mm: don't warn about allocations which stall for too long
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
255 #define CFLGS_OFF_SLAB (0x80000000UL)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 return atomic_read(&cachep->store_user_clean) == 1;
370 }
371
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 atomic_set(&cachep->store_user_clean, 1);
375 }
376
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381 }
382
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386 #endif
387
388 /*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401 }
402
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405 {
406 return page->s_mem + cache->size * idx;
407 }
408
409 /*
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417 {
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421
422 #define BOOT_CPUCACHE_ENTRIES 1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430 };
431
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 return this_cpu_ptr(cachep->cpu_cache);
437 }
438
439 /*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 unsigned long flags, size_t *left_over)
444 {
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
453 * - @buffer_size bytes for each object
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475 }
476
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482 {
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489
490 /*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 use_alien_caches = 0;
502 return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505
506 static int __init slab_max_order_setup(char *str)
507 {
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516
517 #ifdef CONFIG_NUMA
518 /*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
526 static void init_reap_node(int cpu)
527 {
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530 }
531
532 static void next_reap_node(void)
533 {
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538 }
539
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544
545 /*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
552 static void start_cpu_timer(int cpu)
553 {
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562 }
563
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 /*
567 * The array_cache structures contain pointers to free object.
568 * However, when such objects are allocated or transferred to another
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
579 }
580 }
581
582 static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584 {
585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591 }
592
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595 {
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608 }
609
610 /*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616 static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618 {
619 /* Figure out how many entries to transfer */
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631 }
632
633 #ifndef CONFIG_NUMA
634
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640 {
641 return NULL;
642 }
643
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 return 0;
651 }
652
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655 {
656 return NULL;
657 }
658
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661 {
662 return NULL;
663 }
664
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 return flags & ~__GFP_NOFAIL;
668 }
669
670 #else /* CONFIG_NUMA */
671
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677 {
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
683 spin_lock_init(&alc->lock);
684 return alc;
685 }
686
687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688 {
689 struct alien_cache **alc_ptr;
690 size_t memsize = sizeof(void *) * nr_node_ids;
691 int i;
692
693 if (limit > 1)
694 limit = 12;
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
708 }
709 }
710 return alc_ptr;
711 }
712
713 static void free_alien_cache(struct alien_cache **alc_ptr)
714 {
715 int i;
716
717 if (!alc_ptr)
718 return;
719 for_each_node(i)
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
722 }
723
724 static void __drain_alien_cache(struct kmem_cache *cachep,
725 struct array_cache *ac, int node,
726 struct list_head *list)
727 {
728 struct kmem_cache_node *n = get_node(cachep, node);
729
730 if (ac->avail) {
731 spin_lock(&n->list_lock);
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
739
740 free_block(cachep, ac->entry, ac->avail, node, list);
741 ac->avail = 0;
742 spin_unlock(&n->list_lock);
743 }
744 }
745
746 /*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750 {
751 int node = __this_cpu_read(slab_reap_node);
752
753 if (n->alien) {
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
763 spin_unlock_irq(&alc->lock);
764 slabs_destroy(cachep, &list);
765 }
766 }
767 }
768 }
769
770 static void drain_alien_cache(struct kmem_cache *cachep,
771 struct alien_cache **alien)
772 {
773 int i = 0;
774 struct alien_cache *alc;
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
779 alc = alien[i];
780 if (alc) {
781 LIST_HEAD(list);
782
783 ac = &alc->ac;
784 spin_lock_irqsave(&alc->lock, flags);
785 __drain_alien_cache(cachep, ac, i, &list);
786 spin_unlock_irqrestore(&alc->lock, flags);
787 slabs_destroy(cachep, &list);
788 }
789 }
790 }
791
792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
794 {
795 struct kmem_cache_node *n;
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
798 LIST_HEAD(list);
799
800 n = get_node(cachep, node);
801 STATS_INC_NODEFREES(cachep);
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
804 ac = &alien->ac;
805 spin_lock(&alien->lock);
806 if (unlikely(ac->avail == ac->limit)) {
807 STATS_INC_ACOVERFLOW(cachep);
808 __drain_alien_cache(cachep, ac, page_node, &list);
809 }
810 ac->entry[ac->avail++] = objp;
811 spin_unlock(&alien->lock);
812 slabs_destroy(cachep, &list);
813 } else {
814 n = get_node(cachep, page_node);
815 spin_lock(&n->list_lock);
816 free_block(cachep, &objp, 1, page_node, &list);
817 spin_unlock(&n->list_lock);
818 slabs_destroy(cachep, &list);
819 }
820 return 1;
821 }
822
823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824 {
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835 }
836
837 /*
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
840 */
841 static inline gfp_t gfp_exact_node(gfp_t flags)
842 {
843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844 }
845 #endif
846
847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848 {
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885 }
886
887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888 /*
889 * Allocates and initializes node for a node on each slab cache, used for
890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
891 * will be allocated off-node since memory is not yet online for the new node.
892 * When hotplugging memory or a cpu, existing node are not replaced if
893 * already in use.
894 *
895 * Must hold slab_mutex.
896 */
897 static int init_cache_node_node(int node)
898 {
899 int ret;
900 struct kmem_cache *cachep;
901
902 list_for_each_entry(cachep, &slab_caches, list) {
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
906 }
907
908 return 0;
909 }
910 #endif
911
912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914 {
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
967 if (old_shared && force_change)
968 synchronize_sched();
969
970 fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976 }
977
978 #ifdef CONFIG_SMP
979
980 static void cpuup_canceled(long cpu)
981 {
982 struct kmem_cache *cachep;
983 struct kmem_cache_node *n = NULL;
984 int node = cpu_to_mem(cpu);
985 const struct cpumask *mask = cpumask_of_node(node);
986
987 list_for_each_entry(cachep, &slab_caches, list) {
988 struct array_cache *nc;
989 struct array_cache *shared;
990 struct alien_cache **alien;
991 LIST_HEAD(list);
992
993 n = get_node(cachep, node);
994 if (!n)
995 continue;
996
997 spin_lock_irq(&n->list_lock);
998
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
1005 free_block(cachep, nc->entry, nc->avail, node, &list);
1006 nc->avail = 0;
1007 }
1008
1009 if (!cpumask_empty(mask)) {
1010 spin_unlock_irq(&n->list_lock);
1011 goto free_slab;
1012 }
1013
1014 shared = n->shared;
1015 if (shared) {
1016 free_block(cachep, shared->entry,
1017 shared->avail, node, &list);
1018 n->shared = NULL;
1019 }
1020
1021 alien = n->alien;
1022 n->alien = NULL;
1023
1024 spin_unlock_irq(&n->list_lock);
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
1031
1032 free_slab:
1033 slabs_destroy(cachep, &list);
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
1040 list_for_each_entry(cachep, &slab_caches, list) {
1041 n = get_node(cachep, node);
1042 if (!n)
1043 continue;
1044 drain_freelist(cachep, n, INT_MAX);
1045 }
1046 }
1047
1048 static int cpuup_prepare(long cpu)
1049 {
1050 struct kmem_cache *cachep;
1051 int node = cpu_to_mem(cpu);
1052 int err;
1053
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
1058 * kmem_cache_node and not this cpu's kmem_cache_node
1059 */
1060 err = init_cache_node_node(node);
1061 if (err < 0)
1062 goto bad;
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
1068 list_for_each_entry(cachep, &slab_caches, list) {
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
1072 }
1073
1074 return 0;
1075 bad:
1076 cpuup_canceled(cpu);
1077 return -ENOMEM;
1078 }
1079
1080 int slab_prepare_cpu(unsigned int cpu)
1081 {
1082 int err;
1083
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088 }
1089
1090 /*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100 int slab_dead_cpu(unsigned int cpu)
1101 {
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106 }
1107 #endif
1108
1109 static int slab_online_cpu(unsigned int cpu)
1110 {
1111 start_cpu_timer(cpu);
1112 return 0;
1113 }
1114
1115 static int slab_offline_cpu(unsigned int cpu)
1116 {
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127 }
1128
1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130 /*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
1137 static int __meminit drain_cache_node_node(int node)
1138 {
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
1142 list_for_each_entry(cachep, &slab_caches, list) {
1143 struct kmem_cache_node *n;
1144
1145 n = get_node(cachep, node);
1146 if (!n)
1147 continue;
1148
1149 drain_freelist(cachep, n, INT_MAX);
1150
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158 }
1159
1160 static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162 {
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
1173 mutex_lock(&slab_mutex);
1174 ret = init_cache_node_node(nid);
1175 mutex_unlock(&slab_mutex);
1176 break;
1177 case MEM_GOING_OFFLINE:
1178 mutex_lock(&slab_mutex);
1179 ret = drain_cache_node_node(nid);
1180 mutex_unlock(&slab_mutex);
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188 out:
1189 return notifier_from_errno(ret);
1190 }
1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193 /*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 int nodeid)
1198 {
1199 struct kmem_cache_node *ptr;
1200
1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 BUG_ON(!ptr);
1203
1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 cachep->node[nodeid] = ptr;
1212 }
1213
1214 /*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
1218 static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 {
1220 int node;
1221
1222 for_each_online_node(node) {
1223 cachep->node[node] = &init_kmem_cache_node[index + node];
1224 cachep->node[node]->next_reap = jiffies +
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 }
1228 }
1229
1230 /*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
1234 void __init kmem_cache_init(void)
1235 {
1236 int i;
1237
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
1240 kmem_cache = &kmem_cache_boot;
1241
1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 use_alien_caches = 0;
1244
1245 for (i = 0; i < NUM_INIT_LISTS; i++)
1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
1247
1248 /*
1249 * Fragmentation resistance on low memory - only use bigger
1250 * page orders on machines with more than 32MB of memory if
1251 * not overridden on the command line.
1252 */
1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254 slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256 /* Bootstrap is tricky, because several objects are allocated
1257 * from caches that do not exist yet:
1258 * 1) initialize the kmem_cache cache: it contains the struct
1259 * kmem_cache structures of all caches, except kmem_cache itself:
1260 * kmem_cache is statically allocated.
1261 * Initially an __init data area is used for the head array and the
1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1263 * array at the end of the bootstrap.
1264 * 2) Create the first kmalloc cache.
1265 * The struct kmem_cache for the new cache is allocated normally.
1266 * An __init data area is used for the head array.
1267 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * head arrays.
1269 * 4) Replace the __init data head arrays for kmem_cache and the first
1270 * kmalloc cache with kmalloc allocated arrays.
1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 * the other cache's with kmalloc allocated memory.
1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274 */
1275
1276 /* 1) create the kmem_cache */
1277
1278 /*
1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280 */
1281 create_boot_cache(kmem_cache, "kmem_cache",
1282 offsetof(struct kmem_cache, node) +
1283 nr_node_ids * sizeof(struct kmem_cache_node *),
1284 SLAB_HWCACHE_ALIGN);
1285 list_add(&kmem_cache->list, &slab_caches);
1286 memcg_link_cache(kmem_cache);
1287 slab_state = PARTIAL;
1288
1289 /*
1290 * Initialize the caches that provide memory for the kmem_cache_node
1291 * structures first. Without this, further allocations will bug.
1292 */
1293 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294 kmalloc_info[INDEX_NODE].name,
1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1296 slab_state = PARTIAL_NODE;
1297 setup_kmalloc_cache_index_table();
1298
1299 slab_early_init = 0;
1300
1301 /* 5) Replace the bootstrap kmem_cache_node */
1302 {
1303 int nid;
1304
1305 for_each_online_node(nid) {
1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1307
1308 init_list(kmalloc_caches[INDEX_NODE],
1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1310 }
1311 }
1312
1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1314 }
1315
1316 void __init kmem_cache_init_late(void)
1317 {
1318 struct kmem_cache *cachep;
1319
1320 slab_state = UP;
1321
1322 /* 6) resize the head arrays to their final sizes */
1323 mutex_lock(&slab_mutex);
1324 list_for_each_entry(cachep, &slab_caches, list)
1325 if (enable_cpucache(cachep, GFP_NOWAIT))
1326 BUG();
1327 mutex_unlock(&slab_mutex);
1328
1329 /* Done! */
1330 slab_state = FULL;
1331
1332 #ifdef CONFIG_NUMA
1333 /*
1334 * Register a memory hotplug callback that initializes and frees
1335 * node.
1336 */
1337 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1338 #endif
1339
1340 /*
1341 * The reap timers are started later, with a module init call: That part
1342 * of the kernel is not yet operational.
