FROMLIST: psi: split update_stats into parts
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
53
54 /*
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
57 *
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
60 *
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
64 *
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
69 *
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
76 *
77 * KSM solves this problem by several techniques:
78 *
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
92 *
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
95 */
96
97 /**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
103 */
104 struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
107 struct rmap_item *rmap_list;
108 struct mm_struct *mm;
109 };
110
111 /**
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
117 *
118 * There is only the one ksm_scan instance of this cursor structure.
119 */
120 struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
123 struct rmap_item **rmap_list;
124 unsigned long seqnr;
125 };
126
127 /**
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132 * @list: linked into migrate_nodes, pending placement in the proper node tree
133 * @hlist: hlist head of rmap_items using this ksm page
134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138 */
139 struct stable_node {
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
147 };
148 };
149 };
150 struct hlist_head hlist;
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
154 };
155 /*
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
159 */
160 #define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163 int nid;
164 #endif
165 };
166
167 /**
168 * struct rmap_item - reverse mapping item for virtual addresses
169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
178 */
179 struct rmap_item {
180 struct rmap_item *rmap_list;
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183 #ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185 #endif
186 };
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
189 unsigned int oldchecksum; /* when unstable */
190 union {
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
195 };
196 };
197 };
198
199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
202 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
203 /* to mask all the flags */
204
205 /* The stable and unstable tree heads */
206 static struct rb_root one_stable_tree[1] = { RB_ROOT };
207 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
208 static struct rb_root *root_stable_tree = one_stable_tree;
209 static struct rb_root *root_unstable_tree = one_unstable_tree;
210
211 /* Recently migrated nodes of stable tree, pending proper placement */
212 static LIST_HEAD(migrate_nodes);
213 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
214
215 #define MM_SLOTS_HASH_BITS 10
216 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
217
218 static struct mm_slot ksm_mm_head = {
219 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
220 };
221 static struct ksm_scan ksm_scan = {
222 .mm_slot = &ksm_mm_head,
223 };
224
225 static struct kmem_cache *rmap_item_cache;
226 static struct kmem_cache *stable_node_cache;
227 static struct kmem_cache *mm_slot_cache;
228
229 /* The number of nodes in the stable tree */
230 static unsigned long ksm_pages_shared;
231
232 /* The number of page slots additionally sharing those nodes */
233 static unsigned long ksm_pages_sharing;
234
235 /* The number of nodes in the unstable tree */
236 static unsigned long ksm_pages_unshared;
237
238 /* The number of rmap_items in use: to calculate pages_volatile */
239 static unsigned long ksm_rmap_items;
240
241 /* The number of stable_node chains */
242 static unsigned long ksm_stable_node_chains;
243
244 /* The number of stable_node dups linked to the stable_node chains */
245 static unsigned long ksm_stable_node_dups;
246
247 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
248 static int ksm_stable_node_chains_prune_millisecs = 2000;
249
250 /* Maximum number of page slots sharing a stable node */
251 static int ksm_max_page_sharing = 256;
252
253 /* Number of pages ksmd should scan in one batch */
254 static unsigned int ksm_thread_pages_to_scan = 100;
255
256 /* Milliseconds ksmd should sleep between batches */
257 static unsigned int ksm_thread_sleep_millisecs = 20;
258
259 /* Checksum of an empty (zeroed) page */
260 static unsigned int zero_checksum __read_mostly;
261
262 /* Whether to merge empty (zeroed) pages with actual zero pages */
263 static bool ksm_use_zero_pages __read_mostly;
264
265 #ifdef CONFIG_NUMA
266 /* Zeroed when merging across nodes is not allowed */
267 static unsigned int ksm_merge_across_nodes = 1;
268 static int ksm_nr_node_ids = 1;
269 #else
270 #define ksm_merge_across_nodes 1U
271 #define ksm_nr_node_ids 1
272 #endif
273
274 #define KSM_RUN_STOP 0
275 #define KSM_RUN_MERGE 1
276 #define KSM_RUN_UNMERGE 2
277 #define KSM_RUN_OFFLINE 4
278 static unsigned long ksm_run = KSM_RUN_STOP;
279 static void wait_while_offlining(void);
