc->memcg_low_reclaim = 1;
2917 sc->memcg_low_skipped = 0;
2918 goto retry;
2919 }
2920
2921 return 0;
2922 }
2923
2924 static bool allow_direct_reclaim(pg_data_t *pgdat)
2925 {
2926 struct zone *zone;
2927 unsigned long pfmemalloc_reserve = 0;
2928 unsigned long free_pages = 0;
2929 int i;
2930 bool wmark_ok;
2931
2932 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2933 return true;
2934
2935 for (i = 0; i <= ZONE_NORMAL; i++) {
2936 zone = &pgdat->node_zones[i];
2937 if (!managed_zone(zone))
2938 continue;
2939
2940 if (!zone_reclaimable_pages(zone))
2941 continue;
2942
2943 pfmemalloc_reserve += min_wmark_pages(zone);
2944 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2945 }
2946
2947 /* If there are no reserves (unexpected config) then do not throttle */
2948 if (!pfmemalloc_reserve)
2949 return true;
2950
2951 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2952
2953 /* kswapd must be awake if processes are being throttled */
2954 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2955 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2956 (enum zone_type)ZONE_NORMAL);
2957 wake_up_interruptible(&pgdat->kswapd_wait);
2958 }
2959
2960 return wmark_ok;
2961 }
2962
2963 /*
2964 * Throttle direct reclaimers if backing storage is backed by the network
2965 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2966 * depleted. kswapd will continue to make progress and wake the processes
2967 * when the low watermark is reached.
2968 *
2969 * Returns true if a fatal signal was delivered during throttling. If this
2970 * happens, the page allocator should not consider triggering the OOM killer.
2971 */
2972 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2973 nodemask_t *nodemask)
2974 {
2975 struct zoneref *z;
2976 struct zone *zone;
2977 pg_data_t *pgdat = NULL;
2978
2979 /*
2980 * Kernel threads should not be throttled as they may be indirectly
2981 * responsible for cleaning pages necessary for reclaim to make forward
2982 * progress. kjournald for example may enter direct reclaim while
2983 * committing a transaction where throttling it could forcing other
2984 * processes to block on log_wait_commit().
2985 */
2986 if (current->flags & PF_KTHREAD)
2987 goto out;
2988
2989 /*
2990 * If a fatal signal is pending, this process should not throttle.
2991 * It should return quickly so it can exit and free its memory
2992 */
2993 if (fatal_signal_pending(current))
2994 goto out;
2995
2996 /*
2997 * Check if the pfmemalloc reserves are ok by finding the first node
2998 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2999 * GFP_KERNEL will be required for allocating network buffers when
3000 * swapping over the network so ZONE_HIGHMEM is unusable.
3001 *
3002 * Throttling is based on the first usable node and throttled processes
3003 * wait on a queue until kswapd makes progress and wakes them. There
3004 * is an affinity then between processes waking up and where reclaim
3005 * progress has been made assuming the process wakes on the same node.
3006 * More importantly, processes running on remote nodes will not compete
3007 * for remote pfmemalloc reserves and processes on different nodes
3008 * should make reasonable progress.
3009 */
3010 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3011 gfp_zone(gfp_mask), nodemask) {
3012 if (zone_idx(zone) > ZONE_NORMAL)
3013 continue;
3014
3015 /* Throttle based on the first usable node */
3016 pgdat = zone->zone_pgdat;
3017 if (allow_direct_reclaim(pgdat))
3018 goto out;
3019 break;
3020 }
3021
3022 /* If no zone was usable by the allocation flags then do not throttle */
3023 if (!pgdat)
3024 goto out;
3025
3026 /* Account for the throttling */
3027 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3028
3029 /*
3030 * If the caller cannot enter the filesystem, it's possible that it
3031 * is due to the caller holding an FS lock or performing a journal
3032 * transaction in the case of a filesystem like ext[3|4]. In this case,
3033 * it is not safe to block on pfmemalloc_wait as kswapd could be
3034 * blocked waiting on the same lock. Instead, throttle for up to a
3035 * second before continuing.
