defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 #include <linux/memremap.h>
67 #include <linux/userfaultfd_k.h>
68
69 #include <asm/tlbflush.h>
70
71 #include <trace/events/tlb.h>
72
73 #include "internal.h"
74
75 static struct kmem_cache *anon_vma_cachep;
76 static struct kmem_cache *anon_vma_chain_cachep;
77
78 static inline struct anon_vma *anon_vma_alloc(void)
79 {
80 struct anon_vma *anon_vma;
81
82 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
83 if (anon_vma) {
84 atomic_set(&anon_vma->refcount, 1);
85 anon_vma->degree = 1; /* Reference for first vma */
86 anon_vma->parent = anon_vma;
87 /*
88 * Initialise the anon_vma root to point to itself. If called
89 * from fork, the root will be reset to the parents anon_vma.
90 */
91 anon_vma->root = anon_vma;
92 }
93
94 return anon_vma;
95 }
96
97 static inline void anon_vma_free(struct anon_vma *anon_vma)
98 {
99 VM_BUG_ON(atomic_read(&anon_vma->refcount));
100
101 /*
102 * Synchronize against page_lock_anon_vma_read() such that
103 * we can safely hold the lock without the anon_vma getting
104 * freed.
105 *
106 * Relies on the full mb implied by the atomic_dec_and_test() from
107 * put_anon_vma() against the acquire barrier implied by
108 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
109 *
110 * page_lock_anon_vma_read() VS put_anon_vma()
111 * down_read_trylock() atomic_dec_and_test()
112 * LOCK MB
113 * atomic_read() rwsem_is_locked()
114 *
115 * LOCK should suffice since the actual taking of the lock must
116 * happen _before_ what follows.
117 */
118 might_sleep();
119 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
120 anon_vma_lock_write(anon_vma);
121 anon_vma_unlock_write(anon_vma);
122 }
123
124 kmem_cache_free(anon_vma_cachep, anon_vma);
125 }
126
127 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
128 {
129 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
130 }
131
132 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
133 {
134 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
135 }
136
137 static void anon_vma_chain_link(struct vm_area_struct *vma,
138 struct anon_vma_chain *avc,
139 struct anon_vma *anon_vma)
140 {
141 avc->vma = vma;
142 avc->anon_vma = anon_vma;
143 list_add(&avc->same_vma, &vma->anon_vma_chain);
144 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
145 }
146
147 /**
148 * __anon_vma_prepare - attach an anon_vma to a memory region
149 * @vma: the memory region in question
150 *
151 * This makes sure the memory mapping described by 'vma' has
152 * an 'anon_vma' attached to it, so that we can associate the
153 * anonymous pages mapped into it with that anon_vma.
154 *
155 * The common case will be that we already have one, which
156 * is handled inline by anon_vma_prepare(). But if
157 * not we either need to find an adjacent mapping that we
158 * can re-use the anon_vma from (very common when the only
159 * reason for splitting a vma has been mprotect()), or we
160 * allocate a new one.
161 *
162 * Anon-vma allocations are very subtle, because we may have
163 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
164 * and that may actually touch the spinlock even in the newly
165 * allocated vma (it depends on RCU to make sure that the
166 * anon_vma isn't actually destroyed).
167 *
168 * As a result, we need to do proper anon_vma locking even
169 * for the new allocation. At the same time, we do not want
170 * to do any locking for the common case of already having
171 * an anon_vma.
172 *
173 * This must be called with the mmap_sem held for reading.
174 */
175 int __anon_vma_prepare(struct vm_area_struct *vma)
176 {
177 struct mm_struct *mm = vma->vm_mm;
178 struct anon_vma *anon_vma, *allocated;
179 struct anon_vma_chain *avc;
180
181 might_sleep();
182
183 avc = anon_vma_chain_alloc(GFP_KERNEL);
184 if (!avc)
185 goto out_enomem;
186
187 anon_vma = find_mergeable_anon_vma(vma);
188 allocated = NULL;
189 if (!anon_vma) {
190 anon_vma = anon_vma_alloc();
191 if (unlikely(!anon_vma))
192 goto out_enomem_free_avc;
193 allocated = anon_vma;
194 }
195
196 anon_vma_lock_write(anon_vma);
197 /* page_table_lock to protect against threads */
198 spin_lock(&mm->page_table_lock);
199 if (likely(!vma->anon_vma)) {
200 vma->anon_vma = anon_vma;
201 anon_vma_chain_link(vma, avc, anon_vma);
202 /* vma reference or self-parent link for new root */
203 anon_vma->degree++;
204 allocated = NULL;
205 avc = NULL;
206 }
207 spin_unlock(&mm->page_table_lock);
208 anon_vma_unlock_write(anon_vma);
209
210 if (unlikely(allocated))
211 put_anon_vma(allocated);
212 if (unlikely(avc))
213 anon_vma_chain_free(avc);
214
215 return 0;
216
217 out_enomem_free_avc:
218 anon_vma_chain_free(avc);
219 out_enomem:
220 return -ENOMEM;
221 }
222
223 /*
224 * This is a useful helper function for locking the anon_vma root as
225 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
226 * have the same vma.
227 *
228 * Such anon_vma's should have the same root, so you'd expect to see
229 * just a single mutex_lock for the whole traversal.
230 */
231 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
232 {
233 struct anon_vma *new_root = anon_vma->root;
234 if (new_root != root) {
235 if (WARN_ON_ONCE(root))
236 up_write(&root->rwsem);
237 root = new_root;
238 down_write(&root->rwsem);
239 }
240 return root;
241 }
242
243 static inline void unlock_anon_vma_root(struct anon_vma *root)
244 {
245 if (root)
246 up_write(&root->rwsem);
247 }
248
249 /*
250 * Attach the anon_vmas from src to dst.
251 * Returns 0 on success, -ENOMEM on failure.
252 *
253 * If dst->anon_vma is NULL this function tries to find and reuse existing
254 * anon_vma which has no vmas and only one child anon_vma. This prevents
255 * degradation of anon_vma hierarchy to endless linear chain in case of
256 * constantly forking task. On the other hand, an anon_vma with more than one
257 * child isn't reused even if there was no alive vma, thus rmap walker has a
258 * good chance of avoiding scanning the whole hierarchy when it searches where
259 * page is mapped.
260 */
261 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
262 {
263 struct anon_vma_chain *avc, *pavc;
264 struct anon_vma *root = NULL;
265
266 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
267 struct anon_vma *anon_vma;
268
269 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
270 if (unlikely(!avc)) {
271 unlock_anon_vma_root(root);
272 root = NULL;
273 avc = anon_vma_chain_alloc(GFP_KERNEL);
274 if (!avc)
275 goto enomem_failure;
276 }
277 anon_vma = pavc->anon_vma;
278 root = lock_anon_vma_root(root, anon_vma);
279 anon_vma_chain_link(dst, avc, anon_vma);
280
281 /*
282 * Reuse existing anon_vma if its degree lower than two,
283 * that means it has no vma and only one anon_vma child.