280
281 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
282 static DEFINE_MUTEX(ksm_thread_mutex);
283 static DEFINE_SPINLOCK(ksm_mmlist_lock);
284
285 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
286 sizeof(struct __struct), __alignof__(struct __struct),\
287 (__flags), NULL)
288
289 static int __init ksm_slab_init(void)
290 {
291 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
292 if (!rmap_item_cache)
293 goto out;
294
295 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
296 if (!stable_node_cache)
297 goto out_free1;
298
299 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
300 if (!mm_slot_cache)
301 goto out_free2;
302
303 return 0;
304
305 out_free2:
306 kmem_cache_destroy(stable_node_cache);
307 out_free1:
308 kmem_cache_destroy(rmap_item_cache);
309 out:
310 return -ENOMEM;
311 }
312
313 static void __init ksm_slab_free(void)
314 {
315 kmem_cache_destroy(mm_slot_cache);
316 kmem_cache_destroy(stable_node_cache);
317 kmem_cache_destroy(rmap_item_cache);
318 mm_slot_cache = NULL;
319 }
320
321 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
322 {
323 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
324 }
325
326 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
327 {
328 return dup->head == STABLE_NODE_DUP_HEAD;
329 }
330
331 static inline void stable_node_chain_add_dup(struct stable_node *dup,
332 struct stable_node *chain)
333 {
334 VM_BUG_ON(is_stable_node_dup(dup));
335 dup->head = STABLE_NODE_DUP_HEAD;
336 VM_BUG_ON(!is_stable_node_chain(chain));
337 hlist_add_head(&dup->hlist_dup, &chain->hlist);
338 ksm_stable_node_dups++;
339 }
340
341 static inline void __stable_node_dup_del(struct stable_node *dup)
342 {
343 VM_BUG_ON(!is_stable_node_dup(dup));
344 hlist_del(&dup->hlist_dup);
345 ksm_stable_node_dups--;
346 }
347
348 static inline void stable_node_dup_del(struct stable_node *dup)
349 {
350 VM_BUG_ON(is_stable_node_chain(dup));
351 if (is_stable_node_dup(dup))
352 __stable_node_dup_del(dup);
353 else
354 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
355 #ifdef CONFIG_DEBUG_VM
356 dup->head = NULL;
357 #endif
358 }
359
360 static inline struct rmap_item *alloc_rmap_item(void)
361 {
362 struct rmap_item *rmap_item;
363
364 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
365 __GFP_NORETRY | __GFP_NOWARN);
366 if (rmap_item)
367 ksm_rmap_items++;
368 return rmap_item;
369 }
370
371 static inline void free_rmap_item(struct rmap_item *rmap_item)
372 {
373 ksm_rmap_items--;
374 rmap_item->mm = NULL; /* debug safety */
375 kmem_cache_free(rmap_item_cache, rmap_item);
376 }
377
378 static inline struct stable_node *alloc_stable_node(void)
379 {
380 /*
381 * The allocation can take too long with GFP_KERNEL when memory is under
382 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
383 * grants access to memory reserves, helping to avoid this problem.
384 */
385 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
386 }
387
388 static inline void free_stable_node(struct stable_node *stable_node)
389 {
390 VM_BUG_ON(stable_node->rmap_hlist_len &&
391 !is_stable_node_chain(stable_node));
392 kmem_cache_free(stable_node_cache, stable_node);
393 }
394
395 static inline struct mm_slot *alloc_mm_slot(void)
396 {
397 if (!mm_slot_cache) /* initialization failed */
398 return NULL;
399 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
400 }
401
402 static inline void free_mm_slot(struct mm_slot *mm_slot)
403 {
404 kmem_cache_free(mm_slot_cache, mm_slot);
405 }
406
407 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
408 {
409 struct mm_slot *slot;
410
411 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
412 if (slot->mm == mm)
413 return slot;
414
415 return NULL;
416 }
417
418 static void insert_to_mm_slots_hash(struct mm_struct *mm,
419 struct mm_slot *mm_slot)
420 {
421 mm_slot->mm = mm;
422 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
423 }
424
425 /*
426 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
427 * page tables after it has passed through ksm_exit() - which, if necessary,
428 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
429 * a special flag: they can just back out as soon as mm_users goes to zero.
430 * ksm_test_exit() is used throughout to make this test for exit: in some
431 * places for correctness, in some places just to avoid unnecessary work.
432 */
433 static inline bool ksm_test_exit(struct mm_struct *mm)
434 {
435 return atomic_read(&mm->mm_users) == 0;
436 }
437
438 /*
439 * We use break_ksm to break COW on a ksm page: it's a stripped down
440 *
441 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
442 * put_page(page);
443 *
444 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
445 * in case the application has unmapped and remapped mm,addr meanwhile.
446 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
447 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
448 *
449 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
450 * of the process that owns 'vma'. We also do not want to enforce
451 * protection keys here anyway.