1343 */
1344 }
1345
1346 static int __init cpucache_init(void)
1347 {
1348 int ret;
1349
1350 /*
1351 * Register the timers that return unneeded pages to the page allocator
1352 */
1353 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1354 slab_online_cpu, slab_offline_cpu);
1355 WARN_ON(ret < 0);
1356
1357 /* Done! */
1358 slab_state = FULL;
1359 return 0;
1360 }
1361 __initcall(cpucache_init);
1362
1363 static noinline void
1364 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1365 {
1366 #if DEBUG
1367 struct kmem_cache_node *n;
1368 unsigned long flags;
1369 int node;
1370 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1371 DEFAULT_RATELIMIT_BURST);
1372
1373 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1374 return;
1375
1376 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1377 nodeid, gfpflags, &gfpflags);
1378 pr_warn(" cache: %s, object size: %d, order: %d\n",
1379 cachep->name, cachep->size, cachep->gfporder);
1380
1381 for_each_kmem_cache_node(cachep, node, n) {
1382 unsigned long total_slabs, free_slabs, free_objs;
1383
1384 spin_lock_irqsave(&n->list_lock, flags);
1385 total_slabs = n->total_slabs;
1386 free_slabs = n->free_slabs;
1387 free_objs = n->free_objects;
1388 spin_unlock_irqrestore(&n->list_lock, flags);
1389
1390 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1391 node, total_slabs - free_slabs, total_slabs,
1392 (total_slabs * cachep->num) - free_objs,
1393 total_slabs * cachep->num);
1394 }
1395 #endif
1396 }
1397
1398 /*
1399 * Interface to system's page allocator. No need to hold the
1400 * kmem_cache_node ->list_lock.
1401 *
1402 * If we requested dmaable memory, we will get it. Even if we
1403 * did not request dmaable memory, we might get it, but that
1404 * would be relatively rare and ignorable.
1405 */
1406 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1407 int nodeid)
1408 {
1409 struct page *page;
1410 int nr_pages;
1411
1412 flags |= cachep->allocflags;
1413 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1414 flags |= __GFP_RECLAIMABLE;
1415
1416 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1417 if (!page) {
1418 slab_out_of_memory(cachep, flags, nodeid);
1419 return NULL;
1420 }
1421
1422 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1423 __free_pages(page, cachep->gfporder);
1424 return NULL;
1425 }
1426
1427 nr_pages = (1 << cachep->gfporder);
1428 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1429 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1430 else
1431 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1432
1433 __SetPageSlab(page);
1434 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1435 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1436 SetPageSlabPfmemalloc(page);
1437
1438 return page;
1439 }
1440
1441 /*
1442 * Interface to system's page release.
1443 */
1444 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1445 {
1446 int order = cachep->gfporder;
1447 unsigned long nr_freed = (1 << order);
1448
1449 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1450 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1451 else
1452 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1453
1454 BUG_ON(!PageSlab(page));
1455 __ClearPageSlabPfmemalloc(page);
1456 __ClearPageSlab(page);
1457 page_mapcount_reset(page);
1458 page->mapping = NULL;
1459
1460 if (current->reclaim_state)
1461 current->reclaim_state->reclaimed_slab += nr_freed;
1462 memcg_uncharge_slab(page, order, cachep);
1463 __free_pages(page, order);
1464 }
1465
1466 static void kmem_rcu_free(struct rcu_head *head)
1467 {
1468 struct kmem_cache *cachep;
1469 struct page *page;
1470
1471 page = container_of(head, struct page, rcu_head);
1472 cachep = page->slab_cache;
1473
1474 kmem_freepages(cachep, page);
1475 }
1476
1477 #if DEBUG
1478 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1479 {
1480 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1481 (cachep->size % PAGE_SIZE) == 0)
1482 return true;
1483
1484 return false;
1485 }
1486
1487 #ifdef CONFIG_DEBUG_PAGEALLOC
1488 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1489 unsigned long caller)
1490 {
1491 int size = cachep->object_size;
1492
1493 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1494
1495 if (size < 5 * sizeof(unsigned long))
1496 return;
1497
1498 *addr++ = 0x12345678;
1499 *addr++ = caller;
1500 *addr++ = smp_processor_id();
1501 size -= 3 * sizeof(unsigned long);
1502 {
1503 unsigned long *sptr = &caller;
1504 unsigned long svalue;
1505
1506 while (!kstack_end(sptr)) {
1507 svalue = *sptr++;
1508 if (kernel_text_address(svalue)) {
1509 *addr++ = svalue;
1510 size -= sizeof(unsigned long);
1511 if (size <= sizeof(unsigned long))
1512 break;
1513 }
1514 }
1515
1516 }
1517 *addr++ = 0x87654321;
1518 }
1519
1520 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1521 int map, unsigned long caller)
1522 {
1523 if (!is_debug_pagealloc_cache(cachep))
1524 return;
1525
1526 if (caller)
1527 store_stackinfo(cachep, objp, caller);
1528
1529 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1530 }
1531
1532 #else
1533 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1534 int map, unsigned long caller) {}
1535
1536 #endif
1537
1538 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1539 {
1540 int size = cachep->object_size;
1541 addr = &((char *)addr)[obj_offset(cachep)];
1542
1543 memset(addr, val, size);
1544 *(unsigned char *)(addr + size - 1) = POISON_END;
1545 }
1546
1547 static void dump_line(char *data, int offset, int limit)
1548 {
1549 int i;
1550 unsigned char error = 0;
1551 int bad_count = 0;
1552
1553 pr_err("%03x: ", offset);
1554 for (i = 0; i < limit; i++) {
1555 if (data[offset + i] != POISON_FREE) {
1556 error = data[offset + i];
1557 bad_count++;
1558 }
1559 }
1560 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1561 &data[offset], limit, 1);
1562
1563 if (bad_count == 1) {
1564 error ^= POISON_FREE;
1565 if (!(error & (error - 1))) {
1566 pr_err("Single bit error detected. Probably bad RAM.\n");
1567 #ifdef CONFIG_X86
1568 pr_err("Run memtest86+ or a similar memory test tool.\n");
1569 #else
1570 pr_err("Run a memory test tool.\n");
1571 #endif
1572 }
1573 }
1574 }
1575 #endif
1576
1577 #if DEBUG
1578
1579 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1580 {
1581 int i, size;
1582 char *realobj;
1583
1584 if (cachep->flags & SLAB_RED_ZONE) {
1585 pr_err("Redzone: 0x%llx/0x%llx\n",
1586 *dbg_redzone1(cachep, objp),
1587 *dbg_redzone2(cachep, objp));
1588 }
1589
1590 if (cachep->flags & SLAB_STORE_USER) {
1591 pr_err("Last user: [<%p>](%pSR)\n",
1592 *dbg_userword(cachep, objp),
1593 *dbg_userword(cachep, objp));
1594 }
1595 realobj = (char *)objp + obj_offset(cachep);
1596 size = cachep->object_size;
1597 for (i = 0; i < size && lines; i += 16, lines--) {
1598 int limit;
1599 limit = 16;
1600 if (i + limit > size)
1601 limit = size - i;
1602 dump_line(realobj, i, limit);
1603 }
1604 }
1605
1606 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1607 {
1608 char *realobj;
1609 int size, i;
1610 int lines = 0;
1611
1612 if (is_debug_pagealloc_cache(cachep))
1613 return;
1614
1615 realobj = (char *)objp + obj_offset(cachep);
1616 size = cachep->object_size;
1617
1618 for (i = 0; i < size; i++) {
1619 char exp = POISON_FREE;
1620 if (i == size - 1)
1621 exp = POISON_END;
1622 if (realobj[i] != exp) {
1623 int limit;
1624 /* Mismatch ! */
1625 /* Print header */
1626 if (lines == 0) {
1627 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1628 print_tainted(), cachep->name,
1629 realobj, size);
1630 print_objinfo(cachep, objp, 0);
1631 }
1632 /* Hexdump the affected line */
1633 i = (i / 16) * 16;
1634 limit = 16;
1635 if (i + limit > size)
1636 limit = size - i;
1637 dump_line(realobj, i, limit);
1638 i += 16;
1639 lines++;
1640 /* Limit to 5 lines */
1641 if (lines > 5)
1642 break;
1643 }
1644 }
1645 if (lines != 0) {
1646 /* Print some data about the neighboring objects, if they
1647 * exist:
1648 */
1649 struct page *page = virt_to_head_page(objp);
1650 unsigned int objnr;
1651
1652 objnr = obj_to_index(cachep, page, objp);
1653 if (objnr) {
1654 objp = index_to_obj(cachep, page, objnr - 1);
1655 realobj = (char *)objp + obj_offset(cachep);
1656 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1657 print_objinfo(cachep, objp, 2);
1658 }
1659 if (objnr + 1 < cachep->num) {
1660 objp = index_to_obj(cachep, page, objnr + 1);
1661 realobj = (char *)objp + obj_offset(cachep);
1662 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1663 print_objinfo(cachep, objp, 2);
1664 }
1665 }
1666 }
1667 #endif
1668
1669 #if DEBUG
1670 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1671 struct page *page)
1672 {
1673 int i;
1674
1675 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1676 poison_obj(cachep, page->freelist - obj_offset(cachep),
1677 POISON_FREE);
1678 }
1679
1680 for (i = 0; i < cachep->num; i++) {
1681 void *objp = index_to_obj(cachep, page, i);
1682
1683 if (cachep->flags & SLAB_POISON) {
1684 check_poison_obj(cachep, objp);
1685 slab_kernel_map(cachep, objp, 1, 0);
1686 }
1687 if (cachep->flags & SLAB_RED_ZONE) {
1688 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1689 slab_error(cachep, "start of a freed object was overwritten");
1690 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1691 slab_error(cachep, "end of a freed object was overwritten");
1692 }
1693 }
1694 }
1695 #else
1696 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1697 struct page *page)
1698 {
1699 }
1700 #endif
1701
1702 /**
1703 * slab_destroy - destroy and release all objects in a slab
1704 * @cachep: cache pointer being destroyed
1705 * @page: page pointer being destroyed
1706 *
1707 * Destroy all the objs in a slab page, and release the mem back to the system.
1708 * Before calling the slab page must have been unlinked from the cache. The
1709 * kmem_cache_node ->list_lock is not held/needed.
1710 */
1711 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1712 {
1713 void *freelist;
1714
1715 freelist = page->freelist;
1716 slab_destroy_debugcheck(cachep, page);
1717 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1718 call_rcu(&page->rcu_head, kmem_rcu_free);
1719 else
1720 kmem_freepages(cachep, page);
1721
1722 /*
1723 * From now on, we don't use freelist
1724 * although actual page can be freed in rcu context
1725 */
1726 if (OFF_SLAB(cachep))
1727 kmem_cache_free(cachep->freelist_cache, freelist);
1728 }
1729
1730 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1731 {
1732 struct page *page, *n;
1733
1734 list_for_each_entry_safe(page, n, list, lru) {
1735 list_del(&page->lru);
1736 slab_destroy(cachep, page);
1737 }
1738 }
1739
1740 /**
1741 * calculate_slab_order - calculate size (page order) of slabs
1742 * @cachep: pointer to the cache that is being created
1743 * @size: size of objects to be created in this cache.
1744 * @flags: slab allocation flags
1745 *
1746 * Also calculates the number of objects per slab.
1747 *
1748 * This could be made much more intelligent. For now, try to avoid using
1749 * high order pages for slabs. When the gfp() functions are more friendly
1750 * towards high-order requests, this should be changed.
1751 */
1752 static size_t calculate_slab_order(struct kmem_cache *cachep,
1753 size_t size, unsigned long flags)
1754 {
1755 size_t left_over = 0;
1756 int gfporder;
1757
1758 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1759 unsigned int num;
1760 size_t remainder;
1761
1762 num = cache_estimate(gfporder, size, flags, &remainder);
1763 if (!num)
1764 continue;
1765
1766 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1767 if (num > SLAB_OBJ_MAX_NUM)
1768 break;
1769
1770 if (flags & CFLGS_OFF_SLAB) {
1771 struct kmem_cache *freelist_cache;
1772 size_t freelist_size;
1773
1774 freelist_size = num * sizeof(freelist_idx_t);
1775 freelist_cache = kmalloc_slab(freelist_size, 0u);
1776 if (!freelist_cache)
1777 continue;
1778
1779 /*
1780 * Needed to avoid possible looping condition
1781 * in cache_grow_begin()
1782 */
1783 if (OFF_SLAB(freelist_cache))
1784 continue;
1785
1786 /* check if off slab has enough benefit */
1787 if (freelist_cache->size > cachep->size / 2)
1788 continue;
1789 }
1790
1791 /* Found something acceptable - save it away */
1792 cachep->num = num;
1793 cachep->gfporder = gfporder;
1794 left_over = remainder;
1795
1796 /*
1797 * A VFS-reclaimable slab tends to have most allocations
1798 * as GFP_NOFS and we really don't want to have to be allocating
1799 * higher-order pages when we are unable to shrink dcache.
1800 */
1801 if (flags & SLAB_RECLAIM_ACCOUNT)
1802 break;
1803
1804 /*
1805 * Large number of objects is good, but very large slabs are
1806 * currently bad for the gfp()s.
1807 */
1808 if (gfporder >= slab_max_order)
1809 break;
1810
1811 /*
1812 * Acceptable internal fragmentation?