284 *
285 * Do not chose parent anon_vma, otherwise first child
286 * will always reuse it. Root anon_vma is never reused:
287 * it has self-parent reference and at least one child.
288 */
289 if (!dst->anon_vma && anon_vma != src->anon_vma &&
290 anon_vma->degree < 2)
291 dst->anon_vma = anon_vma;
292 }
293 if (dst->anon_vma)
294 dst->anon_vma->degree++;
295 unlock_anon_vma_root(root);
296 return 0;
297
298 enomem_failure:
299 /*
300 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
301 * decremented in unlink_anon_vmas().
302 * We can safely do this because callers of anon_vma_clone() don't care
303 * about dst->anon_vma if anon_vma_clone() failed.
304 */
305 dst->anon_vma = NULL;
306 unlink_anon_vmas(dst);
307 return -ENOMEM;
308 }
309
310 /*
311 * Attach vma to its own anon_vma, as well as to the anon_vmas that
312 * the corresponding VMA in the parent process is attached to.
313 * Returns 0 on success, non-zero on failure.
314 */
315 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
316 {
317 struct anon_vma_chain *avc;
318 struct anon_vma *anon_vma;
319 int error;
320
321 /* Don't bother if the parent process has no anon_vma here. */
322 if (!pvma->anon_vma)
323 return 0;
324
325 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
326 vma->anon_vma = NULL;
327
328 /*
329 * First, attach the new VMA to the parent VMA's anon_vmas,
330 * so rmap can find non-COWed pages in child processes.
331 */
332 error = anon_vma_clone(vma, pvma);
333 if (error)
334 return error;
335
336 /* An existing anon_vma has been reused, all done then. */
337 if (vma->anon_vma)
338 return 0;
339
340 /* Then add our own anon_vma. */
341 anon_vma = anon_vma_alloc();
342 if (!anon_vma)
343 goto out_error;
344 avc = anon_vma_chain_alloc(GFP_KERNEL);
345 if (!avc)
346 goto out_error_free_anon_vma;
347
348 /*
349 * The root anon_vma's spinlock is the lock actually used when we
350 * lock any of the anon_vmas in this anon_vma tree.
351 */
352 anon_vma->root = pvma->anon_vma->root;
353 anon_vma->parent = pvma->anon_vma;
354 /*
355 * With refcounts, an anon_vma can stay around longer than the
356 * process it belongs to. The root anon_vma needs to be pinned until
357 * this anon_vma is freed, because the lock lives in the root.
358 */
359 get_anon_vma(anon_vma->root);
360 /* Mark this anon_vma as the one where our new (COWed) pages go. */
361 vma->anon_vma = anon_vma;
362 anon_vma_lock_write(anon_vma);
363 anon_vma_chain_link(vma, avc, anon_vma);
364 anon_vma->parent->degree++;
365 anon_vma_unlock_write(anon_vma);
366
367 return 0;
368
369 out_error_free_anon_vma:
370 put_anon_vma(anon_vma);
371 out_error:
372 unlink_anon_vmas(vma);
373 return -ENOMEM;
374 }
375
376 void unlink_anon_vmas(struct vm_area_struct *vma)
377 {
378 struct anon_vma_chain *avc, *next;
379 struct anon_vma *root = NULL;
380
381 /*
382 * Unlink each anon_vma chained to the VMA. This list is ordered
383 * from newest to oldest, ensuring the root anon_vma gets freed last.
384 */
385 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
386 struct anon_vma *anon_vma = avc->anon_vma;
387
388 root = lock_anon_vma_root(root, anon_vma);
389 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
390
391 /*
392 * Leave empty anon_vmas on the list - we'll need
393 * to free them outside the lock.
394 */
395 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
396 anon_vma->parent->degree--;
397 continue;
398 }
399
400 list_del(&avc->same_vma);
401 anon_vma_chain_free(avc);
402 }
403 if (vma->anon_vma)
404 vma->anon_vma->degree--;
405 unlock_anon_vma_root(root);
406
407 /*
408 * Iterate the list once more, it now only contains empty and unlinked
409 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
410 * needing to write-acquire the anon_vma->root->rwsem.
411 */
412 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
413 struct anon_vma *anon_vma = avc->anon_vma;
414
415 VM_WARN_ON(anon_vma->degree);
416 put_anon_vma(anon_vma);
417
418 list_del(&avc->same_vma);
419 anon_vma_chain_free(avc);
420 }
421 }
422
423 static void anon_vma_ctor(void *data)
424 {
425 struct anon_vma *anon_vma = data;
426
427 init_rwsem(&anon_vma->rwsem);
428 atomic_set(&anon_vma->refcount, 0);
429 anon_vma->rb_root = RB_ROOT_CACHED;
430 }
431
432 void __init anon_vma_init(void)
433 {
434 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
435 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
436 anon_vma_ctor);
437 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
438 SLAB_PANIC|SLAB_ACCOUNT);
439 }
440
441 /*
442 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
443 *
444 * Since there is no serialization what so ever against page_remove_rmap()
445 * the best this function can do is return a locked anon_vma that might
446 * have been relevant to this page.
447 *
448 * The page might have been remapped to a different anon_vma or the anon_vma
449 * returned may already be freed (and even reused).
450 *
451 * In case it was remapped to a different anon_vma, the new anon_vma will be a
452 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
453 * ensure that any anon_vma obtained from the page will still be valid for as
454 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
455 *
456 * All users of this function must be very careful when walking the anon_vma
457 * chain and verify that the page in question is indeed mapped in it
458 * [ something equivalent to page_mapped_in_vma() ].
459 *
460 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
461 * that the anon_vma pointer from page->mapping is valid if there is a
462 * mapcount, we can dereference the anon_vma after observing those.
463 */
464 struct anon_vma *page_get_anon_vma(struct page *page)
465 {
466 struct anon_vma *anon_vma = NULL;
467 unsigned long anon_mapping;
468
469 rcu_read_lock();
470 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
471 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
472 goto out;
473 if (!page_mapped(page))
474 goto out;
475
476 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
477 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
478 anon_vma = NULL;
479 goto out;
480 }
481
482 /*
483 * If this page is still mapped, then its anon_vma cannot have been
484 * freed. But if it has been unmapped, we have no security against the
485 * anon_vma structure being freed and reused (for another anon_vma:
486 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
487 * above cannot corrupt).
488 */
489 if (!page_mapped(page)) {
490 rcu_read_unlock();
491 put_anon_vma(anon_vma);
492 return NULL;
493 }
494 out:
495 rcu_read_unlock();
496
497 return anon_vma;
498 }
499
500 /*
501 * Similar to page_get_anon_vma() except it locks the anon_vma.
502 *
503 * Its a little more complex as it tries to keep the fast path to a single
504 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
505 * reference like with page_get_anon_vma() and then block on the mutex.