452 */
453 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
454 {
455 struct page *page;
456 int ret = 0;
457
458 do {
459 cond_resched();
460 page = follow_page(vma, addr,
461 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
462 if (IS_ERR_OR_NULL(page))
463 break;
464 if (PageKsm(page))
465 ret = handle_mm_fault(vma, addr,
466 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
467 else
468 ret = VM_FAULT_WRITE;
469 put_page(page);
470 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
471 /*
472 * We must loop because handle_mm_fault() may back out if there's
473 * any difficulty e.g. if pte accessed bit gets updated concurrently.
474 *
475 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
476 * COW has been broken, even if the vma does not permit VM_WRITE;
477 * but note that a concurrent fault might break PageKsm for us.
478 *
479 * VM_FAULT_SIGBUS could occur if we race with truncation of the
480 * backing file, which also invalidates anonymous pages: that's
481 * okay, that truncation will have unmapped the PageKsm for us.
482 *
483 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
484 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
485 * current task has TIF_MEMDIE set, and will be OOM killed on return
486 * to user; and ksmd, having no mm, would never be chosen for that.
487 *
488 * But if the mm is in a limited mem_cgroup, then the fault may fail
489 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
490 * even ksmd can fail in this way - though it's usually breaking ksm
491 * just to undo a merge it made a moment before, so unlikely to oom.
492 *
493 * That's a pity: we might therefore have more kernel pages allocated
494 * than we're counting as nodes in the stable tree; but ksm_do_scan
495 * will retry to break_cow on each pass, so should recover the page
496 * in due course. The important thing is to not let VM_MERGEABLE
497 * be cleared while any such pages might remain in the area.
498 */
499 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
500 }
501
502 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
503 unsigned long addr)
504 {
505 struct vm_area_struct *vma;
506 if (ksm_test_exit(mm))
507 return NULL;
508 vma = find_vma(mm, addr);
509 if (!vma || vma->vm_start > addr)
510 return NULL;
511 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
512 return NULL;
513 return vma;
514 }
515
516 static void break_cow(struct rmap_item *rmap_item)
517 {
518 struct mm_struct *mm = rmap_item->mm;
519 unsigned long addr = rmap_item->address;
520 struct vm_area_struct *vma;
521
522 /*
523 * It is not an accident that whenever we want to break COW
524 * to undo, we also need to drop a reference to the anon_vma.
525 */
526 put_anon_vma(rmap_item->anon_vma);
527
528 down_read(&mm->mmap_sem);
529 vma = find_mergeable_vma(mm, addr);
530 if (vma)
531 break_ksm(vma, addr);
532 up_read(&mm->mmap_sem);
533 }
534
535 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
536 {
537 struct mm_struct *mm = rmap_item->mm;
538 unsigned long addr = rmap_item->address;
539 struct vm_area_struct *vma;
540 struct page *page;
541
542 down_read(&mm->mmap_sem);
543 vma = find_mergeable_vma(mm, addr);
544 if (!vma)
545 goto out;
546
547 page = follow_page(vma, addr, FOLL_GET);
548 if (IS_ERR_OR_NULL(page))
549 goto out;
550 if (PageAnon(page)) {
551 flush_anon_page(vma, page, addr);
552 flush_dcache_page(page);
553 } else {
554 put_page(page);
555 out:
556 page = NULL;
557 }
558 up_read(&mm->mmap_sem);
559 return page;
560 }
561
562 /*
563 * This helper is used for getting right index into array of tree roots.
564 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
565 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
566 * every node has its own stable and unstable tree.
567 */
568 static inline int get_kpfn_nid(unsigned long kpfn)
569 {
570 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
571 }
572
573 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
574 struct rb_root *root)
575 {
576 struct stable_node *chain = alloc_stable_node();
577 VM_BUG_ON(is_stable_node_chain(dup));
578 if (likely(chain)) {
579 INIT_HLIST_HEAD(&chain->hlist);
580 chain->chain_prune_time = jiffies;
581 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
582 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
583 chain->nid = -1; /* debug */
584 #endif
585 ksm_stable_node_chains++;
586
587 /*
588 * Put the stable node chain in the first dimension of
589 * the stable tree and at the same time remove the old
590 * stable node.
591 */
592 rb_replace_node(&dup->node, &chain->node, root);
593
594 /*
595 * Move the old stable node to the second dimension
596 * queued in the hlist_dup. The invariant is that all
597 * dup stable_nodes in the chain->hlist point to pages
598 * that are wrprotected and have the exact same
599 * content.