3036 */
3037 if (!(gfp_mask & __GFP_FS)) {
3038 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3039 allow_direct_reclaim(pgdat), HZ);
3040
3041 goto check_pending;
3042 }
3043
3044 /* Throttle until kswapd wakes the process */
3045 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3046 allow_direct_reclaim(pgdat));
3047
3048 check_pending:
3049 if (fatal_signal_pending(current))
3050 return true;
3051
3052 out:
3053 return false;
3054 }
3055
3056 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3057 gfp_t gfp_mask, nodemask_t *nodemask)
3058 {
3059 unsigned long nr_reclaimed;
3060 struct scan_control sc = {
3061 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3062 .gfp_mask = current_gfp_context(gfp_mask),
3063 .reclaim_idx = gfp_zone(gfp_mask),
3064 .order = order,
3065 .nodemask = nodemask,
3066 .priority = DEF_PRIORITY,
3067 .may_writepage = !laptop_mode,
3068 .may_unmap = 1,
3069 .may_swap = 1,
3070 };
3071
3072 /*
3073 * Do not enter reclaim if fatal signal was delivered while throttled.
3074 * 1 is returned so that the page allocator does not OOM kill at this
3075 * point.
3076 */
3077 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3078 return 1;
3079
3080 trace_mm_vmscan_direct_reclaim_begin(order,
3081 sc.may_writepage,
3082 sc.gfp_mask,
3083 sc.reclaim_idx);
3084
3085 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3086
3087 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3088
3089 return nr_reclaimed;
3090 }
3091
3092 #ifdef CONFIG_MEMCG
3093
3094 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3095 gfp_t gfp_mask, bool noswap,
3096 pg_data_t *pgdat,
3097 unsigned long *nr_scanned)
3098 {
3099 struct scan_control sc = {
3100 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3101 .target_mem_cgroup = memcg,
3102 .may_writepage = !laptop_mode,
3103 .may_unmap = 1,
3104 .reclaim_idx = MAX_NR_ZONES - 1,
3105 .may_swap = !noswap,
3106 };
3107 unsigned long lru_pages;
3108
3109 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3110 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3111
3112 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3113 sc.may_writepage,
3114 sc.gfp_mask,
3115 sc.reclaim_idx);
3116
3117 /*
3118 * NOTE: Although we can get the priority field, using it
3119 * here is not a good idea, since it limits the pages we can scan.
3120 * if we don't reclaim here, the shrink_node from balance_pgdat
3121 * will pick up pages from other mem cgroup's as well. We hack
3122 * the priority and make it zero.
3123 */
3124 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3125
3126 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3127
3128 *nr_scanned = sc.nr_scanned;
3129 return sc.nr_reclaimed;
3130 }
3131
3132 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3133 unsigned long nr_pages,
3134 gfp_t gfp_mask,
3135 bool may_swap)
3136 {
3137 struct zonelist *zonelist;
3138 unsigned long nr_reclaimed;
3139 unsigned long pflags;
3140 int nid;
3141 unsigned int noreclaim_flag;
3142 struct scan_control sc = {
3143 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3144 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3145 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3146 .reclaim_idx = MAX_NR_ZONES - 1,
3147 .target_mem_cgroup = memcg,
3148 .priority = DEF_PRIORITY,
3149 .may_writepage = !laptop_mode,
3150 .may_unmap = 1,
3151 .may_swap = may_swap,
3152 };
3153
3154 /*
3155 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3156 * take care of from where we get pages. So the node where we start the
3157 * scan does not need to be the current node.
3158 */
3159 nid = mem_cgroup_select_victim_node(memcg);
3160
3161 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3162
3163 trace_mm_vmscan_memcg_reclaim_begin(0,
3164 sc.may_writepage,
3165 sc.gfp_mask,
3166 sc.reclaim_idx);
3167
3168 psi_memstall_enter(&pflags);
3169 noreclaim_flag = memalloc_noreclaim_save();
3170
3171 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3172
3173 memalloc_noreclaim_restore(noreclaim_flag);
3174 psi_memstall_leave(&pflags);
3175
3176 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3177
3178 return nr_reclaimed;
3179 }
3180 #endif
3181
3182 static void age_active_anon(struct pglist_data *pgdat,
3183 struct scan_control *sc)
3184 {
3185 struct mem_cgroup *memcg;
3186
3187 if (!total_swap_pages)
3188 return;
3189
3190 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3191 do {
3192 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3193
3194 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3195 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3196 sc, LRU_ACTIVE_ANON);
3197
3198 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3199 } while (memcg);
3200 }
3201
3202 /*
3203 * Returns true if there is an eligible zone balanced for the request order
3204 * and classzone_idx
3205 */
3206 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3207 {
3208 int i;
3209 unsigned long mark = -1;
3210 struct zone *zone;
3211
3212 for (i = 0; i <= classzone_idx; i++) {
3213 zone = pgdat->node_zones + i;
3214
3215 if (!managed_zone(zone))
3216 continue;
3217
3218 mark = high_wmark_pages(zone);
3219 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3220 return true;
3221 }
3222
3223 /*
3224 * If a node has no populated zone within classzone_idx, it does not
3225 * need balancing by definition. This can happen if a zone-restricted
3226 * allocation tries to wake a remote kswapd.
