page_poison: play nicely with KASAN
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43 #include <linux/mmu_notifier.h>
44
45 #include <asm/tlb.h>
46 #include "internal.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/oom.h>
50
51 int sysctl_panic_on_oom;
52 int sysctl_oom_kill_allocating_task;
53 int sysctl_oom_dump_tasks = 1;
54
55 DEFINE_MUTEX(oom_lock);
56
57 #ifdef CONFIG_NUMA
58 /**
59 * has_intersects_mems_allowed() - check task eligiblity for kill
60 * @start: task struct of which task to consider
61 * @mask: nodemask passed to page allocator for mempolicy ooms
62 *
63 * Task eligibility is determined by whether or not a candidate task, @tsk,
64 * shares the same mempolicy nodes as current if it is bound by such a policy
65 * and whether or not it has the same set of allowed cpuset nodes.
66 */
67 static bool has_intersects_mems_allowed(struct task_struct *start,
68 const nodemask_t *mask)
69 {
70 struct task_struct *tsk;
71 bool ret = false;
72
73 rcu_read_lock();
74 for_each_thread(start, tsk) {
75 if (mask) {
76 /*
77 * If this is a mempolicy constrained oom, tsk's
78 * cpuset is irrelevant. Only return true if its
79 * mempolicy intersects current, otherwise it may be
80 * needlessly killed.
81 */
82 ret = mempolicy_nodemask_intersects(tsk, mask);
83 } else {
84 /*
85 * This is not a mempolicy constrained oom, so only
86 * check the mems of tsk's cpuset.
87 */
88 ret = cpuset_mems_allowed_intersects(current, tsk);
89 }
90 if (ret)
91 break;
92 }
93 rcu_read_unlock();
94
95 return ret;
96 }
97 #else
98 static bool has_intersects_mems_allowed(struct task_struct *tsk,
99 const nodemask_t *mask)
100 {
101 return true;
102 }
103 #endif /* CONFIG_NUMA */
104
105 /*
106 * The process p may have detached its own ->mm while exiting or through
107 * use_mm(), but one or more of its subthreads may still have a valid
108 * pointer. Return p, or any of its subthreads with a valid ->mm, with
109 * task_lock() held.
110 */
111 struct task_struct *find_lock_task_mm(struct task_struct *p)
112 {
113 struct task_struct *t;
114
115 rcu_read_lock();
116
117 for_each_thread(p, t) {
118 task_lock(t);
119 if (likely(t->mm))
120 goto found;
121 task_unlock(t);
122 }
123 t = NULL;
124 found:
125 rcu_read_unlock();
126
127 return t;
128 }
129
130 /*
131 * order == -1 means the oom kill is required by sysrq, otherwise only
132 * for display purposes.
133 */
134 static inline bool is_sysrq_oom(struct oom_control *oc)
135 {
136 return oc->order == -1;
137 }
138
139 static inline bool is_memcg_oom(struct oom_control *oc)
140 {
141 return oc->memcg != NULL;
142 }
143
144 /* return true if the task is not adequate as candidate victim task. */
145 static bool oom_unkillable_task(struct task_struct *p,
146 struct mem_cgroup *memcg, const nodemask_t *nodemask)
147 {
148 if (is_global_init(p))
149 return true;
150 if (p->flags & PF_KTHREAD)
151 return true;
152
153 /* When mem_cgroup_out_of_memory() and p is not member of the group */
154 if (memcg && !task_in_mem_cgroup(p, memcg))
155 return true;
156
157 /* p may not have freeable memory in nodemask */
158 if (!has_intersects_mems_allowed(p, nodemask))
159 return true;
160
161 return false;
162 }
163
164 /**
165 * oom_badness - heuristic function to determine which candidate task to kill
166 * @p: task struct of which task we should calculate
167 * @totalpages: total present RAM allowed for page allocation
168 *
169 * The heuristic for determining which task to kill is made to be as simple and
170 * predictable as possible. The goal is to return the highest value for the
171 * task consuming the most memory to avoid subsequent oom failures.