600 */
601 stable_node_chain_add_dup(dup, chain);
602 }
603 return chain;
604 }
605
606 static inline void free_stable_node_chain(struct stable_node *chain,
607 struct rb_root *root)
608 {
609 rb_erase(&chain->node, root);
610 free_stable_node(chain);
611 ksm_stable_node_chains--;
612 }
613
614 static void remove_node_from_stable_tree(struct stable_node *stable_node)
615 {
616 struct rmap_item *rmap_item;
617
618 /* check it's not STABLE_NODE_CHAIN or negative */
619 BUG_ON(stable_node->rmap_hlist_len < 0);
620
621 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
622 if (rmap_item->hlist.next)
623 ksm_pages_sharing--;
624 else
625 ksm_pages_shared--;
626 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
627 stable_node->rmap_hlist_len--;
628 put_anon_vma(rmap_item->anon_vma);
629 rmap_item->address &= PAGE_MASK;
630 cond_resched();
631 }
632
633 /*
634 * We need the second aligned pointer of the migrate_nodes
635 * list_head to stay clear from the rb_parent_color union
636 * (aligned and different than any node) and also different
637 * from &migrate_nodes. This will verify that future list.h changes
638 * don't break STABLE_NODE_DUP_HEAD.
639 */
640 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
641 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
642 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
643 #endif
644
645 if (stable_node->head == &migrate_nodes)
646 list_del(&stable_node->list);
647 else
648 stable_node_dup_del(stable_node);
649 free_stable_node(stable_node);
650 }
651
652 /*
653 * get_ksm_page: checks if the page indicated by the stable node
654 * is still its ksm page, despite having held no reference to it.
655 * In which case we can trust the content of the page, and it
656 * returns the gotten page; but if the page has now been zapped,
657 * remove the stale node from the stable tree and return NULL.
658 * But beware, the stable node's page might be being migrated.
659 *
660 * You would expect the stable_node to hold a reference to the ksm page.
661 * But if it increments the page's count, swapping out has to wait for
662 * ksmd to come around again before it can free the page, which may take
663 * seconds or even minutes: much too unresponsive. So instead we use a
664 * "keyhole reference": access to the ksm page from the stable node peeps
665 * out through its keyhole to see if that page still holds the right key,
666 * pointing back to this stable node. This relies on freeing a PageAnon
667 * page to reset its page->mapping to NULL, and relies on no other use of
668 * a page to put something that might look like our key in page->mapping.
669 * is on its way to being freed; but it is an anomaly to bear in mind.
670 */
671 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
672 {
673 struct page *page;
674 void *expected_mapping;
675 unsigned long kpfn;
676
677 expected_mapping = (void *)((unsigned long)stable_node |
678 PAGE_MAPPING_KSM);
679 again:
680 kpfn = READ_ONCE(stable_node->kpfn);
681 page = pfn_to_page(kpfn);
682
683 /*
684 * page is computed from kpfn, so on most architectures reading
685 * page->mapping is naturally ordered after reading node->kpfn,
686 * but on Alpha we need to be more careful.
687 */
688 smp_read_barrier_depends();
689 if (READ_ONCE(page->mapping) != expected_mapping)
690 goto stale;
691
692 /*
693 * We cannot do anything with the page while its refcount is 0.
694 * Usually 0 means free, or tail of a higher-order page: in which
695 * case this node is no longer referenced, and should be freed;
696 * however, it might mean that the page is under page_freeze_refs().
697 * The __remove_mapping() case is easy, again the node is now stale;
698 * but if page is swapcache in migrate_page_move_mapping(), it might
699 * still be our page, in which case it's essential to keep the node.
700 */
701 while (!get_page_unless_zero(page)) {
702 /*
703 * Another check for page->mapping != expected_mapping would
704 * work here too. We have chosen the !PageSwapCache test to
705 * optimize the common case, when the page is or is about to
706 * be freed: PageSwapCache is cleared (under spin_lock_irq)
707 * in the freeze_refs section of __remove_mapping(); but Anon
708 * page->mapping reset to NULL later, in free_pages_prepare().
709 */
710 if (!PageSwapCache(page))
711 goto stale;
712 cpu_relax();
713 }
714
715 if (READ_ONCE(page->mapping) != expected_mapping) {
716 put_page(page);
717 goto stale;
718 }
719
720 if (lock_it) {
721 lock_page(page);
722 if (READ_ONCE(page->mapping) != expected_mapping) {
723 unlock_page(page);
724 put_page(page);
725 goto stale;
726 }
727 }
728 return page;
729
730 stale:
731 /*
732 * We come here from above when page->mapping or !PageSwapCache
733 * suggests that the node is stale; but it might be under migration.