3227 */
3228 if (mark == -1)
3229 return true;
3230
3231 return false;
3232 }
3233
3234 /* Clear pgdat state for congested, dirty or under writeback. */
3235 static void clear_pgdat_congested(pg_data_t *pgdat)
3236 {
3237 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3238 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3239 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3240 }
3241
3242 /*
3243 * Prepare kswapd for sleeping. This verifies that there are no processes
3244 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3245 *
3246 * Returns true if kswapd is ready to sleep
3247 */
3248 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3249 {
3250 /*
3251 * The throttled processes are normally woken up in balance_pgdat() as
3252 * soon as allow_direct_reclaim() is true. But there is a potential
3253 * race between when kswapd checks the watermarks and a process gets
3254 * throttled. There is also a potential race if processes get
3255 * throttled, kswapd wakes, a large process exits thereby balancing the
3256 * zones, which causes kswapd to exit balance_pgdat() before reaching
3257 * the wake up checks. If kswapd is going to sleep, no process should
3258 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3259 * the wake up is premature, processes will wake kswapd and get
3260 * throttled again. The difference from wake ups in balance_pgdat() is
3261 * that here we are under prepare_to_wait().
3262 */
3263 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3264 wake_up_all(&pgdat->pfmemalloc_wait);
3265
3266 /* Hopeless node, leave it to direct reclaim */
3267 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3268 return true;
3269
3270 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3271 clear_pgdat_congested(pgdat);
3272 return true;
3273 }
3274
3275 return false;
3276 }
3277
3278 /*
3279 * kswapd shrinks a node of pages that are at or below the highest usable
3280 * zone that is currently unbalanced.
3281 *
3282 * Returns true if kswapd scanned at least the requested number of pages to
3283 * reclaim or if the lack of progress was due to pages under writeback.
3284 * This is used to determine if the scanning priority needs to be raised.
3285 */
3286 static bool kswapd_shrink_node(pg_data_t *pgdat,
3287 struct scan_control *sc)
3288 {
3289 struct zone *zone;
3290 int z;
3291
3292 /* Reclaim a number of pages proportional to the number of zones */
3293 sc->nr_to_reclaim = 0;
3294 for (z = 0; z <= sc->reclaim_idx; z++) {
3295 zone = pgdat->node_zones + z;
3296 if (!managed_zone(zone))
3297 continue;
3298
3299 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3300 }
3301
3302 /*
3303 * Historically care was taken to put equal pressure on all zones but
3304 * now pressure is applied based on node LRU order.
3305 */
3306 shrink_node(pgdat, sc);
3307
3308 /*
3309 * Fragmentation may mean that the system cannot be rebalanced for
3310 * high-order allocations. If twice the allocation size has been
3311 * reclaimed then recheck watermarks only at order-0 to prevent
3312 * excessive reclaim. Assume that a process requested a high-order
3313 * can direct reclaim/compact.
3314 */
3315 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3316 sc->order = 0;
3317
3318 return sc->nr_scanned >= sc->nr_to_reclaim;
3319 }
3320
3321 /*
3322 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3323 * that are eligible for use by the caller until at least one zone is
3324 * balanced.
3325 *
3326 * Returns the order kswapd finished reclaiming at.
3327 *
3328 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3329 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3330 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3331 * or lower is eligible for reclaim until at least one usable zone is
3332 * balanced.
