page_poison: play nicely with KASAN
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41 static struct vfsmount *shm_mnt;
42
43 #ifdef CONFIG_SHMEM
44 /*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
127
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 struct page **pagep, enum sgp_type sgp)
130 {
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137 return sb->s_fs_info;
138 }
139
140 /*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148 return (flags & VM_NORESERVE) ?
149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154 if (!(flags & VM_NORESERVE))
155 vm_unacct_memory(VM_ACCT(size));
156 }
157
158 static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160 {
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169 }
170
171 /*
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
184 }
185
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 if (flags & VM_NORESERVE)
189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209 unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212 }
213
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222 }
223
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235 return vma->vm_ops == &shmem_vm_ops;
236 }
237
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254 }
255
256 static void shmem_free_inode(struct super_block *sb)
257 {
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264 }
265
266 /**
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 shmem_inode_unacct_blocks(inode, freed);
288 }
289 }
290
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293 struct shmem_inode_info *info = SHMEM_I(inode);
294 unsigned long flags;
295
296 if (!shmem_inode_acct_block(inode, pages))
297 return false;
298
299 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
300 inode->i_mapping->nrpages += pages;
301
302 spin_lock_irqsave(&info->lock, flags);
303 info->alloced += pages;
304 inode->i_blocks += pages * BLOCKS_PER_PAGE;
305 shmem_recalc_inode(inode);
306 spin_unlock_irqrestore(&info->lock, flags);
307
308 return true;
309 }
310
311 void shmem_uncharge(struct inode *inode, long pages)
312 {
313 struct shmem_inode_info *info = SHMEM_I(inode);
314 unsigned long flags;
315
316 /* nrpages adjustment done by __delete_from_page_cache() or caller */
317
318 spin_lock_irqsave(&info->lock, flags);
319 info->alloced -= pages;
320 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321 shmem_recalc_inode(inode);
322 spin_unlock_irqrestore(&info->lock, flags);
323
324 shmem_inode_unacct_blocks(inode, pages);
325 }
326
327 /*
328 * Replace item expected in radix tree by a new item, while holding tree lock.
329 */
330 static int shmem_radix_tree_replace(struct address_space *mapping,
331 pgoff_t index, void *expected, void *replacement)
332 {
333 struct radix_tree_node *node;
334 void **pslot;
335 void *item;
336
337 VM_BUG_ON(!expected);
338 VM_BUG_ON(!replacement);
339 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340 if (!item)
341 return -ENOENT;
342 if (item != expected)
343 return -ENOENT;
344 __radix_tree_replace(&mapping->page_tree, node, pslot,
345 replacement, NULL, NULL);
346 return 0;
347 }
348
349 /*
350 * Sometimes, before we decide whether to proceed or to fail, we must check
351 * that an entry was not already brought back from swap by a racing thread.
352 *
353 * Checking page is not enough: by the time a SwapCache page is locked, it
354 * might be reused, and again be SwapCache, using the same swap as before.
355 */
356 static bool shmem_confirm_swap(struct address_space *mapping,
357 pgoff_t index, swp_entry_t swap)
358 {
359 void *item;
360
361 rcu_read_lock();
362 item = radix_tree_lookup(&mapping->page_tree, index);
363 rcu_read_unlock();
364 return item == swp_to_radix_entry(swap);
365 }
366
367 /*
368 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
369 *
370 * SHMEM_HUGE_NEVER:
371 * disables huge pages for the mount;
372 * SHMEM_HUGE_ALWAYS:
373 * enables huge pages for the mount;
374 * SHMEM_HUGE_WITHIN_SIZE:
375 * only allocate huge pages if the page will be fully within i_size,
376 * also respect fadvise()/madvise() hints;
377 * SHMEM_HUGE_ADVISE:
378 * only allocate huge pages if requested with fadvise()/madvise();
379 */
380
381 #define SHMEM_HUGE_NEVER 0
382 #define SHMEM_HUGE_ALWAYS 1
383 #define SHMEM_HUGE_WITHIN_SIZE 2
384 #define SHMEM_HUGE_ADVISE 3
385
386 /*
387 * Special values.
388 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
389 *
390 * SHMEM_HUGE_DENY:
391 * disables huge on shm_mnt and all mounts, for emergency use;
392 * SHMEM_HUGE_FORCE:
393 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
394 *
395 */
396 #define SHMEM_HUGE_DENY (-1)
397 #define SHMEM_HUGE_FORCE (-2)
398
399 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
400 /* ifdef here to avoid bloating shmem.o when not necessary */
401
402 int shmem_huge __read_mostly;
403
404 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
405 static int shmem_parse_huge(const char *str)
406 {
407 if (!strcmp(str, "never"))
408 return SHMEM_HUGE_NEVER;
409 if (!strcmp(str, "always"))
410 return SHMEM_HUGE_ALWAYS;
411 if (!strcmp(str, "within_size"))
412 return SHMEM_HUGE_WITHIN_SIZE;
413 if (!strcmp(str, "advise"))
414 return SHMEM_HUGE_ADVISE;
415 if (!strcmp(str, "deny"))
416 return SHMEM_HUGE_DENY;
417 if (!strcmp(str, "force"))
418 return SHMEM_HUGE_FORCE;
419 return -EINVAL;
420 }
421
422 static const char *shmem_format_huge(int huge)
423 {
424 switch (huge) {
425 case SHMEM_HUGE_NEVER:
426 return "never";
427 case SHMEM_HUGE_ALWAYS:
428 return "always";
429 case SHMEM_HUGE_WITHIN_SIZE:
430 return "within_size";
431 case SHMEM_HUGE_ADVISE:
432 return "advise";
433 case SHMEM_HUGE_DENY:
434 return "deny";
435 case SHMEM_HUGE_FORCE:
436 return "force";
437 default:
438 VM_BUG_ON(1);
439 return "bad_val";
440 }
441 }
442 #endif
443
444 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445 struct shrink_control *sc, unsigned long nr_to_split)
446 {
447 LIST_HEAD(list), *pos, *next;
448 LIST_HEAD(to_remove);
449 struct inode *inode;
450 struct shmem_inode_info *info;
451 struct page *page;
452 unsigned long batch = sc ? sc->nr_to_scan : 128;
453 int removed = 0, split = 0;
454
455 if (list_empty(&sbinfo->shrinklist))
456 return SHRINK_STOP;
457
458 spin_lock(&sbinfo->shrinklist_lock);
459 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461
462 /* pin the inode */
463 inode = igrab(&info->vfs_inode);
464
465 /* inode is about to be evicted */
466 if (!inode) {
467 list_del_init(&info->shrinklist);
468 removed++;
469 goto next;
470 }
471
472 /* Check if there's anything to gain */
473 if (round_up(inode->i_size, PAGE_SIZE) ==
474 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
475 list_move(&info->shrinklist, &to_remove);
476 removed++;
477 goto next;
478 }
479
480 list_move(&info->shrinklist, &list);
481 next:
482 if (!--batch)
483 break;
484 }
485 spin_unlock(&sbinfo->shrinklist_lock);
486
487 list_for_each_safe(pos, next, &to_remove) {
488 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489 inode = &info->vfs_inode;
490 list_del_init(&info->shrinklist);
491 iput(inode);
492 }
493
494 list_for_each_safe(pos, next, &list) {
495 int ret;
496
497 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498 inode = &info->vfs_inode;
499
500 if (nr_to_split && split >= nr_to_split)
501 goto leave;
502
503 page = find_get_page(inode->i_mapping,
504 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
505 if (!page)
506 goto drop;
507
508 /* No huge page at the end of the file: nothing to split */
509 if (!PageTransHuge(page)) {
510 put_page(page);
511 goto drop;
512 }
513
514 /*
515 * Leave the inode on the list if we failed to lock
516 * the page at this time.
517 *
518 * Waiting for the lock may lead to deadlock in the
519 * reclaim path.
520 */
521 if (!trylock_page(page)) {
522 put_page(page);
523 goto leave;
524 }
525
526 ret = split_huge_page(page);
527 unlock_page(page);
528 put_page(page);
529
530 /* If split failed leave the inode on the list */
531 if (ret)
532 goto leave;
533
534 split++;
535 drop:
536 list_del_init(&info->shrinklist);
537 removed++;
538 leave:
539 iput(inode);
540 }
541
542 spin_lock(&sbinfo->shrinklist_lock);
543 list_splice_tail(&list, &sbinfo->shrinklist);
544 sbinfo->shrinklist_len -= removed;
545 spin_unlock(&sbinfo->shrinklist_lock);
546
547 return split;
548 }
549
550 static long shmem_unused_huge_scan(struct super_block *sb,
551 struct shrink_control *sc)
552 {
553 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
554
555 if (!READ_ONCE(sbinfo->shrinklist_len))
556 return SHRINK_STOP;
557
558 return shmem_unused_huge_shrink(sbinfo, sc, 0);
559 }
560
561 static long shmem_unused_huge_count(struct super_block *sb,
562 struct shrink_control *sc)
563 {
564 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
565 return READ_ONCE(sbinfo->shrinklist_len);
566 }
567 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
568
569 #define shmem_huge SHMEM_HUGE_DENY
570
571 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
572 struct shrink_control *sc, unsigned long nr_to_split)
573 {
574 return 0;
575 }
576 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
577
578 /*
579 * Like add_to_page_cache_locked, but error if expected item has gone.
580 */
581 static int shmem_add_to_page_cache(struct page *page,
582 struct address_space *mapping,
583 pgoff_t index, void *expected)
584 {
585 int error, nr = hpage_nr_pages(page);
586
587 VM_BUG_ON_PAGE(PageTail(page), page);
588 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
589 VM_BUG_ON_PAGE(!PageLocked(page), page);
590 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
591 VM_BUG_ON(expected && PageTransHuge(page));
592
593 page_ref_add(page, nr);
594 page->mapping = mapping;
595 page->index = index;
596
597 spin_lock_irq(&mapping->tree_lock);
598 if (PageTransHuge(page)) {
599 void __rcu **results;
600 pgoff_t idx;
601 int i;
602
603 error = 0;
604 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
605 &results, &idx, index, 1) &&
606 idx < index + HPAGE_PMD_NR) {
607 error = -EEXIST;
608 }
609
610 if (!error) {
611 for (i = 0; i < HPAGE_PMD_NR; i++) {
612 error = radix_tree_insert(&mapping->page_tree,
613 index + i, page + i);
614 VM_BUG_ON(error);
615 }
616 count_vm_event(THP_FILE_ALLOC);
617 }
618 } else if (!expected) {
619 error = radix_tree_insert(&mapping->page_tree, index, page);
620 } else {
621 error = shmem_radix_tree_replace(mapping, index, expected,
622 page);
623 }
624
625 if (!error) {
626 mapping->nrpages += nr;
627 if (PageTransHuge(page))
628 __inc_node_page_state(page, NR_SHMEM_THPS);
629 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
631 spin_unlock_irq(&mapping->tree_lock);
632 } else {
633 page->mapping = NULL;
634 spin_unlock_irq(&mapping->tree_lock);
635 page_ref_sub(page, nr);
636 }
637 return error;
638 }
639
640 /*
641 * Like delete_from_page_cache, but substitutes swap for page.
642 */
643 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
644 {
645 struct address_space *mapping = page->mapping;
646 int error;
647
648 VM_BUG_ON_PAGE(PageCompound(page), page);
649
650 spin_lock_irq(&mapping->tree_lock);
651 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
652 page->mapping = NULL;
653 mapping->nrpages--;
654 __dec_node_page_state(page, NR_FILE_PAGES);
655 __dec_node_page_state(page, NR_SHMEM);
656 spin_unlock_irq(&mapping->tree_lock);
657 put_page(page);
658 BUG_ON(error);
659 }
660
661 /*
662 * Remove swap entry from radix tree, free the swap and its page cache.
663 */
664 static int shmem_free_swap(struct address_space *mapping,
665 pgoff_t index, void *radswap)
666 {
667 void *old;
668
669 spin_lock_irq(&mapping->tree_lock);
670 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
671 spin_unlock_irq(&mapping->tree_lock);
672 if (old != radswap)
673 return -ENOENT;
674 free_swap_and_cache(radix_to_swp_entry(radswap));
675 return 0;
676 }
677
678 /*
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given offsets are swapped out.
681 *
682 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
684 */
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 pgoff_t start, pgoff_t end)
687 {
688 struct radix_tree_iter iter;
689 void **slot;
690 struct page *page;
691 unsigned long swapped = 0;
692
693 rcu_read_lock();
694
695 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
696 if (iter.index >= end)
697 break;
698
699 page = radix_tree_deref_slot(slot);
700
701 if (radix_tree_deref_retry(page)) {
702 slot = radix_tree_iter_retry(&iter);
703 continue;
704 }
705
706 if (radix_tree_exceptional_entry(page))
707 swapped++;
708
709 if (need_resched()) {
710 slot = radix_tree_iter_resume(slot, &iter);
711 cond_resched_rcu();
712 }
713 }
714
715 rcu_read_unlock();
716
717 return swapped << PAGE_SHIFT;
718 }
719
720 /*
721 * Determine (in bytes) how many of the shmem object's pages mapped by the
722 * given vma is swapped out.
723 *
724 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
725 * as long as the inode doesn't go away and racy results are not a problem.
726 */
727 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
728 {
729 struct inode *inode = file_inode(vma->vm_file);
730 struct shmem_inode_info *info = SHMEM_I(inode);
731 struct address_space *mapping = inode->i_mapping;
732 unsigned long swapped;
733
734 /* Be careful as we don't hold info->lock */
735 swapped = READ_ONCE(info->swapped);
736
737 /*
738 * The easier cases are when the shmem object has nothing in swap, or
739 * the vma maps it whole. Then we can simply use the stats that we
740 * already track.
741 */
742 if (!swapped)
743 return 0;
744
745 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
746 return swapped << PAGE_SHIFT;
747
748 /* Here comes the more involved part */
749 return shmem_partial_swap_usage(mapping,
750 linear_page_index(vma, vma->vm_start),
751 linear_page_index(vma, vma->vm_end));
752 }
753
754 /*
755 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
756 */
757 void shmem_unlock_mapping(struct address_space *mapping)
758 {
759 struct pagevec pvec;
760 pgoff_t indices[PAGEVEC_SIZE];
761 pgoff_t index = 0;
762
763 pagevec_init(&pvec, 0);
764 /*
765 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
766 */
767 while (!mapping_unevictable(mapping)) {
768 /*
769 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
770 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
771 */
772 pvec.nr = find_get_entries(mapping, index,
773 PAGEVEC_SIZE, pvec.pages, indices);
774 if (!pvec.nr)
775 break;
776 index = indices[pvec.nr - 1] + 1;
777 pagevec_remove_exceptionals(&pvec);
778 check_move_unevictable_pages(pvec.pages, pvec.nr);
779 pagevec_release(&pvec);
780 cond_resched();
781 }
782 }
783
784 /*
785 * Remove range of pages and swap entries from radix tree, and free them.