734 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
735 * before checking whether node->kpfn has been changed.
736 */
737 smp_rmb();
738 if (READ_ONCE(stable_node->kpfn) != kpfn)
739 goto again;
740 remove_node_from_stable_tree(stable_node);
741 return NULL;
742 }
743
744 /*
745 * Removing rmap_item from stable or unstable tree.
746 * This function will clean the information from the stable/unstable tree.
747 */
748 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
749 {
750 if (rmap_item->address & STABLE_FLAG) {
751 struct stable_node *stable_node;
752 struct page *page;
753
754 stable_node = rmap_item->head;
755 page = get_ksm_page(stable_node, true);
756 if (!page)
757 goto out;
758
759 hlist_del(&rmap_item->hlist);
760 unlock_page(page);
761 put_page(page);
762
763 if (!hlist_empty(&stable_node->hlist))
764 ksm_pages_sharing--;
765 else
766 ksm_pages_shared--;
767 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
768 stable_node->rmap_hlist_len--;
769
770 put_anon_vma(rmap_item->anon_vma);
771 rmap_item->address &= PAGE_MASK;
772
773 } else if (rmap_item->address & UNSTABLE_FLAG) {
774 unsigned char age;
775 /*
776 * Usually ksmd can and must skip the rb_erase, because
777 * root_unstable_tree was already reset to RB_ROOT.
778 * But be careful when an mm is exiting: do the rb_erase
779 * if this rmap_item was inserted by this scan, rather
780 * than left over from before.
781 */
782 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
783 BUG_ON(age > 1);
784 if (!age)
785 rb_erase(&rmap_item->node,
786 root_unstable_tree + NUMA(rmap_item->nid));
787 ksm_pages_unshared--;
788 rmap_item->address &= PAGE_MASK;
789 }
790 out:
791 cond_resched(); /* we're called from many long loops */
792 }
793
794 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
795 struct rmap_item **rmap_list)
796 {
797 while (*rmap_list) {
798 struct rmap_item *rmap_item = *rmap_list;
799 *rmap_list = rmap_item->rmap_list;
800 remove_rmap_item_from_tree(rmap_item);
801 free_rmap_item(rmap_item);
802 }
803 }
804
805 /*
806 * Though it's very tempting to unmerge rmap_items from stable tree rather
807 * than check every pte of a given vma, the locking doesn't quite work for
808 * that - an rmap_item is assigned to the stable tree after inserting ksm
809 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
810 * rmap_items from parent to child at fork time (so as not to waste time
811 * if exit comes before the next scan reaches it).
812 *
813 * Similarly, although we'd like to remove rmap_items (so updating counts
814 * and freeing memory) when unmerging an area, it's easier to leave that
815 * to the next pass of ksmd - consider, for example, how ksmd might be
816 * in cmp_and_merge_page on one of the rmap_items we would be removing.
817 */
818 static int unmerge_ksm_pages(struct vm_area_struct *vma,
819 unsigned long start, unsigned long end)
820 {
821 unsigned long addr;
822 int err = 0;
823
824 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
825 if (ksm_test_exit(vma->vm_mm))
826 break;
827 if (signal_pending(current))
828 err = -ERESTARTSYS;
829 else
830 err = break_ksm(vma, addr);
831 }
832 return err;
833 }
834
835 #ifdef CONFIG_SYSFS
836 /*
837 * Only called through the sysfs control interface:
838 */
839 static int remove_stable_node(struct stable_node *stable_node)
840 {
841 struct page *page;
842 int err;
843
844 page = get_ksm_page(stable_node, true);
845 if (!page) {
846 /*
847 * get_ksm_page did remove_node_from_stable_tree itself.
848 */
849 return 0;
850 }
851
852 if (WARN_ON_ONCE(page_mapped(page))) {
853 /*
854 * This should not happen: but if it does, just refuse to let
855 * merge_across_nodes be switched - there is no need to panic.
856 */
857 err = -EBUSY;
858 } else {
859 /*
860 * The stable node did not yet appear stale to get_ksm_page(),
861 * since that allows for an unmapped ksm page to be recognized
862 * right up until it is freed; but the node is safe to remove.
863 * This page might be in a pagevec waiting to be freed,
864 * or it might be PageSwapCache (perhaps under writeback),
865 * or it might have been removed from swapcache a moment ago.