172 */
173 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
174 const nodemask_t *nodemask, unsigned long totalpages)
175 {
176 long points;
177 long adj;
178
179 if (oom_unkillable_task(p, memcg, nodemask))
180 return 0;
181
182 p = find_lock_task_mm(p);
183 if (!p)
184 return 0;
185
186 /*
187 * Do not even consider tasks which are explicitly marked oom
188 * unkillable or have been already oom reaped or the are in
189 * the middle of vfork
190 */
191 adj = (long)p->signal->oom_score_adj;
192 if (adj == OOM_SCORE_ADJ_MIN ||
193 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
194 in_vfork(p)) {
195 task_unlock(p);
196 return 0;
197 }
198
199 /*
200 * The baseline for the badness score is the proportion of RAM that each
201 * task's rss, pagetable and swap space use.
202 */
203 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
204 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
205 task_unlock(p);
206
207 /*
208 * Root processes get 3% bonus, just like the __vm_enough_memory()
209 * implementation used by LSMs.
210 */
211 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
212 points -= (points * 3) / 100;
213
214 /* Normalize to oom_score_adj units */
215 adj *= totalpages / 1000;
216 points += adj;
217
218 /*
219 * Never return 0 for an eligible task regardless of the root bonus and
220 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
221 */
222 return points > 0 ? points : 1;
223 }
224
225 enum oom_constraint {
226 CONSTRAINT_NONE,
227 CONSTRAINT_CPUSET,
228 CONSTRAINT_MEMORY_POLICY,
229 CONSTRAINT_MEMCG,
230 };
231
232 /*
233 * Determine the type of allocation constraint.
234 */
235 static enum oom_constraint constrained_alloc(struct oom_control *oc)
236 {
237 struct zone *zone;
238 struct zoneref *z;
239 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
240 bool cpuset_limited = false;
241 int nid;
242
243 if (is_memcg_oom(oc)) {
244 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
245 return CONSTRAINT_MEMCG;
246 }
247
248 /* Default to all available memory */
249 oc->totalpages = totalram_pages + total_swap_pages;
250
251 if (!IS_ENABLED(CONFIG_NUMA))
252 return CONSTRAINT_NONE;
253
254 if (!oc->zonelist)
255 return CONSTRAINT_NONE;
256 /*
257 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
258 * to kill current.We have to random task kill in this case.
259 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
260 */
261 if (oc->gfp_mask & __GFP_THISNODE)
262 return CONSTRAINT_NONE;
263
264 /*
265 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
266 * the page allocator means a mempolicy is in effect. Cpuset policy
267 * is enforced in get_page_from_freelist().
268 */
269 if (oc->nodemask &&
270 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
271 oc->totalpages = total_swap_pages;
272 for_each_node_mask(nid, *oc->nodemask)
273 oc->totalpages += node_spanned_pages(nid);
274 return CONSTRAINT_MEMORY_POLICY;
275 }
276
277 /* Check this allocation failure is caused by cpuset's wall function */
278 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
279 high_zoneidx, oc->nodemask)
280 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
281 cpuset_limited = true;
282
283 if (cpuset_limited) {
284 oc->totalpages = total_swap_pages;
285 for_each_node_mask(nid, cpuset_current_mems_allowed)
286 oc->totalpages += node_spanned_pages(nid);
287 return CONSTRAINT_CPUSET;
288 }
289 return CONSTRAINT_NONE;
290 }
291
292 static int oom_evaluate_task(struct task_struct *task, void *arg)
293 {
294 struct oom_control *oc = arg;
295 unsigned long points;
296
297 if (oom_unkillable_task(task, NULL, oc->nodemask))
298 goto next;
299
300 /*
301 * This task already has access to memory reserves and is being killed.
302 * Don't allow any other task to have access to the reserves unless
303 * the task has MMF_OOM_SKIP because chances that it would release
304 * any memory is quite low.
305 */
306 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
307 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
308 goto next;
309 goto abort;
310 }
311
312 /*
313 * If task is allocating a lot of memory and has been marked to be
314 * killed first if it triggers an oom, then select it.