786 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
787 */
788 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
789 bool unfalloc)
790 {
791 struct address_space *mapping = inode->i_mapping;
792 struct shmem_inode_info *info = SHMEM_I(inode);
793 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
794 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
795 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
796 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
797 struct pagevec pvec;
798 pgoff_t indices[PAGEVEC_SIZE];
799 long nr_swaps_freed = 0;
800 pgoff_t index;
801 int i;
802
803 if (lend == -1)
804 end = -1; /* unsigned, so actually very big */
805
806 pagevec_init(&pvec, 0);
807 index = start;
808 while (index < end) {
809 pvec.nr = find_get_entries(mapping, index,
810 min(end - index, (pgoff_t)PAGEVEC_SIZE),
811 pvec.pages, indices);
812 if (!pvec.nr)
813 break;
814 for (i = 0; i < pagevec_count(&pvec); i++) {
815 struct page *page = pvec.pages[i];
816
817 index = indices[i];
818 if (index >= end)
819 break;
820
821 if (radix_tree_exceptional_entry(page)) {
822 if (unfalloc)
823 continue;
824 nr_swaps_freed += !shmem_free_swap(mapping,
825 index, page);
826 continue;
827 }
828
829 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
830
831 if (!trylock_page(page))
832 continue;
833
834 if (PageTransTail(page)) {
835 /* Middle of THP: zero out the page */
836 clear_highpage(page);
837 unlock_page(page);
838 continue;
839 } else if (PageTransHuge(page)) {
840 if (index == round_down(end, HPAGE_PMD_NR)) {
841 /*
842 * Range ends in the middle of THP:
843 * zero out the page
844 */
845 clear_highpage(page);
846 unlock_page(page);
847 continue;
848 }
849 index += HPAGE_PMD_NR - 1;
850 i += HPAGE_PMD_NR - 1;
851 }
852
853 if (!unfalloc || !PageUptodate(page)) {
854 VM_BUG_ON_PAGE(PageTail(page), page);
855 if (page_mapping(page) == mapping) {
856 VM_BUG_ON_PAGE(PageWriteback(page), page);
857 truncate_inode_page(mapping, page);
858 }
859 }
860 unlock_page(page);
861 }
862 pagevec_remove_exceptionals(&pvec);
863 pagevec_release(&pvec);
864 cond_resched();
865 index++;
866 }
867
868 if (partial_start) {
869 struct page *page = NULL;
870 shmem_getpage(inode, start - 1, &page, SGP_READ);
871 if (page) {
872 unsigned int top = PAGE_SIZE;
873 if (start > end) {
874 top = partial_end;
875 partial_end = 0;
876 }
877 zero_user_segment(page, partial_start, top);
878 set_page_dirty(page);
879 unlock_page(page);
880 put_page(page);
881 }
882 }
883 if (partial_end) {
884 struct page *page = NULL;
885 shmem_getpage(inode, end, &page, SGP_READ);
886 if (page) {
887 zero_user_segment(page, 0, partial_end);
888 set_page_dirty(page);
889 unlock_page(page);
890 put_page(page);
891 }
892 }
893 if (start >= end)
894 return;
895
896 index = start;
897 while (index < end) {
898 cond_resched();
899
900 pvec.nr = find_get_entries(mapping, index,
901 min(end - index, (pgoff_t)PAGEVEC_SIZE),
902 pvec.pages, indices);
903 if (!pvec.nr) {
904 /* If all gone or hole-punch or unfalloc, we're done */
905 if (index == start || end != -1)
906 break;
907 /* But if truncating, restart to make sure all gone */
908 index = start;
909 continue;
910 }
911 for (i = 0; i < pagevec_count(&pvec); i++) {
912 struct page *page = pvec.pages[i];
913
914 index = indices[i];
915 if (index >= end)
916 break;
917
918 if (radix_tree_exceptional_entry(page)) {
919 if (unfalloc)
920 continue;
921 if (shmem_free_swap(mapping, index, page)) {
922 /* Swap was replaced by page: retry */
923 index--;
924 break;
925 }
926 nr_swaps_freed++;
927 continue;
928 }
929
930 lock_page(page);
931
932 if (PageTransTail(page)) {
933 /* Middle of THP: zero out the page */
934 clear_highpage(page);
935 unlock_page(page);
936 /*
937 * Partial thp truncate due 'start' in middle
938 * of THP: don't need to look on these pages
939 * again on !pvec.nr restart.
940 */
941 if (index != round_down(end, HPAGE_PMD_NR))
942 start++;
943 continue;
944 } else if (PageTransHuge(page)) {
945 if (index == round_down(end, HPAGE_PMD_NR)) {
946 /*
947 * Range ends in the middle of THP:
948 * zero out the page
949 */
950 clear_highpage(page);
951 unlock_page(page);
952 continue;
953 }
954 index += HPAGE_PMD_NR - 1;
955 i += HPAGE_PMD_NR - 1;
956 }
957
958 if (!unfalloc || !PageUptodate(page)) {
959 VM_BUG_ON_PAGE(PageTail(page), page);
960 if (page_mapping(page) == mapping) {
961 VM_BUG_ON_PAGE(PageWriteback(page), page);
962 truncate_inode_page(mapping, page);
963 } else {
964 /* Page was replaced by swap: retry */
965 unlock_page(page);
966 index--;
967 break;
968 }
969 }
970 unlock_page(page);
971 }
972 pagevec_remove_exceptionals(&pvec);
973 pagevec_release(&pvec);
974 index++;
975 }
976
977 spin_lock_irq(&info->lock);
978 info->swapped -= nr_swaps_freed;
979 shmem_recalc_inode(inode);
980 spin_unlock_irq(&info->lock);
981 }
982
983 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
984 {
985 shmem_undo_range(inode, lstart, lend, false);
986 inode->i_ctime = inode->i_mtime = current_time(inode);
987 }
988 EXPORT_SYMBOL_GPL(shmem_truncate_range);
989
990 static int shmem_getattr(const struct path *path, struct kstat *stat,
991 u32 request_mask, unsigned int query_flags)
992 {
993 struct inode *inode = path->dentry->d_inode;
994 struct shmem_inode_info *info = SHMEM_I(inode);
995
996 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
997 spin_lock_irq(&info->lock);
998 shmem_recalc_inode(inode);
999 spin_unlock_irq(&info->lock);
1000 }
1001 generic_fillattr(inode, stat);
1002 return 0;
1003 }
1004
1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1006 {
1007 struct inode *inode = d_inode(dentry);
1008 struct shmem_inode_info *info = SHMEM_I(inode);
1009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1010 int error;
1011
1012 error = setattr_prepare(dentry, attr);
1013 if (error)
1014 return error;
1015
1016 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017 loff_t oldsize = inode->i_size;
1018 loff_t newsize = attr->ia_size;
1019
1020 /* protected by i_mutex */
1021 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023 return -EPERM;
1024
1025 if (newsize != oldsize) {
1026 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027 oldsize, newsize);
1028 if (error)
1029 return error;
1030 i_size_write(inode, newsize);
1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 if (newsize <= oldsize) {
1034 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1035 if (oldsize > holebegin)
1036 unmap_mapping_range(inode->i_mapping,
1037 holebegin, 0, 1);
1038 if (info->alloced)
1039 shmem_truncate_range(inode,
1040 newsize, (loff_t)-1);
1041 /* unmap again to remove racily COWed private pages */
1042 if (oldsize > holebegin)
1043 unmap_mapping_range(inode->i_mapping,
1044 holebegin, 0, 1);
1045
1046 /*
1047 * Part of the huge page can be beyond i_size: subject
1048 * to shrink under memory pressure.
1049 */
1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
1052 /*
1053 * _careful to defend against unlocked access to
1054 * ->shrink_list in shmem_unused_huge_shrink()
1055 */
1056 if (list_empty_careful(&info->shrinklist)) {
1057 list_add_tail(&info->shrinklist,
1058 &sbinfo->shrinklist);
1059 sbinfo->shrinklist_len++;
1060 }
1061 spin_unlock(&sbinfo->shrinklist_lock);
1062 }
1063 }
1064 }
1065
1066 setattr_copy(inode, attr);
1067 if (attr->ia_valid & ATTR_MODE)
1068 error = posix_acl_chmod(inode, inode->i_mode);
1069 return error;
1070 }
1071
1072 static void shmem_evict_inode(struct inode *inode)
1073 {
1074 struct shmem_inode_info *info = SHMEM_I(inode);
1075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1076
1077 if (inode->i_mapping->a_ops == &shmem_aops) {
1078 shmem_unacct_size(info->flags, inode->i_size);
1079 inode->i_size = 0;
1080 shmem_truncate_range(inode, 0, (loff_t)-1);
1081 if (!list_empty(&info->shrinklist)) {
1082 spin_lock(&sbinfo->shrinklist_lock);
1083 if (!list_empty(&info->shrinklist)) {
1084 list_del_init(&info->shrinklist);
1085 sbinfo->shrinklist_len--;
1086 }
1087 spin_unlock(&sbinfo->shrinklist_lock);
1088 }
1089 if (!list_empty(&info->swaplist)) {
1090 mutex_lock(&shmem_swaplist_mutex);
1091 list_del_init(&info->swaplist);
1092 mutex_unlock(&shmem_swaplist_mutex);
1093 }
1094 }
1095
1096 simple_xattrs_free(&info->xattrs);
1097 WARN_ON(inode->i_blocks);
1098 shmem_free_inode(inode->i_sb);
1099 clear_inode(inode);
1100 }
1101
1102 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1103 {
1104 struct radix_tree_iter iter;
1105 void **slot;
1106 unsigned long found = -1;
1107 unsigned int checked = 0;
1108
1109 rcu_read_lock();
1110 radix_tree_for_each_slot(slot, root, &iter, 0) {
1111 if (*slot == item) {
1112 found = iter.index;
1113 break;
1114 }
1115 checked++;
1116 if ((checked % 4096) != 0)
1117 continue;
1118 slot = radix_tree_iter_resume(slot, &iter);
1119 cond_resched_rcu();
1120 }
1121
1122 rcu_read_unlock();
1123 return found;
1124 }
1125
1126 /*
1127 * If swap found in inode, free it and move page from swapcache to filecache.
1128 */
1129 static int shmem_unuse_inode(struct shmem_inode_info *info,
1130 swp_entry_t swap, struct page **pagep)
1131 {
1132 struct address_space *mapping = info->vfs_inode.i_mapping;
1133 void *radswap;
1134 pgoff_t index;
1135 gfp_t gfp;
1136 int error = 0;
1137
1138 radswap = swp_to_radix_entry(swap);
1139 index = find_swap_entry(&mapping->page_tree, radswap);
1140 if (index == -1)
1141 return -EAGAIN; /* tell shmem_unuse we found nothing */
1142
1143 /*
1144 * Move _head_ to start search for next from here.
1145 * But be careful: shmem_evict_inode checks list_empty without taking
1146 * mutex, and there's an instant in list_move_tail when info->swaplist
1147 * would appear empty, if it were the only one on shmem_swaplist.
1148 */
1149 if (shmem_swaplist.next != &info->swaplist)
1150 list_move_tail(&shmem_swaplist, &info->swaplist);
1151
1152 gfp = mapping_gfp_mask(mapping);
1153 if (shmem_should_replace_page(*pagep, gfp)) {
1154 mutex_unlock(&shmem_swaplist_mutex);
1155 error = shmem_replace_page(pagep, gfp, info, index);
1156 mutex_lock(&shmem_swaplist_mutex);
1157 /*
1158 * We needed to drop mutex to make that restrictive page
1159 * allocation, but the inode might have been freed while we
1160 * dropped it: although a racing shmem_evict_inode() cannot
1161 * complete without emptying the radix_tree, our page lock
1162 * on this swapcache page is not enough to prevent that -
1163 * free_swap_and_cache() of our swap entry will only
1164 * trylock_page(), removing swap from radix_tree whatever.
1165 *
1166 * We must not proceed to shmem_add_to_page_cache() if the
1167 * inode has been freed, but of course we cannot rely on
1168 * inode or mapping or info to check that. However, we can
1169 * safely check if our swap entry is still in use (and here
1170 * it can't have got reused for another page): if it's still
1171 * in use, then the inode cannot have been freed yet, and we
1172 * can safely proceed (if it's no longer in use, that tells
1173 * nothing about the inode, but we don't need to unuse swap).
1174 */
1175 if (!page_swapcount(*pagep))
1176 error = -ENOENT;
1177 }
1178
1179 /*
1180 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1181 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1182 * beneath us (pagelock doesn't help until the page is in pagecache).
1183 */
1184 if (!error)
1185 error = shmem_add_to_page_cache(*pagep, mapping, index,
1186 radswap);
1187 if (error != -ENOMEM) {
1188 /*
1189 * Truncation and eviction use free_swap_and_cache(), which
1190 * only does trylock page: if we raced, best clean up here.
1191 */
1192 delete_from_swap_cache(*pagep);
1193 set_page_dirty(*pagep);
1194 if (!error) {
1195 spin_lock_irq(&info->lock);
1196 info->swapped--;
1197 spin_unlock_irq(&info->lock);
1198 swap_free(swap);
1199 }
1200 }
1201 return error;
1202 }
1203
1204 /*
1205 * Search through swapped inodes to find and replace swap by page.
1206 */
1207 int shmem_unuse(swp_entry_t swap, struct page *page)
1208 {
1209 struct list_head *this, *next;
1210 struct shmem_inode_info *info;
1211 struct mem_cgroup *memcg;
1212 int error = 0;
1213
1214 /*
1215 * There's a faint possibility that swap page was replaced before
1216 * caller locked it: caller will come back later with the right page.
1217 */
1218 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1219 goto out;
1220
1221 /*
1222 * Charge page using GFP_KERNEL while we can wait, before taking
1223 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1224 * Charged back to the user (not to caller) when swap account is used.
1225 */
1226 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1227 false);
1228 if (error)
1229 goto out;
1230 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1231 error = -EAGAIN;
1232
1233 mutex_lock(&shmem_swaplist_mutex);
1234 list_for_each_safe(this, next, &shmem_swaplist) {
1235 info = list_entry(this, struct shmem_inode_info, swaplist);
1236 if (info->swapped)
1237 error = shmem_unuse_inode(info, swap, &page);
1238 else
1239 list_del_init(&info->swaplist);
1240 cond_resched();
1241 if (error != -EAGAIN)
1242 break;
1243 /* found nothing in this: move on to search the next */
1244 }
1245 mutex_unlock(&shmem_swaplist_mutex);
1246
1247 if (error) {
1248 if (error != -ENOMEM)
1249 error = 0;
1250 mem_cgroup_cancel_charge(page, memcg, false);
1251 } else
1252 mem_cgroup_commit_charge(page, memcg, true, false);
1253 out:
1254 unlock_page(page);
1255 put_page(page);
1256 return error;
1257 }
1258
1259 /*
1260 * Move the page from the page cache to the swap cache.
1261 */
1262 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1263 {
1264 struct shmem_inode_info *info;
1265 struct address_space *mapping;
1266 struct inode *inode;
1267 swp_entry_t swap;
1268 pgoff_t index;
1269
1270 VM_BUG_ON_PAGE(PageCompound(page), page);
1271 BUG_ON(!PageLocked(page));
1272 mapping = page->mapping;
1273 index = page->index;
1274 inode = mapping->host;
1275 info = SHMEM_I(inode);
1276 if (info->flags & VM_LOCKED)
1277 goto redirty;
1278 if (!total_swap_pages)
1279 goto redirty;
1280
1281 /*
1282 * Our capabilities prevent regular writeback or sync from ever calling
1283 * shmem_writepage; but a stacking filesystem might use ->writepage of
1284 * its underlying filesystem, in which case tmpfs should write out to
1285 * swap only in response to memory pressure, and not for the writeback
1286 * threads or sync.
1287 */
1288 if (!wbc->for_reclaim) {
1289 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1290 goto redirty;
1291 }
1292
1293 /*
1294 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1295 * value into swapfile.c, the only way we can correctly account for a
1296 * fallocated page arriving here is now to initialize it and write it.
1297 *
1298 * That's okay for a page already fallocated earlier, but if we have
1299 * not yet completed the fallocation, then (a) we want to keep track
1300 * of this page in case we have to undo it, and (b) it may not be a
1301 * good idea to continue anyway, once we're pushing into swap. So
1302 * reactivate the page, and let shmem_fallocate() quit when too many.