866 */
867 set_page_stable_node(page, NULL);
868 remove_node_from_stable_tree(stable_node);
869 err = 0;
870 }
871
872 unlock_page(page);
873 put_page(page);
874 return err;
875 }
876
877 static int remove_stable_node_chain(struct stable_node *stable_node,
878 struct rb_root *root)
879 {
880 struct stable_node *dup;
881 struct hlist_node *hlist_safe;
882
883 if (!is_stable_node_chain(stable_node)) {
884 VM_BUG_ON(is_stable_node_dup(stable_node));
885 if (remove_stable_node(stable_node))
886 return true;
887 else
888 return false;
889 }
890
891 hlist_for_each_entry_safe(dup, hlist_safe,
892 &stable_node->hlist, hlist_dup) {
893 VM_BUG_ON(!is_stable_node_dup(dup));
894 if (remove_stable_node(dup))
895 return true;
896 }
897 BUG_ON(!hlist_empty(&stable_node->hlist));
898 free_stable_node_chain(stable_node, root);
899 return false;
900 }
901
902 static int remove_all_stable_nodes(void)
903 {
904 struct stable_node *stable_node, *next;
905 int nid;
906 int err = 0;
907
908 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
909 while (root_stable_tree[nid].rb_node) {
910 stable_node = rb_entry(root_stable_tree[nid].rb_node,
911 struct stable_node, node);
912 if (remove_stable_node_chain(stable_node,
913 root_stable_tree + nid)) {
914 err = -EBUSY;
915 break; /* proceed to next nid */
916 }
917 cond_resched();
918 }
919 }
920 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
921 if (remove_stable_node(stable_node))
922 err = -EBUSY;
923 cond_resched();
924 }
925 return err;
926 }
927
928 static int unmerge_and_remove_all_rmap_items(void)
929 {
930 struct mm_slot *mm_slot;
931 struct mm_struct *mm;
932 struct vm_area_struct *vma;
933 int err = 0;
934
935 spin_lock(&ksm_mmlist_lock);
936 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
937 struct mm_slot, mm_list);
938 spin_unlock(&ksm_mmlist_lock);
939
940 for (mm_slot = ksm_scan.mm_slot;
941 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
942 mm = mm_slot->mm;
943 down_read(&mm->mmap_sem);
944 for (vma = mm->mmap; vma; vma = vma->vm_next) {
945 if (ksm_test_exit(mm))
946 break;
947 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
948 continue;
949 err = unmerge_ksm_pages(vma,
950 vma->vm_start, vma->vm_end);
951 if (err)
952 goto error;
953 }
954
955 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
956 up_read(&mm->mmap_sem);
957
958 spin_lock(&ksm_mmlist_lock);
959 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
960 struct mm_slot, mm_list);
961 if (ksm_test_exit(mm)) {
962 hash_del(&mm_slot->link);
963 list_del(&mm_slot->mm_list);
964 spin_unlock(&ksm_mmlist_lock);
965
966 free_mm_slot(mm_slot);
967 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
968 mmdrop(mm);
969 } else
970 spin_unlock(&ksm_mmlist_lock);
971 }
972
973 /* Clean up stable nodes, but don't worry if some are still busy */
974 remove_all_stable_nodes();
975 ksm_scan.seqnr = 0;
976 return 0;
977
978 error:
979 up_read(&mm->mmap_sem);
980 spin_lock(&ksm_mmlist_lock);
981 ksm_scan.mm_slot = &ksm_mm_head;
982 spin_unlock(&ksm_mmlist_lock);
983 return err;
984 }
985 #endif /* CONFIG_SYSFS */
986
987 static u32 calc_checksum(struct page *page)
988 {
989 u32 checksum;
990 void *addr = kmap_atomic(page);
991 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
992 kunmap_atomic(addr);
993 return checksum;
994 }
995
996 static int memcmp_pages(struct page *page1, struct page *page2)
997 {
998 char *addr1, *addr2;
999 int ret;
1000
1001 addr1 = kmap_atomic(page1);
1002 addr2 = kmap_atomic(page2);
1003 ret = memcmp(addr1, addr2, PAGE_SIZE);
1004 kunmap_atomic(addr2);
1005 kunmap_atomic(addr1);
1006 return ret;
1007 }
1008
1009 static inline int pages_identical(struct page *page1, struct page *page2)
1010 {
1011 return !memcmp_pages(page1, page2);
1012 }
1013
1014 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1015 pte_t *orig_pte)
1016 {
1017 struct mm_struct *mm = vma->vm_mm;
1018 struct page_vma_mapped_walk pvmw = {
1019 .page = page,
1020 .vma = vma,
1021 };
1022 int swapped;
1023 int err = -EFAULT;
1024 unsigned long mmun_start; /* For mmu_notifiers */
1025 unsigned long mmun_end; /* For mmu_notifiers */
1026
1027 pvmw.address = page_address_in_vma(page, vma);
1028 if (pvmw.address == -EFAULT)
1029 goto out;
1030
1031 BUG_ON(PageTransCompound(page));
1032
1033 mmun_start = pvmw.address;
1034 mmun_end = pvmw.address + PAGE_SIZE;
1035 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1036
1037 if (!page_vma_mapped_walk(&pvmw))
1038 goto out_mn;
1039 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1040 goto out_unlock;
1041
1042 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1043 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1044 mm_tlb_flush_pending(mm)) {
1045 pte_t entry;
1046
1047 swapped = PageSwapCache(page);
1048 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1049 /*
1050 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1051 * take any lock, therefore the check that we are going to make
1052 * with the pagecount against the mapcount is racey and
1053 * O_DIRECT can happen right after the check.