1813 */
1814 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1815 break;
1816 }
1817 return left_over;
1818 }
1819
1820 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1821 struct kmem_cache *cachep, int entries, int batchcount)
1822 {
1823 int cpu;
1824 size_t size;
1825 struct array_cache __percpu *cpu_cache;
1826
1827 size = sizeof(void *) * entries + sizeof(struct array_cache);
1828 cpu_cache = __alloc_percpu(size, sizeof(void *));
1829
1830 if (!cpu_cache)
1831 return NULL;
1832
1833 for_each_possible_cpu(cpu) {
1834 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1835 entries, batchcount);
1836 }
1837
1838 return cpu_cache;
1839 }
1840
1841 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1842 {
1843 if (slab_state >= FULL)
1844 return enable_cpucache(cachep, gfp);
1845
1846 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1847 if (!cachep->cpu_cache)
1848 return 1;
1849
1850 if (slab_state == DOWN) {
1851 /* Creation of first cache (kmem_cache). */
1852 set_up_node(kmem_cache, CACHE_CACHE);
1853 } else if (slab_state == PARTIAL) {
1854 /* For kmem_cache_node */
1855 set_up_node(cachep, SIZE_NODE);
1856 } else {
1857 int node;
1858
1859 for_each_online_node(node) {
1860 cachep->node[node] = kmalloc_node(
1861 sizeof(struct kmem_cache_node), gfp, node);
1862 BUG_ON(!cachep->node[node]);
1863 kmem_cache_node_init(cachep->node[node]);
1864 }
1865 }
1866
1867 cachep->node[numa_mem_id()]->next_reap =
1868 jiffies + REAPTIMEOUT_NODE +
1869 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1870
1871 cpu_cache_get(cachep)->avail = 0;
1872 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1873 cpu_cache_get(cachep)->batchcount = 1;
1874 cpu_cache_get(cachep)->touched = 0;
1875 cachep->batchcount = 1;
1876 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1877 return 0;
1878 }
1879
1880 unsigned long kmem_cache_flags(unsigned long object_size,
1881 unsigned long flags, const char *name,
1882 void (*ctor)(void *))
1883 {
1884 return flags;
1885 }
1886
1887 struct kmem_cache *
1888 __kmem_cache_alias(const char *name, size_t size, size_t align,
1889 unsigned long flags, void (*ctor)(void *))
1890 {
1891 struct kmem_cache *cachep;
1892
1893 cachep = find_mergeable(size, align, flags, name, ctor);
1894 if (cachep) {
1895 cachep->refcount++;
1896
1897 /*
1898 * Adjust the object sizes so that we clear
1899 * the complete object on kzalloc.
1900 */
1901 cachep->object_size = max_t(int, cachep->object_size, size);
1902 }
1903 return cachep;
1904 }
1905
1906 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1907 size_t size, unsigned long flags)
1908 {
1909 size_t left;
1910
1911 cachep->num = 0;
1912
1913 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1914 return false;
1915
1916 left = calculate_slab_order(cachep, size,
1917 flags | CFLGS_OBJFREELIST_SLAB);
1918 if (!cachep->num)
1919 return false;
1920
1921 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1922 return false;
1923
1924 cachep->colour = left / cachep->colour_off;
1925
1926 return true;
1927 }
1928
1929 static bool set_off_slab_cache(struct kmem_cache *cachep,
1930 size_t size, unsigned long flags)
1931 {
1932 size_t left;
1933
1934 cachep->num = 0;
1935
1936 /*
1937 * Always use on-slab management when SLAB_NOLEAKTRACE
1938 * to avoid recursive calls into kmemleak.
1939 */
1940 if (flags & SLAB_NOLEAKTRACE)
1941 return false;
1942
1943 /*
1944 * Size is large, assume best to place the slab management obj
1945 * off-slab (should allow better packing of objs).
1946 */
1947 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1948 if (!cachep->num)
1949 return false;
1950
1951 /*
1952 * If the slab has been placed off-slab, and we have enough space then
1953 * move it on-slab. This is at the expense of any extra colouring.
1954 */
1955 if (left >= cachep->num * sizeof(freelist_idx_t))
1956 return false;
1957
1958 cachep->colour = left / cachep->colour_off;
1959
1960 return true;
1961 }
1962
1963 static bool set_on_slab_cache(struct kmem_cache *cachep,
1964 size_t size, unsigned long flags)
1965 {
1966 size_t left;
1967
1968 cachep->num = 0;
1969
1970 left = calculate_slab_order(cachep, size, flags);
1971 if (!cachep->num)
1972 return false;
1973
1974 cachep->colour = left / cachep->colour_off;
1975
1976 return true;
1977 }
1978
1979 /**
1980 * __kmem_cache_create - Create a cache.
1981 * @cachep: cache management descriptor
1982 * @flags: SLAB flags
1983 *
1984 * Returns a ptr to the cache on success, NULL on failure.
1985 * Cannot be called within a int, but can be interrupted.
1986 * The @ctor is run when new pages are allocated by the cache.
1987 *
1988 * The flags are
1989 *
1990 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1991 * to catch references to uninitialised memory.
1992 *
1993 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1994 * for buffer overruns.
1995 *
1996 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1997 * cacheline. This can be beneficial if you're counting cycles as closely
1998 * as davem.
1999 */
2000 int
2001 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2002 {
2003 size_t ralign = BYTES_PER_WORD;
2004 gfp_t gfp;
2005 int err;
2006 size_t size = cachep->size;
2007
2008 #if DEBUG
2009 #if FORCED_DEBUG
2010 /*
2011 * Enable redzoning and last user accounting, except for caches with
2012 * large objects, if the increased size would increase the object size
2013 * above the next power of two: caches with object sizes just above a
2014 * power of two have a significant amount of internal fragmentation.
2015 */
2016 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2017 2 * sizeof(unsigned long long)))
2018 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2019 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2020 flags |= SLAB_POISON;
2021 #endif
2022 #endif
2023
2024 /*
2025 * Check that size is in terms of words. This is needed to avoid
2026 * unaligned accesses for some archs when redzoning is used, and makes
2027 * sure any on-slab bufctl's are also correctly aligned.
2028 */
2029 size = ALIGN(size, BYTES_PER_WORD);
2030
2031 if (flags & SLAB_RED_ZONE) {
2032 ralign = REDZONE_ALIGN;
2033 /* If redzoning, ensure that the second redzone is suitably
2034 * aligned, by adjusting the object size accordingly. */
2035 size = ALIGN(size, REDZONE_ALIGN);
2036 }
2037
2038 /* 3) caller mandated alignment */
2039 if (ralign < cachep->align) {
2040 ralign = cachep->align;
2041 }
2042 /* disable debug if necessary */
2043 if (ralign > __alignof__(unsigned long long))
2044 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2045 /*
2046 * 4) Store it.
2047 */
2048 cachep->align = ralign;
2049 cachep->colour_off = cache_line_size();
2050 /* Offset must be a multiple of the alignment. */
2051 if (cachep->colour_off < cachep->align)
2052 cachep->colour_off = cachep->align;
2053
2054 if (slab_is_available())
2055 gfp = GFP_KERNEL;
2056 else
2057 gfp = GFP_NOWAIT;
2058
2059 #if DEBUG
2060
2061 /*
2062 * Both debugging options require word-alignment which is calculated
2063 * into align above.
2064 */
2065 if (flags & SLAB_RED_ZONE) {
2066 /* add space for red zone words */
2067 cachep->obj_offset += sizeof(unsigned long long);
2068 size += 2 * sizeof(unsigned long long);
2069 }
2070 if (flags & SLAB_STORE_USER) {
2071 /* user store requires one word storage behind the end of
2072 * the real object. But if the second red zone needs to be
2073 * aligned to 64 bits, we must allow that much space.
2074 */
2075 if (flags & SLAB_RED_ZONE)
2076 size += REDZONE_ALIGN;
2077 else
2078 size += BYTES_PER_WORD;
2079 }
2080 #endif
2081
2082 kasan_cache_create(cachep, &size, &flags);
2083
2084 size = ALIGN(size, cachep->align);
2085 /*
2086 * We should restrict the number of objects in a slab to implement
2087 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2088 */
2089 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2090 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2091
2092 #if DEBUG
2093 /*
2094 * To activate debug pagealloc, off-slab management is necessary
2095 * requirement. In early phase of initialization, small sized slab
2096 * doesn't get initialized so it would not be possible. So, we need
2097 * to check size >= 256. It guarantees that all necessary small
2098 * sized slab is initialized in current slab initialization sequence.
2099 */
2100 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2101 size >= 256 && cachep->object_size > cache_line_size()) {
2102 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2103 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2104
2105 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2106 flags |= CFLGS_OFF_SLAB;
2107 cachep->obj_offset += tmp_size - size;
2108 size = tmp_size;
2109 goto done;
2110 }
2111 }
2112 }
2113 #endif
2114
2115 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2116 flags |= CFLGS_OBJFREELIST_SLAB;
2117 goto done;
2118 }
2119
2120 if (set_off_slab_cache(cachep, size, flags)) {
2121 flags |= CFLGS_OFF_SLAB;
2122 goto done;
2123 }
2124
2125 if (set_on_slab_cache(cachep, size, flags))
2126 goto done;
2127
2128 return -E2BIG;
2129
2130 done:
2131 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2132 cachep->flags = flags;
2133 cachep->allocflags = __GFP_COMP;
2134 if (flags & SLAB_CACHE_DMA)
2135 cachep->allocflags |= GFP_DMA;
2136 cachep->size = size;
2137 cachep->reciprocal_buffer_size = reciprocal_value(size);
2138
2139 #if DEBUG
2140 /*
2141 * If we're going to use the generic kernel_map_pages()
2142 * poisoning, then it's going to smash the contents of
2143 * the redzone and userword anyhow, so switch them off.
2144 */
2145 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2146 (cachep->flags & SLAB_POISON) &&
2147 is_debug_pagealloc_cache(cachep))
2148 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2149 #endif
2150
2151 if (OFF_SLAB(cachep)) {
2152 cachep->freelist_cache =
2153 kmalloc_slab(cachep->freelist_size, 0u);
2154 }
2155
2156 err = setup_cpu_cache(cachep, gfp);
2157 if (err) {
2158 __kmem_cache_release(cachep);
2159 return err;
2160 }
2161
2162 return 0;
2163 }
2164
2165 #if DEBUG
2166 static void check_irq_off(void)
2167 {
2168 BUG_ON(!irqs_disabled());
2169 }
2170
2171 static void check_irq_on(void)
2172 {
2173 BUG_ON(irqs_disabled());
2174 }
2175
2176 static void check_mutex_acquired(void)
2177 {
2178 BUG_ON(!mutex_is_locked(&slab_mutex));
2179 }
2180
2181 static void check_spinlock_acquired(struct kmem_cache *cachep)
2182 {
2183 #ifdef CONFIG_SMP
2184 check_irq_off();
2185 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2186 #endif
2187 }
2188
2189 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2190 {
2191 #ifdef CONFIG_SMP
2192 check_irq_off();
2193 assert_spin_locked(&get_node(cachep, node)->list_lock);
2194 #endif
2195 }
2196
2197 #else
2198 #define check_irq_off() do { } while(0)
2199 #define check_irq_on() do { } while(0)
2200 #define check_mutex_acquired() do { } while(0)
2201 #define check_spinlock_acquired(x) do { } while(0)
2202 #define check_spinlock_acquired_node(x, y) do { } while(0)
2203 #endif
2204
2205 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2206 int node, bool free_all, struct list_head *list)
2207 {
2208 int tofree;
2209
2210 if (!ac || !ac->avail)
2211 return;
2212
2213 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2214 if (tofree > ac->avail)
2215 tofree = (ac->avail + 1) / 2;
2216
2217 free_block(cachep, ac->entry, tofree, node, list);
2218 ac->avail -= tofree;
2219 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2220 }
2221
2222 static void do_drain(void *arg)
2223 {
2224 struct kmem_cache *cachep = arg;
2225 struct array_cache *ac;
2226 int node = numa_mem_id();
2227 struct kmem_cache_node *n;
2228 LIST_HEAD(list);
2229
2230 check_irq_off();
2231 ac = cpu_cache_get(cachep);
2232 n = get_node(cachep, node);
2233 spin_lock(&n->list_lock);
2234 free_block(cachep, ac->entry, ac->avail, node, &list);
2235 spin_unlock(&n->list_lock);
2236 slabs_destroy(cachep, &list);
2237 ac->avail = 0;
2238 }
2239
2240 static void drain_cpu_caches(struct kmem_cache *cachep)
2241 {
2242 struct kmem_cache_node *n;
2243 int node;
2244 LIST_HEAD(list);
2245
2246 on_each_cpu(do_drain, cachep, 1);
2247 check_irq_on();
2248 for_each_kmem_cache_node(cachep, node, n)
2249 if (n->alien)
2250 drain_alien_cache(cachep, n->alien);
2251
2252 for_each_kmem_cache_node(cachep, node, n) {
2253 spin_lock_irq(&n->list_lock);
2254 drain_array_locked(cachep, n->shared, node, true, &list);
2255 spin_unlock_irq(&n->list_lock);
2256
2257 slabs_destroy(cachep, &list);
2258 }
2259 }
2260
2261 /*
2262 * Remove slabs from the list of free slabs.