315 */
316 if (oom_task_origin(task)) {
317 points = ULONG_MAX;
318 goto select;
319 }
320
321 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
322 if (!points || points < oc->chosen_points)
323 goto next;
324
325 /* Prefer thread group leaders for display purposes */
326 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
327 goto next;
328 select:
329 if (oc->chosen)
330 put_task_struct(oc->chosen);
331 get_task_struct(task);
332 oc->chosen = task;
333 oc->chosen_points = points;
334 next:
335 return 0;
336 abort:
337 if (oc->chosen)
338 put_task_struct(oc->chosen);
339 oc->chosen = (void *)-1UL;
340 return 1;
341 }
342
343 /*
344 * Simple selection loop. We choose the process with the highest number of
345 * 'points'. In case scan was aborted, oc->chosen is set to -1.
346 */
347 static void select_bad_process(struct oom_control *oc)
348 {
349 if (is_memcg_oom(oc))
350 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
351 else {
352 struct task_struct *p;
353
354 rcu_read_lock();
355 for_each_process(p)
356 if (oom_evaluate_task(p, oc))
357 break;
358 rcu_read_unlock();
359 }
360
361 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
362 }
363
364 /**
365 * dump_tasks - dump current memory state of all system tasks
366 * @memcg: current's memory controller, if constrained
367 * @nodemask: nodemask passed to page allocator for mempolicy ooms
368 *
369 * Dumps the current memory state of all eligible tasks. Tasks not in the same
370 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
371 * are not shown.
372 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
373 * swapents, oom_score_adj value, and name.
374 */
375 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
376 {
377 struct task_struct *p;
378 struct task_struct *task;
379
380 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
381 rcu_read_lock();
382 for_each_process(p) {
383 if (oom_unkillable_task(p, memcg, nodemask))
384 continue;
385
386 task = find_lock_task_mm(p);
387 if (!task) {
388 /*
389 * This is a kthread or all of p's threads have already
390 * detached their mm's. There's no need to report
391 * them; they can't be oom killed anyway.
392 */
393 continue;
394 }
395
396 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
397 task->pid, from_kuid(&init_user_ns, task_uid(task)),
398 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
399 atomic_long_read(&task->mm->nr_ptes),
400 mm_nr_pmds(task->mm),
401 get_mm_counter(task->mm, MM_SWAPENTS),
402 task->signal->oom_score_adj, task->comm);
403 task_unlock(task);
404 }
405 rcu_read_unlock();
406 }
407
408 static void dump_header(struct oom_control *oc, struct task_struct *p)
409 {
410 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
411 current->comm, oc->gfp_mask, &oc->gfp_mask);
412 if (oc->nodemask)
413 pr_cont("%*pbl", nodemask_pr_args(oc->nodemask));
414 else
415 pr_cont("(null)");
416 pr_cont(", order=%d, oom_score_adj=%hd\n",
417 oc->order, current->signal->oom_score_adj);
418 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
419 pr_warn("COMPACTION is disabled!!!\n");
420
421 cpuset_print_current_mems_allowed();
422 dump_stack();
423 if (oc->memcg)
424 mem_cgroup_print_oom_info(oc->memcg, p);
425 else
426 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
427 if (sysctl_oom_dump_tasks)
428 dump_tasks(oc->memcg, oc->nodemask);
429 }
430
431 /*
432 * Number of OOM victims in flight
433 */
434 static atomic_t oom_victims = ATOMIC_INIT(0);
435 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
436
437 static bool oom_killer_disabled __read_mostly;
438
439 #define K(x) ((x) << (PAGE_SHIFT-10))
440
441 /*
442 * task->mm can be NULL if the task is the exited group leader. So to
443 * determine whether the task is using a particular mm, we examine all the
444 * task's threads: if one of those is using this mm then this task was also
445 * using it.
446 */
447 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
448 {
449 struct task_struct *t;
450
451 for_each_thread(p, t) {
452 struct mm_struct *t_mm = READ_ONCE(t->mm);
453 if (t_mm)
454 return t_mm == mm;
455 }
456 return false;
457 }
458
459 #ifdef CONFIG_MMU
460 /*
461 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
462 * victim (if that is possible) to help the OOM killer to move on.