1303 */
1304 if (!PageUptodate(page)) {
1305 if (inode->i_private) {
1306 struct shmem_falloc *shmem_falloc;
1307 spin_lock(&inode->i_lock);
1308 shmem_falloc = inode->i_private;
1309 if (shmem_falloc &&
1310 !shmem_falloc->waitq &&
1311 index >= shmem_falloc->start &&
1312 index < shmem_falloc->next)
1313 shmem_falloc->nr_unswapped++;
1314 else
1315 shmem_falloc = NULL;
1316 spin_unlock(&inode->i_lock);
1317 if (shmem_falloc)
1318 goto redirty;
1319 }
1320 clear_highpage(page);
1321 flush_dcache_page(page);
1322 SetPageUptodate(page);
1323 }
1324
1325 swap = get_swap_page(page);
1326 if (!swap.val)
1327 goto redirty;
1328
1329 if (mem_cgroup_try_charge_swap(page, swap))
1330 goto free_swap;
1331
1332 /*
1333 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1334 * if it's not already there. Do it now before the page is
1335 * moved to swap cache, when its pagelock no longer protects
1336 * the inode from eviction. But don't unlock the mutex until
1337 * we've incremented swapped, because shmem_unuse_inode() will
1338 * prune a !swapped inode from the swaplist under this mutex.
1339 */
1340 mutex_lock(&shmem_swaplist_mutex);
1341 if (list_empty(&info->swaplist))
1342 list_add_tail(&info->swaplist, &shmem_swaplist);
1343
1344 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1345 spin_lock_irq(&info->lock);
1346 shmem_recalc_inode(inode);
1347 info->swapped++;
1348 spin_unlock_irq(&info->lock);
1349
1350 swap_shmem_alloc(swap);
1351 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1352
1353 mutex_unlock(&shmem_swaplist_mutex);
1354 BUG_ON(page_mapped(page));
1355 swap_writepage(page, wbc);
1356 return 0;
1357 }
1358
1359 mutex_unlock(&shmem_swaplist_mutex);
1360 free_swap:
1361 put_swap_page(page, swap);
1362 redirty:
1363 set_page_dirty(page);
1364 if (wbc->for_reclaim)
1365 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1366 unlock_page(page);
1367 return 0;
1368 }
1369
1370 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1371 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1372 {
1373 char buffer[64];
1374
1375 if (!mpol || mpol->mode == MPOL_DEFAULT)
1376 return; /* show nothing */
1377
1378 mpol_to_str(buffer, sizeof(buffer), mpol);
1379
1380 seq_printf(seq, ",mpol=%s", buffer);
1381 }
1382
1383 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1384 {
1385 struct mempolicy *mpol = NULL;
1386 if (sbinfo->mpol) {
1387 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1388 mpol = sbinfo->mpol;
1389 mpol_get(mpol);
1390 spin_unlock(&sbinfo->stat_lock);
1391 }
1392 return mpol;
1393 }
1394 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1395 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1396 {
1397 }
1398 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1399 {
1400 return NULL;
1401 }
1402 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1403 #ifndef CONFIG_NUMA
1404 #define vm_policy vm_private_data
1405 #endif
1406
1407 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1408 struct shmem_inode_info *info, pgoff_t index)
1409 {
1410 /* Create a pseudo vma that just contains the policy */
1411 vma->vm_start = 0;
1412 /* Bias interleave by inode number to distribute better across nodes */
1413 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1414 vma->vm_ops = NULL;
1415 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1416 }
1417
1418 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1419 {
1420 /* Drop reference taken by mpol_shared_policy_lookup() */
1421 mpol_cond_put(vma->vm_policy);
1422 }
1423
1424 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1425 struct shmem_inode_info *info, pgoff_t index)
1426 {
1427 struct vm_area_struct pvma;
1428 struct page *page;
1429
1430 shmem_pseudo_vma_init(&pvma, info, index);
1431 page = swapin_readahead(swap, gfp, &pvma, 0);
1432 shmem_pseudo_vma_destroy(&pvma);
1433
1434 return page;
1435 }
1436
1437 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1438 struct shmem_inode_info *info, pgoff_t index)
1439 {
1440 struct vm_area_struct pvma;
1441 struct inode *inode = &info->vfs_inode;
1442 struct address_space *mapping = inode->i_mapping;
1443 pgoff_t idx, hindex;
1444 void __rcu **results;
1445 struct page *page;
1446
1447 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1448 return NULL;
1449
1450 hindex = round_down(index, HPAGE_PMD_NR);
1451 rcu_read_lock();
1452 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1453 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1454 rcu_read_unlock();
1455 return NULL;
1456 }
1457 rcu_read_unlock();
1458
1459 shmem_pseudo_vma_init(&pvma, info, hindex);
1460 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1461 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1462 shmem_pseudo_vma_destroy(&pvma);
1463 if (page)
1464 prep_transhuge_page(page);
1465 return page;
1466 }
1467
1468 static struct page *shmem_alloc_page(gfp_t gfp,
1469 struct shmem_inode_info *info, pgoff_t index)
1470 {
1471 struct vm_area_struct pvma;
1472 struct page *page;
1473
1474 shmem_pseudo_vma_init(&pvma, info, index);
1475 page = alloc_page_vma(gfp, &pvma, 0);
1476 shmem_pseudo_vma_destroy(&pvma);
1477
1478 return page;
1479 }
1480
1481 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1482 struct inode *inode,
1483 pgoff_t index, bool huge)
1484 {
1485 struct shmem_inode_info *info = SHMEM_I(inode);
1486 struct page *page;
1487 int nr;
1488 int err = -ENOSPC;
1489
1490 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1491 huge = false;
1492 nr = huge ? HPAGE_PMD_NR : 1;
1493
1494 if (!shmem_inode_acct_block(inode, nr))
1495 goto failed;
1496
1497 if (huge)
1498 page = shmem_alloc_hugepage(gfp, info, index);
1499 else
1500 page = shmem_alloc_page(gfp, info, index);
1501 if (page) {
1502 __SetPageLocked(page);
1503 __SetPageSwapBacked(page);
1504 return page;
1505 }
1506
1507 err = -ENOMEM;
1508 shmem_inode_unacct_blocks(inode, nr);
1509 failed:
1510 return ERR_PTR(err);
1511 }
1512
1513 /*
1514 * When a page is moved from swapcache to shmem filecache (either by the
1515 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1516 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1517 * ignorance of the mapping it belongs to. If that mapping has special
1518 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1519 * we may need to copy to a suitable page before moving to filecache.
1520 *
1521 * In a future release, this may well be extended to respect cpuset and
1522 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1523 * but for now it is a simple matter of zone.
1524 */
1525 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1526 {
1527 return page_zonenum(page) > gfp_zone(gfp);
1528 }
1529
1530 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1531 struct shmem_inode_info *info, pgoff_t index)
1532 {
1533 struct page *oldpage, *newpage;
1534 struct address_space *swap_mapping;
1535 swp_entry_t entry;
1536 pgoff_t swap_index;
1537 int error;
1538
1539 oldpage = *pagep;
1540 entry.val = page_private(oldpage);
1541 swap_index = swp_offset(entry);
1542 swap_mapping = page_mapping(oldpage);
1543
1544 /*
1545 * We have arrived here because our zones are constrained, so don't
1546 * limit chance of success by further cpuset and node constraints.
1547 */
1548 gfp &= ~GFP_CONSTRAINT_MASK;
1549 newpage = shmem_alloc_page(gfp, info, index);
1550 if (!newpage)
1551 return -ENOMEM;
1552
1553 get_page(newpage);
1554 copy_highpage(newpage, oldpage);
1555 flush_dcache_page(newpage);
1556
1557 __SetPageLocked(newpage);
1558 __SetPageSwapBacked(newpage);
1559 SetPageUptodate(newpage);
1560 set_page_private(newpage, entry.val);
1561 SetPageSwapCache(newpage);
1562
1563 /*
1564 * Our caller will very soon move newpage out of swapcache, but it's
1565 * a nice clean interface for us to replace oldpage by newpage there.
1566 */
1567 spin_lock_irq(&swap_mapping->tree_lock);
1568 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1569 newpage);
1570 if (!error) {
1571 __inc_node_page_state(newpage, NR_FILE_PAGES);
1572 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1573 }
1574 spin_unlock_irq(&swap_mapping->tree_lock);
1575
1576 if (unlikely(error)) {
1577 /*
1578 * Is this possible? I think not, now that our callers check
1579 * both PageSwapCache and page_private after getting page lock;
1580 * but be defensive. Reverse old to newpage for clear and free.
1581 */
1582 oldpage = newpage;
1583 } else {
1584 mem_cgroup_migrate(oldpage, newpage);
1585 lru_cache_add_anon(newpage);
1586 *pagep = newpage;
1587 }
1588
1589 ClearPageSwapCache(oldpage);
1590 set_page_private(oldpage, 0);
1591
1592 unlock_page(oldpage);
1593 put_page(oldpage);
1594 put_page(oldpage);
1595 return error;
1596 }
1597
1598 /*
1599 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1600 *
1601 * If we allocate a new one we do not mark it dirty. That's up to the
1602 * vm. If we swap it in we mark it dirty since we also free the swap
1603 * entry since a page cannot live in both the swap and page cache.
1604 *
1605 * fault_mm and fault_type are only supplied by shmem_fault:
1606 * otherwise they are NULL.
1607 */
1608 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1609 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1610 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1611 {
1612 struct address_space *mapping = inode->i_mapping;
1613 struct shmem_inode_info *info = SHMEM_I(inode);
1614 struct shmem_sb_info *sbinfo;
1615 struct mm_struct *charge_mm;
1616 struct mem_cgroup *memcg;
1617 struct page *page;
1618 swp_entry_t swap;
1619 enum sgp_type sgp_huge = sgp;
1620 pgoff_t hindex = index;
1621 int error;
1622 int once = 0;
1623 int alloced = 0;
1624
1625 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1626 return -EFBIG;
1627 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1628 sgp = SGP_CACHE;
1629 repeat:
1630 swap.val = 0;
1631 page = find_lock_entry(mapping, index);
1632 if (radix_tree_exceptional_entry(page)) {
1633 swap = radix_to_swp_entry(page);
1634 page = NULL;
1635 }
1636
1637 if (sgp <= SGP_CACHE &&
1638 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1639 error = -EINVAL;
1640 goto unlock;
1641 }
1642
1643 if (page && sgp == SGP_WRITE)
1644 mark_page_accessed(page);
1645
1646 /* fallocated page? */
1647 if (page && !PageUptodate(page)) {
1648 if (sgp != SGP_READ)
1649 goto clear;
1650 unlock_page(page);
1651 put_page(page);
1652 page = NULL;
1653 }
1654 if (page || (sgp == SGP_READ && !swap.val)) {
1655 *pagep = page;
1656 return 0;
1657 }
1658
1659 /*
1660 * Fast cache lookup did not find it:
1661 * bring it back from swap or allocate.
1662 */
1663 sbinfo = SHMEM_SB(inode->i_sb);
1664 charge_mm = vma ? vma->vm_mm : current->mm;
1665
1666 if (swap.val) {
1667 /* Look it up and read it in.. */
1668 page = lookup_swap_cache(swap, NULL, 0);
1669 if (!page) {
1670 /* Or update major stats only when swapin succeeds?? */
1671 if (fault_type) {
1672 *fault_type |= VM_FAULT_MAJOR;
1673 count_vm_event(PGMAJFAULT);
1674 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1675 }
1676 /* Here we actually start the io */
1677 page = shmem_swapin(swap, gfp, info, index);
1678 if (!page) {
1679 error = -ENOMEM;
1680 goto failed;
1681 }
1682 }
1683
1684 /* We have to do this with page locked to prevent races */
1685 lock_page(page);
1686 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1687 !shmem_confirm_swap(mapping, index, swap)) {
1688 error = -EEXIST; /* try again */
1689 goto unlock;
1690 }
1691 if (!PageUptodate(page)) {
1692 error = -EIO;
1693 goto failed;
1694 }
1695 wait_on_page_writeback(page);
1696
1697 if (shmem_should_replace_page(page, gfp)) {
1698 error = shmem_replace_page(&page, gfp, info, index);
1699 if (error)
1700 goto failed;
1701 }
1702
1703 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1704 false);
1705 if (!error) {
1706 error = shmem_add_to_page_cache(page, mapping, index,
1707 swp_to_radix_entry(swap));
1708 /*
1709 * We already confirmed swap under page lock, and make
1710 * no memory allocation here, so usually no possibility
1711 * of error; but free_swap_and_cache() only trylocks a
1712 * page, so it is just possible that the entry has been
1713 * truncated or holepunched since swap was confirmed.
1714 * shmem_undo_range() will have done some of the
1715 * unaccounting, now delete_from_swap_cache() will do
1716 * the rest.
1717 * Reset swap.val? No, leave it so "failed" goes back to
1718 * "repeat": reading a hole and writing should succeed.
1719 */
1720 if (error) {
1721 mem_cgroup_cancel_charge(page, memcg, false);
1722 delete_from_swap_cache(page);
1723 }
1724 }
1725 if (error)
1726 goto failed;
1727
1728 mem_cgroup_commit_charge(page, memcg, true, false);
1729
1730 spin_lock_irq(&info->lock);
1731 info->swapped--;
1732 shmem_recalc_inode(inode);
1733 spin_unlock_irq(&info->lock);
1734
1735 if (sgp == SGP_WRITE)
1736 mark_page_accessed(page);
1737
1738 delete_from_swap_cache(page);
1739 set_page_dirty(page);
1740 swap_free(swap);
1741
1742 } else {
1743 if (vma && userfaultfd_missing(vma)) {
1744 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1745 return 0;
1746 }
1747
1748 /* shmem_symlink() */
1749 if (mapping->a_ops != &shmem_aops)
1750 goto alloc_nohuge;
1751 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1752 goto alloc_nohuge;
1753 if (shmem_huge == SHMEM_HUGE_FORCE)
1754 goto alloc_huge;
1755 switch (sbinfo->huge) {
1756 loff_t i_size;
1757 pgoff_t off;
1758 case SHMEM_HUGE_NEVER:
1759 goto alloc_nohuge;
1760 case SHMEM_HUGE_WITHIN_SIZE:
1761 off = round_up(index, HPAGE_PMD_NR);
1762 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1763 if (i_size >= HPAGE_PMD_SIZE &&
1764 i_size >> PAGE_SHIFT >= off)
1765 goto alloc_huge;
1766 /* fallthrough */
1767 case SHMEM_HUGE_ADVISE:
1768 if (sgp_huge == SGP_HUGE)
1769 goto alloc_huge;
1770 /* TODO: implement fadvise() hints */
1771 goto alloc_nohuge;
1772 }
1773
1774 alloc_huge:
1775 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1776 if (IS_ERR(page)) {
1777 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1778 index, false);
1779 }
1780 if (IS_ERR(page)) {
1781 int retry = 5;
1782 error = PTR_ERR(page);
1783 page = NULL;
1784 if (error != -ENOSPC)
1785 goto failed;
1786 /*
1787 * Try to reclaim some spece by splitting a huge page
1788 * beyond i_size on the filesystem.
1789 */
1790 while (retry--) {
1791 int ret;
1792 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1793 if (ret == SHRINK_STOP)
1794 break;
1795 if (ret)
1796 goto alloc_nohuge;
1797 }
1798 goto failed;
1799 }
1800
1801 if (PageTransHuge(page))
1802 hindex = round_down(index, HPAGE_PMD_NR);
1803 else
1804 hindex = index;
1805
1806 if (sgp == SGP_WRITE)
1807 __SetPageReferenced(page);
1808
1809 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1810 PageTransHuge(page));
1811 if (error)
1812 goto unacct;
1813 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1814 compound_order(page));
1815 if (!error) {
1816 error = shmem_add_to_page_cache(page, mapping, hindex,
1817 NULL);
1818 radix_tree_preload_end();
1819 }
1820 if (error) {
1821 mem_cgroup_cancel_charge(page, memcg,
1822 PageTransHuge(page));
1823 goto unacct;
1824 }
1825 mem_cgroup_commit_charge(page, memcg, false,
1826 PageTransHuge(page));
1827 lru_cache_add_anon(page);
1828
1829 spin_lock_irq(&info->lock);
1830 info->alloced += 1 << compound_order(page);
1831 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1832 shmem_recalc_inode(inode);
1833 spin_unlock_irq(&info->lock);
1834 alloced = true;
1835
1836 if (PageTransHuge(page) &&
1837 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1838 hindex + HPAGE_PMD_NR - 1) {
1839 /*
1840 * Part of the huge page is beyond i_size: subject
1841 * to shrink under memory pressure.