506 */
507 struct anon_vma *page_lock_anon_vma_read(struct page *page)
508 {
509 struct anon_vma *anon_vma = NULL;
510 struct anon_vma *root_anon_vma;
511 unsigned long anon_mapping;
512
513 rcu_read_lock();
514 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
515 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
516 goto out;
517 if (!page_mapped(page))
518 goto out;
519
520 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
521 root_anon_vma = READ_ONCE(anon_vma->root);
522 if (down_read_trylock(&root_anon_vma->rwsem)) {
523 /*
524 * If the page is still mapped, then this anon_vma is still
525 * its anon_vma, and holding the mutex ensures that it will
526 * not go away, see anon_vma_free().
527 */
528 if (!page_mapped(page)) {
529 up_read(&root_anon_vma->rwsem);
530 anon_vma = NULL;
531 }
532 goto out;
533 }
534
535 /* trylock failed, we got to sleep */
536 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
537 anon_vma = NULL;
538 goto out;
539 }
540
541 if (!page_mapped(page)) {
542 rcu_read_unlock();
543 put_anon_vma(anon_vma);
544 return NULL;
545 }
546
547 /* we pinned the anon_vma, its safe to sleep */
548 rcu_read_unlock();
549 anon_vma_lock_read(anon_vma);
550
551 if (atomic_dec_and_test(&anon_vma->refcount)) {
552 /*
553 * Oops, we held the last refcount, release the lock
554 * and bail -- can't simply use put_anon_vma() because
555 * we'll deadlock on the anon_vma_lock_write() recursion.
556 */
557 anon_vma_unlock_read(anon_vma);
558 __put_anon_vma(anon_vma);
559 anon_vma = NULL;
560 }
561
562 return anon_vma;
563
564 out:
565 rcu_read_unlock();
566 return anon_vma;
567 }
568
569 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
570 {
571 anon_vma_unlock_read(anon_vma);
572 }
573
574 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
575 /*
576 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
577 * important if a PTE was dirty when it was unmapped that it's flushed
578 * before any IO is initiated on the page to prevent lost writes. Similarly,
579 * it must be flushed before freeing to prevent data leakage.
580 */
581 void try_to_unmap_flush(void)
582 {
583 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
584
585 if (!tlb_ubc->flush_required)
586 return;
587
588 arch_tlbbatch_flush(&tlb_ubc->arch);
589 tlb_ubc->flush_required = false;
590 tlb_ubc->writable = false;
591 }
592
593 /* Flush iff there are potentially writable TLB entries that can race with IO */
594 void try_to_unmap_flush_dirty(void)
595 {
596 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
597
598 if (tlb_ubc->writable)
599 try_to_unmap_flush();
600 }
601
602 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
603 {
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605
606 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
607 tlb_ubc->flush_required = true;
608
609 /*
610 * Ensure compiler does not re-order the setting of tlb_flush_batched
611 * before the PTE is cleared.
612 */
613 barrier();
614 mm->tlb_flush_batched = true;
615
616 /*
617 * If the PTE was dirty then it's best to assume it's writable. The
618 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
619 * before the page is queued for IO.
620 */
621 if (writable)
622 tlb_ubc->writable = true;
623 }
624
625 /*
626 * Returns true if the TLB flush should be deferred to the end of a batch of
627 * unmap operations to reduce IPIs.
628 */
629 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
630 {
631 bool should_defer = false;
632
633 if (!(flags & TTU_BATCH_FLUSH))
634 return false;
635
636 /* If remote CPUs need to be flushed then defer batch the flush */
637 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
638 should_defer = true;
639 put_cpu();
640
641 return should_defer;
642 }
643
644 /*
645 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
646 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
647 * operation such as mprotect or munmap to race between reclaim unmapping
648 * the page and flushing the page. If this race occurs, it potentially allows
649 * access to data via a stale TLB entry. Tracking all mm's that have TLB
650 * batching in flight would be expensive during reclaim so instead track
651 * whether TLB batching occurred in the past and if so then do a flush here
652 * if required. This will cost one additional flush per reclaim cycle paid
653 * by the first operation at risk such as mprotect and mumap.
654 *
655 * This must be called under the PTL so that an access to tlb_flush_batched
656 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
657 * via the PTL.
658 */
659 void flush_tlb_batched_pending(struct mm_struct *mm)
660 {
661 if (mm->tlb_flush_batched) {
662 flush_tlb_mm(mm);
663
664 /*
665 * Do not allow the compiler to re-order the clearing of
666 * tlb_flush_batched before the tlb is flushed.
667 */
668 barrier();
669 mm->tlb_flush_batched = false;
670 }
671 }
672 #else
673 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
674 {
675 }
676
677 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678 {
679 return false;
680 }
681 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
682
683 /*
684 * At what user virtual address is page expected in vma?
685 * Caller should check the page is actually part of the vma.
686 */
687 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
688 {
689 unsigned long address;
690 if (PageAnon(page)) {
691 struct anon_vma *page__anon_vma = page_anon_vma(page);
692 /*
693 * Note: swapoff's unuse_vma() is more efficient with this
694 * check, and needs it to match anon_vma when KSM is active.
695 */
696 if (!vma->anon_vma || !page__anon_vma ||
697 vma->anon_vma->root != page__anon_vma->root)
698 return -EFAULT;
699 } else if (page->mapping) {
700 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
701 return -EFAULT;
702 } else
703 return -EFAULT;
704 address = __vma_address(page, vma);
705 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
706 return -EFAULT;
707 return address;
708 }
709
710 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
711 {
712 pgd_t *pgd;
713 p4d_t *p4d;
714 pud_t *pud;
715 pmd_t *pmd = NULL;
716 pmd_t pmde;
717
718 pgd = pgd_offset(mm, address);
719 if (!pgd_present(*pgd))
720 goto out;
721
722 p4d = p4d_offset(pgd, address);
723 if (!p4d_present(*p4d))
724 goto out;
725
726 pud = pud_offset(p4d, address);
727 if (!pud_present(*pud))
728 goto out;
729
730 pmd = pmd_offset(pud, address);
731 /*
732 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
733 * without holding anon_vma lock for write. So when looking for a
734 * genuine pmde (in which to find pte), test present and !THP together.
735 */
736 pmde = *pmd;
737 barrier();
738 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
739 pmd = NULL;
740 out:
741 return pmd;
742 }
743
744 struct page_referenced_arg {
745 int mapcount;
746 int referenced;
747 unsigned long vm_flags;
748 struct mem_cgroup *memcg;
749 };
750 /*
751 * arg: page_referenced_arg will be passed
752 */
753 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
754 unsigned long address, void *arg)
755 {
756 struct page_referenced_arg *pra = arg;
757 struct page_vma_mapped_walk pvmw = {
758 .page = page,
759 .vma = vma,
760 .address = address,
761 };
762 int referenced = 0;
763
764 while (page_vma_mapped_walk(&pvmw)) {
765 address = pvmw.address;
766
767 if (vma->vm_flags & VM_LOCKED) {
768 page_vma_mapped_walk_done(&pvmw);
769 pra->vm_flags |= VM_LOCKED;
770 return false; /* To break the loop */
771 }
772
773 if (pvmw.pte) {
774 if (ptep_clear_flush_young_notify(vma, address,
775 pvmw.pte)) {
776 /*
777 * Don't treat a reference through
778 * a sequentially read mapping as such.