2263 * Specify the number of slabs to drain in tofree.
2264 *
2265 * Returns the actual number of slabs released.
2266 */
2267 static int drain_freelist(struct kmem_cache *cache,
2268 struct kmem_cache_node *n, int tofree)
2269 {
2270 struct list_head *p;
2271 int nr_freed;
2272 struct page *page;
2273
2274 nr_freed = 0;
2275 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2276
2277 spin_lock_irq(&n->list_lock);
2278 p = n->slabs_free.prev;
2279 if (p == &n->slabs_free) {
2280 spin_unlock_irq(&n->list_lock);
2281 goto out;
2282 }
2283
2284 page = list_entry(p, struct page, lru);
2285 list_del(&page->lru);
2286 n->free_slabs--;
2287 n->total_slabs--;
2288 /*
2289 * Safe to drop the lock. The slab is no longer linked
2290 * to the cache.
2291 */
2292 n->free_objects -= cache->num;
2293 spin_unlock_irq(&n->list_lock);
2294 slab_destroy(cache, page);
2295 nr_freed++;
2296 }
2297 out:
2298 return nr_freed;
2299 }
2300
2301 int __kmem_cache_shrink(struct kmem_cache *cachep)
2302 {
2303 int ret = 0;
2304 int node;
2305 struct kmem_cache_node *n;
2306
2307 drain_cpu_caches(cachep);
2308
2309 check_irq_on();
2310 for_each_kmem_cache_node(cachep, node, n) {
2311 drain_freelist(cachep, n, INT_MAX);
2312
2313 ret += !list_empty(&n->slabs_full) ||
2314 !list_empty(&n->slabs_partial);
2315 }
2316 return (ret ? 1 : 0);
2317 }
2318
2319 #ifdef CONFIG_MEMCG
2320 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2321 {
2322 __kmem_cache_shrink(cachep);
2323 }
2324 #endif
2325
2326 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2327 {
2328 return __kmem_cache_shrink(cachep);
2329 }
2330
2331 void __kmem_cache_release(struct kmem_cache *cachep)
2332 {
2333 int i;
2334 struct kmem_cache_node *n;
2335
2336 cache_random_seq_destroy(cachep);
2337
2338 free_percpu(cachep->cpu_cache);
2339
2340 /* NUMA: free the node structures */
2341 for_each_kmem_cache_node(cachep, i, n) {
2342 kfree(n->shared);
2343 free_alien_cache(n->alien);
2344 kfree(n);
2345 cachep->node[i] = NULL;
2346 }
2347 }
2348
2349 /*
2350 * Get the memory for a slab management obj.
2351 *
2352 * For a slab cache when the slab descriptor is off-slab, the
2353 * slab descriptor can't come from the same cache which is being created,
2354 * Because if it is the case, that means we defer the creation of
2355 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2356 * And we eventually call down to __kmem_cache_create(), which
2357 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2358 * This is a "chicken-and-egg" problem.
2359 *
2360 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2361 * which are all initialized during kmem_cache_init().
2362 */
2363 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2364 struct page *page, int colour_off,
2365 gfp_t local_flags, int nodeid)
2366 {
2367 void *freelist;
2368 void *addr = page_address(page);
2369
2370 page->s_mem = addr + colour_off;
2371 page->active = 0;
2372
2373 if (OBJFREELIST_SLAB(cachep))
2374 freelist = NULL;
2375 else if (OFF_SLAB(cachep)) {
2376 /* Slab management obj is off-slab. */
2377 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2378 local_flags, nodeid);
2379 if (!freelist)
2380 return NULL;
2381 } else {
2382 /* We will use last bytes at the slab for freelist */
2383 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2384 cachep->freelist_size;
2385 }
2386
2387 return freelist;
2388 }
2389
2390 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2391 {
2392 return ((freelist_idx_t *)page->freelist)[idx];
2393 }
2394
2395 static inline void set_free_obj(struct page *page,
2396 unsigned int idx, freelist_idx_t val)
2397 {
2398 ((freelist_idx_t *)(page->freelist))[idx] = val;
2399 }
2400
2401 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2402 {
2403 #if DEBUG
2404 int i;
2405
2406 for (i = 0; i < cachep->num; i++) {
2407 void *objp = index_to_obj(cachep, page, i);
2408
2409 if (cachep->flags & SLAB_STORE_USER)
2410 *dbg_userword(cachep, objp) = NULL;
2411
2412 if (cachep->flags & SLAB_RED_ZONE) {
2413 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2414 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2415 }
2416 /*
2417 * Constructors are not allowed to allocate memory from the same
2418 * cache which they are a constructor for. Otherwise, deadlock.
2419 * They must also be threaded.
2420 */
2421 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2422 kasan_unpoison_object_data(cachep,
2423 objp + obj_offset(cachep));
2424 cachep->ctor(objp + obj_offset(cachep));
2425 kasan_poison_object_data(
2426 cachep, objp + obj_offset(cachep));
2427 }
2428
2429 if (cachep->flags & SLAB_RED_ZONE) {
2430 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2431 slab_error(cachep, "constructor overwrote the end of an object");
2432 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2433 slab_error(cachep, "constructor overwrote the start of an object");
2434 }
2435 /* need to poison the objs? */
2436 if (cachep->flags & SLAB_POISON) {
2437 poison_obj(cachep, objp, POISON_FREE);
2438 slab_kernel_map(cachep, objp, 0, 0);
2439 }
2440 }
2441 #endif
2442 }
2443
2444 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2445 /* Hold information during a freelist initialization */
2446 union freelist_init_state {
2447 struct {
2448 unsigned int pos;
2449 unsigned int *list;
2450 unsigned int count;
2451 };
2452 struct rnd_state rnd_state;
2453 };
2454
2455 /*
2456 * Initialize the state based on the randomization methode available.
2457 * return true if the pre-computed list is available, false otherwize.
2458 */
2459 static bool freelist_state_initialize(union freelist_init_state *state,
2460 struct kmem_cache *cachep,
2461 unsigned int count)
2462 {
2463 bool ret;
2464 unsigned int rand;
2465
2466 /* Use best entropy available to define a random shift */
2467 rand = get_random_int();
2468
2469 /* Use a random state if the pre-computed list is not available */
2470 if (!cachep->random_seq) {
2471 prandom_seed_state(&state->rnd_state, rand);
2472 ret = false;
2473 } else {
2474 state->list = cachep->random_seq;
2475 state->count = count;
2476 state->pos = rand % count;
2477 ret = true;
2478 }
2479 return ret;
2480 }
2481
2482 /* Get the next entry on the list and randomize it using a random shift */
2483 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2484 {
2485 if (state->pos >= state->count)
2486 state->pos = 0;
2487 return state->list[state->pos++];
2488 }
2489
2490 /* Swap two freelist entries */
2491 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2492 {
2493 swap(((freelist_idx_t *)page->freelist)[a],
2494 ((freelist_idx_t *)page->freelist)[b]);
2495 }
2496
2497 /*
2498 * Shuffle the freelist initialization state based on pre-computed lists.
2499 * return true if the list was successfully shuffled, false otherwise.
2500 */
2501 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2502 {
2503 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2504 union freelist_init_state state;
2505 bool precomputed;
2506
2507 if (count < 2)
2508 return false;
2509
2510 precomputed = freelist_state_initialize(&state, cachep, count);
2511
2512 /* Take a random entry as the objfreelist */
2513 if (OBJFREELIST_SLAB(cachep)) {
2514 if (!precomputed)
2515 objfreelist = count - 1;
2516 else
2517 objfreelist = next_random_slot(&state);
2518 page->freelist = index_to_obj(cachep, page, objfreelist) +
2519 obj_offset(cachep);
2520 count--;
2521 }
2522
2523 /*
2524 * On early boot, generate the list dynamically.
2525 * Later use a pre-computed list for speed.
2526 */
2527 if (!precomputed) {
2528 for (i = 0; i < count; i++)
2529 set_free_obj(page, i, i);
2530
2531 /* Fisher-Yates shuffle */
2532 for (i = count - 1; i > 0; i--) {
2533 rand = prandom_u32_state(&state.rnd_state);
2534 rand %= (i + 1);
2535 swap_free_obj(page, i, rand);
2536 }
2537 } else {
2538 for (i = 0; i < count; i++)
2539 set_free_obj(page, i, next_random_slot(&state));
2540 }
2541
2542 if (OBJFREELIST_SLAB(cachep))
2543 set_free_obj(page, cachep->num - 1, objfreelist);
2544
2545 return true;
2546 }
2547 #else
2548 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2549 struct page *page)
2550 {
2551 return false;
2552 }
2553 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2554
2555 static void cache_init_objs(struct kmem_cache *cachep,
2556 struct page *page)
2557 {
2558 int i;
2559 void *objp;
2560 bool shuffled;
2561
2562 cache_init_objs_debug(cachep, page);
2563
2564 /* Try to randomize the freelist if enabled */
2565 shuffled = shuffle_freelist(cachep, page);
2566
2567 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2568 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2569 obj_offset(cachep);
2570 }
2571
2572 for (i = 0; i < cachep->num; i++) {
2573 objp = index_to_obj(cachep, page, i);
2574 kasan_init_slab_obj(cachep, objp);
2575
2576 /* constructor could break poison info */
2577 if (DEBUG == 0 && cachep->ctor) {
2578 kasan_unpoison_object_data(cachep, objp);
2579 cachep->ctor(objp);
2580 kasan_poison_object_data(cachep, objp);
2581 }
2582
2583 if (!shuffled)
2584 set_free_obj(page, i, i);
2585 }
2586 }
2587
2588 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2589 {
2590 void *objp;
2591
2592 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2593 page->active++;
2594
2595 #if DEBUG
2596 if (cachep->flags & SLAB_STORE_USER)
2597 set_store_user_dirty(cachep);
2598 #endif
2599
2600 return objp;
2601 }
2602
2603 static void slab_put_obj(struct kmem_cache *cachep,
2604 struct page *page, void *objp)
2605 {
2606 unsigned int objnr = obj_to_index(cachep, page, objp);
2607 #if DEBUG
2608 unsigned int i;
2609
2610 /* Verify double free bug */
2611 for (i = page->active; i < cachep->num; i++) {
2612 if (get_free_obj(page, i) == objnr) {
2613 pr_err("slab: double free detected in cache '%s', objp %p\n",
2614 cachep->name, objp);
2615 BUG();
2616 }
2617 }
2618 #endif
2619 page->active--;
2620 if (!page->freelist)
2621 page->freelist = objp + obj_offset(cachep);
2622
2623 set_free_obj(page, page->active, objnr);
2624 }
2625
2626 /*
2627 * Map pages beginning at addr to the given cache and slab. This is required
2628 * for the slab allocator to be able to lookup the cache and slab of a
2629 * virtual address for kfree, ksize, and slab debugging.
2630 */
2631 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2632 void *freelist)
2633 {
2634 page->slab_cache = cache;
2635 page->freelist = freelist;
2636 }
2637
2638 /*
2639 * Grow (by 1) the number of slabs within a cache. This is called by
2640 * kmem_cache_alloc() when there are no active objs left in a cache.
2641 */
2642 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2643 gfp_t flags, int nodeid)
2644 {
2645 void *freelist;
2646 size_t offset;
2647 gfp_t local_flags;
2648 int page_node;
2649 struct kmem_cache_node *n;
2650 struct page *page;
2651
2652 /*
2653 * Be lazy and only check for valid flags here, keeping it out of the
2654 * critical path in kmem_cache_alloc().
2655 */
2656 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2657 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2658 flags &= ~GFP_SLAB_BUG_MASK;
2659 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2660 invalid_mask, &invalid_mask, flags, &flags);
2661 dump_stack();
2662 }
2663 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2664
2665 check_irq_off();
2666 if (gfpflags_allow_blocking(local_flags))
2667 local_irq_enable();
2668
2669 /*
2670 * Get mem for the objs. Attempt to allocate a physical page from
2671 * 'nodeid'.