1842 */
1843 spin_lock(&sbinfo->shrinklist_lock);
1844 /*
1845 * _careful to defend against unlocked access to
1846 * ->shrink_list in shmem_unused_huge_shrink()
1847 */
1848 if (list_empty_careful(&info->shrinklist)) {
1849 list_add_tail(&info->shrinklist,
1850 &sbinfo->shrinklist);
1851 sbinfo->shrinklist_len++;
1852 }
1853 spin_unlock(&sbinfo->shrinklist_lock);
1854 }
1855
1856 /*
1857 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1858 */
1859 if (sgp == SGP_FALLOC)
1860 sgp = SGP_WRITE;
1861 clear:
1862 /*
1863 * Let SGP_WRITE caller clear ends if write does not fill page;
1864 * but SGP_FALLOC on a page fallocated earlier must initialize
1865 * it now, lest undo on failure cancel our earlier guarantee.
1866 */
1867 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1868 struct page *head = compound_head(page);
1869 int i;
1870
1871 for (i = 0; i < (1 << compound_order(head)); i++) {
1872 clear_highpage(head + i);
1873 flush_dcache_page(head + i);
1874 }
1875 SetPageUptodate(head);
1876 }
1877 }
1878
1879 /* Perhaps the file has been truncated since we checked */
1880 if (sgp <= SGP_CACHE &&
1881 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1882 if (alloced) {
1883 ClearPageDirty(page);
1884 delete_from_page_cache(page);
1885 spin_lock_irq(&info->lock);
1886 shmem_recalc_inode(inode);
1887 spin_unlock_irq(&info->lock);
1888 }
1889 error = -EINVAL;
1890 goto unlock;
1891 }
1892 *pagep = page + index - hindex;
1893 return 0;
1894
1895 /*
1896 * Error recovery.
1897 */
1898 unacct:
1899 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1900
1901 if (PageTransHuge(page)) {
1902 unlock_page(page);
1903 put_page(page);
1904 goto alloc_nohuge;
1905 }
1906 failed:
1907 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1908 error = -EEXIST;
1909 unlock:
1910 if (page) {
1911 unlock_page(page);
1912 put_page(page);
1913 }
1914 if (error == -ENOSPC && !once++) {
1915 spin_lock_irq(&info->lock);
1916 shmem_recalc_inode(inode);
1917 spin_unlock_irq(&info->lock);
1918 goto repeat;
1919 }
1920 if (error == -EEXIST) /* from above or from radix_tree_insert */
1921 goto repeat;
1922 return error;
1923 }
1924
1925 /*
1926 * This is like autoremove_wake_function, but it removes the wait queue
1927 * entry unconditionally - even if something else had already woken the
1928 * target.
1929 */
1930 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1931 {
1932 int ret = default_wake_function(wait, mode, sync, key);
1933 list_del_init(&wait->entry);
1934 return ret;
1935 }
1936
1937 static int shmem_fault(struct vm_fault *vmf)
1938 {
1939 struct vm_area_struct *vma = vmf->vma;
1940 struct inode *inode = file_inode(vma->vm_file);
1941 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1942 enum sgp_type sgp;
1943 int error;
1944 int ret = VM_FAULT_LOCKED;
1945
1946 /*
1947 * Trinity finds that probing a hole which tmpfs is punching can
1948 * prevent the hole-punch from ever completing: which in turn
1949 * locks writers out with its hold on i_mutex. So refrain from
1950 * faulting pages into the hole while it's being punched. Although
1951 * shmem_undo_range() does remove the additions, it may be unable to
1952 * keep up, as each new page needs its own unmap_mapping_range() call,
1953 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1954 *
1955 * It does not matter if we sometimes reach this check just before the
1956 * hole-punch begins, so that one fault then races with the punch:
1957 * we just need to make racing faults a rare case.
1958 *
1959 * The implementation below would be much simpler if we just used a
1960 * standard mutex or completion: but we cannot take i_mutex in fault,
1961 * and bloating every shmem inode for this unlikely case would be sad.
1962 */
1963 if (unlikely(inode->i_private)) {
1964 struct shmem_falloc *shmem_falloc;
1965
1966 spin_lock(&inode->i_lock);
1967 shmem_falloc = inode->i_private;
1968 if (shmem_falloc &&
1969 shmem_falloc->waitq &&
1970 vmf->pgoff >= shmem_falloc->start &&
1971 vmf->pgoff < shmem_falloc->next) {
1972 wait_queue_head_t *shmem_falloc_waitq;
1973 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1974
1975 ret = VM_FAULT_NOPAGE;
1976 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1977 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1978 /* It's polite to up mmap_sem if we can */
1979 up_read(&vma->vm_mm->mmap_sem);
1980 ret = VM_FAULT_RETRY;
1981 }
1982
1983 shmem_falloc_waitq = shmem_falloc->waitq;
1984 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1985 TASK_UNINTERRUPTIBLE);
1986 spin_unlock(&inode->i_lock);
1987 schedule();
1988
1989 /*
1990 * shmem_falloc_waitq points into the shmem_fallocate()
1991 * stack of the hole-punching task: shmem_falloc_waitq
1992 * is usually invalid by the time we reach here, but
1993 * finish_wait() does not dereference it in that case;
1994 * though i_lock needed lest racing with wake_up_all().
1995 */
1996 spin_lock(&inode->i_lock);
1997 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1998 spin_unlock(&inode->i_lock);
1999 return ret;
2000 }
2001 spin_unlock(&inode->i_lock);
2002 }
2003
2004 sgp = SGP_CACHE;
2005
2006 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2007 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2008 sgp = SGP_NOHUGE;
2009 else if (vma->vm_flags & VM_HUGEPAGE)
2010 sgp = SGP_HUGE;
2011
2012 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2013 gfp, vma, vmf, &ret);
2014 if (error)
2015 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2016 return ret;
2017 }
2018
2019 unsigned long shmem_get_unmapped_area(struct file *file,
2020 unsigned long uaddr, unsigned long len,
2021 unsigned long pgoff, unsigned long flags)
2022 {
2023 unsigned long (*get_area)(struct file *,
2024 unsigned long, unsigned long, unsigned long, unsigned long);
2025 unsigned long addr;
2026 unsigned long offset;
2027 unsigned long inflated_len;
2028 unsigned long inflated_addr;
2029 unsigned long inflated_offset;
2030
2031 if (len > TASK_SIZE)
2032 return -ENOMEM;
2033
2034 get_area = current->mm->get_unmapped_area;
2035 addr = get_area(file, uaddr, len, pgoff, flags);
2036
2037 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2038 return addr;
2039 if (IS_ERR_VALUE(addr))
2040 return addr;
2041 if (addr & ~PAGE_MASK)
2042 return addr;
2043 if (addr > TASK_SIZE - len)
2044 return addr;
2045
2046 if (shmem_huge == SHMEM_HUGE_DENY)
2047 return addr;
2048 if (len < HPAGE_PMD_SIZE)
2049 return addr;
2050 if (flags & MAP_FIXED)
2051 return addr;
2052 /*
2053 * Our priority is to support MAP_SHARED mapped hugely;
2054 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2055 * But if caller specified an address hint, respect that as before.
2056 */
2057 if (uaddr)
2058 return addr;
2059
2060 if (shmem_huge != SHMEM_HUGE_FORCE) {
2061 struct super_block *sb;
2062
2063 if (file) {
2064 VM_BUG_ON(file->f_op != &shmem_file_operations);
2065 sb = file_inode(file)->i_sb;
2066 } else {
2067 /*
2068 * Called directly from mm/mmap.c, or drivers/char/mem.c
2069 * for "/dev/zero", to create a shared anonymous object.
2070 */
2071 if (IS_ERR(shm_mnt))
2072 return addr;
2073 sb = shm_mnt->mnt_sb;
2074 }
2075 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2076 return addr;
2077 }
2078
2079 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2080 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2081 return addr;
2082 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2083 return addr;
2084
2085 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2086 if (inflated_len > TASK_SIZE)
2087 return addr;
2088 if (inflated_len < len)
2089 return addr;
2090
2091 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2092 if (IS_ERR_VALUE(inflated_addr))
2093 return addr;
2094 if (inflated_addr & ~PAGE_MASK)
2095 return addr;
2096
2097 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2098 inflated_addr += offset - inflated_offset;
2099 if (inflated_offset > offset)
2100 inflated_addr += HPAGE_PMD_SIZE;
2101
2102 if (inflated_addr > TASK_SIZE - len)
2103 return addr;
2104 return inflated_addr;
2105 }
2106
2107 #ifdef CONFIG_NUMA
2108 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2109 {
2110 struct inode *inode = file_inode(vma->vm_file);
2111 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2112 }
2113
2114 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2115 unsigned long addr)
2116 {
2117 struct inode *inode = file_inode(vma->vm_file);
2118 pgoff_t index;
2119
2120 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2121 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2122 }
2123 #endif
2124
2125 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2126 {
2127 struct inode *inode = file_inode(file);
2128 struct shmem_inode_info *info = SHMEM_I(inode);
2129 int retval = -ENOMEM;
2130
2131 spin_lock_irq(&info->lock);
2132 if (lock && !(info->flags & VM_LOCKED)) {
2133 if (!user_shm_lock(inode->i_size, user))
2134 goto out_nomem;
2135 info->flags |= VM_LOCKED;
2136 mapping_set_unevictable(file->f_mapping);
2137 }
2138 if (!lock && (info->flags & VM_LOCKED) && user) {
2139 user_shm_unlock(inode->i_size, user);
2140 info->flags &= ~VM_LOCKED;
2141 mapping_clear_unevictable(file->f_mapping);
2142 }
2143 retval = 0;
2144
2145 out_nomem:
2146 spin_unlock_irq(&info->lock);
2147 return retval;
2148 }
2149
2150 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2151 {
2152 file_accessed(file);
2153 vma->vm_ops = &shmem_vm_ops;
2154 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2155 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2156 (vma->vm_end & HPAGE_PMD_MASK)) {
2157 khugepaged_enter(vma, vma->vm_flags);
2158 }
2159 return 0;
2160 }
2161
2162 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2163 umode_t mode, dev_t dev, unsigned long flags)
2164 {
2165 struct inode *inode;
2166 struct shmem_inode_info *info;
2167 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2168
2169 if (shmem_reserve_inode(sb))
2170 return NULL;
2171
2172 inode = new_inode(sb);
2173 if (inode) {
2174 inode->i_ino = get_next_ino();
2175 inode_init_owner(inode, dir, mode);
2176 inode->i_blocks = 0;
2177 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2178 inode->i_generation = get_seconds();
2179 info = SHMEM_I(inode);
2180 memset(info, 0, (char *)inode - (char *)info);
2181 spin_lock_init(&info->lock);
2182 info->seals = F_SEAL_SEAL;
2183 info->flags = flags & VM_NORESERVE;
2184 INIT_LIST_HEAD(&info->shrinklist);
2185 INIT_LIST_HEAD(&info->swaplist);
2186 simple_xattrs_init(&info->xattrs);
2187 cache_no_acl(inode);
2188
2189 switch (mode & S_IFMT) {
2190 default:
2191 inode->i_op = &shmem_special_inode_operations;
2192 init_special_inode(inode, mode, dev);
2193 break;
2194 case S_IFREG:
2195 inode->i_mapping->a_ops = &shmem_aops;
2196 inode->i_op = &shmem_inode_operations;
2197 inode->i_fop = &shmem_file_operations;
2198 mpol_shared_policy_init(&info->policy,
2199 shmem_get_sbmpol(sbinfo));
2200 break;
2201 case S_IFDIR:
2202 inc_nlink(inode);
2203 /* Some things misbehave if size == 0 on a directory */
2204 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2205 inode->i_op = &shmem_dir_inode_operations;
2206 inode->i_fop = &simple_dir_operations;
2207 break;
2208 case S_IFLNK:
2209 /*
2210 * Must not load anything in the rbtree,
2211 * mpol_free_shared_policy will not be called.
2212 */
2213 mpol_shared_policy_init(&info->policy, NULL);
2214 break;
2215 }
2216
2217 lockdep_annotate_inode_mutex_key(inode);
2218 } else
2219 shmem_free_inode(sb);
2220 return inode;
2221 }
2222
2223 bool shmem_mapping(struct address_space *mapping)
2224 {
2225 return mapping->a_ops == &shmem_aops;
2226 }
2227
2228 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2229 pmd_t *dst_pmd,
2230 struct vm_area_struct *dst_vma,
2231 unsigned long dst_addr,
2232 unsigned long src_addr,
2233 bool zeropage,
2234 struct page **pagep)
2235 {
2236 struct inode *inode = file_inode(dst_vma->vm_file);
2237 struct shmem_inode_info *info = SHMEM_I(inode);
2238 struct address_space *mapping = inode->i_mapping;
2239 gfp_t gfp = mapping_gfp_mask(mapping);
2240 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2241 struct mem_cgroup *memcg;
2242 spinlock_t *ptl;
2243 void *page_kaddr;
2244 struct page *page;
2245 pte_t _dst_pte, *dst_pte;
2246 int ret;
2247 pgoff_t offset, max_off;
2248
2249 ret = -ENOMEM;
2250 if (!shmem_inode_acct_block(inode, 1))
2251 goto out;
2252
2253 if (!*pagep) {
2254 page = shmem_alloc_page(gfp, info, pgoff);
2255 if (!page)
2256 goto out_unacct_blocks;
2257
2258 if (!zeropage) { /* mcopy_atomic */
2259 page_kaddr = kmap_atomic(page);
2260 ret = copy_from_user(page_kaddr,
2261 (const void __user *)src_addr,
2262 PAGE_SIZE);
2263 kunmap_atomic(page_kaddr);
2264
2265 /* fallback to copy_from_user outside mmap_sem */
2266 if (unlikely(ret)) {
2267 *pagep = page;
2268 shmem_inode_unacct_blocks(inode, 1);
2269 /* don't free the page */
2270 return -ENOENT;
2271 }
2272 } else { /* mfill_zeropage_atomic */
2273 clear_highpage(page);
2274 }
2275 } else {
2276 page = *pagep;
2277 *pagep = NULL;
2278 }
2279
2280 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2281 __SetPageLocked(page);
2282 __SetPageSwapBacked(page);
2283 __SetPageUptodate(page);
2284
2285 ret = -EFAULT;
2286 offset = linear_page_index(dst_vma, dst_addr);
2287 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2288 if (unlikely(offset >= max_off))
2289 goto out_release;
2290
2291 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2292 if (ret)
2293 goto out_release;
2294
2295 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2296 if (!ret) {
2297 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2298 radix_tree_preload_end();
2299 }
2300 if (ret)
2301 goto out_release_uncharge;
2302
2303 mem_cgroup_commit_charge(page, memcg, false, false);
2304
2305 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2306 if (dst_vma->vm_flags & VM_WRITE)
2307 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2308 else {
2309 /*
2310 * We don't set the pte dirty if the vma has no
2311 * VM_WRITE permission, so mark the page dirty or it
2312 * could be freed from under us. We could do it
2313 * unconditionally before unlock_page(), but doing it
2314 * only if VM_WRITE is not set is faster.