779 * If the page has been used in another mapping,
780 * we will catch it; if this other mapping is
781 * already gone, the unmap path will have set
782 * PG_referenced or activated the page.
783 */
784 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
785 referenced++;
786 }
787 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
788 if (pmdp_clear_flush_young_notify(vma, address,
789 pvmw.pmd))
790 referenced++;
791 } else {
792 /* unexpected pmd-mapped page? */
793 WARN_ON_ONCE(1);
794 }
795
796 pra->mapcount--;
797 }
798
799 if (referenced)
800 clear_page_idle(page);
801 if (test_and_clear_page_young(page))
802 referenced++;
803
804 if (referenced) {
805 pra->referenced++;
806 pra->vm_flags |= vma->vm_flags;
807 }
808
809 if (!pra->mapcount)
810 return false; /* To break the loop */
811
812 return true;
813 }
814
815 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
816 {
817 struct page_referenced_arg *pra = arg;
818 struct mem_cgroup *memcg = pra->memcg;
819
820 if (!mm_match_cgroup(vma->vm_mm, memcg))
821 return true;
822
823 return false;
824 }
825
826 /**
827 * page_referenced - test if the page was referenced
828 * @page: the page to test
829 * @is_locked: caller holds lock on the page
830 * @memcg: target memory cgroup
831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
832 *
833 * Quick test_and_clear_referenced for all mappings to a page,
834 * returns the number of ptes which referenced the page.
835 */
836 int page_referenced(struct page *page,
837 int is_locked,
838 struct mem_cgroup *memcg,
839 unsigned long *vm_flags)
840 {
841 int we_locked = 0;
842 struct page_referenced_arg pra = {
843 .mapcount = total_mapcount(page),
844 .memcg = memcg,
845 };
846 struct rmap_walk_control rwc = {
847 .rmap_one = page_referenced_one,
848 .arg = (void *)&pra,
849 .anon_lock = page_lock_anon_vma_read,
850 };
851
852 *vm_flags = 0;
853 if (!page_mapped(page))
854 return 0;
855
856 if (!page_rmapping(page))
857 return 0;
858
859 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
860 we_locked = trylock_page(page);
861 if (!we_locked)
862 return 1;
863 }
864
865 /*
866 * If we are reclaiming on behalf of a cgroup, skip
867 * counting on behalf of references from different
868 * cgroups
869 */
870 if (memcg) {
871 rwc.invalid_vma = invalid_page_referenced_vma;
872 }
873
874 rmap_walk(page, &rwc);
875 *vm_flags = pra.vm_flags;
876
877 if (we_locked)
878 unlock_page(page);
879
880 return pra.referenced;
881 }
882
883 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
884 unsigned long address, void *arg)
885 {
886 struct page_vma_mapped_walk pvmw = {
887 .page = page,
888 .vma = vma,
889 .address = address,
890 .flags = PVMW_SYNC,
891 };
892 unsigned long start = address, end;
893 int *cleaned = arg;
894
895 /*
896 * We have to assume the worse case ie pmd for invalidation. Note that
897 * the page can not be free from this function.
898 */
899 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
900 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
901
902 while (page_vma_mapped_walk(&pvmw)) {
903 unsigned long cstart, cend;
904 int ret = 0;
905
906 cstart = address = pvmw.address;
907 if (pvmw.pte) {
908 pte_t entry;
909 pte_t *pte = pvmw.pte;
910
911 if (!pte_dirty(*pte) && !pte_write(*pte))
912 continue;
913
914 flush_cache_page(vma, address, pte_pfn(*pte));
915 entry = ptep_clear_flush(vma, address, pte);
916 entry = pte_wrprotect(entry);
917 entry = pte_mkclean(entry);
918 set_pte_at(vma->vm_mm, address, pte, entry);
919 cend = cstart + PAGE_SIZE;
920 ret = 1;
921 } else {
922 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
923 pmd_t *pmd = pvmw.pmd;
924 pmd_t entry;
925
926 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
927 continue;
928
929 flush_cache_page(vma, address, page_to_pfn(page));
930 entry = pmdp_huge_clear_flush(vma, address, pmd);
931 entry = pmd_wrprotect(entry);
932 entry = pmd_mkclean(entry);
933 set_pmd_at(vma->vm_mm, address, pmd, entry);
934 cstart &= PMD_MASK;
935 cend = cstart + PMD_SIZE;
936 ret = 1;
937 #else
938 /* unexpected pmd-mapped page? */
939 WARN_ON_ONCE(1);
940 #endif
941 }
942
943 if (ret) {
944 mmu_notifier_invalidate_range(vma->vm_mm, cstart, cend);
945 (*cleaned)++;
946 }
947 }
948
949 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
950
951 return true;
952 }
953
954 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
955 {
956 if (vma->vm_flags & VM_SHARED)
957 return false;
958
959 return true;
960 }
961
962 int page_mkclean(struct page *page)
963 {
964 int cleaned = 0;
965 struct address_space *mapping;
966 struct rmap_walk_control rwc = {
967 .arg = (void *)&cleaned,
968 .rmap_one = page_mkclean_one,
969 .invalid_vma = invalid_mkclean_vma,
970 };
971
972 BUG_ON(!PageLocked(page));
973
974 if (!page_mapped(page))
975 return 0;
976
977 mapping = page_mapping(page);
978 if (!mapping)
979 return 0;
980
981 rmap_walk(page, &rwc);
982
983 return cleaned;
984 }
985 EXPORT_SYMBOL_GPL(page_mkclean);
986
987 /**
988 * page_move_anon_rmap - move a page to our anon_vma
989 * @page: the page to move to our anon_vma
990 * @vma: the vma the page belongs to
991 *
992 * When a page belongs exclusively to one process after a COW event,
993 * that page can be moved into the anon_vma that belongs to just that
994 * process, so the rmap code will not search the parent or sibling
995 * processes.
996 */
997 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
998 {
999 struct anon_vma *anon_vma = vma->anon_vma;
1000
1001 page = compound_head(page);
1002
1003 VM_BUG_ON_PAGE(!PageLocked(page), page);
1004 VM_BUG_ON_VMA(!anon_vma, vma);
1005
1006 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1007 /*
1008 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1009 * simultaneously, so a concurrent reader (eg page_referenced()'s
1010 * PageAnon()) will not see one without the other.
1011 */
1012 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1013 }
1014
1015 /**
1016 * __page_set_anon_rmap - set up new anonymous rmap
1017 * @page: Page to add to rmap
1018 * @vma: VM area to add page to.