463 */
464 static struct task_struct *oom_reaper_th;
465 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
466 static struct task_struct *oom_reaper_list;
467 static DEFINE_SPINLOCK(oom_reaper_lock);
468
469 void __oom_reap_task_mm(struct mm_struct *mm)
470 {
471 struct vm_area_struct *vma;
472
473 /*
474 * Tell all users of get_user/copy_from_user etc... that the content
475 * is no longer stable. No barriers really needed because unmapping
476 * should imply barriers already and the reader would hit a page fault
477 * if it stumbled over a reaped memory.
478 */
479 set_bit(MMF_UNSTABLE, &mm->flags);
480
481 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
482 if (!can_madv_dontneed_vma(vma))
483 continue;
484
485 /*
486 * Only anonymous pages have a good chance to be dropped
487 * without additional steps which we cannot afford as we
488 * are OOM already.
489 *
490 * We do not even care about fs backed pages because all
491 * which are reclaimable have already been reclaimed and
492 * we do not want to block exit_mmap by keeping mm ref
493 * count elevated without a good reason.
494 */
495 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
496 struct mmu_gather tlb;
497
498 tlb_gather_mmu(&tlb, mm, vma->vm_start, vma->vm_end);
499 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
500 NULL);
501 tlb_finish_mmu(&tlb, vma->vm_start, vma->vm_end);
502 }
503 }
504 }
505
506 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
507 {
508 bool ret = true;
509
510 /*
511 * We have to make sure to not race with the victim exit path
512 * and cause premature new oom victim selection:
513 * oom_reap_task_mm exit_mm
514 * mmget_not_zero
515 * mmput
516 * atomic_dec_and_test
517 * exit_oom_victim
518 * [...]
519 * out_of_memory
520 * select_bad_process
521 * # no TIF_MEMDIE task selects new victim
522 * unmap_page_range # frees some memory
523 */
524 mutex_lock(&oom_lock);
525
526 if (!down_read_trylock(&mm->mmap_sem)) {
527 ret = false;
528 trace_skip_task_reaping(tsk->pid);
529 goto unlock_oom;
530 }
531
532 /*
533 * If the mm has notifiers then we would need to invalidate them around
534 * unmap_page_range and that is risky because notifiers can sleep and
535 * what they do is basically undeterministic. So let's have a short
536 * sleep to give the oom victim some more time.
537 * TODO: we really want to get rid of this ugly hack and make sure that
538 * notifiers cannot block for unbounded amount of time and add
539 * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
540 */
541 if (mm_has_notifiers(mm)) {
542 up_read(&mm->mmap_sem);
543 schedule_timeout_idle(HZ);
544 goto unlock_oom;
545 }
546
547 /*
548 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
549 * work on the mm anymore. The check for MMF_OOM_SKIP must run
550 * under mmap_sem for reading because it serializes against the
551 * down_write();up_write() cycle in exit_mmap().
552 */
553 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
554 up_read(&mm->mmap_sem);
555 trace_skip_task_reaping(tsk->pid);
556 goto unlock_oom;
557 }
558
559 trace_start_task_reaping(tsk->pid);
560
561 __oom_reap_task_mm(mm);
562
563 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
564 task_pid_nr(tsk), tsk->comm,
565 K(get_mm_counter(mm, MM_ANONPAGES)),
566 K(get_mm_counter(mm, MM_FILEPAGES)),
567 K(get_mm_counter(mm, MM_SHMEMPAGES)));
568 up_read(&mm->mmap_sem);
569
570 trace_finish_task_reaping(tsk->pid);
571 unlock_oom:
572 mutex_unlock(&oom_lock);
573 return ret;
574 }
575
576 #define MAX_OOM_REAP_RETRIES 10
577 static void oom_reap_task(struct task_struct *tsk)
578 {
579 int attempts = 0;
580 struct mm_struct *mm = tsk->signal->oom_mm;
581
582 /* Retry the down_read_trylock(mmap_sem) a few times */
583 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
584 schedule_timeout_idle(HZ/10);
585
586 if (attempts <= MAX_OOM_REAP_RETRIES)
587 goto done;
588
589 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
590 task_pid_nr(tsk), tsk->comm);
591 debug_show_all_locks();
592
593 done:
594 tsk->oom_reaper_list = NULL;
595
596 /*
597 * Hide this mm from OOM killer because it has been either reaped or
598 * somebody can't call up_write(mmap_sem).