2672 */
2673 page = kmem_getpages(cachep, local_flags, nodeid);
2674 if (!page)
2675 goto failed;
2676
2677 page_node = page_to_nid(page);
2678 n = get_node(cachep, page_node);
2679
2680 /* Get colour for the slab, and cal the next value. */
2681 n->colour_next++;
2682 if (n->colour_next >= cachep->colour)
2683 n->colour_next = 0;
2684
2685 offset = n->colour_next;
2686 if (offset >= cachep->colour)
2687 offset = 0;
2688
2689 offset *= cachep->colour_off;
2690
2691 /* Get slab management. */
2692 freelist = alloc_slabmgmt(cachep, page, offset,
2693 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2694 if (OFF_SLAB(cachep) && !freelist)
2695 goto opps1;
2696
2697 slab_map_pages(cachep, page, freelist);
2698
2699 kasan_poison_slab(page);
2700 cache_init_objs(cachep, page);
2701
2702 if (gfpflags_allow_blocking(local_flags))
2703 local_irq_disable();
2704
2705 return page;
2706
2707 opps1:
2708 kmem_freepages(cachep, page);
2709 failed:
2710 if (gfpflags_allow_blocking(local_flags))
2711 local_irq_disable();
2712 return NULL;
2713 }
2714
2715 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2716 {
2717 struct kmem_cache_node *n;
2718 void *list = NULL;
2719
2720 check_irq_off();
2721
2722 if (!page)
2723 return;
2724
2725 INIT_LIST_HEAD(&page->lru);
2726 n = get_node(cachep, page_to_nid(page));
2727
2728 spin_lock(&n->list_lock);
2729 n->total_slabs++;
2730 if (!page->active) {
2731 list_add_tail(&page->lru, &(n->slabs_free));
2732 n->free_slabs++;
2733 } else
2734 fixup_slab_list(cachep, n, page, &list);
2735
2736 STATS_INC_GROWN(cachep);
2737 n->free_objects += cachep->num - page->active;
2738 spin_unlock(&n->list_lock);
2739
2740 fixup_objfreelist_debug(cachep, &list);
2741 }
2742
2743 #if DEBUG
2744
2745 /*
2746 * Perform extra freeing checks:
2747 * - detect bad pointers.
2748 * - POISON/RED_ZONE checking
2749 */
2750 static void kfree_debugcheck(const void *objp)
2751 {
2752 if (!virt_addr_valid(objp)) {
2753 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2754 (unsigned long)objp);
2755 BUG();
2756 }
2757 }
2758
2759 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2760 {
2761 unsigned long long redzone1, redzone2;
2762
2763 redzone1 = *dbg_redzone1(cache, obj);
2764 redzone2 = *dbg_redzone2(cache, obj);
2765
2766 /*
2767 * Redzone is ok.
2768 */
2769 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2770 return;
2771
2772 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2773 slab_error(cache, "double free detected");
2774 else
2775 slab_error(cache, "memory outside object was overwritten");
2776
2777 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2778 obj, redzone1, redzone2);
2779 }
2780
2781 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2782 unsigned long caller)
2783 {
2784 unsigned int objnr;
2785 struct page *page;
2786
2787 BUG_ON(virt_to_cache(objp) != cachep);
2788
2789 objp -= obj_offset(cachep);
2790 kfree_debugcheck(objp);
2791 page = virt_to_head_page(objp);
2792
2793 if (cachep->flags & SLAB_RED_ZONE) {
2794 verify_redzone_free(cachep, objp);
2795 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2796 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2797 }
2798 if (cachep->flags & SLAB_STORE_USER) {
2799 set_store_user_dirty(cachep);
2800 *dbg_userword(cachep, objp) = (void *)caller;
2801 }
2802
2803 objnr = obj_to_index(cachep, page, objp);
2804
2805 BUG_ON(objnr >= cachep->num);
2806 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2807
2808 if (cachep->flags & SLAB_POISON) {
2809 poison_obj(cachep, objp, POISON_FREE);
2810 slab_kernel_map(cachep, objp, 0, caller);
2811 }
2812 return objp;
2813 }
2814
2815 #else
2816 #define kfree_debugcheck(x) do { } while(0)
2817 #define cache_free_debugcheck(x,objp,z) (objp)
2818 #endif
2819
2820 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2821 void **list)
2822 {
2823 #if DEBUG
2824 void *next = *list;
2825 void *objp;
2826
2827 while (next) {
2828 objp = next - obj_offset(cachep);
2829 next = *(void **)next;
2830 poison_obj(cachep, objp, POISON_FREE);
2831 }
2832 #endif
2833 }
2834
2835 static inline void fixup_slab_list(struct kmem_cache *cachep,
2836 struct kmem_cache_node *n, struct page *page,
2837 void **list)
2838 {
2839 /* move slabp to correct slabp list: */
2840 list_del(&page->lru);
2841 if (page->active == cachep->num) {
2842 list_add(&page->lru, &n->slabs_full);
2843 if (OBJFREELIST_SLAB(cachep)) {
2844 #if DEBUG
2845 /* Poisoning will be done without holding the lock */
2846 if (cachep->flags & SLAB_POISON) {
2847 void **objp = page->freelist;
2848
2849 *objp = *list;
2850 *list = objp;
2851 }
2852 #endif
2853 page->freelist = NULL;
2854 }
2855 } else
2856 list_add(&page->lru, &n->slabs_partial);
2857 }
2858
2859 /* Try to find non-pfmemalloc slab if needed */
2860 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2861 struct page *page, bool pfmemalloc)
2862 {
2863 if (!page)
2864 return NULL;
2865
2866 if (pfmemalloc)
2867 return page;
2868
2869 if (!PageSlabPfmemalloc(page))
2870 return page;
2871
2872 /* No need to keep pfmemalloc slab if we have enough free objects */
2873 if (n->free_objects > n->free_limit) {
2874 ClearPageSlabPfmemalloc(page);
2875 return page;
2876 }
2877
2878 /* Move pfmemalloc slab to the end of list to speed up next search */
2879 list_del(&page->lru);
2880 if (!page->active) {
2881 list_add_tail(&page->lru, &n->slabs_free);
2882 n->free_slabs++;
2883 } else
2884 list_add_tail(&page->lru, &n->slabs_partial);
2885
2886 list_for_each_entry(page, &n->slabs_partial, lru) {
2887 if (!PageSlabPfmemalloc(page))
2888 return page;
2889 }
2890
2891 n->free_touched = 1;
2892 list_for_each_entry(page, &n->slabs_free, lru) {
2893 if (!PageSlabPfmemalloc(page)) {
2894 n->free_slabs--;
2895 return page;
2896 }
2897 }
2898
2899 return NULL;
2900 }
2901
2902 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2903 {
2904 struct page *page;
2905
2906 assert_spin_locked(&n->list_lock);
2907 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2908 if (!page) {
2909 n->free_touched = 1;
2910 page = list_first_entry_or_null(&n->slabs_free, struct page,
2911 lru);
2912 if (page)
2913 n->free_slabs--;
2914 }
2915
2916 if (sk_memalloc_socks())
2917 page = get_valid_first_slab(n, page, pfmemalloc);
2918
2919 return page;
2920 }
2921
2922 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2923 struct kmem_cache_node *n, gfp_t flags)
2924 {
2925 struct page *page;
2926 void *obj;
2927 void *list = NULL;
2928
2929 if (!gfp_pfmemalloc_allowed(flags))
2930 return NULL;
2931
2932 spin_lock(&n->list_lock);
2933 page = get_first_slab(n, true);
2934 if (!page) {
2935 spin_unlock(&n->list_lock);
2936 return NULL;
2937 }
2938
2939 obj = slab_get_obj(cachep, page);
2940 n->free_objects--;
2941
2942 fixup_slab_list(cachep, n, page, &list);
2943
2944 spin_unlock(&n->list_lock);
2945 fixup_objfreelist_debug(cachep, &list);
2946
2947 return obj;
2948 }
2949
2950 /*
2951 * Slab list should be fixed up by fixup_slab_list() for existing slab
2952 * or cache_grow_end() for new slab
2953 */
2954 static __always_inline int alloc_block(struct kmem_cache *cachep,
2955 struct array_cache *ac, struct page *page, int batchcount)
2956 {
2957 /*
2958 * There must be at least one object available for
2959 * allocation.
2960 */
2961 BUG_ON(page->active >= cachep->num);
2962
2963 while (page->active < cachep->num && batchcount--) {
2964 STATS_INC_ALLOCED(cachep);
2965 STATS_INC_ACTIVE(cachep);
2966 STATS_SET_HIGH(cachep);
2967
2968 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2969 }
2970
2971 return batchcount;
2972 }
2973
2974 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2975 {
2976 int batchcount;
2977 struct kmem_cache_node *n;
2978 struct array_cache *ac, *shared;
2979 int node;
2980 void *list = NULL;
2981 struct page *page;
2982
2983 check_irq_off();
2984 node = numa_mem_id();
2985
2986 ac = cpu_cache_get(cachep);
2987 batchcount = ac->batchcount;
2988 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2989 /*
2990 * If there was little recent activity on this cache, then
2991 * perform only a partial refill. Otherwise we could generate
2992 * refill bouncing.
2993 */
2994 batchcount = BATCHREFILL_LIMIT;
2995 }
2996 n = get_node(cachep, node);
2997
2998 BUG_ON(ac->avail > 0 || !n);
2999 shared = READ_ONCE(n->shared);
3000 if (!n->free_objects && (!shared || !shared->avail))
3001 goto direct_grow;
3002
3003 spin_lock(&n->list_lock);
3004 shared = READ_ONCE(n->shared);
3005
3006 /* See if we can refill from the shared array */
3007 if (shared && transfer_objects(ac, shared, batchcount)) {
3008 shared->touched = 1;
3009 goto alloc_done;
3010 }
3011
3012 while (batchcount > 0) {
3013 /* Get slab alloc is to come from. */
3014 page = get_first_slab(n, false);
3015 if (!page)
3016 goto must_grow;
3017
3018 check_spinlock_acquired(cachep);
3019
3020 batchcount = alloc_block(cachep, ac, page, batchcount);
3021 fixup_slab_list(cachep, n, page, &list);
3022 }
3023
3024 must_grow:
3025 n->free_objects -= ac->avail;
3026 alloc_done:
3027 spin_unlock(&n->list_lock);
3028 fixup_objfreelist_debug(cachep, &list);
3029
3030 direct_grow:
3031 if (unlikely(!ac->avail)) {
3032 /* Check if we can use obj in pfmemalloc slab */
3033 if (sk_memalloc_socks()) {
3034 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3035
3036 if (obj)
3037 return obj;
3038 }
3039
3040 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3041
3042 /*
3043 * cache_grow_begin() can reenable interrupts,
3044 * then ac could change.
3045 */
3046 ac = cpu_cache_get(cachep);
3047 if (!ac->avail && page)
3048 alloc_block(cachep, ac, page, batchcount);
3049 cache_grow_end(cachep, page);
3050
3051 if (!ac->avail)
3052 return NULL;
3053 }
3054 ac->touched = 1;
3055
3056 return ac->entry[--ac->avail];
3057 }
3058
3059 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3060 gfp_t flags)
3061 {
3062 might_sleep_if(gfpflags_allow_blocking(flags));
3063 }
3064
3065 #if DEBUG
3066 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3067 gfp_t flags, void *objp, unsigned long caller)
3068 {
3069 if (!objp)
3070 return objp;
3071 if (cachep->flags & SLAB_POISON) {
3072 check_poison_obj(cachep, objp);
3073 slab_kernel_map(cachep, objp, 1, 0);
3074 poison_obj(cachep, objp, POISON_INUSE);
3075 }
3076 if (cachep->flags & SLAB_STORE_USER)
3077 *dbg_userword(cachep, objp) = (void *)caller;
3078
3079 if (cachep->flags & SLAB_RED_ZONE) {
3080 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3081 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3082 slab_error(cachep, "double free, or memory outside object was overwritten");
3083 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3084 objp, *dbg_redzone1(cachep, objp),
3085 *dbg_redzone2(cachep, objp));
3086 }
3087 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3088 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3089 }
3090
3091 objp += obj_offset(cachep);
3092 if (cachep->ctor && cachep->flags & SLAB_POISON)
3093 cachep->ctor(objp);
3094 if (ARCH_SLAB_MINALIGN &&
3095 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3096 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3097 objp, (int)ARCH_SLAB_MINALIGN);
3098 }
3099 return objp;
3100 }
3101 #else
3102 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3103 #endif
3104
3105 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3106 {
3107 void *objp;
3108 struct array_cache *ac;
3109
3110 check_irq_off();
3111
3112 ac = cpu_cache_get(cachep);
3113 if (likely(ac->avail)) {
3114 ac->touched = 1;
3115 objp = ac->entry[--ac->avail];
3116
3117 STATS_INC_ALLOCHIT(cachep);
3118 goto out;
3119 }
3120
3121 STATS_INC_ALLOCMISS(cachep);
3122 objp = cache_alloc_refill(cachep, flags);
3123 /*
3124 * the 'ac' may be updated by cache_alloc_refill(),
3125 * and kmemleak_erase() requires its correct value.
3126 */
3127 ac = cpu_cache_get(cachep);
3128
3129 out:
3130 /*
3131 * To avoid a false negative, if an object that is in one of the
3132 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3133 * treat the array pointers as a reference to the object.
3134 */
3135 if (objp)
3136 kmemleak_erase(&ac->entry[ac->avail]);
3137 return objp;
3138 }
3139
3140 #ifdef CONFIG_NUMA
3141 /*
3142 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3143 *
3144 * If we are in_interrupt, then process context, including cpusets and
3145 * mempolicy, may not apply and should not be used for allocation policy.