1019 * @address: User virtual address of the mapping
1020 * @exclusive: the page is exclusively owned by the current process
1021 */
1022 static void __page_set_anon_rmap(struct page *page,
1023 struct vm_area_struct *vma, unsigned long address, int exclusive)
1024 {
1025 struct anon_vma *anon_vma = vma->anon_vma;
1026
1027 BUG_ON(!anon_vma);
1028
1029 if (PageAnon(page))
1030 return;
1031
1032 /*
1033 * If the page isn't exclusively mapped into this vma,
1034 * we must use the _oldest_ possible anon_vma for the
1035 * page mapping!
1036 */
1037 if (!exclusive)
1038 anon_vma = anon_vma->root;
1039
1040 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1041 page->mapping = (struct address_space *) anon_vma;
1042 page->index = linear_page_index(vma, address);
1043 }
1044
1045 /**
1046 * __page_check_anon_rmap - sanity check anonymous rmap addition
1047 * @page: the page to add the mapping to
1048 * @vma: the vm area in which the mapping is added
1049 * @address: the user virtual address mapped
1050 */
1051 static void __page_check_anon_rmap(struct page *page,
1052 struct vm_area_struct *vma, unsigned long address)
1053 {
1054 #ifdef CONFIG_DEBUG_VM
1055 /*
1056 * The page's anon-rmap details (mapping and index) are guaranteed to
1057 * be set up correctly at this point.
1058 *
1059 * We have exclusion against page_add_anon_rmap because the caller
1060 * always holds the page locked, except if called from page_dup_rmap,
1061 * in which case the page is already known to be setup.
1062 *
1063 * We have exclusion against page_add_new_anon_rmap because those pages
1064 * are initially only visible via the pagetables, and the pte is locked
1065 * over the call to page_add_new_anon_rmap.
1066 */
1067 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1068 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1069 #endif
1070 }
1071
1072 /**
1073 * page_add_anon_rmap - add pte mapping to an anonymous page
1074 * @page: the page to add the mapping to
1075 * @vma: the vm area in which the mapping is added
1076 * @address: the user virtual address mapped
1077 * @compound: charge the page as compound or small page
1078 *
1079 * The caller needs to hold the pte lock, and the page must be locked in
1080 * the anon_vma case: to serialize mapping,index checking after setting,
1081 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1082 * (but PageKsm is never downgraded to PageAnon).
1083 */
1084 void page_add_anon_rmap(struct page *page,
1085 struct vm_area_struct *vma, unsigned long address, bool compound)
1086 {
1087 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1088 }
1089
1090 /*
1091 * Special version of the above for do_swap_page, which often runs
1092 * into pages that are exclusively owned by the current process.
1093 * Everybody else should continue to use page_add_anon_rmap above.
1094 */
1095 void do_page_add_anon_rmap(struct page *page,
1096 struct vm_area_struct *vma, unsigned long address, int flags)
1097 {
1098 bool compound = flags & RMAP_COMPOUND;
1099 bool first;
1100
1101 if (compound) {
1102 atomic_t *mapcount;
1103 VM_BUG_ON_PAGE(!PageLocked(page), page);
1104 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1105 mapcount = compound_mapcount_ptr(page);
1106 first = atomic_inc_and_test(mapcount);
1107 } else {
1108 first = atomic_inc_and_test(&page->_mapcount);
1109 }
1110
1111 if (first) {
1112 int nr = compound ? hpage_nr_pages(page) : 1;
1113 /*
1114 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1115 * these counters are not modified in interrupt context, and
1116 * pte lock(a spinlock) is held, which implies preemption
1117 * disabled.
1118 */
1119 if (compound)
1120 __inc_node_page_state(page, NR_ANON_THPS);
1121 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1122 }
1123 if (unlikely(PageKsm(page)))
1124 return;
1125
1126 VM_BUG_ON_PAGE(!PageLocked(page), page);
1127
1128 /* address might be in next vma when migration races vma_adjust */
1129 if (first)
1130 __page_set_anon_rmap(page, vma, address,
1131 flags & RMAP_EXCLUSIVE);
1132 else
1133 __page_check_anon_rmap(page, vma, address);
1134 }
1135
1136 /**
1137 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1138 * @page: the page to add the mapping to
1139 * @vma: the vm area in which the mapping is added
1140 * @address: the user virtual address mapped
1141 * @compound: charge the page as compound or small page
1142 *
1143 * Same as page_add_anon_rmap but must only be called on *new* pages.
1144 * This means the inc-and-test can be bypassed.
1145 * Page does not have to be locked.
1146 */
1147 void page_add_new_anon_rmap(struct page *page,
1148 struct vm_area_struct *vma, unsigned long address, bool compound)
1149 {
1150 int nr = compound ? hpage_nr_pages(page) : 1;
1151
1152 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1153 __SetPageSwapBacked(page);
1154 if (compound) {
1155 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1156 /* increment count (starts at -1) */
1157 atomic_set(compound_mapcount_ptr(page), 0);
1158 __inc_node_page_state(page, NR_ANON_THPS);
1159 } else {
1160 /* Anon THP always mapped first with PMD */
1161 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1162 /* increment count (starts at -1) */
1163 atomic_set(&page->_mapcount, 0);
1164 }
1165 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1166 __page_set_anon_rmap(page, vma, address, 1);
1167 }
1168
1169 /**
1170 * page_add_file_rmap - add pte mapping to a file page
1171 * @page: the page to add the mapping to
1172 *
1173 * The caller needs to hold the pte lock.
1174 */
1175 void page_add_file_rmap(struct page *page, bool compound)
1176 {
1177 int i, nr = 1;
1178
1179 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1180 lock_page_memcg(page);
1181 if (compound && PageTransHuge(page)) {
1182 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1183 if (atomic_inc_and_test(&page[i]._mapcount))
1184 nr++;
1185 }
1186 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1187 goto out;
1188 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1189 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1190 } else {
1191 if (PageTransCompound(page) && page_mapping(page)) {
1192 VM_WARN_ON_ONCE(!PageLocked(page));
1193
1194 SetPageDoubleMap(compound_head(page));
1195 if (PageMlocked(page))
1196 clear_page_mlock(compound_head(page));
1197 }
1198 if (!atomic_inc_and_test(&page->_mapcount))
1199 goto out;
1200 }
1201 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1202 out:
1203 unlock_page_memcg(page);
1204 }
1205
1206 static void page_remove_file_rmap(struct page *page, bool compound)
1207 {
1208 int i, nr = 1;
1209
1210 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1211 lock_page_memcg(page);
1212
1213 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1214 if (unlikely(PageHuge(page))) {
1215 /* hugetlb pages are always mapped with pmds */
1216 atomic_dec(compound_mapcount_ptr(page));
1217 goto out;
1218 }
1219
1220 /* page still mapped by someone else? */
1221 if (compound && PageTransHuge(page)) {
1222 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1223 if (atomic_add_negative(-1, &page[i]._mapcount))
1224 nr++;
1225 }
1226 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1227 goto out;
1228 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1229 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1230 } else {
1231 if (!atomic_add_negative(-1, &page->_mapcount))
1232 goto out;
1233 }
1234
1235 /*
1236 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1237 * these counters are not modified in interrupt context, and
1238 * pte lock(a spinlock) is held, which implies preemption disabled.