599 */
600 set_bit(MMF_OOM_SKIP, &mm->flags);
601
602 /* Drop a reference taken by wake_oom_reaper */
603 put_task_struct(tsk);
604 }
605
606 static int oom_reaper(void *unused)
607 {
608 while (true) {
609 struct task_struct *tsk = NULL;
610
611 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
612 spin_lock(&oom_reaper_lock);
613 if (oom_reaper_list != NULL) {
614 tsk = oom_reaper_list;
615 oom_reaper_list = tsk->oom_reaper_list;
616 }
617 spin_unlock(&oom_reaper_lock);
618
619 if (tsk)
620 oom_reap_task(tsk);
621 }
622
623 return 0;
624 }
625
626 static void wake_oom_reaper(struct task_struct *tsk)
627 {
628 if (!oom_reaper_th)
629 return;
630
631 /* mm is already queued? */
632 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
633 return;
634
635 get_task_struct(tsk);
636
637 spin_lock(&oom_reaper_lock);
638 tsk->oom_reaper_list = oom_reaper_list;
639 oom_reaper_list = tsk;
640 spin_unlock(&oom_reaper_lock);
641 trace_wake_reaper(tsk->pid);
642 wake_up(&oom_reaper_wait);
643 }
644
645 static int __init oom_init(void)
646 {
647 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
648 if (IS_ERR(oom_reaper_th)) {
649 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
650 PTR_ERR(oom_reaper_th));
651 oom_reaper_th = NULL;
652 }
653 return 0;
654 }
655 subsys_initcall(oom_init)
656 #else
657 static inline void wake_oom_reaper(struct task_struct *tsk)
658 {
659 }
660 #endif /* CONFIG_MMU */
661
662 /**
663 * mark_oom_victim - mark the given task as OOM victim
664 * @tsk: task to mark
665 *
666 * Has to be called with oom_lock held and never after
667 * oom has been disabled already.
668 *
669 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
670 * under task_lock or operate on the current).
671 */
672 static void mark_oom_victim(struct task_struct *tsk)
673 {
674 struct mm_struct *mm = tsk->mm;
675
676 WARN_ON(oom_killer_disabled);
677 /* OOM killer might race with memcg OOM */
678 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
679 return;
680
681 /* oom_mm is bound to the signal struct life time. */
682 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
683 mmgrab(tsk->signal->oom_mm);
684 set_bit(MMF_OOM_VICTIM, &mm->flags);
685 }
686
687 /*
688 * Make sure that the task is woken up from uninterruptible sleep
689 * if it is frozen because OOM killer wouldn't be able to free
690 * any memory and livelock. freezing_slow_path will tell the freezer
691 * that TIF_MEMDIE tasks should be ignored.
692 */
693 __thaw_task(tsk);
694 atomic_inc(&oom_victims);
695 trace_mark_victim(tsk->pid);
696 }
697
698 /**
699 * exit_oom_victim - note the exit of an OOM victim
700 */
701 void exit_oom_victim(void)
702 {
703 clear_thread_flag(TIF_MEMDIE);
704
705 if (!atomic_dec_return(&oom_victims))
706 wake_up_all(&oom_victims_wait);
707 }
708
709 /**
710 * oom_killer_enable - enable OOM killer
711 */
712 void oom_killer_enable(void)
713 {
714 oom_killer_disabled = false;
715 pr_info("OOM killer enabled.\n");
716 }
717
718 /**
719 * oom_killer_disable - disable OOM killer
720 * @timeout: maximum timeout to wait for oom victims in jiffies
721 *
722 * Forces all page allocations to fail rather than trigger OOM killer.