3146 */
3147 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3148 {
3149 int nid_alloc, nid_here;
3150
3151 if (in_interrupt() || (flags & __GFP_THISNODE))
3152 return NULL;
3153 nid_alloc = nid_here = numa_mem_id();
3154 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3155 nid_alloc = cpuset_slab_spread_node();
3156 else if (current->mempolicy)
3157 nid_alloc = mempolicy_slab_node();
3158 if (nid_alloc != nid_here)
3159 return ____cache_alloc_node(cachep, flags, nid_alloc);
3160 return NULL;
3161 }
3162
3163 /*
3164 * Fallback function if there was no memory available and no objects on a
3165 * certain node and fall back is permitted. First we scan all the
3166 * available node for available objects. If that fails then we
3167 * perform an allocation without specifying a node. This allows the page
3168 * allocator to do its reclaim / fallback magic. We then insert the
3169 * slab into the proper nodelist and then allocate from it.
3170 */
3171 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3172 {
3173 struct zonelist *zonelist;
3174 struct zoneref *z;
3175 struct zone *zone;
3176 enum zone_type high_zoneidx = gfp_zone(flags);
3177 void *obj = NULL;
3178 struct page *page;
3179 int nid;
3180 unsigned int cpuset_mems_cookie;
3181
3182 if (flags & __GFP_THISNODE)
3183 return NULL;
3184
3185 retry_cpuset:
3186 cpuset_mems_cookie = read_mems_allowed_begin();
3187 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3188
3189 retry:
3190 /*
3191 * Look through allowed nodes for objects available
3192 * from existing per node queues.
3193 */
3194 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3195 nid = zone_to_nid(zone);
3196
3197 if (cpuset_zone_allowed(zone, flags) &&
3198 get_node(cache, nid) &&
3199 get_node(cache, nid)->free_objects) {
3200 obj = ____cache_alloc_node(cache,
3201 gfp_exact_node(flags), nid);
3202 if (obj)
3203 break;
3204 }
3205 }
3206
3207 if (!obj) {
3208 /*
3209 * This allocation will be performed within the constraints
3210 * of the current cpuset / memory policy requirements.
3211 * We may trigger various forms of reclaim on the allowed
3212 * set and go into memory reserves if necessary.
3213 */
3214 page = cache_grow_begin(cache, flags, numa_mem_id());
3215 cache_grow_end(cache, page);
3216 if (page) {
3217 nid = page_to_nid(page);
3218 obj = ____cache_alloc_node(cache,
3219 gfp_exact_node(flags), nid);
3220
3221 /*
3222 * Another processor may allocate the objects in
3223 * the slab since we are not holding any locks.
3224 */
3225 if (!obj)
3226 goto retry;
3227 }
3228 }
3229
3230 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3231 goto retry_cpuset;
3232 return obj;
3233 }
3234
3235 /*
3236 * A interface to enable slab creation on nodeid
3237 */
3238 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3239 int nodeid)
3240 {
3241 struct page *page;
3242 struct kmem_cache_node *n;
3243 void *obj = NULL;
3244 void *list = NULL;
3245
3246 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3247 n = get_node(cachep, nodeid);
3248 BUG_ON(!n);
3249
3250 check_irq_off();
3251 spin_lock(&n->list_lock);
3252 page = get_first_slab(n, false);
3253 if (!page)
3254 goto must_grow;
3255
3256 check_spinlock_acquired_node(cachep, nodeid);
3257
3258 STATS_INC_NODEALLOCS(cachep);
3259 STATS_INC_ACTIVE(cachep);
3260 STATS_SET_HIGH(cachep);
3261
3262 BUG_ON(page->active == cachep->num);
3263
3264 obj = slab_get_obj(cachep, page);
3265 n->free_objects--;
3266
3267 fixup_slab_list(cachep, n, page, &list);
3268
3269 spin_unlock(&n->list_lock);
3270 fixup_objfreelist_debug(cachep, &list);
3271 return obj;
3272
3273 must_grow:
3274 spin_unlock(&n->list_lock);
3275 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3276 if (page) {
3277 /* This slab isn't counted yet so don't update free_objects */
3278 obj = slab_get_obj(cachep, page);
3279 }
3280 cache_grow_end(cachep, page);
3281
3282 return obj ? obj : fallback_alloc(cachep, flags);
3283 }
3284
3285 static __always_inline void *
3286 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3287 unsigned long caller)
3288 {
3289 unsigned long save_flags;
3290 void *ptr;
3291 int slab_node = numa_mem_id();
3292
3293 flags &= gfp_allowed_mask;
3294 cachep = slab_pre_alloc_hook(cachep, flags);
3295 if (unlikely(!cachep))
3296 return NULL;
3297
3298 cache_alloc_debugcheck_before(cachep, flags);
3299 local_irq_save(save_flags);
3300
3301 if (nodeid == NUMA_NO_NODE)
3302 nodeid = slab_node;
3303
3304 if (unlikely(!get_node(cachep, nodeid))) {
3305 /* Node not bootstrapped yet */
3306 ptr = fallback_alloc(cachep, flags);
3307 goto out;
3308 }
3309
3310 if (nodeid == slab_node) {
3311 /*
3312 * Use the locally cached objects if possible.
3313 * However ____cache_alloc does not allow fallback
3314 * to other nodes. It may fail while we still have
3315 * objects on other nodes available.
3316 */
3317 ptr = ____cache_alloc(cachep, flags);
3318 if (ptr)
3319 goto out;
3320 }
3321 /* ___cache_alloc_node can fall back to other nodes */
3322 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3323 out:
3324 local_irq_restore(save_flags);
3325 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3326
3327 if (unlikely(flags & __GFP_ZERO) && ptr)
3328 memset(ptr, 0, cachep->object_size);
3329
3330 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3331 return ptr;
3332 }
3333
3334 static __always_inline void *
3335 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3336 {
3337 void *objp;
3338
3339 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3340 objp = alternate_node_alloc(cache, flags);
3341 if (objp)
3342 goto out;
3343 }
3344 objp = ____cache_alloc(cache, flags);
3345
3346 /*
3347 * We may just have run out of memory on the local node.
3348 * ____cache_alloc_node() knows how to locate memory on other nodes
3349 */
3350 if (!objp)
3351 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3352
3353 out:
3354 return objp;
3355 }
3356 #else
3357
3358 static __always_inline void *
3359 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3360 {
3361 return ____cache_alloc(cachep, flags);
3362 }
3363
3364 #endif /* CONFIG_NUMA */
3365
3366 static __always_inline void *
3367 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3368 {
3369 unsigned long save_flags;
3370 void *objp;
3371
3372 flags &= gfp_allowed_mask;
3373 cachep = slab_pre_alloc_hook(cachep, flags);
3374 if (unlikely(!cachep))
3375 return NULL;
3376
3377 cache_alloc_debugcheck_before(cachep, flags);
3378 local_irq_save(save_flags);
3379 objp = __do_cache_alloc(cachep, flags);
3380 local_irq_restore(save_flags);
3381 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3382 prefetchw(objp);
3383
3384 if (unlikely(flags & __GFP_ZERO) && objp)
3385 memset(objp, 0, cachep->object_size);
3386
3387 slab_post_alloc_hook(cachep, flags, 1, &objp);
3388 return objp;
3389 }
3390
3391 /*
3392 * Caller needs to acquire correct kmem_cache_node's list_lock
3393 * @list: List of detached free slabs should be freed by caller
3394 */
3395 static void free_block(struct kmem_cache *cachep, void **objpp,
3396 int nr_objects, int node, struct list_head *list)
3397 {
3398 int i;
3399 struct kmem_cache_node *n = get_node(cachep, node);
3400 struct page *page;
3401
3402 n->free_objects += nr_objects;
3403
3404 for (i = 0; i < nr_objects; i++) {
3405 void *objp;
3406 struct page *page;
3407
3408 objp = objpp[i];
3409
3410 page = virt_to_head_page(objp);
3411 list_del(&page->lru);
3412 check_spinlock_acquired_node(cachep, node);
3413 slab_put_obj(cachep, page, objp);
3414 STATS_DEC_ACTIVE(cachep);
3415
3416 /* fixup slab chains */
3417 if (page->active == 0) {
3418 list_add(&page->lru, &n->slabs_free);
3419 n->free_slabs++;
3420 } else {
3421 /* Unconditionally move a slab to the end of the
3422 * partial list on free - maximum time for the
3423 * other objects to be freed, too.
3424 */
3425 list_add_tail(&page->lru, &n->slabs_partial);
3426 }
3427 }
3428
3429 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3430 n->free_objects -= cachep->num;
3431
3432 page = list_last_entry(&n->slabs_free, struct page, lru);
3433 list_move(&page->lru, list);
3434 n->free_slabs--;
3435 n->total_slabs--;
3436 }
3437 }
3438
3439 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3440 {
3441 int batchcount;
3442 struct kmem_cache_node *n;
3443 int node = numa_mem_id();
3444 LIST_HEAD(list);
3445
3446 batchcount = ac->batchcount;
3447
3448 check_irq_off();
3449 n = get_node(cachep, node);
3450 spin_lock(&n->list_lock);
3451 if (n->shared) {
3452 struct array_cache *shared_array = n->shared;
3453 int max = shared_array->limit - shared_array->avail;
3454 if (max) {
3455 if (batchcount > max)
3456 batchcount = max;
3457 memcpy(&(shared_array->entry[shared_array->avail]),
3458 ac->entry, sizeof(void *) * batchcount);
3459 shared_array->avail += batchcount;
3460 goto free_done;
3461 }
3462 }
3463
3464 free_block(cachep, ac->entry, batchcount, node, &list);
3465 free_done:
3466 #if STATS
3467 {
3468 int i = 0;
3469 struct page *page;
3470
3471 list_for_each_entry(page, &n->slabs_free, lru) {
3472 BUG_ON(page->active);
3473
3474 i++;
3475 }
3476 STATS_SET_FREEABLE(cachep, i);
3477 }
3478 #endif
3479 spin_unlock(&n->list_lock);
3480 slabs_destroy(cachep, &list);
3481 ac->avail -= batchcount;
3482 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3483 }
3484
3485 /*
3486 * Release an obj back to its cache. If the obj has a constructed state, it must
3487 * be in this state _before_ it is released. Called with disabled ints.
3488 */
3489 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3490 unsigned long caller)
3491 {
3492 /* Put the object into the quarantine, don't touch it for now. */
3493 if (kasan_slab_free(cachep, objp))
3494 return;
3495
3496 ___cache_free(cachep, objp, caller);
3497 }
3498
3499 void ___cache_free(struct kmem_cache *cachep, void *objp,
3500 unsigned long caller)
3501 {
3502 struct array_cache *ac = cpu_cache_get(cachep);
3503
3504 check_irq_off();
3505 kmemleak_free_recursive(objp, cachep->flags);
3506 objp = cache_free_debugcheck(cachep, objp, caller);
3507
3508 /*
3509 * Skip calling cache_free_alien() when the platform is not numa.
3510 * This will avoid cache misses that happen while accessing slabp (which
3511 * is per page memory reference) to get nodeid. Instead use a global
3512 * variable to skip the call, which is mostly likely to be present in
3513 * the cache.
3514 */
3515 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3516 return;
3517
3518 if (ac->avail < ac->limit) {
3519 STATS_INC_FREEHIT(cachep);
3520 } else {
3521 STATS_INC_FREEMISS(cachep);
3522 cache_flusharray(cachep, ac);
3523 }
3524
3525 if (sk_memalloc_socks()) {
3526 struct page *page = virt_to_head_page(objp);
3527
3528 if (unlikely(PageSlabPfmemalloc(page))) {
3529 cache_free_pfmemalloc(cachep, page, objp);
3530 return;
3531 }
3532 }
3533
3534 ac->entry[ac->avail++] = objp;
3535 }
3536
3537 /**
3538 * kmem_cache_alloc - Allocate an object
3539 * @cachep: The cache to allocate from.
3540 * @flags: See kmalloc().
3541 *
3542 * Allocate an object from this cache. The flags are only relevant
3543 * if the cache has no available objects.