3333 */
3334 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3335 {
3336 int i;
3337 unsigned long nr_soft_reclaimed;
3338 unsigned long nr_soft_scanned;
3339 unsigned long pflags;
3340 struct zone *zone;
3341 struct scan_control sc = {
3342 .gfp_mask = GFP_KERNEL,
3343 .order = order,
3344 .priority = DEF_PRIORITY,
3345 .may_writepage = !laptop_mode,
3346 .may_unmap = 1,
3347 .may_swap = 1,
3348 };
3349 psi_memstall_enter(&pflags);
3350 count_vm_event(PAGEOUTRUN);
3351
3352 do {
3353 unsigned long nr_reclaimed = sc.nr_reclaimed;
3354 bool raise_priority = true;
3355
3356 sc.reclaim_idx = classzone_idx;
3357
3358 /*
3359 * If the number of buffer_heads exceeds the maximum allowed
3360 * then consider reclaiming from all zones. This has a dual
3361 * purpose -- on 64-bit systems it is expected that
3362 * buffer_heads are stripped during active rotation. On 32-bit
3363 * systems, highmem pages can pin lowmem memory and shrinking
3364 * buffers can relieve lowmem pressure. Reclaim may still not
3365 * go ahead if all eligible zones for the original allocation
3366 * request are balanced to avoid excessive reclaim from kswapd.
3367 */
3368 if (buffer_heads_over_limit) {
3369 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3370 zone = pgdat->node_zones + i;
3371 if (!managed_zone(zone))
3372 continue;
3373
3374 sc.reclaim_idx = i;
3375 break;
3376 }
3377 }
3378
3379 /*
3380 * Only reclaim if there are no eligible zones. Note that
3381 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3382 * have adjusted it.
3383 */
3384 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3385 goto out;
3386
3387 /*
3388 * Do some background aging of the anon list, to give
3389 * pages a chance to be referenced before reclaiming. All
3390 * pages are rotated regardless of classzone as this is
3391 * about consistent aging.
3392 */
3393 age_active_anon(pgdat, &sc);
3394
3395 /*
3396 * If we're getting trouble reclaiming, start doing writepage
3397 * even in laptop mode.
3398 */
3399 if (sc.priority < DEF_PRIORITY - 2)
3400 sc.may_writepage = 1;
3401
3402 /* Call soft limit reclaim before calling shrink_node. */
3403 sc.nr_scanned = 0;
3404 nr_soft_scanned = 0;
3405 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3406 sc.gfp_mask, &nr_soft_scanned);
3407 sc.nr_reclaimed += nr_soft_reclaimed;
3408
3409 /*
3410 * There should be no need to raise the scanning priority if
3411 * enough pages are already being scanned that that high
3412 * watermark would be met at 100% efficiency.
3413 */
3414 if (kswapd_shrink_node(pgdat, &sc))
3415 raise_priority = false;
3416
3417 /*
3418 * If the low watermark is met there is no need for processes
3419 * to be throttled on pfmemalloc_wait as they should not be
3420 * able to safely make forward progress. Wake them
3421 */
3422 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3423 allow_direct_reclaim(pgdat))
3424 wake_up_all(&pgdat->pfmemalloc_wait);
3425
3426 /* Check if kswapd should be suspending */
3427 if (try_to_freeze() || kthread_should_stop())
3428 break;
3429
3430 /*
3431 * Raise priority if scanning rate is too low or there was no
3432 * progress in reclaiming pages
3433 */
3434 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3435 if (raise_priority || !nr_reclaimed)
3436 sc.priority--;
3437 } while (sc.priority >= 1);
3438
3439 if (!sc.nr_reclaimed)
3440 pgdat->kswapd_failures++;
3441
3442 out:
3443 snapshot_refaults(NULL, pgdat);
3444 psi_memstall_leave(&pflags);
3445 /*
3446 * Return the order kswapd stopped reclaiming at as
3447 * prepare_kswapd_sleep() takes it into account. If another caller
3448 * entered the allocator slow path while kswapd was awake, order will
3449 * remain at the higher level.
3450 */
3451 return sc.order;
3452 }
3453
3454 /*
3455 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3456 * allocation request woke kswapd for. When kswapd has not woken recently,
3457 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3458 * given classzone and returns it or the highest classzone index kswapd
3459 * was recently woke for.