1239 */
1240 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1241
1242 if (unlikely(PageMlocked(page)))
1243 clear_page_mlock(page);
1244 out:
1245 unlock_page_memcg(page);
1246 }
1247
1248 static void page_remove_anon_compound_rmap(struct page *page)
1249 {
1250 int i, nr;
1251
1252 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1253 return;
1254
1255 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1256 if (unlikely(PageHuge(page)))
1257 return;
1258
1259 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1260 return;
1261
1262 __dec_node_page_state(page, NR_ANON_THPS);
1263
1264 if (TestClearPageDoubleMap(page)) {
1265 /*
1266 * Subpages can be mapped with PTEs too. Check how many of
1267 * themi are still mapped.
1268 */
1269 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1270 if (atomic_add_negative(-1, &page[i]._mapcount))
1271 nr++;
1272 }
1273 } else {
1274 nr = HPAGE_PMD_NR;
1275 }
1276
1277 if (unlikely(PageMlocked(page)))
1278 clear_page_mlock(page);
1279
1280 if (nr) {
1281 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1282 deferred_split_huge_page(page);
1283 }
1284 }
1285
1286 /**
1287 * page_remove_rmap - take down pte mapping from a page
1288 * @page: page to remove mapping from
1289 * @compound: uncharge the page as compound or small page
1290 *
1291 * The caller needs to hold the pte lock.
1292 */
1293 void page_remove_rmap(struct page *page, bool compound)
1294 {
1295 if (!PageAnon(page))
1296 return page_remove_file_rmap(page, compound);
1297
1298 if (compound)
1299 return page_remove_anon_compound_rmap(page);
1300
1301 /* page still mapped by someone else? */
1302 if (!atomic_add_negative(-1, &page->_mapcount))
1303 return;
1304
1305 /*
1306 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1307 * these counters are not modified in interrupt context, and
1308 * pte lock(a spinlock) is held, which implies preemption disabled.
1309 */
1310 __dec_node_page_state(page, NR_ANON_MAPPED);
1311
1312 if (unlikely(PageMlocked(page)))
1313 clear_page_mlock(page);
1314
1315 if (PageTransCompound(page))
1316 deferred_split_huge_page(compound_head(page));
1317
1318 /*
1319 * It would be tidy to reset the PageAnon mapping here,
1320 * but that might overwrite a racing page_add_anon_rmap
1321 * which increments mapcount after us but sets mapping
1322 * before us: so leave the reset to free_hot_cold_page,
1323 * and remember that it's only reliable while mapped.
1324 * Leaving it set also helps swapoff to reinstate ptes
1325 * faster for those pages still in swapcache.
1326 */
1327 }
1328
1329 /*
1330 * @arg: enum ttu_flags will be passed to this argument
1331 */
1332 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1333 unsigned long address, void *arg)
1334 {
1335 struct mm_struct *mm = vma->vm_mm;
1336 struct page_vma_mapped_walk pvmw = {
1337 .page = page,
1338 .vma = vma,
1339 .address = address,
1340 };
1341 pte_t pteval;
1342 struct page *subpage;
1343 bool ret = true;
1344 unsigned long start = address, end;
1345 enum ttu_flags flags = (enum ttu_flags)arg;
1346
1347 /* munlock has nothing to gain from examining un-locked vmas */
1348 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1349 return true;
1350
1351 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1352 is_zone_device_page(page) && !is_device_private_page(page))
1353 return true;
1354
1355 if (flags & TTU_SPLIT_HUGE_PMD) {
1356 split_huge_pmd_address(vma, address,
1357 flags & TTU_SPLIT_FREEZE, page);
1358 }
1359
1360 /*
1361 * For THP, we have to assume the worse case ie pmd for invalidation.
1362 * For hugetlb, it could be much worse if we need to do pud
1363 * invalidation in the case of pmd sharing.
1364 *
1365 * Note that the page can not be free in this function as call of
1366 * try_to_unmap() must hold a reference on the page.
1367 */
1368 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
1369 if (PageHuge(page)) {
1370 /*
1371 * If sharing is possible, start and end will be adjusted
1372 * accordingly.
1373 */
1374 adjust_range_if_pmd_sharing_possible(vma, &start, &end);
1375 }
1376 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1377
1378 while (page_vma_mapped_walk(&pvmw)) {
1379 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1380 /* PMD-mapped THP migration entry */
1381 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1382 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1383
1384 if (!PageAnon(page))
1385 continue;
1386
1387 set_pmd_migration_entry(&pvmw, page);
1388 continue;
1389 }
1390 #endif
1391
1392 /*
1393 * If the page is mlock()d, we cannot swap it out.
1394 * If it's recently referenced (perhaps page_referenced
1395 * skipped over this mm) then we should reactivate it.
1396 */
1397 if (!(flags & TTU_IGNORE_MLOCK)) {
1398 if (vma->vm_flags & VM_LOCKED) {
1399 /* PTE-mapped THP are never mlocked */
1400 if (!PageTransCompound(page)) {
1401 /*
1402 * Holding pte lock, we do *not* need
1403 * mmap_sem here
1404 */
1405 mlock_vma_page(page);
1406 }
1407 ret = false;
1408 page_vma_mapped_walk_done(&pvmw);
1409 break;
1410 }
1411 if (flags & TTU_MUNLOCK)
1412 continue;
1413 }
1414
1415 /* Unexpected PMD-mapped THP? */
1416 VM_BUG_ON_PAGE(!pvmw.pte, page);
1417
1418 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1419 address = pvmw.address;
1420
1421 if (PageHuge(page)) {
1422 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1423 /*
1424 * huge_pmd_unshare unmapped an entire PMD
1425 * page. There is no way of knowing exactly
1426 * which PMDs may be cached for this mm, so
1427 * we must flush them all. start/end were
1428 * already adjusted above to cover this range.
1429 */
1430 flush_cache_range(vma, start, end);
1431 flush_tlb_range(vma, start, end);
1432 mmu_notifier_invalidate_range(mm, start, end);
1433
1434 /*
1435 * The ref count of the PMD page was dropped
1436 * which is part of the way map counting
1437 * is done for shared PMDs. Return 'true'
1438 * here. When there is no other sharing,
1439 * huge_pmd_unshare returns false and we will
1440 * unmap the actual page and drop map count
1441 * to zero.
1442 */
1443 page_vma_mapped_walk_done(&pvmw);
1444 break;
1445 }
1446 }
1447
1448 if (IS_ENABLED(CONFIG_MIGRATION) &&
1449 (flags & TTU_MIGRATION) &&
1450 is_zone_device_page(page)) {
1451 swp_entry_t entry;
1452 pte_t swp_pte;
1453
1454 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1455
1456 /*
1457 * Store the pfn of the page in a special migration
1458 * pte. do_swap_page() will wait until the migration
1459 * pte is removed and then restart fault handling.