3544 */
3545 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3546 {
3547 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3548
3549 kasan_slab_alloc(cachep, ret, flags);
3550 trace_kmem_cache_alloc(_RET_IP_, ret,
3551 cachep->object_size, cachep->size, flags);
3552
3553 return ret;
3554 }
3555 EXPORT_SYMBOL(kmem_cache_alloc);
3556
3557 static __always_inline void
3558 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3559 size_t size, void **p, unsigned long caller)
3560 {
3561 size_t i;
3562
3563 for (i = 0; i < size; i++)
3564 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3565 }
3566
3567 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3568 void **p)
3569 {
3570 size_t i;
3571
3572 s = slab_pre_alloc_hook(s, flags);
3573 if (!s)
3574 return 0;
3575
3576 cache_alloc_debugcheck_before(s, flags);
3577
3578 local_irq_disable();
3579 for (i = 0; i < size; i++) {
3580 void *objp = __do_cache_alloc(s, flags);
3581
3582 if (unlikely(!objp))
3583 goto error;
3584 p[i] = objp;
3585 }
3586 local_irq_enable();
3587
3588 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3589
3590 /* Clear memory outside IRQ disabled section */
3591 if (unlikely(flags & __GFP_ZERO))
3592 for (i = 0; i < size; i++)
3593 memset(p[i], 0, s->object_size);
3594
3595 slab_post_alloc_hook(s, flags, size, p);
3596 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3597 return size;
3598 error:
3599 local_irq_enable();
3600 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3601 slab_post_alloc_hook(s, flags, i, p);
3602 __kmem_cache_free_bulk(s, i, p);
3603 return 0;
3604 }
3605 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3606
3607 #ifdef CONFIG_TRACING
3608 void *
3609 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3610 {
3611 void *ret;
3612
3613 ret = slab_alloc(cachep, flags, _RET_IP_);
3614
3615 kasan_kmalloc(cachep, ret, size, flags);
3616 trace_kmalloc(_RET_IP_, ret,
3617 size, cachep->size, flags);
3618 return ret;
3619 }
3620 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3621 #endif
3622
3623 #ifdef CONFIG_NUMA
3624 /**
3625 * kmem_cache_alloc_node - Allocate an object on the specified node
3626 * @cachep: The cache to allocate from.
3627 * @flags: See kmalloc().
3628 * @nodeid: node number of the target node.
3629 *
3630 * Identical to kmem_cache_alloc but it will allocate memory on the given
3631 * node, which can improve the performance for cpu bound structures.
3632 *
3633 * Fallback to other node is possible if __GFP_THISNODE is not set.
3634 */
3635 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3636 {
3637 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3638
3639 kasan_slab_alloc(cachep, ret, flags);
3640 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3641 cachep->object_size, cachep->size,
3642 flags, nodeid);
3643
3644 return ret;
3645 }
3646 EXPORT_SYMBOL(kmem_cache_alloc_node);
3647
3648 #ifdef CONFIG_TRACING
3649 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3650 gfp_t flags,
3651 int nodeid,
3652 size_t size)
3653 {
3654 void *ret;
3655
3656 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3657
3658 kasan_kmalloc(cachep, ret, size, flags);
3659 trace_kmalloc_node(_RET_IP_, ret,
3660 size, cachep->size,
3661 flags, nodeid);
3662 return ret;
3663 }
3664 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3665 #endif
3666
3667 static __always_inline void *
3668 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3669 {
3670 struct kmem_cache *cachep;
3671 void *ret;
3672
3673 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3674 return NULL;
3675 cachep = kmalloc_slab(size, flags);
3676 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3677 return cachep;
3678 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3679 kasan_kmalloc(cachep, ret, size, flags);
3680
3681 return ret;
3682 }
3683
3684 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3685 {
3686 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3687 }
3688 EXPORT_SYMBOL(__kmalloc_node);
3689
3690 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3691 int node, unsigned long caller)
3692 {
3693 return __do_kmalloc_node(size, flags, node, caller);
3694 }
3695 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3696 #endif /* CONFIG_NUMA */
3697
3698 /**
3699 * __do_kmalloc - allocate memory
3700 * @size: how many bytes of memory are required.
3701 * @flags: the type of memory to allocate (see kmalloc).
3702 * @caller: function caller for debug tracking of the caller
3703 */
3704 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3705 unsigned long caller)
3706 {
3707 struct kmem_cache *cachep;
3708 void *ret;
3709
3710 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3711 return NULL;
3712 cachep = kmalloc_slab(size, flags);
3713 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3714 return cachep;
3715 ret = slab_alloc(cachep, flags, caller);
3716
3717 kasan_kmalloc(cachep, ret, size, flags);
3718 trace_kmalloc(caller, ret,
3719 size, cachep->size, flags);
3720
3721 return ret;
3722 }
3723
3724 void *__kmalloc(size_t size, gfp_t flags)
3725 {
3726 return __do_kmalloc(size, flags, _RET_IP_);
3727 }
3728 EXPORT_SYMBOL(__kmalloc);
3729
3730 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3731 {
3732 return __do_kmalloc(size, flags, caller);
3733 }
3734 EXPORT_SYMBOL(__kmalloc_track_caller);
3735
3736 /**
3737 * kmem_cache_free - Deallocate an object
3738 * @cachep: The cache the allocation was from.
3739 * @objp: The previously allocated object.
3740 *
3741 * Free an object which was previously allocated from this
3742 * cache.
3743 */
3744 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3745 {
3746 unsigned long flags;
3747 cachep = cache_from_obj(cachep, objp);
3748 if (!cachep)
3749 return;
3750
3751 local_irq_save(flags);
3752 debug_check_no_locks_freed(objp, cachep->object_size);
3753 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3754 debug_check_no_obj_freed(objp, cachep->object_size);
3755 __cache_free(cachep, objp, _RET_IP_);
3756 local_irq_restore(flags);
3757
3758 trace_kmem_cache_free(_RET_IP_, objp);
3759 }
3760 EXPORT_SYMBOL(kmem_cache_free);
3761
3762 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3763 {
3764 struct kmem_cache *s;
3765 size_t i;
3766
3767 local_irq_disable();
3768 for (i = 0; i < size; i++) {
3769 void *objp = p[i];
3770
3771 if (!orig_s) /* called via kfree_bulk */
3772 s = virt_to_cache(objp);
3773 else
3774 s = cache_from_obj(orig_s, objp);
3775
3776 debug_check_no_locks_freed(objp, s->object_size);
3777 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3778 debug_check_no_obj_freed(objp, s->object_size);
3779
3780 __cache_free(s, objp, _RET_IP_);
3781 }
3782 local_irq_enable();
3783
3784 /* FIXME: add tracing */
3785 }
3786 EXPORT_SYMBOL(kmem_cache_free_bulk);
3787
3788 /**
3789 * kfree - free previously allocated memory
3790 * @objp: pointer returned by kmalloc.
3791 *
3792 * If @objp is NULL, no operation is performed.
3793 *
3794 * Don't free memory not originally allocated by kmalloc()
3795 * or you will run into trouble.
3796 */
3797 void kfree(const void *objp)
3798 {
3799 struct kmem_cache *c;
3800 unsigned long flags;
3801
3802 trace_kfree(_RET_IP_, objp);
3803
3804 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3805 return;
3806 local_irq_save(flags);
3807 kfree_debugcheck(objp);
3808 c = virt_to_cache(objp);
3809 debug_check_no_locks_freed(objp, c->object_size);
3810
3811 debug_check_no_obj_freed(objp, c->object_size);
3812 __cache_free(c, (void *)objp, _RET_IP_);
3813 local_irq_restore(flags);
3814 }
3815 EXPORT_SYMBOL(kfree);
3816
3817 /*
3818 * This initializes kmem_cache_node or resizes various caches for all nodes.
3819 */
3820 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3821 {
3822 int ret;
3823 int node;
3824 struct kmem_cache_node *n;
3825
3826 for_each_online_node(node) {
3827 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3828 if (ret)
3829 goto fail;
3830
3831 }
3832
3833 return 0;
3834
3835 fail:
3836 if (!cachep->list.next) {
3837 /* Cache is not active yet. Roll back what we did */
3838 node--;
3839 while (node >= 0) {
3840 n = get_node(cachep, node);
3841 if (n) {
3842 kfree(n->shared);
3843 free_alien_cache(n->alien);
3844 kfree(n);
3845 cachep->node[node] = NULL;
3846 }
3847 node--;
3848 }
3849 }
3850 return -ENOMEM;
3851 }
3852
3853 /* Always called with the slab_mutex held */
3854 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3855 int batchcount, int shared, gfp_t gfp)
3856 {
3857 struct array_cache __percpu *cpu_cache, *prev;
3858 int cpu;
3859
3860 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3861 if (!cpu_cache)
3862 return -ENOMEM;
3863
3864 prev = cachep->cpu_cache;
3865 cachep->cpu_cache = cpu_cache;
3866 /*
3867 * Without a previous cpu_cache there's no need to synchronize remote
3868 * cpus, so skip the IPIs.
3869 */
3870 if (prev)
3871 kick_all_cpus_sync();
3872
3873 check_irq_on();
3874 cachep->batchcount = batchcount;
3875 cachep->limit = limit;
3876 cachep->shared = shared;
3877
3878 if (!prev)
3879 goto setup_node;
3880
3881 for_each_online_cpu(cpu) {
3882 LIST_HEAD(list);
3883 int node;
3884 struct kmem_cache_node *n;
3885 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3886
3887 node = cpu_to_mem(cpu);
3888 n = get_node(cachep, node);
3889 spin_lock_irq(&n->list_lock);
3890 free_block(cachep, ac->entry, ac->avail, node, &list);
3891 spin_unlock_irq(&n->list_lock);
3892 slabs_destroy(cachep, &list);
3893 }
3894 free_percpu(prev);
3895
3896 setup_node:
3897 return setup_kmem_cache_nodes(cachep, gfp);
3898 }
3899
3900 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3901 int batchcount, int shared, gfp_t gfp)
3902 {
3903 int ret;
3904 struct kmem_cache *c;
3905
3906 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3907
3908 if (slab_state < FULL)
3909 return ret;
3910
3911 if ((ret < 0) || !is_root_cache(cachep))
3912 return ret;
3913
3914 lockdep_assert_held(&slab_mutex);
3915 for_each_memcg_cache(c, cachep) {
3916 /* return value determined by the root cache only */
3917 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3918 }
3919
3920 return ret;
3921 }
3922
3923 /* Called with slab_mutex held always */
3924 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3925 {
3926 int err;
3927 int limit = 0;
3928 int shared = 0;
3929 int batchcount = 0;
3930
3931 err = cache_random_seq_create(cachep, cachep->num, gfp);
3932 if (err)
3933 goto end;
3934
3935 if (!is_root_cache(cachep)) {
3936 struct kmem_cache *root = memcg_root_cache(cachep);
3937 limit = root->limit;
3938 shared = root->shared;
3939 batchcount = root->batchcount;
3940 }
3941
3942 if (limit && shared && batchcount)
3943 goto skip_setup;
3944 /*
3945 * The head array serves three purposes:
3946 * - create a LIFO ordering, i.e. return objects that are cache-warm
3947 * - reduce the number of spinlock operations.
3948 * - reduce the number of linked list operations on the slab and
3949 * bufctl chains: array operations are cheaper.
3950 * The numbers are guessed, we should auto-tune as described by
3951 * Bonwick.
3952 */
3953 if (cachep->size > 131072)
3954 limit = 1;
3955 else if (cachep->size > PAGE_SIZE)
3956 limit = 8;
3957 else if (cachep->size > 1024)
3958 limit = 24;
3959 else if (cachep->size > 256)
3960 limit = 54;
3961 else
3962 limit = 120;
3963
3964 /*
3965 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3966 * allocation behaviour: Most allocs on one cpu, most free operations
3967 * on another cpu. For these cases, an efficient object passing between
3968 * cpus is necessary. This is provided by a shared array. The array
3969 * replaces Bonwick's magazine layer.
3970 * On uniprocessor, it's functionally equivalent (but less efficient)
3971 * to a larger limit. Thus disabled by default.
3972 */
3973 shared = 0;
3974 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3975 shared = 8;
3976
3977 #if DEBUG
3978 /*
3979 * With debugging enabled, large batchcount lead to excessively long
3980 * periods with disabled local interrupts. Limit the batchcount
3981 */
3982 if (limit > 32)
3983 limit = 32;
3984 #endif
3985 batchcount = (limit + 1) / 2;
3986 skip_setup:
3987 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3988 end:
3989 if (err)
3990 pr_err("enable_cpucache failed for %s, error %d\n",
3991 cachep->name, -err);
3992 return err;
3993 }
3994
3995 /*
3996 * Drain an array if it contains any elements taking the node lock only if
3997 * necessary. Note that the node listlock also protects the array_cache
3998 * if drain_array() is used on the shared array.
3999 */
4000 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4001 struct array_cache *ac, int node)
4002 {
4003 LIST_HEAD(list);
4004
4005 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4006 check_mutex_acquired();
4007
4008 if (!ac || !ac->avail)
4009 return;
4010
4011 if (ac->touched) {
4012 ac->touched = 0;
4013 return;
4014 }
4015
4016 spin_lock_irq(&n->list_lock);
4017 drain_array_locked(cachep, ac, node, false, &list);
4018 spin_unlock_irq(&n->list_lock);
4019
4020 slabs_destroy(cachep, &list);
4021 }
4022
4023 /**
4024 * cache_reap - Reclaim memory from caches.
4025 * @w: work descriptor
4026 *
4027 * Called from workqueue/eventd every few seconds.
4028 * Purpose:
4029 * - clear the per-cpu caches for this CPU.