3460 */
3461 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3462 enum zone_type classzone_idx)
3463 {
3464 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3465 return classzone_idx;
3466
3467 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3468 }
3469
3470 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3471 unsigned int classzone_idx)
3472 {
3473 long remaining = 0;
3474 DEFINE_WAIT(wait);
3475
3476 if (freezing(current) || kthread_should_stop())
3477 return;
3478
3479 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3480
3481 /*
3482 * Try to sleep for a short interval. Note that kcompactd will only be
3483 * woken if it is possible to sleep for a short interval. This is
3484 * deliberate on the assumption that if reclaim cannot keep an
3485 * eligible zone balanced that it's also unlikely that compaction will
3486 * succeed.
3487 */
3488 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3489 /*
3490 * Compaction records what page blocks it recently failed to
3491 * isolate pages from and skips them in the future scanning.
3492 * When kswapd is going to sleep, it is reasonable to assume
3493 * that pages and compaction may succeed so reset the cache.
3494 */
3495 reset_isolation_suitable(pgdat);
3496
3497 /*
3498 * We have freed the memory, now we should compact it to make
3499 * allocation of the requested order possible.
3500 */
3501 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3502
3503 remaining = schedule_timeout(HZ/10);
3504
3505 /*
3506 * If woken prematurely then reset kswapd_classzone_idx and
3507 * order. The values will either be from a wakeup request or
3508 * the previous request that slept prematurely.
3509 */
3510 if (remaining) {
3511 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3512 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3513 }
3514
3515 finish_wait(&pgdat->kswapd_wait, &wait);
3516 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3517 }
3518
3519 /*
3520 * After a short sleep, check if it was a premature sleep. If not, then
3521 * go fully to sleep until explicitly woken up.
3522 */
3523 if (!remaining &&
3524 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3525 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3526
3527 /*
3528 * vmstat counters are not perfectly accurate and the estimated
3529 * value for counters such as NR_FREE_PAGES can deviate from the
3530 * true value by nr_online_cpus * threshold. To avoid the zone
3531 * watermarks being breached while under pressure, we reduce the
3532 * per-cpu vmstat threshold while kswapd is awake and restore
3533 * them before going back to sleep.
3534 */
3535 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3536
3537 if (!kthread_should_stop())
3538 schedule();
3539
3540 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3541 } else {
3542 if (remaining)
3543 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3544 else
3545 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3546 }
3547 finish_wait(&pgdat->kswapd_wait, &wait);
3548 }
3549
3550 /*
3551 * The background pageout daemon, started as a kernel thread
3552 * from the init process.
3553 *
3554 * This basically trickles out pages so that we have _some_
3555 * free memory available even if there is no other activity
3556 * that frees anything up. This is needed for things like routing
3557 * etc, where we otherwise might have all activity going on in
3558 * asynchronous contexts that cannot page things out.
3559 *
3560 * If there are applications that are active memory-allocators
3561 * (most normal use), this basically shouldn't matter.
3562 */
3563 static int kswapd(void *p)
3564 {
3565 unsigned int alloc_order, reclaim_order;
3566 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3567 pg_data_t *pgdat = (pg_data_t*)p;
3568 struct task_struct *tsk = current;
3569
3570 struct reclaim_state reclaim_state = {
3571 .reclaimed_slab = 0,
3572 };
3573 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3574
3575 if (!cpumask_empty(cpumask))
3576 set_cpus_allowed_ptr(tsk, cpumask);
3577 current->reclaim_state = &reclaim_state;
3578
3579 /*
3580 * Tell the memory management that we're a "memory allocator",
3581 * and that if we need more memory we should get access to it
3582 * regardless (see "__alloc_pages()"). "kswapd" should
3583 * never get caught in the normal page freeing logic.
3584 *
3585 * (Kswapd normally doesn't need memory anyway, but sometimes
3586 * you need a small amount of memory in order to be able to
3587 * page out something else, and this flag essentially protects
3588 * us from recursively trying to free more memory as we're
3589 * trying to free the first piece of memory in the first place).