1460 */
1461 entry = make_migration_entry(page, 0);
1462 swp_pte = swp_entry_to_pte(entry);
1463 if (pte_soft_dirty(pteval))
1464 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1465 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1466 goto discard;
1467 }
1468
1469 if (!(flags & TTU_IGNORE_ACCESS)) {
1470 if (ptep_clear_flush_young_notify(vma, address,
1471 pvmw.pte)) {
1472 ret = false;
1473 page_vma_mapped_walk_done(&pvmw);
1474 break;
1475 }
1476 }
1477
1478 /* Nuke the page table entry. */
1479 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1480 if (should_defer_flush(mm, flags)) {
1481 /*
1482 * We clear the PTE but do not flush so potentially
1483 * a remote CPU could still be writing to the page.
1484 * If the entry was previously clean then the
1485 * architecture must guarantee that a clear->dirty
1486 * transition on a cached TLB entry is written through
1487 * and traps if the PTE is unmapped.
1488 */
1489 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1490
1491 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1492 } else {
1493 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1494 }
1495
1496 /* Move the dirty bit to the page. Now the pte is gone. */
1497 if (pte_dirty(pteval))
1498 set_page_dirty(page);
1499
1500 /* Update high watermark before we lower rss */
1501 update_hiwater_rss(mm);
1502
1503 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1504 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1505 if (PageHuge(page)) {
1506 int nr = 1 << compound_order(page);
1507 hugetlb_count_sub(nr, mm);
1508 set_huge_swap_pte_at(mm, address,
1509 pvmw.pte, pteval,
1510 vma_mmu_pagesize(vma));
1511 } else {
1512 dec_mm_counter(mm, mm_counter(page));
1513 set_pte_at(mm, address, pvmw.pte, pteval);
1514 }
1515
1516 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1517 /*
1518 * The guest indicated that the page content is of no
1519 * interest anymore. Simply discard the pte, vmscan
1520 * will take care of the rest.
1521 * A future reference will then fault in a new zero
1522 * page. When userfaultfd is active, we must not drop
1523 * this page though, as its main user (postcopy
1524 * migration) will not expect userfaults on already
1525 * copied pages.
1526 */
1527 dec_mm_counter(mm, mm_counter(page));
1528 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1529 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1530 swp_entry_t entry;
1531 pte_t swp_pte;
1532 /*
1533 * Store the pfn of the page in a special migration
1534 * pte. do_swap_page() will wait until the migration
1535 * pte is removed and then restart fault handling.
1536 */
1537 entry = make_migration_entry(subpage,
1538 pte_write(pteval));
1539 swp_pte = swp_entry_to_pte(entry);
1540 if (pte_soft_dirty(pteval))
1541 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1542 set_pte_at(mm, address, pvmw.pte, swp_pte);
1543 } else if (PageAnon(page)) {
1544 swp_entry_t entry = { .val = page_private(subpage) };
1545 pte_t swp_pte;
1546 /*
1547 * Store the swap location in the pte.
1548 * See handle_pte_fault() ...
1549 */
1550 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1551 WARN_ON_ONCE(1);
1552 ret = false;
1553 /* We have to invalidate as we cleared the pte */
1554 page_vma_mapped_walk_done(&pvmw);
1555 break;
1556 }
1557
1558 /* MADV_FREE page check */
1559 if (!PageSwapBacked(page)) {
1560 if (!PageDirty(page)) {
1561 dec_mm_counter(mm, MM_ANONPAGES);
1562 goto discard;
1563 }
1564
1565 /*
1566 * If the page was redirtied, it cannot be
1567 * discarded. Remap the page to page table.
1568 */
1569 set_pte_at(mm, address, pvmw.pte, pteval);
1570 SetPageSwapBacked(page);
1571 ret = false;
1572 page_vma_mapped_walk_done(&pvmw);
1573 break;
1574 }
1575
1576 if (swap_duplicate(entry) < 0) {
1577 set_pte_at(mm, address, pvmw.pte, pteval);
1578 ret = false;
1579 page_vma_mapped_walk_done(&pvmw);
1580 break;
1581 }
1582 if (list_empty(&mm->mmlist)) {
1583 spin_lock(&mmlist_lock);
1584 if (list_empty(&mm->mmlist))
1585 list_add(&mm->mmlist, &init_mm.mmlist);
1586 spin_unlock(&mmlist_lock);
1587 }
1588 dec_mm_counter(mm, MM_ANONPAGES);
1589 inc_mm_counter(mm, MM_SWAPENTS);
1590 swp_pte = swp_entry_to_pte(entry);
1591 if (pte_soft_dirty(pteval))
1592 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1593 set_pte_at(mm, address, pvmw.pte, swp_pte);
1594 } else
1595 dec_mm_counter(mm, mm_counter_file(page));
1596 discard:
1597 page_remove_rmap(subpage, PageHuge(page));
1598 put_page(page);
1599 mmu_notifier_invalidate_range(mm, address,
1600 address + PAGE_SIZE);
1601 }
1602
1603 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
1604
1605 return ret;
1606 }
1607
1608 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1609 {
1610 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1611
1612 if (!maybe_stack)
1613 return false;
1614
1615 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1616 VM_STACK_INCOMPLETE_SETUP)
1617 return true;
1618
1619 return false;
1620 }
1621
1622 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1623 {
1624 return is_vma_temporary_stack(vma);
1625 }
1626
1627 static int page_mapcount_is_zero(struct page *page)
1628 {
1629 return !total_mapcount(page);
1630 }
1631
1632 /**
1633 * try_to_unmap - try to remove all page table mappings to a page
1634 * @page: the page to get unmapped
1635 * @flags: action and flags
1636 *
1637 * Tries to remove all the page table entries which are mapping this
1638 * page, used in the pageout path. Caller must hold the page lock.
1639 *
1640 * If unmap is successful, return true. Otherwise, false.
1641 */
1642 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1643 {
1644 struct rmap_walk_control rwc = {
1645 .rmap_one = try_to_unmap_one,
1646 .arg = (void *)flags,
1647 .done = page_mapcount_is_zero,
1648 .anon_lock = page_lock_anon_vma_read,
1649 };
1650
1651 /*
1652 * During exec, a temporary VMA is setup and later moved.
1653 * The VMA is moved under the anon_vma lock but not the
1654 * page tables leading to a race where migration cannot
1655 * find the migration ptes. Rather than increasing the
1656 * locking requirements of exec(), migration skips
1657 * temporary VMAs until after exec() completes.