723 * Will block and wait until all OOM victims are killed or the given
724 * timeout expires.
725 *
726 * The function cannot be called when there are runnable user tasks because
727 * the userspace would see unexpected allocation failures as a result. Any
728 * new usage of this function should be consulted with MM people.
729 *
730 * Returns true if successful and false if the OOM killer cannot be
731 * disabled.
732 */
733 bool oom_killer_disable(signed long timeout)
734 {
735 signed long ret;
736
737 /*
738 * Make sure to not race with an ongoing OOM killer. Check that the
739 * current is not killed (possibly due to sharing the victim's memory).
740 */
741 if (mutex_lock_killable(&oom_lock))
742 return false;
743 oom_killer_disabled = true;
744 mutex_unlock(&oom_lock);
745
746 ret = wait_event_interruptible_timeout(oom_victims_wait,
747 !atomic_read(&oom_victims), timeout);
748 if (ret <= 0) {
749 oom_killer_enable();
750 return false;
751 }
752 pr_info("OOM killer disabled.\n");
753
754 return true;
755 }
756
757 static inline bool __task_will_free_mem(struct task_struct *task)
758 {
759 struct signal_struct *sig = task->signal;
760
761 /*
762 * A coredumping process may sleep for an extended period in exit_mm(),
763 * so the oom killer cannot assume that the process will promptly exit
764 * and release memory.
765 */
766 if (sig->flags & SIGNAL_GROUP_COREDUMP)
767 return false;
768
769 if (sig->flags & SIGNAL_GROUP_EXIT)
770 return true;
771
772 if (thread_group_empty(task) && (task->flags & PF_EXITING))
773 return true;
774
775 return false;
776 }
777
778 /*
779 * Checks whether the given task is dying or exiting and likely to
780 * release its address space. This means that all threads and processes
781 * sharing the same mm have to be killed or exiting.
782 * Caller has to make sure that task->mm is stable (hold task_lock or
783 * it operates on the current).
784 */
785 static bool task_will_free_mem(struct task_struct *task)
786 {
787 struct mm_struct *mm = task->mm;
788 struct task_struct *p;
789 bool ret = true;
790
791 /*
792 * Skip tasks without mm because it might have passed its exit_mm and
793 * exit_oom_victim. oom_reaper could have rescued that but do not rely
794 * on that for now. We can consider find_lock_task_mm in future.
795 */
796 if (!mm)
797 return false;
798
799 if (!__task_will_free_mem(task))
800 return false;
801
802 /*
803 * This task has already been drained by the oom reaper so there are
804 * only small chances it will free some more
805 */
806 if (test_bit(MMF_OOM_SKIP, &mm->flags))
807 return false;
808
809 if (atomic_read(&mm->mm_users) <= 1)
810 return true;
811
812 /*
813 * Make sure that all tasks which share the mm with the given tasks
814 * are dying as well to make sure that a) nobody pins its mm and
815 * b) the task is also reapable by the oom reaper.
816 */
817 rcu_read_lock();
818 for_each_process(p) {
819 if (!process_shares_mm(p, mm))
820 continue;
821 if (same_thread_group(task, p))
822 continue;
823 ret = __task_will_free_mem(p);
824 if (!ret)
825 break;
826 }
827 rcu_read_unlock();
828
829 return ret;
830 }
831
832 static void oom_kill_process(struct oom_control *oc, const char *message)
833 {
834 struct task_struct *p = oc->chosen;
835 unsigned int points = oc->chosen_points;
836 struct task_struct *victim = p;
837 struct task_struct *child;
838 struct task_struct *t;
839 struct mm_struct *mm;
840 unsigned int victim_points = 0;
841 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
842 DEFAULT_RATELIMIT_BURST);
843 bool can_oom_reap = true;
844
845 /*
846 * If the task is already exiting, don't alarm the sysadmin or kill
847 * its children or threads, just give it access to memory reserves
848 * so it can die quickly
849 */
850 task_lock(p);
851 if (task_will_free_mem(p)) {
852 mark_oom_victim(p);
853 wake_oom_reaper(p);
854 task_unlock(p);
855 put_task_struct(p);
856 return;
857 }
858 task_unlock(p);
859
860 if (__ratelimit(&oom_rs))
861 dump_header(oc, p);
862
863 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
864 message, task_pid_nr(p), p->comm, points);
865
866 /*
867 * If any of p's children has a different mm and is eligible for kill,
868 * the one with the highest oom_badness() score is sacrificed for its
869 * parent. This attempts to lose the minimal amount of work done while
870 * still freeing memory.