3590 */
3591 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3592 set_freezable();
3593
3594 pgdat->kswapd_order = 0;
3595 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3596 for ( ; ; ) {
3597 bool ret;
3598
3599 alloc_order = reclaim_order = pgdat->kswapd_order;
3600 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3601
3602 kswapd_try_sleep:
3603 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3604 classzone_idx);
3605
3606 /* Read the new order and classzone_idx */
3607 alloc_order = reclaim_order = pgdat->kswapd_order;
3608 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3609 pgdat->kswapd_order = 0;
3610 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3611
3612 ret = try_to_freeze();
3613 if (kthread_should_stop())
3614 break;
3615
3616 /*
3617 * We can speed up thawing tasks if we don't call balance_pgdat
3618 * after returning from the refrigerator
3619 */
3620 if (ret)
3621 continue;
3622
3623 /*
3624 * Reclaim begins at the requested order but if a high-order
3625 * reclaim fails then kswapd falls back to reclaiming for
3626 * order-0. If that happens, kswapd will consider sleeping
3627 * for the order it finished reclaiming at (reclaim_order)
3628 * but kcompactd is woken to compact for the original
3629 * request (alloc_order).
3630 */
3631 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3632 alloc_order);
3633 fs_reclaim_acquire(GFP_KERNEL);
3634 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3635 fs_reclaim_release(GFP_KERNEL);
3636 if (reclaim_order < alloc_order)
3637 goto kswapd_try_sleep;
3638 }
3639
3640 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3641 current->reclaim_state = NULL;
3642
3643 return 0;
3644 }
3645
3646 /*
3647 * A zone is low on free memory, so wake its kswapd task to service it.
3648 */
3649 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3650 {
3651 pg_data_t *pgdat;
3652
3653 if (!managed_zone(zone))
3654 return;
3655
3656 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3657 return;
3658 pgdat = zone->zone_pgdat;
3659 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3660 classzone_idx);
3661 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3662 if (!waitqueue_active(&pgdat->kswapd_wait))
3663 return;
3664
3665 /* Hopeless node, leave it to direct reclaim */
3666 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3667 return;
3668
3669 if (pgdat_balanced(pgdat, order, classzone_idx))
3670 return;
3671
3672 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3673 wake_up_interruptible(&pgdat->kswapd_wait);
3674 }
3675
3676 #ifdef CONFIG_HIBERNATION
3677 /*
3678 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3679 * freed pages.
3680 *
3681 * Rather than trying to age LRUs the aim is to preserve the overall
3682 * LRU order by reclaiming preferentially
3683 * inactive > active > active referenced > active mapped
3684 */
3685 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3686 {
3687 struct reclaim_state reclaim_state;
3688 struct scan_control sc = {
3689 .nr_to_reclaim = nr_to_reclaim,
3690 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3691 .reclaim_idx = MAX_NR_ZONES - 1,
3692 .priority = DEF_PRIORITY,
3693 .may_writepage = 1,
3694 .may_unmap = 1,
3695 .may_swap = 1,
3696 .hibernation_mode = 1,
3697 };
3698 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3699 struct task_struct *p = current;
3700 unsigned long nr_reclaimed;
3701 unsigned int noreclaim_flag;
3702
3703 noreclaim_flag = memalloc_noreclaim_save();
3704 fs_reclaim_acquire(sc.gfp_mask);
3705 reclaim_state.reclaimed_slab = 0;
3706 p->reclaim_state = &reclaim_state;
3707
3708 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3709
3710 p->reclaim_state = NULL;
3711 fs_reclaim_release(sc.gfp_mask);
3712 memalloc_noreclaim_restore(noreclaim_flag);
3713
3714 return nr_reclaimed;
3715 }
3716 #endif /* CONFIG_HIBERNATION */
3717
3718 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3719 not required for correctness. So if the last cpu in a node goes
3720 away, we get changed to run anywhere: as the first one comes back,
3721 restore their cpu bindings. */
3722 static int kswapd_cpu_online(unsigned int cpu)
3723 {
3724 int nid;
3725
3726 for_each_node_state(nid, N_MEMORY) {
3727 pg_data_t *pgdat = NODE_DATA(nid);
3728 const struct cpumask *mask;
3729
3730 mask = cpumask_of_node(pgdat->node_id);
3731
3732 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3733 /* One of our CPUs online: restore mask */
3734 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3735 }
3736 return 0;
3737 }
3738
3739 /*
3740 * This kswapd start function will be called by init and node-hot-add.