2315 */
2316 set_page_dirty(page);
2317 }
2318
2319 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2320
2321 ret = -EFAULT;
2322 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2323 if (unlikely(offset >= max_off))
2324 goto out_release_uncharge_unlock;
2325
2326 ret = -EEXIST;
2327 if (!pte_none(*dst_pte))
2328 goto out_release_uncharge_unlock;
2329
2330 lru_cache_add_anon(page);
2331
2332 spin_lock(&info->lock);
2333 info->alloced++;
2334 inode->i_blocks += BLOCKS_PER_PAGE;
2335 shmem_recalc_inode(inode);
2336 spin_unlock(&info->lock);
2337
2338 inc_mm_counter(dst_mm, mm_counter_file(page));
2339 page_add_file_rmap(page, false);
2340 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2341
2342 /* No need to invalidate - it was non-present before */
2343 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2344 pte_unmap_unlock(dst_pte, ptl);
2345 unlock_page(page);
2346 ret = 0;
2347 out:
2348 return ret;
2349 out_release_uncharge_unlock:
2350 pte_unmap_unlock(dst_pte, ptl);
2351 ClearPageDirty(page);
2352 delete_from_page_cache(page);
2353 out_release_uncharge:
2354 mem_cgroup_cancel_charge(page, memcg, false);
2355 out_release:
2356 unlock_page(page);
2357 put_page(page);
2358 out_unacct_blocks:
2359 shmem_inode_unacct_blocks(inode, 1);
2360 goto out;
2361 }
2362
2363 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2364 pmd_t *dst_pmd,
2365 struct vm_area_struct *dst_vma,
2366 unsigned long dst_addr,
2367 unsigned long src_addr,
2368 struct page **pagep)
2369 {
2370 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2371 dst_addr, src_addr, false, pagep);
2372 }
2373
2374 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2375 pmd_t *dst_pmd,
2376 struct vm_area_struct *dst_vma,
2377 unsigned long dst_addr)
2378 {
2379 struct page *page = NULL;
2380
2381 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2382 dst_addr, 0, true, &page);
2383 }
2384
2385 #ifdef CONFIG_TMPFS
2386 static const struct inode_operations shmem_symlink_inode_operations;
2387 static const struct inode_operations shmem_short_symlink_operations;
2388
2389 #ifdef CONFIG_TMPFS_XATTR
2390 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2391 #else
2392 #define shmem_initxattrs NULL
2393 #endif
2394
2395 static int
2396 shmem_write_begin(struct file *file, struct address_space *mapping,
2397 loff_t pos, unsigned len, unsigned flags,
2398 struct page **pagep, void **fsdata)
2399 {
2400 struct inode *inode = mapping->host;
2401 struct shmem_inode_info *info = SHMEM_I(inode);
2402 pgoff_t index = pos >> PAGE_SHIFT;
2403
2404 /* i_mutex is held by caller */
2405 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2406 if (info->seals & F_SEAL_WRITE)
2407 return -EPERM;
2408 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2409 return -EPERM;
2410 }
2411
2412 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2413 }
2414
2415 static int
2416 shmem_write_end(struct file *file, struct address_space *mapping,
2417 loff_t pos, unsigned len, unsigned copied,
2418 struct page *page, void *fsdata)
2419 {
2420 struct inode *inode = mapping->host;
2421
2422 if (pos + copied > inode->i_size)
2423 i_size_write(inode, pos + copied);
2424
2425 if (!PageUptodate(page)) {
2426 struct page *head = compound_head(page);
2427 if (PageTransCompound(page)) {
2428 int i;
2429
2430 for (i = 0; i < HPAGE_PMD_NR; i++) {
2431 if (head + i == page)
2432 continue;
2433 clear_highpage(head + i);
2434 flush_dcache_page(head + i);
2435 }
2436 }
2437 if (copied < PAGE_SIZE) {
2438 unsigned from = pos & (PAGE_SIZE - 1);
2439 zero_user_segments(page, 0, from,
2440 from + copied, PAGE_SIZE);
2441 }
2442 SetPageUptodate(head);
2443 }
2444 set_page_dirty(page);
2445 unlock_page(page);
2446 put_page(page);
2447
2448 return copied;
2449 }
2450
2451 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2452 {
2453 struct file *file = iocb->ki_filp;
2454 struct inode *inode = file_inode(file);
2455 struct address_space *mapping = inode->i_mapping;
2456 pgoff_t index;
2457 unsigned long offset;
2458 enum sgp_type sgp = SGP_READ;
2459 int error = 0;
2460 ssize_t retval = 0;
2461 loff_t *ppos = &iocb->ki_pos;
2462
2463 /*
2464 * Might this read be for a stacking filesystem? Then when reading
2465 * holes of a sparse file, we actually need to allocate those pages,
2466 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2467 */
2468 if (!iter_is_iovec(to))
2469 sgp = SGP_CACHE;
2470
2471 index = *ppos >> PAGE_SHIFT;
2472 offset = *ppos & ~PAGE_MASK;
2473
2474 for (;;) {
2475 struct page *page = NULL;
2476 pgoff_t end_index;
2477 unsigned long nr, ret;
2478 loff_t i_size = i_size_read(inode);
2479
2480 end_index = i_size >> PAGE_SHIFT;
2481 if (index > end_index)
2482 break;
2483 if (index == end_index) {
2484 nr = i_size & ~PAGE_MASK;
2485 if (nr <= offset)
2486 break;
2487 }
2488
2489 error = shmem_getpage(inode, index, &page, sgp);
2490 if (error) {
2491 if (error == -EINVAL)
2492 error = 0;
2493 break;
2494 }
2495 if (page) {
2496 if (sgp == SGP_CACHE)
2497 set_page_dirty(page);
2498 unlock_page(page);
2499 }
2500
2501 /*
2502 * We must evaluate after, since reads (unlike writes)
2503 * are called without i_mutex protection against truncate
2504 */
2505 nr = PAGE_SIZE;
2506 i_size = i_size_read(inode);
2507 end_index = i_size >> PAGE_SHIFT;
2508 if (index == end_index) {
2509 nr = i_size & ~PAGE_MASK;
2510 if (nr <= offset) {
2511 if (page)
2512 put_page(page);
2513 break;
2514 }
2515 }
2516 nr -= offset;
2517
2518 if (page) {
2519 /*
2520 * If users can be writing to this page using arbitrary
2521 * virtual addresses, take care about potential aliasing
2522 * before reading the page on the kernel side.
2523 */
2524 if (mapping_writably_mapped(mapping))
2525 flush_dcache_page(page);
2526 /*
2527 * Mark the page accessed if we read the beginning.
2528 */
2529 if (!offset)
2530 mark_page_accessed(page);
2531 } else {
2532 page = ZERO_PAGE(0);
2533 get_page(page);
2534 }
2535
2536 /*
2537 * Ok, we have the page, and it's up-to-date, so
2538 * now we can copy it to user space...
2539 */
2540 ret = copy_page_to_iter(page, offset, nr, to);
2541 retval += ret;
2542 offset += ret;
2543 index += offset >> PAGE_SHIFT;
2544 offset &= ~PAGE_MASK;
2545
2546 put_page(page);
2547 if (!iov_iter_count(to))
2548 break;
2549 if (ret < nr) {
2550 error = -EFAULT;
2551 break;
2552 }
2553 cond_resched();
2554 }
2555
2556 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2557 file_accessed(file);
2558 return retval ? retval : error;
2559 }
2560
2561 /*
2562 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2563 */
2564 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2565 pgoff_t index, pgoff_t end, int whence)
2566 {
2567 struct page *page;
2568 struct pagevec pvec;
2569 pgoff_t indices[PAGEVEC_SIZE];
2570 bool done = false;
2571 int i;
2572
2573 pagevec_init(&pvec, 0);
2574 pvec.nr = 1; /* start small: we may be there already */
2575 while (!done) {
2576 pvec.nr = find_get_entries(mapping, index,
2577 pvec.nr, pvec.pages, indices);
2578 if (!pvec.nr) {
2579 if (whence == SEEK_DATA)
2580 index = end;
2581 break;
2582 }
2583 for (i = 0; i < pvec.nr; i++, index++) {
2584 if (index < indices[i]) {
2585 if (whence == SEEK_HOLE) {
2586 done = true;
2587 break;
2588 }
2589 index = indices[i];
2590 }
2591 page = pvec.pages[i];
2592 if (page && !radix_tree_exceptional_entry(page)) {
2593 if (!PageUptodate(page))
2594 page = NULL;
2595 }
2596 if (index >= end ||
2597 (page && whence == SEEK_DATA) ||
2598 (!page && whence == SEEK_HOLE)) {
2599 done = true;
2600 break;
2601 }
2602 }
2603 pagevec_remove_exceptionals(&pvec);
2604 pagevec_release(&pvec);
2605 pvec.nr = PAGEVEC_SIZE;
2606 cond_resched();
2607 }
2608 return index;
2609 }
2610
2611 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2612 {
2613 struct address_space *mapping = file->f_mapping;
2614 struct inode *inode = mapping->host;
2615 pgoff_t start, end;
2616 loff_t new_offset;
2617
2618 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2619 return generic_file_llseek_size(file, offset, whence,
2620 MAX_LFS_FILESIZE, i_size_read(inode));
2621 inode_lock(inode);
2622 /* We're holding i_mutex so we can access i_size directly */
2623
2624 if (offset < 0 || offset >= inode->i_size)
2625 offset = -ENXIO;
2626 else {
2627 start = offset >> PAGE_SHIFT;
2628 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2629 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2630 new_offset <<= PAGE_SHIFT;
2631 if (new_offset > offset) {
2632 if (new_offset < inode->i_size)
2633 offset = new_offset;
2634 else if (whence == SEEK_DATA)
2635 offset = -ENXIO;
2636 else
2637 offset = inode->i_size;
2638 }
2639 }
2640
2641 if (offset >= 0)
2642 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2643 inode_unlock(inode);
2644 return offset;
2645 }
2646
2647 /*
2648 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2649 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2650 */
2651 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2652 #define LAST_SCAN 4 /* about 150ms max */
2653
2654 static void shmem_tag_pins(struct address_space *mapping)
2655 {
2656 struct radix_tree_iter iter;
2657 void **slot;
2658 pgoff_t start;
2659 struct page *page;
2660
2661 lru_add_drain();
2662 start = 0;
2663 rcu_read_lock();
2664
2665 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2666 page = radix_tree_deref_slot(slot);
2667 if (!page || radix_tree_exception(page)) {
2668 if (radix_tree_deref_retry(page)) {
2669 slot = radix_tree_iter_retry(&iter);
2670 continue;
2671 }
2672 } else if (page_count(page) - page_mapcount(page) > 1) {
2673 spin_lock_irq(&mapping->tree_lock);
2674 radix_tree_tag_set(&mapping->page_tree, iter.index,
2675 SHMEM_TAG_PINNED);
2676 spin_unlock_irq(&mapping->tree_lock);
2677 }
2678
2679 if (need_resched()) {
2680 slot = radix_tree_iter_resume(slot, &iter);
2681 cond_resched_rcu();
2682 }
2683 }
2684 rcu_read_unlock();
2685 }
2686
2687 /*
2688 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2689 * via get_user_pages(), drivers might have some pending I/O without any active
2690 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2691 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2692 * them to be dropped.
2693 * The caller must guarantee that no new user will acquire writable references
2694 * to those pages to avoid races.
2695 */
2696 static int shmem_wait_for_pins(struct address_space *mapping)
2697 {
2698 struct radix_tree_iter iter;
2699 void **slot;
2700 pgoff_t start;
2701 struct page *page;
2702 int error, scan;
2703
2704 shmem_tag_pins(mapping);
2705
2706 error = 0;
2707 for (scan = 0; scan <= LAST_SCAN; scan++) {
2708 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2709 break;
2710
2711 if (!scan)
2712 lru_add_drain_all();
2713 else if (schedule_timeout_killable((HZ << scan) / 200))
2714 scan = LAST_SCAN;
2715
2716 start = 0;
2717 rcu_read_lock();
2718 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2719 start, SHMEM_TAG_PINNED) {
2720
2721 page = radix_tree_deref_slot(slot);
2722 if (radix_tree_exception(page)) {
2723 if (radix_tree_deref_retry(page)) {
2724 slot = radix_tree_iter_retry(&iter);
2725 continue;
2726 }
2727
2728 page = NULL;
2729 }
2730
2731 if (page &&
2732 page_count(page) - page_mapcount(page) != 1) {
2733 if (scan < LAST_SCAN)
2734 goto continue_resched;
2735
2736 /*
2737 * On the last scan, we clean up all those tags
2738 * we inserted; but make a note that we still
2739 * found pages pinned.
2740 */
2741 error = -EBUSY;
2742 }
2743
2744 spin_lock_irq(&mapping->tree_lock);
2745 radix_tree_tag_clear(&mapping->page_tree,
2746 iter.index, SHMEM_TAG_PINNED);
2747 spin_unlock_irq(&mapping->tree_lock);
2748 continue_resched:
2749 if (need_resched()) {
2750 slot = radix_tree_iter_resume(slot, &iter);
2751 cond_resched_rcu();
2752 }
2753 }
2754 rcu_read_unlock();
2755 }
2756
2757 return error;
2758 }
2759
2760 #define F_ALL_SEALS (F_SEAL_SEAL | \
2761 F_SEAL_SHRINK | \
2762 F_SEAL_GROW | \
2763 F_SEAL_WRITE)
2764
2765 int shmem_add_seals(struct file *file, unsigned int seals)
2766 {
2767 struct inode *inode = file_inode(file);
2768 struct shmem_inode_info *info = SHMEM_I(inode);
2769 int error;
2770
2771 /*
2772 * SEALING
2773 * Sealing allows multiple parties to share a shmem-file but restrict
2774 * access to a specific subset of file operations. Seals can only be
2775 * added, but never removed. This way, mutually untrusted parties can
2776 * share common memory regions with a well-defined policy. A malicious
2777 * peer can thus never perform unwanted operations on a shared object.
2778 *
2779 * Seals are only supported on special shmem-files and always affect
2780 * the whole underlying inode. Once a seal is set, it may prevent some
2781 * kinds of access to the file. Currently, the following seals are
2782 * defined:
2783 * SEAL_SEAL: Prevent further seals from being set on this file
2784 * SEAL_SHRINK: Prevent the file from shrinking
2785 * SEAL_GROW: Prevent the file from growing
2786 * SEAL_WRITE: Prevent write access to the file
2787 *
2788 * As we don't require any trust relationship between two parties, we
2789 * must prevent seals from being removed. Therefore, sealing a file
2790 * only adds a given set of seals to the file, it never touches
2791 * existing seals. Furthermore, the "setting seals"-operation can be
2792 * sealed itself, which basically prevents any further seal from being
2793 * added.
2794 *
2795 * Semantics of sealing are only defined on volatile files. Only
2796 * anonymous shmem files support sealing. More importantly, seals are
2797 * never written to disk. Therefore, there's no plan to support it on
2798 * other file types.