871 */
872 read_lock(&tasklist_lock);
873
874 /*
875 * The task 'p' might have already exited before reaching here. The
876 * put_task_struct() will free task_struct 'p' while the loop still try
877 * to access the field of 'p', so, get an extra reference.
878 */
879 get_task_struct(p);
880 for_each_thread(p, t) {
881 list_for_each_entry(child, &t->children, sibling) {
882 unsigned int child_points;
883
884 if (process_shares_mm(child, p->mm))
885 continue;
886 /*
887 * oom_badness() returns 0 if the thread is unkillable
888 */
889 child_points = oom_badness(child,
890 oc->memcg, oc->nodemask, oc->totalpages);
891 if (child_points > victim_points) {
892 put_task_struct(victim);
893 victim = child;
894 victim_points = child_points;
895 get_task_struct(victim);
896 }
897 }
898 }
899 put_task_struct(p);
900 read_unlock(&tasklist_lock);
901
902 p = find_lock_task_mm(victim);
903 if (!p) {
904 put_task_struct(victim);
905 return;
906 } else if (victim != p) {
907 get_task_struct(p);
908 put_task_struct(victim);
909 victim = p;
910 }
911
912 /* Get a reference to safely compare mm after task_unlock(victim) */
913 mm = victim->mm;
914 mmgrab(mm);
915
916 /* Raise event before sending signal: task reaper must see this */
917 count_vm_event(OOM_KILL);
918 count_memcg_event_mm(mm, OOM_KILL);
919
920 /*
921 * We should send SIGKILL before granting access to memory reserves
922 * in order to prevent the OOM victim from depleting the memory
923 * reserves from the user space under its control.
924 */
925 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
926 mark_oom_victim(victim);
927 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
928 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
929 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
930 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
931 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
932 task_unlock(victim);
933
934 /*
935 * Kill all user processes sharing victim->mm in other thread groups, if
936 * any. They don't get access to memory reserves, though, to avoid
937 * depletion of all memory. This prevents mm->mmap_sem livelock when an
938 * oom killed thread cannot exit because it requires the semaphore and
939 * its contended by another thread trying to allocate memory itself.
940 * That thread will now get access to memory reserves since it has a
941 * pending fatal signal.
942 */
943 rcu_read_lock();
944 for_each_process(p) {
945 if (!process_shares_mm(p, mm))
946 continue;
947 if (same_thread_group(p, victim))
948 continue;
949 if (is_global_init(p)) {
950 can_oom_reap = false;
951 set_bit(MMF_OOM_SKIP, &mm->flags);
952 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
953 task_pid_nr(victim), victim->comm,
954 task_pid_nr(p), p->comm);
955 continue;
956 }
957 /*
958 * No use_mm() user needs to read from the userspace so we are
959 * ok to reap it.
960 */
961 if (unlikely(p->flags & PF_KTHREAD))
962 continue;
963 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
964 }
965 rcu_read_unlock();
966
967 if (can_oom_reap)
968 wake_oom_reaper(victim);
969
970 mmdrop(mm);
971 put_task_struct(victim);
972 }
973 #undef K
974
975 /*
976 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
977 */
978 static void check_panic_on_oom(struct oom_control *oc,
979 enum oom_constraint constraint)
980 {
981 if (likely(!sysctl_panic_on_oom))
982 return;
983 if (sysctl_panic_on_oom != 2) {
984 /*
985 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
986 * does not panic for cpuset, mempolicy, or memcg allocation
987 * failures.