3741 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3742 */
3743 int kswapd_run(int nid)
3744 {
3745 pg_data_t *pgdat = NODE_DATA(nid);
3746 int ret = 0;
3747
3748 if (pgdat->kswapd)
3749 return 0;
3750
3751 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3752 if (IS_ERR(pgdat->kswapd)) {
3753 /* failure at boot is fatal */
3754 BUG_ON(system_state < SYSTEM_RUNNING);
3755 pr_err("Failed to start kswapd on node %d\n", nid);
3756 ret = PTR_ERR(pgdat->kswapd);
3757 pgdat->kswapd = NULL;
3758 }
3759 return ret;
3760 }
3761
3762 /*
3763 * Called by memory hotplug when all memory in a node is offlined. Caller must
3764 * hold mem_hotplug_begin/end().
3765 */
3766 void kswapd_stop(int nid)
3767 {
3768 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3769
3770 if (kswapd) {
3771 kthread_stop(kswapd);
3772 NODE_DATA(nid)->kswapd = NULL;
3773 }
3774 }
3775
3776 static int __init kswapd_init(void)
3777 {
3778 int nid, ret;
3779
3780 swap_setup();
3781 for_each_node_state(nid, N_MEMORY)
3782 kswapd_run(nid);
3783 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3784 "mm/vmscan:online", kswapd_cpu_online,
3785 NULL);
3786 WARN_ON(ret < 0);
3787 return 0;
3788 }
3789
3790 module_init(kswapd_init)
3791
3792 #ifdef CONFIG_NUMA
3793 /*
3794 * Node reclaim mode
3795 *
3796 * If non-zero call node_reclaim when the number of free pages falls below
3797 * the watermarks.
3798 */
3799 int node_reclaim_mode __read_mostly;
3800
3801 #define RECLAIM_OFF 0
3802 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3803 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3804 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3805
3806 /*
3807 * Priority for NODE_RECLAIM. This determines the fraction of pages
3808 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3809 * a zone.
3810 */
3811 #define NODE_RECLAIM_PRIORITY 4
3812
3813 /*
3814 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3815 * occur.
3816 */
3817 int sysctl_min_unmapped_ratio = 1;
3818
3819 /*
3820 * If the number of slab pages in a zone grows beyond this percentage then
3821 * slab reclaim needs to occur.
3822 */
3823 int sysctl_min_slab_ratio = 5;
3824
3825 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3826 {
3827 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3828 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3829 node_page_state(pgdat, NR_ACTIVE_FILE);
3830
3831 /*
3832 * It's possible for there to be more file mapped pages than
3833 * accounted for by the pages on the file LRU lists because
3834 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3835 */
3836 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3837 }
3838
3839 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3840 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3841 {
3842 unsigned long nr_pagecache_reclaimable;
3843 unsigned long delta = 0;
3844
3845 /*
3846 * If RECLAIM_UNMAP is set, then all file pages are considered
3847 * potentially reclaimable. Otherwise, we have to worry about
3848 * pages like swapcache and node_unmapped_file_pages() provides
3849 * a better estimate
3850 */
3851 if (node_reclaim_mode & RECLAIM_UNMAP)
3852 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3853 else
3854 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3855
3856 /* If we can't clean pages, remove dirty pages from consideration */
3857 if (!(node_reclaim_mode & RECLAIM_WRITE))
3858 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3859
3860 /* Watch for any possible underflows due to delta */
3861 if (unlikely(delta > nr_pagecache_reclaimable))
3862 delta = nr_pagecache_reclaimable;
3863
3864 return nr_pagecache_reclaimable - delta;
3865 }
3866
3867 /*
3868 * Try to free up some pages from this node through reclaim.
3869 */
3870 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3871 {
3872 /* Minimum pages needed in order to stay on node */
3873 const unsigned long nr_pages = 1 << order;
3874 struct task_struct *p = current;
3875 struct reclaim_state reclaim_state;
3876 unsigned int noreclaim_flag;
3877 struct scan_control sc = {
3878 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3879 .gfp_mask = current_gfp_context(gfp_mask),
3880 .order = order,
3881 .priority = NODE_RECLAIM_PRIORITY,
3882 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3883 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3884 .may_swap = 1,
3885 .reclaim_idx = gfp_zone(gfp_mask),
3886 };
3887
3888 cond_resched();
3889 /*
3890 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3891 * and we also need to be able to write out pages for RECLAIM_WRITE
3892 * and RECLAIM_UNMAP.