4030 * - return freeable pages to the main free memory pool.
4031 *
4032 * If we cannot acquire the cache chain mutex then just give up - we'll try
4033 * again on the next iteration.
4034 */
4035 static void cache_reap(struct work_struct *w)
4036 {
4037 struct kmem_cache *searchp;
4038 struct kmem_cache_node *n;
4039 int node = numa_mem_id();
4040 struct delayed_work *work = to_delayed_work(w);
4041
4042 if (!mutex_trylock(&slab_mutex))
4043 /* Give up. Setup the next iteration. */
4044 goto out;
4045
4046 list_for_each_entry(searchp, &slab_caches, list) {
4047 check_irq_on();
4048
4049 /*
4050 * We only take the node lock if absolutely necessary and we
4051 * have established with reasonable certainty that
4052 * we can do some work if the lock was obtained.
4053 */
4054 n = get_node(searchp, node);
4055
4056 reap_alien(searchp, n);
4057
4058 drain_array(searchp, n, cpu_cache_get(searchp), node);
4059
4060 /*
4061 * These are racy checks but it does not matter
4062 * if we skip one check or scan twice.
4063 */
4064 if (time_after(n->next_reap, jiffies))
4065 goto next;
4066
4067 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4068
4069 drain_array(searchp, n, n->shared, node);
4070
4071 if (n->free_touched)
4072 n->free_touched = 0;
4073 else {
4074 int freed;
4075
4076 freed = drain_freelist(searchp, n, (n->free_limit +
4077 5 * searchp->num - 1) / (5 * searchp->num));
4078 STATS_ADD_REAPED(searchp, freed);
4079 }
4080 next:
4081 cond_resched();
4082 }
4083 check_irq_on();
4084 mutex_unlock(&slab_mutex);
4085 next_reap_node();
4086 out:
4087 /* Set up the next iteration */
4088 schedule_delayed_work_on(smp_processor_id(), work,
4089 round_jiffies_relative(REAPTIMEOUT_AC));
4090 }
4091
4092 #ifdef CONFIG_SLABINFO
4093 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4094 {
4095 unsigned long active_objs, num_objs, active_slabs;
4096 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4097 unsigned long free_slabs = 0;
4098 int node;
4099 struct kmem_cache_node *n;
4100
4101 for_each_kmem_cache_node(cachep, node, n) {
4102 check_irq_on();
4103 spin_lock_irq(&n->list_lock);
4104
4105 total_slabs += n->total_slabs;
4106 free_slabs += n->free_slabs;
4107 free_objs += n->free_objects;
4108
4109 if (n->shared)
4110 shared_avail += n->shared->avail;
4111
4112 spin_unlock_irq(&n->list_lock);
4113 }
4114 num_objs = total_slabs * cachep->num;
4115 active_slabs = total_slabs - free_slabs;
4116 active_objs = num_objs - free_objs;
4117
4118 sinfo->active_objs = active_objs;
4119 sinfo->num_objs = num_objs;
4120 sinfo->active_slabs = active_slabs;
4121 sinfo->num_slabs = total_slabs;
4122 sinfo->shared_avail = shared_avail;
4123 sinfo->limit = cachep->limit;
4124 sinfo->batchcount = cachep->batchcount;
4125 sinfo->shared = cachep->shared;
4126 sinfo->objects_per_slab = cachep->num;
4127 sinfo->cache_order = cachep->gfporder;
4128 }
4129
4130 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4131 {
4132 #if STATS
4133 { /* node stats */
4134 unsigned long high = cachep->high_mark;
4135 unsigned long allocs = cachep->num_allocations;
4136 unsigned long grown = cachep->grown;
4137 unsigned long reaped = cachep->reaped;
4138 unsigned long errors = cachep->errors;
4139 unsigned long max_freeable = cachep->max_freeable;
4140 unsigned long node_allocs = cachep->node_allocs;
4141 unsigned long node_frees = cachep->node_frees;
4142 unsigned long overflows = cachep->node_overflow;
4143
4144 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4145 allocs, high, grown,
4146 reaped, errors, max_freeable, node_allocs,
4147 node_frees, overflows);
4148 }
4149 /* cpu stats */
4150 {
4151 unsigned long allochit = atomic_read(&cachep->allochit);
4152 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4153 unsigned long freehit = atomic_read(&cachep->freehit);
4154 unsigned long freemiss = atomic_read(&cachep->freemiss);
4155
4156 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4157 allochit, allocmiss, freehit, freemiss);
4158 }
4159 #endif
4160 }
4161
4162 #define MAX_SLABINFO_WRITE 128
4163 /**
4164 * slabinfo_write - Tuning for the slab allocator
4165 * @file: unused
4166 * @buffer: user buffer
4167 * @count: data length
4168 * @ppos: unused
4169 */
4170 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4171 size_t count, loff_t *ppos)
4172 {
4173 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4174 int limit, batchcount, shared, res;
4175 struct kmem_cache *cachep;
4176
4177 if (count > MAX_SLABINFO_WRITE)
4178 return -EINVAL;
4179 if (copy_from_user(&kbuf, buffer, count))
4180 return -EFAULT;
4181 kbuf[MAX_SLABINFO_WRITE] = '\0';
4182
4183 tmp = strchr(kbuf, ' ');
4184 if (!tmp)
4185 return -EINVAL;
4186 *tmp = '\0';
4187 tmp++;
4188 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4189 return -EINVAL;
4190
4191 /* Find the cache in the chain of caches. */
4192 mutex_lock(&slab_mutex);
4193 res = -EINVAL;
4194 list_for_each_entry(cachep, &slab_caches, list) {
4195 if (!strcmp(cachep->name, kbuf)) {
4196 if (limit < 1 || batchcount < 1 ||
4197 batchcount > limit || shared < 0) {
4198 res = 0;
4199 } else {
4200 res = do_tune_cpucache(cachep, limit,
4201 batchcount, shared,
4202 GFP_KERNEL);
4203 }
4204 break;
4205 }
4206 }
4207 mutex_unlock(&slab_mutex);
4208 if (res >= 0)
4209 res = count;
4210 return res;
4211 }
4212
4213 #ifdef CONFIG_DEBUG_SLAB_LEAK
4214
4215 static inline int add_caller(unsigned long *n, unsigned long v)
4216 {
4217 unsigned long *p;
4218 int l;
4219 if (!v)
4220 return 1;
4221 l = n[1];
4222 p = n + 2;
4223 while (l) {
4224 int i = l/2;
4225 unsigned long *q = p + 2 * i;
4226 if (*q == v) {
4227 q[1]++;
4228 return 1;
4229 }
4230 if (*q > v) {
4231 l = i;
4232 } else {
4233 p = q + 2;
4234 l -= i + 1;
4235 }
4236 }
4237 if (++n[1] == n[0])
4238 return 0;
4239 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4240 p[0] = v;
4241 p[1] = 1;
4242 return 1;
4243 }
4244
4245 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4246 struct page *page)
4247 {
4248 void *p;
4249 int i, j;
4250 unsigned long v;
4251
4252 if (n[0] == n[1])
4253 return;
4254 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4255 bool active = true;
4256
4257 for (j = page->active; j < c->num; j++) {
4258 if (get_free_obj(page, j) == i) {
4259 active = false;
4260 break;
4261 }
4262 }
4263
4264 if (!active)
4265 continue;
4266
4267 /*
4268 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4269 * mapping is established when actual object allocation and
4270 * we could mistakenly access the unmapped object in the cpu
4271 * cache.
4272 */
4273 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4274 continue;
4275
4276 if (!add_caller(n, v))
4277 return;
4278 }
4279 }
4280
4281 static void show_symbol(struct seq_file *m, unsigned long address)
4282 {
4283 #ifdef CONFIG_KALLSYMS
4284 unsigned long offset, size;
4285 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4286
4287 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4288 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4289 if (modname[0])
4290 seq_printf(m, " [%s]", modname);
4291 return;
4292 }
4293 #endif
4294 seq_printf(m, "%p", (void *)address);
4295 }
4296
4297 static int leaks_show(struct seq_file *m, void *p)
4298 {
4299 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4300 struct page *page;
4301 struct kmem_cache_node *n;
4302 const char *name;
4303 unsigned long *x = m->private;
4304 int node;
4305 int i;
4306
4307 if (!(cachep->flags & SLAB_STORE_USER))
4308 return 0;
4309 if (!(cachep->flags & SLAB_RED_ZONE))
4310 return 0;
4311
4312 /*
4313 * Set store_user_clean and start to grab stored user information
4314 * for all objects on this cache. If some alloc/free requests comes
4315 * during the processing, information would be wrong so restart
4316 * whole processing.
4317 */
4318 do {
4319 set_store_user_clean(cachep);
4320 drain_cpu_caches(cachep);
4321
4322 x[1] = 0;
4323
4324 for_each_kmem_cache_node(cachep, node, n) {
4325
4326 check_irq_on();
4327 spin_lock_irq(&n->list_lock);
4328
4329 list_for_each_entry(page, &n->slabs_full, lru)
4330 handle_slab(x, cachep, page);
4331 list_for_each_entry(page, &n->slabs_partial, lru)
4332 handle_slab(x, cachep, page);
4333 spin_unlock_irq(&n->list_lock);
4334 }
4335 } while (!is_store_user_clean(cachep));
4336
4337 name = cachep->name;
4338 if (x[0] == x[1]) {
4339 /* Increase the buffer size */
4340 mutex_unlock(&slab_mutex);
4341 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4342 if (!m->private) {
4343 /* Too bad, we are really out */
4344 m->private = x;
4345 mutex_lock(&slab_mutex);
4346 return -ENOMEM;
4347 }
4348 *(unsigned long *)m->private = x[0] * 2;
4349 kfree(x);
4350 mutex_lock(&slab_mutex);
4351 /* Now make sure this entry will be retried */
4352 m->count = m->size;
4353 return 0;
4354 }
4355 for (i = 0; i < x[1]; i++) {
4356 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4357 show_symbol(m, x[2*i+2]);
4358 seq_putc(m, '\n');
4359 }
4360
4361 return 0;
4362 }
4363
4364 static const struct seq_operations slabstats_op = {
4365 .start = slab_start,
4366 .next = slab_next,
4367 .stop = slab_stop,
4368 .show = leaks_show,
4369 };
4370
4371 static int slabstats_open(struct inode *inode, struct file *file)
4372 {
4373 unsigned long *n;
4374
4375 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4376 if (!n)
4377 return -ENOMEM;
4378
4379 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4380
4381 return 0;
4382 }
4383
4384 static const struct file_operations proc_slabstats_operations = {
4385 .open = slabstats_open,
4386 .read = seq_read,
4387 .llseek = seq_lseek,
4388 .release = seq_release_private,
4389 };
4390 #endif
4391
4392 static int __init slab_proc_init(void)
4393 {
4394 #ifdef CONFIG_DEBUG_SLAB_LEAK
4395 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4396 #endif
4397 return 0;
4398 }
4399 module_init(slab_proc_init);
4400 #endif
4401
4402 #ifdef CONFIG_HARDENED_USERCOPY
4403 /*
4404 * Rejects objects that are incorrectly sized.
4405 *
4406 * Returns NULL if check passes, otherwise const char * to name of cache
4407 * to indicate an error.
4408 */
4409 const char *__check_heap_object(const void *ptr, unsigned long n,
4410 struct page *page)
4411 {
4412 struct kmem_cache *cachep;
4413 unsigned int objnr;
4414 unsigned long offset;
4415
4416 /* Find and validate object. */
4417 cachep = page->slab_cache;
4418 objnr = obj_to_index(cachep, page, (void *)ptr);
4419 BUG_ON(objnr >= cachep->num);
4420
4421 /* Find offset within object. */
4422 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4423
4424 /* Allow address range falling entirely within object size. */
4425 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4426 return NULL;
4427
4428 return cachep->name;
4429 }
4430 #endif /* CONFIG_HARDENED_USERCOPY */
4431
4432 /**
4433 * ksize - get the actual amount of memory allocated for a given object
4434 * @objp: Pointer to the object
4435 *
4436 * kmalloc may internally round up allocations and return more memory
4437 * than requested. ksize() can be used to determine the actual amount of
4438 * memory allocated. The caller may use this additional memory, even though
4439 * a smaller amount of memory was initially specified with the kmalloc call.
4440 * The caller must guarantee that objp points to a valid object previously
4441 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4442 * must not be freed during the duration of the call.
4443 */
4444 size_t ksize(const void *objp)
4445 {
4446 size_t size;
4447
4448 BUG_ON(!objp);
4449 if (unlikely(objp == ZERO_SIZE_PTR))
4450 return 0;
4451
4452 size = virt_to_cache(objp)->object_size;
4453 /* We assume that ksize callers could use the whole allocated area,
4454 * so we need to unpoison this area.
4455 */
4456 kasan_unpoison_shadow(objp, size);
4457
4458 return size;
4459 }
4460 EXPORT_SYMBOL(ksize);