2799 */
2800
2801 if (file->f_op != &shmem_file_operations)
2802 return -EINVAL;
2803 if (!(file->f_mode & FMODE_WRITE))
2804 return -EPERM;
2805 if (seals & ~(unsigned int)F_ALL_SEALS)
2806 return -EINVAL;
2807
2808 inode_lock(inode);
2809
2810 if (info->seals & F_SEAL_SEAL) {
2811 error = -EPERM;
2812 goto unlock;
2813 }
2814
2815 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2816 error = mapping_deny_writable(file->f_mapping);
2817 if (error)
2818 goto unlock;
2819
2820 error = shmem_wait_for_pins(file->f_mapping);
2821 if (error) {
2822 mapping_allow_writable(file->f_mapping);
2823 goto unlock;
2824 }
2825 }
2826
2827 info->seals |= seals;
2828 error = 0;
2829
2830 unlock:
2831 inode_unlock(inode);
2832 return error;
2833 }
2834 EXPORT_SYMBOL_GPL(shmem_add_seals);
2835
2836 int shmem_get_seals(struct file *file)
2837 {
2838 if (file->f_op != &shmem_file_operations)
2839 return -EINVAL;
2840
2841 return SHMEM_I(file_inode(file))->seals;
2842 }
2843 EXPORT_SYMBOL_GPL(shmem_get_seals);
2844
2845 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2846 {
2847 long error;
2848
2849 switch (cmd) {
2850 case F_ADD_SEALS:
2851 /* disallow upper 32bit */
2852 if (arg > UINT_MAX)
2853 return -EINVAL;
2854
2855 error = shmem_add_seals(file, arg);
2856 break;
2857 case F_GET_SEALS:
2858 error = shmem_get_seals(file);
2859 break;
2860 default:
2861 error = -EINVAL;
2862 break;
2863 }
2864
2865 return error;
2866 }
2867
2868 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2869 loff_t len)
2870 {
2871 struct inode *inode = file_inode(file);
2872 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2873 struct shmem_inode_info *info = SHMEM_I(inode);
2874 struct shmem_falloc shmem_falloc;
2875 pgoff_t start, index, end;
2876 int error;
2877
2878 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2879 return -EOPNOTSUPP;
2880
2881 inode_lock(inode);
2882
2883 if (mode & FALLOC_FL_PUNCH_HOLE) {
2884 struct address_space *mapping = file->f_mapping;
2885 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2886 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2887 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2888
2889 /* protected by i_mutex */
2890 if (info->seals & F_SEAL_WRITE) {
2891 error = -EPERM;
2892 goto out;
2893 }
2894
2895 shmem_falloc.waitq = &shmem_falloc_waitq;
2896 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2897 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2898 spin_lock(&inode->i_lock);
2899 inode->i_private = &shmem_falloc;
2900 spin_unlock(&inode->i_lock);
2901
2902 if ((u64)unmap_end > (u64)unmap_start)
2903 unmap_mapping_range(mapping, unmap_start,
2904 1 + unmap_end - unmap_start, 0);
2905 shmem_truncate_range(inode, offset, offset + len - 1);
2906 /* No need to unmap again: hole-punching leaves COWed pages */
2907
2908 spin_lock(&inode->i_lock);
2909 inode->i_private = NULL;
2910 wake_up_all(&shmem_falloc_waitq);
2911 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2912 spin_unlock(&inode->i_lock);
2913 error = 0;
2914 goto out;
2915 }
2916
2917 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2918 error = inode_newsize_ok(inode, offset + len);
2919 if (error)
2920 goto out;
2921
2922 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2923 error = -EPERM;
2924 goto out;
2925 }
2926
2927 start = offset >> PAGE_SHIFT;
2928 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2929 /* Try to avoid a swapstorm if len is impossible to satisfy */
2930 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2931 error = -ENOSPC;
2932 goto out;
2933 }
2934
2935 shmem_falloc.waitq = NULL;
2936 shmem_falloc.start = start;
2937 shmem_falloc.next = start;
2938 shmem_falloc.nr_falloced = 0;
2939 shmem_falloc.nr_unswapped = 0;
2940 spin_lock(&inode->i_lock);
2941 inode->i_private = &shmem_falloc;
2942 spin_unlock(&inode->i_lock);
2943
2944 for (index = start; index < end; index++) {
2945 struct page *page;
2946
2947 /*
2948 * Good, the fallocate(2) manpage permits EINTR: we may have
2949 * been interrupted because we are using up too much memory.
2950 */
2951 if (signal_pending(current))
2952 error = -EINTR;
2953 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2954 error = -ENOMEM;
2955 else
2956 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2957 if (error) {
2958 /* Remove the !PageUptodate pages we added */
2959 if (index > start) {
2960 shmem_undo_range(inode,
2961 (loff_t)start << PAGE_SHIFT,
2962 ((loff_t)index << PAGE_SHIFT) - 1, true);
2963 }
2964 goto undone;
2965 }
2966
2967 /*
2968 * Inform shmem_writepage() how far we have reached.
2969 * No need for lock or barrier: we have the page lock.
2970 */
2971 shmem_falloc.next++;
2972 if (!PageUptodate(page))
2973 shmem_falloc.nr_falloced++;
2974
2975 /*
2976 * If !PageUptodate, leave it that way so that freeable pages
2977 * can be recognized if we need to rollback on error later.
2978 * But set_page_dirty so that memory pressure will swap rather
2979 * than free the pages we are allocating (and SGP_CACHE pages
2980 * might still be clean: we now need to mark those dirty too).
2981 */
2982 set_page_dirty(page);
2983 unlock_page(page);
2984 put_page(page);
2985 cond_resched();
2986 }
2987
2988 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2989 i_size_write(inode, offset + len);
2990 inode->i_ctime = current_time(inode);
2991 undone:
2992 spin_lock(&inode->i_lock);
2993 inode->i_private = NULL;
2994 spin_unlock(&inode->i_lock);
2995 out:
2996 inode_unlock(inode);
2997 return error;
2998 }
2999
3000 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3001 {
3002 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3003
3004 buf->f_type = TMPFS_MAGIC;
3005 buf->f_bsize = PAGE_SIZE;
3006 buf->f_namelen = NAME_MAX;
3007 if (sbinfo->max_blocks) {
3008 buf->f_blocks = sbinfo->max_blocks;
3009 buf->f_bavail =
3010 buf->f_bfree = sbinfo->max_blocks -
3011 percpu_counter_sum(&sbinfo->used_blocks);
3012 }
3013 if (sbinfo->max_inodes) {
3014 buf->f_files = sbinfo->max_inodes;
3015 buf->f_ffree = sbinfo->free_inodes;
3016 }
3017 /* else leave those fields 0 like simple_statfs */
3018 return 0;
3019 }
3020
3021 /*
3022 * File creation. Allocate an inode, and we're done..
3023 */
3024 static int
3025 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3026 {
3027 struct inode *inode;
3028 int error = -ENOSPC;
3029
3030 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3031 if (inode) {
3032 error = simple_acl_create(dir, inode);
3033 if (error)
3034 goto out_iput;
3035 error = security_inode_init_security(inode, dir,
3036 &dentry->d_name,
3037 shmem_initxattrs, NULL);
3038 if (error && error != -EOPNOTSUPP)
3039 goto out_iput;
3040
3041 error = 0;
3042 dir->i_size += BOGO_DIRENT_SIZE;
3043 dir->i_ctime = dir->i_mtime = current_time(dir);
3044 d_instantiate(dentry, inode);
3045 dget(dentry); /* Extra count - pin the dentry in core */
3046 }
3047 return error;
3048 out_iput:
3049 iput(inode);
3050 return error;
3051 }
3052
3053 static int
3054 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3055 {
3056 struct inode *inode;
3057 int error = -ENOSPC;
3058
3059 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3060 if (inode) {
3061 error = security_inode_init_security(inode, dir,
3062 NULL,
3063 shmem_initxattrs, NULL);
3064 if (error && error != -EOPNOTSUPP)
3065 goto out_iput;
3066 error = simple_acl_create(dir, inode);
3067 if (error)
3068 goto out_iput;
3069 d_tmpfile(dentry, inode);
3070 }
3071 return error;
3072 out_iput:
3073 iput(inode);
3074 return error;
3075 }
3076
3077 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3078 {
3079 int error;
3080
3081 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3082 return error;
3083 inc_nlink(dir);
3084 return 0;
3085 }
3086
3087 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3088 bool excl)
3089 {
3090 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3091 }
3092
3093 /*
3094 * Link a file..
3095 */
3096 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3097 {
3098 struct inode *inode = d_inode(old_dentry);
3099 int ret = 0;
3100
3101 /*
3102 * No ordinary (disk based) filesystem counts links as inodes;
3103 * but each new link needs a new dentry, pinning lowmem, and
3104 * tmpfs dentries cannot be pruned until they are unlinked.
3105 * But if an O_TMPFILE file is linked into the tmpfs, the
3106 * first link must skip that, to get the accounting right.
3107 */
3108 if (inode->i_nlink) {
3109 ret = shmem_reserve_inode(inode->i_sb);
3110 if (ret)
3111 goto out;
3112 }
3113
3114 dir->i_size += BOGO_DIRENT_SIZE;
3115 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3116 inc_nlink(inode);
3117 ihold(inode); /* New dentry reference */
3118 dget(dentry); /* Extra pinning count for the created dentry */
3119 d_instantiate(dentry, inode);
3120 out:
3121 return ret;
3122 }
3123
3124 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3125 {
3126 struct inode *inode = d_inode(dentry);
3127
3128 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3129 shmem_free_inode(inode->i_sb);
3130
3131 dir->i_size -= BOGO_DIRENT_SIZE;
3132 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3133 drop_nlink(inode);
3134 dput(dentry); /* Undo the count from "create" - this does all the work */
3135 return 0;
3136 }
3137
3138 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3139 {
3140 if (!simple_empty(dentry))
3141 return -ENOTEMPTY;
3142
3143 drop_nlink(d_inode(dentry));
3144 drop_nlink(dir);
3145 return shmem_unlink(dir, dentry);
3146 }
3147
3148 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3149 {
3150 bool old_is_dir = d_is_dir(old_dentry);
3151 bool new_is_dir = d_is_dir(new_dentry);
3152
3153 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3154 if (old_is_dir) {
3155 drop_nlink(old_dir);
3156 inc_nlink(new_dir);
3157 } else {
3158 drop_nlink(new_dir);
3159 inc_nlink(old_dir);
3160 }
3161 }
3162 old_dir->i_ctime = old_dir->i_mtime =
3163 new_dir->i_ctime = new_dir->i_mtime =
3164 d_inode(old_dentry)->i_ctime =
3165 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3166
3167 return 0;
3168 }
3169
3170 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3171 {
3172 struct dentry *whiteout;
3173 int error;
3174
3175 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3176 if (!whiteout)
3177 return -ENOMEM;
3178
3179 error = shmem_mknod(old_dir, whiteout,
3180 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3181 dput(whiteout);
3182 if (error)
3183 return error;
3184
3185 /*
3186 * Cheat and hash the whiteout while the old dentry is still in
3187 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3188 *
3189 * d_lookup() will consistently find one of them at this point,
3190 * not sure which one, but that isn't even important.
3191 */
3192 d_rehash(whiteout);
3193 return 0;
3194 }
3195
3196 /*
3197 * The VFS layer already does all the dentry stuff for rename,
3198 * we just have to decrement the usage count for the target if
3199 * it exists so that the VFS layer correctly free's it when it
3200 * gets overwritten.
3201 */
3202 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3203 {
3204 struct inode *inode = d_inode(old_dentry);
3205 int they_are_dirs = S_ISDIR(inode->i_mode);
3206
3207 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3208 return -EINVAL;
3209
3210 if (flags & RENAME_EXCHANGE)
3211 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3212
3213 if (!simple_empty(new_dentry))
3214 return -ENOTEMPTY;
3215
3216 if (flags & RENAME_WHITEOUT) {
3217 int error;
3218
3219 error = shmem_whiteout(old_dir, old_dentry);
3220 if (error)
3221 return error;
3222 }
3223
3224 if (d_really_is_positive(new_dentry)) {
3225 (void) shmem_unlink(new_dir, new_dentry);
3226 if (they_are_dirs) {
3227 drop_nlink(d_inode(new_dentry));
3228 drop_nlink(old_dir);
3229 }
3230 } else if (they_are_dirs) {
3231 drop_nlink(old_dir);
3232 inc_nlink(new_dir);
3233 }
3234
3235 old_dir->i_size -= BOGO_DIRENT_SIZE;
3236 new_dir->i_size += BOGO_DIRENT_SIZE;
3237 old_dir->i_ctime = old_dir->i_mtime =
3238 new_dir->i_ctime = new_dir->i_mtime =
3239 inode->i_ctime = current_time(old_dir);
3240 return 0;
3241 }
3242
3243 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3244 {
3245 int error;
3246 int len;
3247 struct inode *inode;
3248 struct page *page;
3249 struct shmem_inode_info *info;
3250
3251 len = strlen(symname) + 1;
3252 if (len > PAGE_SIZE)
3253 return -ENAMETOOLONG;
3254
3255 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3256 if (!inode)
3257 return -ENOSPC;
3258
3259 error = security_inode_init_security(inode, dir, &dentry->d_name,
3260 shmem_initxattrs, NULL);
3261 if (error) {
3262 if (error != -EOPNOTSUPP) {
3263 iput(inode);
3264 return error;
3265 }
3266 error = 0;
3267 }
3268
3269 info = SHMEM_I(inode);
3270 inode->i_size = len-1;
3271 if (len <= SHORT_SYMLINK_LEN) {
3272 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3273 if (!inode->i_link) {
3274 iput(inode);
3275 return -ENOMEM;
3276 }
3277 inode->i_op = &shmem_short_symlink_operations;
3278 } else {
3279 inode_nohighmem(inode);
3280 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3281 if (error) {
3282 iput(inode);
3283 return error;
3284 }
3285 inode->i_mapping->a_ops = &shmem_aops;
3286 inode->i_op = &shmem_symlink_inode_operations;
3287 memcpy(page_address(page), symname, len);
3288 SetPageUptodate(page);
3289 set_page_dirty(page);
3290 unlock_page(page);
3291 put_page(page);
3292 }
3293 dir->i_size += BOGO_DIRENT_SIZE;
3294 dir->i_ctime = dir->i_mtime = current_time(dir);
3295 d_instantiate(dentry, inode);
3296 dget(dentry);
3297 return 0;
3298 }
3299
3300 static void shmem_put_link(void *arg)
3301 {
3302 mark_page_accessed(arg);
3303 put_page(arg);
3304 }
3305
3306 static const char *shmem_get_link(struct dentry *dentry,
3307 struct inode *inode,
3308 struct delayed_call *done)
3309 {
3310 struct page *page = NULL;
3311 int error;
3312 if (!dentry) {
3313 page = find_get_page(inode->i_mapping, 0);
3314 if (!page)
3315 return ERR_PTR(-ECHILD);
3316 if (!PageUptodate(page)) {
3317 put_page(page);
3318 return ERR_PTR(-ECHILD);
3319 }
3320 } else {
3321 error = shmem_getpage(inode, 0, &page, SGP_READ);
3322 if (error)
3323 return ERR_PTR(error);
3324 unlock_page(page);
3325 }
3326 set_delayed_call(done, shmem_put_link, page);
3327 return page_address(page);
3328 }
3329
3330 #ifdef CONFIG_TMPFS_XATTR
3331 /*
3332 * Superblocks without xattr inode operations may get some security.* xattr
3333 * support from the LSM "for free". As soon as we have any other xattrs
3334 * like ACLs, we also need to implement the security.* handlers at
3335 * filesystem level, though.
3336 */
3337
3338 /*
3339 * Callback for security_inode_init_security() for acquiring xattrs.