3893 */
3894 noreclaim_flag = memalloc_noreclaim_save();
3895 p->flags |= PF_SWAPWRITE;
3896 fs_reclaim_acquire(sc.gfp_mask);
3897 reclaim_state.reclaimed_slab = 0;
3898 p->reclaim_state = &reclaim_state;
3899
3900 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3901 /*
3902 * Free memory by calling shrink zone with increasing
3903 * priorities until we have enough memory freed.
3904 */
3905 do {
3906 shrink_node(pgdat, &sc);
3907 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3908 }
3909
3910 p->reclaim_state = NULL;
3911 fs_reclaim_release(gfp_mask);
3912 current->flags &= ~PF_SWAPWRITE;
3913 memalloc_noreclaim_restore(noreclaim_flag);
3914 return sc.nr_reclaimed >= nr_pages;
3915 }
3916
3917 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3918 {
3919 int ret;
3920
3921 /*
3922 * Node reclaim reclaims unmapped file backed pages and
3923 * slab pages if we are over the defined limits.
3924 *
3925 * A small portion of unmapped file backed pages is needed for
3926 * file I/O otherwise pages read by file I/O will be immediately
3927 * thrown out if the node is overallocated. So we do not reclaim
3928 * if less than a specified percentage of the node is used by
3929 * unmapped file backed pages.
3930 */
3931 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3932 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3933 return NODE_RECLAIM_FULL;
3934
3935 /*
3936 * Do not scan if the allocation should not be delayed.
3937 */
3938 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3939 return NODE_RECLAIM_NOSCAN;
3940
3941 /*
3942 * Only run node reclaim on the local node or on nodes that do not
3943 * have associated processors. This will favor the local processor
3944 * over remote processors and spread off node memory allocations
3945 * as wide as possible.
3946 */
3947 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3948 return NODE_RECLAIM_NOSCAN;
3949
3950 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3951 return NODE_RECLAIM_NOSCAN;
3952
3953 ret = __node_reclaim(pgdat, gfp_mask, order);
3954 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3955
3956 if (!ret)
3957 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3958
3959 return ret;
3960 }
3961 #endif
3962
3963 /*
3964 * page_evictable - test whether a page is evictable
3965 * @page: the page to test
3966 *
3967 * Test whether page is evictable--i.e., should be placed on active/inactive
3968 * lists vs unevictable list.
3969 *
3970 * Reasons page might not be evictable:
3971 * (1) page's mapping marked unevictable
3972 * (2) page is part of an mlocked VMA
3973 *
3974 */
3975 int page_evictable(struct page *page)
3976 {
3977 int ret;
3978
3979 /* Prevent address_space of inode and swap cache from being freed */
3980 rcu_read_lock();
3981 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3982 rcu_read_unlock();
3983 return ret;
3984 }
3985
3986 #ifdef CONFIG_SHMEM
3987 /**
3988 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3989 * @pages: array of pages to check
3990 * @nr_pages: number of pages to check
3991 *
3992 * Checks pages for evictability and moves them to the appropriate lru list.
3993 *
3994 * This function is only used for SysV IPC SHM_UNLOCK.
3995 */
3996 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3997 {
3998 struct lruvec *lruvec;
3999 struct pglist_data *pgdat = NULL;
4000 int pgscanned = 0;
4001 int pgrescued = 0;
4002 int i;
4003
4004 for (i = 0; i < nr_pages; i++) {
4005 struct page *page = pages[i];
4006 struct pglist_data *pagepgdat = page_pgdat(page);
4007
4008 pgscanned++;
4009 if (pagepgdat != pgdat) {
4010 if (pgdat)
4011 spin_unlock_irq(&pgdat->lru_lock);
4012 pgdat = pagepgdat;
4013 spin_lock_irq(&pgdat->lru_lock);
4014 }
4015 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4016
4017 if (!PageLRU(page) || !PageUnevictable(page))
4018 continue;
4019
4020 if (page_evictable(page)) {
4021 enum lru_list lru = page_lru_base_type(page);
4022
4023 VM_BUG_ON_PAGE(PageActive(page), page);
4024 ClearPageUnevictable(page);
4025 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4026 add_page_to_lru_list(page, lruvec, lru);
4027 pgrescued++;
4028 }
4029 }
4030
4031 if (pgdat) {
4032 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4033 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4034 spin_unlock_irq(&pgdat->lru_lock);
4035 }
4036 }
4037 #endif /* CONFIG_SHMEM */