1054 * So we clear the pte and flush the tlb before the check
1055 * this assure us that no O_DIRECT can happen after the check
1056 * or in the middle of the check.
1057 */
1058 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
1059 /*
1060 * Check that no O_DIRECT or similar I/O is in progress on the
1061 * page
1062 */
1063 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1064 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1065 goto out_unlock;
1066 }
1067 if (pte_dirty(entry))
1068 set_page_dirty(page);
1069
1070 if (pte_protnone(entry))
1071 entry = pte_mkclean(pte_clear_savedwrite(entry));
1072 else
1073 entry = pte_mkclean(pte_wrprotect(entry));
1074 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1075 }
1076 *orig_pte = *pvmw.pte;
1077 err = 0;
1078
1079 out_unlock:
1080 page_vma_mapped_walk_done(&pvmw);
1081 out_mn:
1082 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1083 out:
1084 return err;
1085 }
1086
1087 /**
1088 * replace_page - replace page in vma by new ksm page
1089 * @vma: vma that holds the pte pointing to page
1090 * @page: the page we are replacing by kpage
1091 * @kpage: the ksm page we replace page by
1092 * @orig_pte: the original value of the pte
1093 *
1094 * Returns 0 on success, -EFAULT on failure.
1095 */
1096 static int replace_page(struct vm_area_struct *vma, struct page *page,
1097 struct page *kpage, pte_t orig_pte)
1098 {
1099 struct mm_struct *mm = vma->vm_mm;
1100 pmd_t *pmd;
1101 pte_t *ptep;
1102 pte_t newpte;
1103 spinlock_t *ptl;
1104 unsigned long addr;
1105 int err = -EFAULT;
1106 unsigned long mmun_start; /* For mmu_notifiers */
1107 unsigned long mmun_end; /* For mmu_notifiers */
1108
1109 addr = page_address_in_vma(page, vma);
1110 if (addr == -EFAULT)
1111 goto out;
1112
1113 pmd = mm_find_pmd(mm, addr);
1114 if (!pmd)
1115 goto out;
1116
1117 mmun_start = addr;
1118 mmun_end = addr + PAGE_SIZE;
1119 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1120
1121 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122 if (!pte_same(*ptep, orig_pte)) {
1123 pte_unmap_unlock(ptep, ptl);
1124 goto out_mn;
1125 }
1126
1127 /*
1128 * No need to check ksm_use_zero_pages here: we can only have a
1129 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1130 */
1131 if (!is_zero_pfn(page_to_pfn(kpage))) {
1132 get_page(kpage);
1133 page_add_anon_rmap(kpage, vma, addr, false);
1134 newpte = mk_pte(kpage, vma->vm_page_prot);
1135 } else {
1136 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1137 vma->vm_page_prot));
1138 /*
1139 * We're replacing an anonymous page with a zero page, which is
1140 * not anonymous. We need to do proper accounting otherwise we
1141 * will get wrong values in /proc, and a BUG message in dmesg
1142 * when tearing down the mm.
1143 */
1144 dec_mm_counter(mm, MM_ANONPAGES);
1145 }
1146
1147 flush_cache_page(vma, addr, pte_pfn(*ptep));
1148 ptep_clear_flush_notify(vma, addr, ptep);
1149 set_pte_at_notify(mm, addr, ptep, newpte);
1150
1151 page_remove_rmap(page, false);
1152 if (!page_mapped(page))
1153 try_to_free_swap(page);
1154 put_page(page);
1155
1156 pte_unmap_unlock(ptep, ptl);
1157 err = 0;
1158 out_mn:
1159 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1160 out:
1161 return err;
1162 }
1163
1164 /*
1165 * try_to_merge_one_page - take two pages and merge them into one
1166 * @vma: the vma that holds the pte pointing to page
1167 * @page: the PageAnon page that we want to replace with kpage
1168 * @kpage: the PageKsm page that we want to map instead of page,
1169 * or NULL the first time when we want to use page as kpage.