3340 */
3341 static int shmem_initxattrs(struct inode *inode,
3342 const struct xattr *xattr_array,
3343 void *fs_info)
3344 {
3345 struct shmem_inode_info *info = SHMEM_I(inode);
3346 const struct xattr *xattr;
3347 struct simple_xattr *new_xattr;
3348 size_t len;
3349
3350 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3351 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3352 if (!new_xattr)
3353 return -ENOMEM;
3354
3355 len = strlen(xattr->name) + 1;
3356 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3357 GFP_KERNEL);
3358 if (!new_xattr->name) {
3359 kfree(new_xattr);
3360 return -ENOMEM;
3361 }
3362
3363 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3364 XATTR_SECURITY_PREFIX_LEN);
3365 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3366 xattr->name, len);
3367
3368 simple_xattr_list_add(&info->xattrs, new_xattr);
3369 }
3370
3371 return 0;
3372 }
3373
3374 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3375 struct dentry *unused, struct inode *inode,
3376 const char *name, void *buffer, size_t size)
3377 {
3378 struct shmem_inode_info *info = SHMEM_I(inode);
3379
3380 name = xattr_full_name(handler, name);
3381 return simple_xattr_get(&info->xattrs, name, buffer, size);
3382 }
3383
3384 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3385 struct dentry *unused, struct inode *inode,
3386 const char *name, const void *value,
3387 size_t size, int flags)
3388 {
3389 struct shmem_inode_info *info = SHMEM_I(inode);
3390
3391 name = xattr_full_name(handler, name);
3392 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3393 }
3394
3395 static const struct xattr_handler shmem_security_xattr_handler = {
3396 .prefix = XATTR_SECURITY_PREFIX,
3397 .get = shmem_xattr_handler_get,
3398 .set = shmem_xattr_handler_set,
3399 };
3400
3401 static const struct xattr_handler shmem_trusted_xattr_handler = {
3402 .prefix = XATTR_TRUSTED_PREFIX,
3403 .get = shmem_xattr_handler_get,
3404 .set = shmem_xattr_handler_set,
3405 };
3406
3407 static const struct xattr_handler *shmem_xattr_handlers[] = {
3408 #ifdef CONFIG_TMPFS_POSIX_ACL
3409 &posix_acl_access_xattr_handler,
3410 &posix_acl_default_xattr_handler,
3411 #endif
3412 &shmem_security_xattr_handler,
3413 &shmem_trusted_xattr_handler,
3414 NULL
3415 };
3416
3417 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3418 {
3419 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3420 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3421 }
3422 #endif /* CONFIG_TMPFS_XATTR */
3423
3424 static const struct inode_operations shmem_short_symlink_operations = {
3425 .get_link = simple_get_link,
3426 #ifdef CONFIG_TMPFS_XATTR
3427 .listxattr = shmem_listxattr,
3428 #endif
3429 };
3430
3431 static const struct inode_operations shmem_symlink_inode_operations = {
3432 .get_link = shmem_get_link,
3433 #ifdef CONFIG_TMPFS_XATTR
3434 .listxattr = shmem_listxattr,
3435 #endif
3436 };
3437
3438 static struct dentry *shmem_get_parent(struct dentry *child)
3439 {
3440 return ERR_PTR(-ESTALE);
3441 }
3442
3443 static int shmem_match(struct inode *ino, void *vfh)
3444 {
3445 __u32 *fh = vfh;
3446 __u64 inum = fh[2];
3447 inum = (inum << 32) | fh[1];
3448 return ino->i_ino == inum && fh[0] == ino->i_generation;
3449 }
3450
3451 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3452 struct fid *fid, int fh_len, int fh_type)
3453 {
3454 struct inode *inode;
3455 struct dentry *dentry = NULL;
3456 u64 inum;
3457
3458 if (fh_len < 3)
3459 return NULL;
3460
3461 inum = fid->raw[2];
3462 inum = (inum << 32) | fid->raw[1];
3463
3464 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3465 shmem_match, fid->raw);
3466 if (inode) {
3467 dentry = d_find_alias(inode);
3468 iput(inode);
3469 }
3470
3471 return dentry;
3472 }
3473
3474 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3475 struct inode *parent)
3476 {
3477 if (*len < 3) {
3478 *len = 3;
3479 return FILEID_INVALID;
3480 }
3481
3482 if (inode_unhashed(inode)) {
3483 /* Unfortunately insert_inode_hash is not idempotent,
3484 * so as we hash inodes here rather than at creation
3485 * time, we need a lock to ensure we only try
3486 * to do it once
3487 */
3488 static DEFINE_SPINLOCK(lock);
3489 spin_lock(&lock);
3490 if (inode_unhashed(inode))
3491 __insert_inode_hash(inode,
3492 inode->i_ino + inode->i_generation);
3493 spin_unlock(&lock);
3494 }
3495
3496 fh[0] = inode->i_generation;
3497 fh[1] = inode->i_ino;
3498 fh[2] = ((__u64)inode->i_ino) >> 32;
3499
3500 *len = 3;
3501 return 1;
3502 }
3503
3504 static const struct export_operations shmem_export_ops = {
3505 .get_parent = shmem_get_parent,
3506 .encode_fh = shmem_encode_fh,
3507 .fh_to_dentry = shmem_fh_to_dentry,
3508 };
3509
3510 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3511 bool remount)
3512 {
3513 char *this_char, *value, *rest;
3514 struct mempolicy *mpol = NULL;
3515 uid_t uid;
3516 gid_t gid;
3517
3518 while (options != NULL) {
3519 this_char = options;
3520 for (;;) {
3521 /*
3522 * NUL-terminate this option: unfortunately,
3523 * mount options form a comma-separated list,
3524 * but mpol's nodelist may also contain commas.
3525 */
3526 options = strchr(options, ',');
3527 if (options == NULL)
3528 break;
3529 options++;
3530 if (!isdigit(*options)) {
3531 options[-1] = '\0';
3532 break;
3533 }
3534 }
3535 if (!*this_char)
3536 continue;
3537 if ((value = strchr(this_char,'=')) != NULL) {
3538 *value++ = 0;
3539 } else {
3540 pr_err("tmpfs: No value for mount option '%s'\n",
3541 this_char);
3542 goto error;
3543 }
3544
3545 if (!strcmp(this_char,"size")) {
3546 unsigned long long size;
3547 size = memparse(value,&rest);
3548 if (*rest == '%') {
3549 size <<= PAGE_SHIFT;
3550 size *= totalram_pages;
3551 do_div(size, 100);
3552 rest++;
3553 }
3554 if (*rest)
3555 goto bad_val;
3556 sbinfo->max_blocks =
3557 DIV_ROUND_UP(size, PAGE_SIZE);
3558 } else if (!strcmp(this_char,"nr_blocks")) {
3559 sbinfo->max_blocks = memparse(value, &rest);
3560 if (*rest)
3561 goto bad_val;
3562 } else if (!strcmp(this_char,"nr_inodes")) {
3563 sbinfo->max_inodes = memparse(value, &rest);
3564 if (*rest)
3565 goto bad_val;
3566 } else if (!strcmp(this_char,"mode")) {
3567 if (remount)
3568 continue;
3569 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3570 if (*rest)
3571 goto bad_val;
3572 } else if (!strcmp(this_char,"uid")) {
3573 if (remount)
3574 continue;
3575 uid = simple_strtoul(value, &rest, 0);
3576 if (*rest)
3577 goto bad_val;
3578 sbinfo->uid = make_kuid(current_user_ns(), uid);
3579 if (!uid_valid(sbinfo->uid))
3580 goto bad_val;
3581 } else if (!strcmp(this_char,"gid")) {
3582 if (remount)
3583 continue;
3584 gid = simple_strtoul(value, &rest, 0);
3585 if (*rest)
3586 goto bad_val;
3587 sbinfo->gid = make_kgid(current_user_ns(), gid);
3588 if (!gid_valid(sbinfo->gid))
3589 goto bad_val;
3590 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3591 } else if (!strcmp(this_char, "huge")) {
3592 int huge;
3593 huge = shmem_parse_huge(value);
3594 if (huge < 0)
3595 goto bad_val;
3596 if (!has_transparent_hugepage() &&
3597 huge != SHMEM_HUGE_NEVER)
3598 goto bad_val;
3599 sbinfo->huge = huge;
3600 #endif
3601 #ifdef CONFIG_NUMA
3602 } else if (!strcmp(this_char,"mpol")) {
3603 mpol_put(mpol);
3604 mpol = NULL;
3605 if (mpol_parse_str(value, &mpol))
3606 goto bad_val;
3607 #endif
3608 } else {
3609 pr_err("tmpfs: Bad mount option %s\n", this_char);
3610 goto error;
3611 }
3612 }
3613 sbinfo->mpol = mpol;
3614 return 0;
3615
3616 bad_val:
3617 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3618 value, this_char);
3619 error:
3620 mpol_put(mpol);
3621 return 1;
3622
3623 }
3624
3625 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3626 {
3627 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3628 struct shmem_sb_info config = *sbinfo;
3629 unsigned long inodes;
3630 int error = -EINVAL;
3631
3632 config.mpol = NULL;
3633 if (shmem_parse_options(data, &config, true))
3634 return error;
3635
3636 spin_lock(&sbinfo->stat_lock);
3637 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3638 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3639 goto out;
3640 if (config.max_inodes < inodes)
3641 goto out;
3642 /*
3643 * Those tests disallow limited->unlimited while any are in use;
3644 * but we must separately disallow unlimited->limited, because
3645 * in that case we have no record of how much is already in use.
3646 */
3647 if (config.max_blocks && !sbinfo->max_blocks)
3648 goto out;
3649 if (config.max_inodes && !sbinfo->max_inodes)
3650 goto out;
3651
3652 error = 0;
3653 sbinfo->huge = config.huge;
3654 sbinfo->max_blocks = config.max_blocks;
3655 sbinfo->max_inodes = config.max_inodes;
3656 sbinfo->free_inodes = config.max_inodes - inodes;
3657
3658 /*
3659 * Preserve previous mempolicy unless mpol remount option was specified.
3660 */
3661 if (config.mpol) {
3662 mpol_put(sbinfo->mpol);
3663 sbinfo->mpol = config.mpol; /* transfers initial ref */
3664 }
3665 out:
3666 spin_unlock(&sbinfo->stat_lock);
3667 return error;
3668 }
3669
3670 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3671 {
3672 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3673
3674 if (sbinfo->max_blocks != shmem_default_max_blocks())
3675 seq_printf(seq, ",size=%luk",
3676 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3677 if (sbinfo->max_inodes != shmem_default_max_inodes())
3678 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3679 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3680 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3681 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3682 seq_printf(seq, ",uid=%u",
3683 from_kuid_munged(&init_user_ns, sbinfo->uid));
3684 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3685 seq_printf(seq, ",gid=%u",
3686 from_kgid_munged(&init_user_ns, sbinfo->gid));
3687 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3688 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3689 if (sbinfo->huge)
3690 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3691 #endif
3692 shmem_show_mpol(seq, sbinfo->mpol);
3693 return 0;
3694 }
3695
3696 #define MFD_NAME_PREFIX "memfd:"
3697 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3698 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3699
3700 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3701
3702 SYSCALL_DEFINE2(memfd_create,
3703 const char __user *, uname,
3704 unsigned int, flags)
3705 {
3706 struct shmem_inode_info *info;
3707 struct file *file;
3708 int fd, error;
3709 char *name;
3710 long len;
3711
3712 if (!(flags & MFD_HUGETLB)) {
3713 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3714 return -EINVAL;
3715 } else {
3716 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3717 if (flags & MFD_ALLOW_SEALING)
3718 return -EINVAL;
3719 /* Allow huge page size encoding in flags. */
3720 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3721 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3722 return -EINVAL;
3723 }
3724
3725 /* length includes terminating zero */
3726 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3727 if (len <= 0)
3728 return -EFAULT;
3729 if (len > MFD_NAME_MAX_LEN + 1)
3730 return -EINVAL;
3731
3732 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3733 if (!name)
3734 return -ENOMEM;
3735
3736 strcpy(name, MFD_NAME_PREFIX);
3737 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3738 error = -EFAULT;
3739 goto err_name;
3740 }
3741
3742 /* terminating-zero may have changed after strnlen_user() returned */
3743 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3744 error = -EFAULT;
3745 goto err_name;
3746 }
3747
3748 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3749 if (fd < 0) {
3750 error = fd;
3751 goto err_name;
3752 }
3753
3754 if (flags & MFD_HUGETLB) {
3755 struct user_struct *user = NULL;
3756
3757 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3758 HUGETLB_ANONHUGE_INODE,
3759 (flags >> MFD_HUGE_SHIFT) &
3760 MFD_HUGE_MASK);
3761 } else
3762 file = shmem_file_setup(name, 0, VM_NORESERVE);
3763 if (IS_ERR(file)) {
3764 error = PTR_ERR(file);
3765 goto err_fd;
3766 }
3767 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3768 file->f_flags |= O_RDWR | O_LARGEFILE;
3769
3770 if (flags & MFD_ALLOW_SEALING) {
3771 /*
3772 * flags check at beginning of function ensures
3773 * this is not a hugetlbfs (MFD_HUGETLB) file.
3774 */
3775 info = SHMEM_I(file_inode(file));
3776 info->seals &= ~F_SEAL_SEAL;
3777 }
3778
3779 fd_install(fd, file);
3780 kfree(name);
3781 return fd;
3782
3783 err_fd:
3784 put_unused_fd(fd);
3785 err_name:
3786 kfree(name);
3787 return error;
3788 }
3789
3790 #endif /* CONFIG_TMPFS */
3791
3792 static void shmem_put_super(struct super_block *sb)
3793 {
3794 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3795
3796 percpu_counter_destroy(&sbinfo->used_blocks);
3797 mpol_put(sbinfo->mpol);
3798 kfree(sbinfo);
3799 sb->s_fs_info = NULL;
3800 }
3801
3802 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3803 {
3804 struct inode *inode;
3805 struct shmem_sb_info *sbinfo;
3806 int err = -ENOMEM;
3807
3808 /* Round up to L1_CACHE_BYTES to resist false sharing */
3809 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3810 L1_CACHE_BYTES), GFP_KERNEL);
3811 if (!sbinfo)
3812 return -ENOMEM;
3813
3814 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3815 sbinfo->uid = current_fsuid();
3816 sbinfo->gid = current_fsgid();
3817 sb->s_fs_info = sbinfo;
3818
3819 #ifdef CONFIG_TMPFS
3820 /*
3821 * Per default we only allow half of the physical ram per
3822 * tmpfs instance, limiting inodes to one per page of lowmem;
3823 * but the internal instance is left unlimited.