988 */
989 if (constraint != CONSTRAINT_NONE)
990 return;
991 }
992 /* Do not panic for oom kills triggered by sysrq */
993 if (is_sysrq_oom(oc))
994 return;
995 dump_header(oc, NULL);
996 panic("Out of memory: %s panic_on_oom is enabled\n",
997 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
998 }
999
1000 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1001
1002 int register_oom_notifier(struct notifier_block *nb)
1003 {
1004 return blocking_notifier_chain_register(&oom_notify_list, nb);
1005 }
1006 EXPORT_SYMBOL_GPL(register_oom_notifier);
1007
1008 int unregister_oom_notifier(struct notifier_block *nb)
1009 {
1010 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1011 }
1012 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1013
1014 /**
1015 * out_of_memory - kill the "best" process when we run out of memory
1016 * @oc: pointer to struct oom_control
1017 *
1018 * If we run out of memory, we have the choice between either
1019 * killing a random task (bad), letting the system crash (worse)
1020 * OR try to be smart about which process to kill. Note that we
1021 * don't have to be perfect here, we just have to be good.
1022 */
1023 bool out_of_memory(struct oom_control *oc)
1024 {
1025 unsigned long freed = 0;
1026 enum oom_constraint constraint = CONSTRAINT_NONE;
1027
1028 if (oom_killer_disabled)
1029 return false;
1030
1031 if (!is_memcg_oom(oc)) {
1032 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1033 if (freed > 0)
1034 /* Got some memory back in the last second. */
1035 return true;
1036 }
1037
1038 /*
1039 * If current has a pending SIGKILL or is exiting, then automatically
1040 * select it. The goal is to allow it to allocate so that it may
1041 * quickly exit and free its memory.
1042 */
1043 if (task_will_free_mem(current)) {
1044 mark_oom_victim(current);
1045 wake_oom_reaper(current);
1046 return true;
1047 }
1048
1049 /*
1050 * The OOM killer does not compensate for IO-less reclaim.
1051 * pagefault_out_of_memory lost its gfp context so we have to
1052 * make sure exclude 0 mask - all other users should have at least
1053 * ___GFP_DIRECT_RECLAIM to get here.
1054 */
1055 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1056 return true;
1057
1058 /*
1059 * Check if there were limitations on the allocation (only relevant for
1060 * NUMA and memcg) that may require different handling.
1061 */
1062 constraint = constrained_alloc(oc);
1063 if (constraint != CONSTRAINT_MEMORY_POLICY)
1064 oc->nodemask = NULL;
1065 check_panic_on_oom(oc, constraint);
1066
1067 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1068 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1069 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1070 get_task_struct(current);
1071 oc->chosen = current;
1072 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1073 return true;
1074 }
1075
1076 select_bad_process(oc);
1077 /* Found nothing?!?! Either we hang forever, or we panic. */
1078 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1079 dump_header(oc, NULL);
1080 panic("Out of memory and no killable processes...\n");
1081 }
1082 if (oc->chosen && oc->chosen != (void *)-1UL) {
1083 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1084 "Memory cgroup out of memory");
1085 /*
1086 * Give the killed process a good chance to exit before trying
1087 * to allocate memory again.
1088 */
1089 schedule_timeout_killable(1);
1090 }
1091 return !!oc->chosen;
1092 }
1093
1094 /*
1095 * The pagefault handler calls here because it is out of memory, so kill a
1096 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1097 * killing is already in progress so do nothing.
1098 */
1099 void pagefault_out_of_memory(void)
1100 {
1101 struct oom_control oc = {
1102 .zonelist = NULL,
1103 .nodemask = NULL,
1104 .memcg = NULL,
1105 .gfp_mask = 0,
1106 .order = 0,
1107 };
1108
1109 if (mem_cgroup_oom_synchronize(true))
1110 return;
1111
1112 if (!mutex_trylock(&oom_lock))
1113 return;
1114 out_of_memory(&oc);
1115 mutex_unlock(&oom_lock);
1116 }