1658 */
1659 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1660 && !PageKsm(page) && PageAnon(page))
1661 rwc.invalid_vma = invalid_migration_vma;
1662
1663 if (flags & TTU_RMAP_LOCKED)
1664 rmap_walk_locked(page, &rwc);
1665 else
1666 rmap_walk(page, &rwc);
1667
1668 return !page_mapcount(page) ? true : false;
1669 }
1670
1671 static int page_not_mapped(struct page *page)
1672 {
1673 return !page_mapped(page);
1674 };
1675
1676 /**
1677 * try_to_munlock - try to munlock a page
1678 * @page: the page to be munlocked
1679 *
1680 * Called from munlock code. Checks all of the VMAs mapping the page
1681 * to make sure nobody else has this page mlocked. The page will be
1682 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1683 */
1684
1685 void try_to_munlock(struct page *page)
1686 {
1687 struct rmap_walk_control rwc = {
1688 .rmap_one = try_to_unmap_one,
1689 .arg = (void *)TTU_MUNLOCK,
1690 .done = page_not_mapped,
1691 .anon_lock = page_lock_anon_vma_read,
1692
1693 };
1694
1695 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1696 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1697
1698 rmap_walk(page, &rwc);
1699 }
1700
1701 void __put_anon_vma(struct anon_vma *anon_vma)
1702 {
1703 struct anon_vma *root = anon_vma->root;
1704
1705 anon_vma_free(anon_vma);
1706 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1707 anon_vma_free(root);
1708 }
1709
1710 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1711 struct rmap_walk_control *rwc)
1712 {
1713 struct anon_vma *anon_vma;
1714
1715 if (rwc->anon_lock)
1716 return rwc->anon_lock(page);
1717
1718 /*
1719 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1720 * because that depends on page_mapped(); but not all its usages
1721 * are holding mmap_sem. Users without mmap_sem are required to
1722 * take a reference count to prevent the anon_vma disappearing
1723 */
1724 anon_vma = page_anon_vma(page);
1725 if (!anon_vma)
1726 return NULL;
1727
1728 anon_vma_lock_read(anon_vma);
1729 return anon_vma;
1730 }
1731
1732 /*
1733 * rmap_walk_anon - do something to anonymous page using the object-based
1734 * rmap method
1735 * @page: the page to be handled
1736 * @rwc: control variable according to each walk type
1737 *
1738 * Find all the mappings of a page using the mapping pointer and the vma chains
1739 * contained in the anon_vma struct it points to.
1740 *
1741 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1742 * where the page was found will be held for write. So, we won't recheck
1743 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1744 * LOCKED.
1745 */
1746 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1747 bool locked)
1748 {
1749 struct anon_vma *anon_vma;
1750 pgoff_t pgoff_start, pgoff_end;
1751 struct anon_vma_chain *avc;
1752
1753 if (locked) {
1754 anon_vma = page_anon_vma(page);
1755 /* anon_vma disappear under us? */
1756 VM_BUG_ON_PAGE(!anon_vma, page);
1757 } else {
1758 anon_vma = rmap_walk_anon_lock(page, rwc);
1759 }
1760 if (!anon_vma)
1761 return;
1762
1763 pgoff_start = page_to_pgoff(page);
1764 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1765 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1766 pgoff_start, pgoff_end) {
1767 struct vm_area_struct *vma = avc->vma;
1768 unsigned long address = vma_address(page, vma);
1769
1770 cond_resched();
1771
1772 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1773 continue;
1774
1775 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1776 break;
1777 if (rwc->done && rwc->done(page))
1778 break;
1779 }
1780
1781 if (!locked)
1782 anon_vma_unlock_read(anon_vma);
1783 }
1784
1785 /*
1786 * rmap_walk_file - do something to file page using the object-based rmap method
1787 * @page: the page to be handled
1788 * @rwc: control variable according to each walk type
1789 *
1790 * Find all the mappings of a page using the mapping pointer and the vma chains
1791 * contained in the address_space struct it points to.
1792 *
1793 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1794 * where the page was found will be held for write. So, we won't recheck
1795 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1796 * LOCKED.
1797 */
1798 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1799 bool locked)
1800 {
1801 struct address_space *mapping = page_mapping(page);
1802 pgoff_t pgoff_start, pgoff_end;
1803 struct vm_area_struct *vma;
1804
1805 /*
1806 * The page lock not only makes sure that page->mapping cannot
1807 * suddenly be NULLified by truncation, it makes sure that the
1808 * structure at mapping cannot be freed and reused yet,
1809 * so we can safely take mapping->i_mmap_rwsem.
1810 */
1811 VM_BUG_ON_PAGE(!PageLocked(page), page);
1812
1813 if (!mapping)
1814 return;
1815
1816 pgoff_start = page_to_pgoff(page);
1817 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1818 if (!locked)
1819 i_mmap_lock_read(mapping);
1820 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1821 pgoff_start, pgoff_end) {
1822 unsigned long address = vma_address(page, vma);
1823
1824 cond_resched();
1825
1826 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1827 continue;
1828
1829 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1830 goto done;
1831 if (rwc->done && rwc->done(page))
1832 goto done;
1833 }
1834
1835 done:
1836 if (!locked)
1837 i_mmap_unlock_read(mapping);
1838 }
1839
1840 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1841 {
1842 if (unlikely(PageKsm(page)))
1843 rmap_walk_ksm(page, rwc);
1844 else if (PageAnon(page))
1845 rmap_walk_anon(page, rwc, false);
1846 else
1847 rmap_walk_file(page, rwc, false);
1848 }
1849
1850 /* Like rmap_walk, but caller holds relevant rmap lock */
1851 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1852 {
1853 /* no ksm support for now */
1854 VM_BUG_ON_PAGE(PageKsm(page), page);
1855 if (PageAnon(page))
1856 rmap_walk_anon(page, rwc, true);
1857 else
1858 rmap_walk_file(page, rwc, true);
1859 }
1860
1861 #ifdef CONFIG_HUGETLB_PAGE
1862 /*
1863 * The following three functions are for anonymous (private mapped) hugepages.
1864 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1865 * and no lru code, because we handle hugepages differently from common pages.
1866 */
1867 static void __hugepage_set_anon_rmap(struct page *page,
1868 struct vm_area_struct *vma, unsigned long address, int exclusive)
1869 {
1870 struct anon_vma *anon_vma = vma->anon_vma;
1871
1872 BUG_ON(!anon_vma);
1873
1874 if (PageAnon(page))
1875 return;
1876 if (!exclusive)
1877 anon_vma = anon_vma->root;
1878
1879 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1880 page->mapping = (struct address_space *) anon_vma;
1881 page->index = linear_page_index(vma, address);
1882 }
1883
1884 void hugepage_add_anon_rmap(struct page *page,
1885 struct vm_area_struct *vma, unsigned long address)
1886 {
1887 struct anon_vma *anon_vma = vma->anon_vma;
1888 int first;
1889
1890 BUG_ON(!PageLocked(page));
1891 BUG_ON(!anon_vma);
1892 /* address might be in next vma when migration races vma_adjust */
1893 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1894 if (first)
1895 __hugepage_set_anon_rmap(page, vma, address, 0);
1896 }
1897
1898 void hugepage_add_new_anon_rmap(struct page *page,
1899 struct vm_area_struct *vma, unsigned long address)
1900 {
1901 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1902 atomic_set(compound_mapcount_ptr(page), 0);
1903 __hugepage_set_anon_rmap(page, vma, address, 1);
1904 }
1905 #endif /* CONFIG_HUGETLB_PAGE */