3824 */
3825 if (!(sb->s_flags & MS_KERNMOUNT)) {
3826 sbinfo->max_blocks = shmem_default_max_blocks();
3827 sbinfo->max_inodes = shmem_default_max_inodes();
3828 if (shmem_parse_options(data, sbinfo, false)) {
3829 err = -EINVAL;
3830 goto failed;
3831 }
3832 } else {
3833 sb->s_flags |= MS_NOUSER;
3834 }
3835 sb->s_export_op = &shmem_export_ops;
3836 sb->s_flags |= MS_NOSEC;
3837 #else
3838 sb->s_flags |= MS_NOUSER;
3839 #endif
3840
3841 spin_lock_init(&sbinfo->stat_lock);
3842 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3843 goto failed;
3844 sbinfo->free_inodes = sbinfo->max_inodes;
3845 spin_lock_init(&sbinfo->shrinklist_lock);
3846 INIT_LIST_HEAD(&sbinfo->shrinklist);
3847
3848 sb->s_maxbytes = MAX_LFS_FILESIZE;
3849 sb->s_blocksize = PAGE_SIZE;
3850 sb->s_blocksize_bits = PAGE_SHIFT;
3851 sb->s_magic = TMPFS_MAGIC;
3852 sb->s_op = &shmem_ops;
3853 sb->s_time_gran = 1;
3854 #ifdef CONFIG_TMPFS_XATTR
3855 sb->s_xattr = shmem_xattr_handlers;
3856 #endif
3857 #ifdef CONFIG_TMPFS_POSIX_ACL
3858 sb->s_flags |= MS_POSIXACL;
3859 #endif
3860 uuid_gen(&sb->s_uuid);
3861
3862 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3863 if (!inode)
3864 goto failed;
3865 inode->i_uid = sbinfo->uid;
3866 inode->i_gid = sbinfo->gid;
3867 sb->s_root = d_make_root(inode);
3868 if (!sb->s_root)
3869 goto failed;
3870 return 0;
3871
3872 failed:
3873 shmem_put_super(sb);
3874 return err;
3875 }
3876
3877 static struct kmem_cache *shmem_inode_cachep;
3878
3879 static struct inode *shmem_alloc_inode(struct super_block *sb)
3880 {
3881 struct shmem_inode_info *info;
3882 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3883 if (!info)
3884 return NULL;
3885 return &info->vfs_inode;
3886 }
3887
3888 static void shmem_destroy_callback(struct rcu_head *head)
3889 {
3890 struct inode *inode = container_of(head, struct inode, i_rcu);
3891 if (S_ISLNK(inode->i_mode))
3892 kfree(inode->i_link);
3893 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3894 }
3895
3896 static void shmem_destroy_inode(struct inode *inode)
3897 {
3898 if (S_ISREG(inode->i_mode))
3899 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3900 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3901 }
3902
3903 static void shmem_init_inode(void *foo)
3904 {
3905 struct shmem_inode_info *info = foo;
3906 inode_init_once(&info->vfs_inode);
3907 }
3908
3909 static int shmem_init_inodecache(void)
3910 {
3911 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3912 sizeof(struct shmem_inode_info),
3913 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3914 return 0;
3915 }
3916
3917 static void shmem_destroy_inodecache(void)
3918 {
3919 kmem_cache_destroy(shmem_inode_cachep);
3920 }
3921
3922 static const struct address_space_operations shmem_aops = {
3923 .writepage = shmem_writepage,
3924 .set_page_dirty = __set_page_dirty_no_writeback,
3925 #ifdef CONFIG_TMPFS
3926 .write_begin = shmem_write_begin,
3927 .write_end = shmem_write_end,
3928 #endif
3929 #ifdef CONFIG_MIGRATION
3930 .migratepage = migrate_page,
3931 #endif
3932 .error_remove_page = generic_error_remove_page,
3933 };
3934
3935 static const struct file_operations shmem_file_operations = {
3936 .mmap = shmem_mmap,
3937 .get_unmapped_area = shmem_get_unmapped_area,
3938 #ifdef CONFIG_TMPFS
3939 .llseek = shmem_file_llseek,
3940 .read_iter = shmem_file_read_iter,
3941 .write_iter = generic_file_write_iter,
3942 .fsync = noop_fsync,
3943 .splice_read = generic_file_splice_read,
3944 .splice_write = iter_file_splice_write,
3945 .fallocate = shmem_fallocate,
3946 #endif
3947 };
3948
3949 static const struct inode_operations shmem_inode_operations = {
3950 .getattr = shmem_getattr,
3951 .setattr = shmem_setattr,
3952 #ifdef CONFIG_TMPFS_XATTR
3953 .listxattr = shmem_listxattr,
3954 .set_acl = simple_set_acl,
3955 #endif
3956 };
3957
3958 static const struct inode_operations shmem_dir_inode_operations = {
3959 #ifdef CONFIG_TMPFS
3960 .create = shmem_create,
3961 .lookup = simple_lookup,
3962 .link = shmem_link,
3963 .unlink = shmem_unlink,
3964 .symlink = shmem_symlink,
3965 .mkdir = shmem_mkdir,
3966 .rmdir = shmem_rmdir,
3967 .mknod = shmem_mknod,
3968 .rename = shmem_rename2,
3969 .tmpfile = shmem_tmpfile,
3970 #endif
3971 #ifdef CONFIG_TMPFS_XATTR
3972 .listxattr = shmem_listxattr,
3973 #endif
3974 #ifdef CONFIG_TMPFS_POSIX_ACL
3975 .setattr = shmem_setattr,
3976 .set_acl = simple_set_acl,
3977 #endif
3978 };
3979
3980 static const struct inode_operations shmem_special_inode_operations = {
3981 #ifdef CONFIG_TMPFS_XATTR
3982 .listxattr = shmem_listxattr,
3983 #endif
3984 #ifdef CONFIG_TMPFS_POSIX_ACL
3985 .setattr = shmem_setattr,
3986 .set_acl = simple_set_acl,
3987 #endif
3988 };
3989
3990 static const struct super_operations shmem_ops = {
3991 .alloc_inode = shmem_alloc_inode,
3992 .destroy_inode = shmem_destroy_inode,
3993 #ifdef CONFIG_TMPFS
3994 .statfs = shmem_statfs,
3995 .remount_fs = shmem_remount_fs,
3996 .show_options = shmem_show_options,
3997 #endif
3998 .evict_inode = shmem_evict_inode,
3999 .drop_inode = generic_delete_inode,
4000 .put_super = shmem_put_super,
4001 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4002 .nr_cached_objects = shmem_unused_huge_count,
4003 .free_cached_objects = shmem_unused_huge_scan,
4004 #endif
4005 };
4006
4007 static const struct vm_operations_struct shmem_vm_ops = {
4008 .fault = shmem_fault,
4009 .map_pages = filemap_map_pages,
4010 #ifdef CONFIG_NUMA
4011 .set_policy = shmem_set_policy,
4012 .get_policy = shmem_get_policy,
4013 #endif
4014 };
4015
4016 static struct dentry *shmem_mount(struct file_system_type *fs_type,
4017 int flags, const char *dev_name, void *data)
4018 {
4019 return mount_nodev(fs_type, flags, data, shmem_fill_super);
4020 }
4021
4022 static struct file_system_type shmem_fs_type = {
4023 .owner = THIS_MODULE,
4024 .name = "tmpfs",
4025 .mount = shmem_mount,
4026 .kill_sb = kill_litter_super,
4027 .fs_flags = FS_USERNS_MOUNT,
4028 };
4029
4030 int __init shmem_init(void)
4031 {
4032 int error;
4033
4034 /* If rootfs called this, don't re-init */
4035 if (shmem_inode_cachep)
4036 return 0;
4037
4038 error = shmem_init_inodecache();
4039 if (error)
4040 goto out3;
4041
4042 error = register_filesystem(&shmem_fs_type);
4043 if (error) {
4044 pr_err("Could not register tmpfs\n");
4045 goto out2;
4046 }
4047
4048 shm_mnt = kern_mount(&shmem_fs_type);
4049 if (IS_ERR(shm_mnt)) {
4050 error = PTR_ERR(shm_mnt);
4051 pr_err("Could not kern_mount tmpfs\n");
4052 goto out1;
4053 }
4054
4055 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4056 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4057 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4058 else
4059 shmem_huge = 0; /* just in case it was patched */
4060 #endif
4061 return 0;
4062
4063 out1:
4064 unregister_filesystem(&shmem_fs_type);
4065 out2:
4066 shmem_destroy_inodecache();
4067 out3:
4068 shm_mnt = ERR_PTR(error);
4069 return error;
4070 }
4071
4072 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4073 static ssize_t shmem_enabled_show(struct kobject *kobj,
4074 struct kobj_attribute *attr, char *buf)
4075 {
4076 int values[] = {
4077 SHMEM_HUGE_ALWAYS,
4078 SHMEM_HUGE_WITHIN_SIZE,
4079 SHMEM_HUGE_ADVISE,
4080 SHMEM_HUGE_NEVER,
4081 SHMEM_HUGE_DENY,
4082 SHMEM_HUGE_FORCE,
4083 };
4084 int i, count;
4085
4086 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4087 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4088
4089 count += sprintf(buf + count, fmt,
4090 shmem_format_huge(values[i]));
4091 }
4092 buf[count - 1] = '\n';
4093 return count;
4094 }
4095
4096 static ssize_t shmem_enabled_store(struct kobject *kobj,
4097 struct kobj_attribute *attr, const char *buf, size_t count)
4098 {
4099 char tmp[16];
4100 int huge;
4101
4102 if (count + 1 > sizeof(tmp))
4103 return -EINVAL;
4104 memcpy(tmp, buf, count);
4105 tmp[count] = '\0';
4106 if (count && tmp[count - 1] == '\n')
4107 tmp[count - 1] = '\0';
4108
4109 huge = shmem_parse_huge(tmp);
4110 if (huge == -EINVAL)
4111 return -EINVAL;
4112 if (!has_transparent_hugepage() &&
4113 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4114 return -EINVAL;
4115
4116 shmem_huge = huge;
4117 if (shmem_huge > SHMEM_HUGE_DENY)
4118 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4119 return count;
4120 }
4121
4122 struct kobj_attribute shmem_enabled_attr =
4123 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4124 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4125
4126 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4127 bool shmem_huge_enabled(struct vm_area_struct *vma)
4128 {
4129 struct inode *inode = file_inode(vma->vm_file);
4130 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4131 loff_t i_size;
4132 pgoff_t off;
4133
4134 if (shmem_huge == SHMEM_HUGE_FORCE)
4135 return true;
4136 if (shmem_huge == SHMEM_HUGE_DENY)
4137 return false;
4138 switch (sbinfo->huge) {
4139 case SHMEM_HUGE_NEVER:
4140 return false;
4141 case SHMEM_HUGE_ALWAYS:
4142 return true;
4143 case SHMEM_HUGE_WITHIN_SIZE:
4144 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4145 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4146 if (i_size >= HPAGE_PMD_SIZE &&
4147 i_size >> PAGE_SHIFT >= off)
4148 return true;
4149 case SHMEM_HUGE_ADVISE:
4150 /* TODO: implement fadvise() hints */
4151 return (vma->vm_flags & VM_HUGEPAGE);
4152 default:
4153 VM_BUG_ON(1);
4154 return false;
4155 }
4156 }
4157 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4158
4159 #else /* !CONFIG_SHMEM */
4160
4161 /*
4162 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4163 *
4164 * This is intended for small system where the benefits of the full
4165 * shmem code (swap-backed and resource-limited) are outweighed by
4166 * their complexity. On systems without swap this code should be
4167 * effectively equivalent, but much lighter weight.
4168 */
4169
4170 static struct file_system_type shmem_fs_type = {
4171 .name = "tmpfs",
4172 .mount = ramfs_mount,
4173 .kill_sb = kill_litter_super,
4174 .fs_flags = FS_USERNS_MOUNT,
4175 };
4176
4177 int __init shmem_init(void)
4178 {
4179 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4180
4181 shm_mnt = kern_mount(&shmem_fs_type);
4182 BUG_ON(IS_ERR(shm_mnt));
4183
4184 return 0;
4185 }
4186
4187 int shmem_unuse(swp_entry_t swap, struct page *page)
4188 {
4189 return 0;
4190 }
4191
4192 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4193 {
4194 return 0;
4195 }
4196
4197 void shmem_unlock_mapping(struct address_space *mapping)
4198 {
4199 }
4200
4201 #ifdef CONFIG_MMU
4202 unsigned long shmem_get_unmapped_area(struct file *file,
4203 unsigned long addr, unsigned long len,
4204 unsigned long pgoff, unsigned long flags)
4205 {
4206 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4207 }
4208 #endif
4209
4210 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4211 {
4212 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4213 }
4214 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4215
4216 #define shmem_vm_ops generic_file_vm_ops
4217 #define shmem_file_operations ramfs_file_operations
4218 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4219 #define shmem_acct_size(flags, size) 0
4220 #define shmem_unacct_size(flags, size) do {} while (0)
4221
4222 #endif /* CONFIG_SHMEM */
4223
4224 /* common code */
4225
4226 static const struct dentry_operations anon_ops = {
4227 .d_dname = simple_dname
4228 };
4229
4230 static struct file *__shmem_file_setup(const char *name, loff_t size,
4231 unsigned long flags, unsigned int i_flags)
4232 {
4233 struct file *res;
4234 struct inode *inode;
4235 struct path path;
4236 struct super_block *sb;
4237 struct qstr this;
4238
4239 if (IS_ERR(shm_mnt))
4240 return ERR_CAST(shm_mnt);
4241
4242 if (size < 0 || size > MAX_LFS_FILESIZE)
4243 return ERR_PTR(-EINVAL);
4244
4245 if (shmem_acct_size(flags, size))
4246 return ERR_PTR(-ENOMEM);
4247
4248 res = ERR_PTR(-ENOMEM);
4249 this.name = name;
4250 this.len = strlen(name);
4251 this.hash = 0; /* will go */
4252 sb = shm_mnt->mnt_sb;
4253 path.mnt = mntget(shm_mnt);
4254 path.dentry = d_alloc_pseudo(sb, &this);
4255 if (!path.dentry)
4256 goto put_memory;
4257 d_set_d_op(path.dentry, &anon_ops);
4258
4259 res = ERR_PTR(-ENOSPC);
4260 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4261 if (!inode)
4262 goto put_memory;
4263
4264 inode->i_flags |= i_flags;
4265 d_instantiate(path.dentry, inode);
4266 inode->i_size = size;
4267 clear_nlink(inode); /* It is unlinked */
4268 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4269 if (IS_ERR(res))
4270 goto put_path;
4271
4272 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4273 &shmem_file_operations);
4274 if (IS_ERR(res))
4275 goto put_path;
4276
4277 return res;
4278
4279 put_memory:
4280 shmem_unacct_size(flags, size);
4281 put_path:
4282 path_put(&path);
4283 return res;
4284 }
4285
4286 /**
4287 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4288 * kernel internal. There will be NO LSM permission checks against the
4289 * underlying inode. So users of this interface must do LSM checks at a
4290 * higher layer. The users are the big_key and shm implementations. LSM
4291 * checks are provided at the key or shm level rather than the inode.
4292 * @name: name for dentry (to be seen in /proc/<pid>/maps
4293 * @size: size to be set for the file
4294 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4295 */
4296 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4297 {
4298 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4299 }
4300
4301 /**
4302 * shmem_file_setup - get an unlinked file living in tmpfs
4303 * @name: name for dentry (to be seen in /proc/<pid>/maps
4304 * @size: size to be set for the file
4305 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4306 */
4307 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4308 {
4309 return __shmem_file_setup(name, size, flags, 0);
4310 }
4311 EXPORT_SYMBOL_GPL(shmem_file_setup);
4312
4313 /**
4314 * shmem_zero_setup - setup a shared anonymous mapping
4315 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4316 */
4317 int shmem_zero_setup(struct vm_area_struct *vma)
4318 {
4319 struct file *file;
4320 loff_t size = vma->vm_end - vma->vm_start;
4321
4322 /*
4323 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4324 * between XFS directory reading and selinux: since this file is only
4325 * accessible to the user through its mapping, use S_PRIVATE flag to
4326 * bypass file security, in the same way as shmem_kernel_file_setup().
4327 */
4328 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4329 if (IS_ERR(file))
4330 return PTR_ERR(file);
4331
4332 if (vma->vm_file)
4333 fput(vma->vm_file);
4334 vma->vm_file = file;
4335 vma->vm_ops = &shmem_vm_ops;
4336
4337 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4338 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4339 (vma->vm_end & HPAGE_PMD_MASK)) {
4340 khugepaged_enter(vma, vma->vm_flags);
4341 }
4342
4343 return 0;
4344 }
4345
4346 /**
4347 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4348 * @mapping: the page's address_space
4349 * @index: the page index
4350 * @gfp: the page allocator flags to use if allocating
4351 *
4352 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4353 * with any new page allocations done using the specified allocation flags.
4354 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4355 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4356 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4357 *
4358 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4359 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4360 */
4361 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4362 pgoff_t index, gfp_t gfp)
4363 {
4364 #ifdef CONFIG_SHMEM
4365 struct inode *inode = mapping->host;
4366 struct page *page;
4367 int error;
4368
4369 BUG_ON(mapping->a_ops != &shmem_aops);
4370 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4371 gfp, NULL, NULL, NULL);
4372 if (error)
4373 page = ERR_PTR(error);
4374 else
4375 unlock_page(page);
4376 return page;
4377 #else
4378 /*
4379 * The tiny !SHMEM case uses ramfs without swap
4380 */
4381 return read_cache_page_gfp(mapping, index, gfp);
4382 #endif
4383 }
4384 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);