1170 *
1171 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1172 */
1173 static int try_to_merge_one_page(struct vm_area_struct *vma,
1174 struct page *page, struct page *kpage)
1175 {
1176 pte_t orig_pte = __pte(0);
1177 int err = -EFAULT;
1178
1179 if (page == kpage) /* ksm page forked */
1180 return 0;
1181
1182 if (!PageAnon(page))
1183 goto out;
1184
1185 /*
1186 * We need the page lock to read a stable PageSwapCache in
1187 * write_protect_page(). We use trylock_page() instead of
1188 * lock_page() because we don't want to wait here - we
1189 * prefer to continue scanning and merging different pages,
1190 * then come back to this page when it is unlocked.
1191 */
1192 if (!trylock_page(page))
1193 goto out;
1194
1195 if (PageTransCompound(page)) {
1196 if (split_huge_page(page))
1197 goto out_unlock;
1198 }
1199
1200 /*
1201 * If this anonymous page is mapped only here, its pte may need
1202 * to be write-protected. If it's mapped elsewhere, all of its
1203 * ptes are necessarily already write-protected. But in either
1204 * case, we need to lock and check page_count is not raised.
1205 */
1206 if (write_protect_page(vma, page, &orig_pte) == 0) {
1207 if (!kpage) {
1208 /*
1209 * While we hold page lock, upgrade page from
1210 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1211 * stable_tree_insert() will update stable_node.
1212 */
1213 set_page_stable_node(page, NULL);
1214 mark_page_accessed(page);
1215 /*
1216 * Page reclaim just frees a clean page with no dirty
1217 * ptes: make sure that the ksm page would be swapped.
1218 */
1219 if (!PageDirty(page))
1220 SetPageDirty(page);
1221 err = 0;
1222 } else if (pages_identical(page, kpage))
1223 err = replace_page(vma, page, kpage, orig_pte);
1224 }
1225
1226 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1227 munlock_vma_page(page);
1228 if (!PageMlocked(kpage)) {
1229 unlock_page(page);
1230 lock_page(kpage);
1231 mlock_vma_page(kpage);
1232 page = kpage; /* for final unlock */
1233 }
1234 }
1235
1236 out_unlock:
1237 unlock_page(page);
1238 out:
1239 return err;
1240 }
1241
1242 /*
1243 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1244 * but no new kernel page is allocated: kpage must already be a ksm page.
1245 *
1246 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1247 */
1248 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1249 struct page *page, struct page *kpage)
1250 {
1251 struct mm_struct *mm = rmap_item->mm;
1252 struct vm_area_struct *vma;
1253 int err = -EFAULT;
1254
1255 down_read(&mm->mmap_sem);
1256 vma = find_mergeable_vma(mm, rmap_item->address);
1257 if (!vma)
1258 goto out;
1259
1260 err = try_to_merge_one_page(vma, page, kpage);
1261 if (err)
1262 goto out;
1263
1264 /* Unstable nid is in union with stable anon_vma: remove first */
1265 remove_rmap_item_from_tree(rmap_item);
1266
1267 /* Must get reference to anon_vma while still holding mmap_sem */
1268 rmap_item->anon_vma = vma->anon_vma;
1269 get_anon_vma(vma->anon_vma);
1270 out:
1271 up_read(&mm->mmap_sem);
1272 return err;
1273 }
1274
1275 /*
1276 * try_to_merge_two_pages - take two identical pages and prepare them
1277 * to be merged into one page.
1278 *
1279 * This function returns the kpage if we successfully merged two identical
1280 * pages into one ksm page, NULL otherwise.
1281 *
1282 * Note that this function upgrades page to ksm page: if one of the pages
1283 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1284 */
1285 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1286 struct page *page,
1287 struct rmap_item *tree_rmap_item,
1288 struct page *tree_page)
1289 {
1290 int err;
1291
1292 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1293 if (!err) {
1294 err = try_to_merge_with_ksm_page(tree_rmap_item,
1295 tree_page, page);
1296 /*
1297 * If that fails, we have a ksm page with only one pte
1298 * pointing to it: so break it.
1299 */
1300 if (err)
1301 break_cow(rmap_item);
1302 }
1303 return err ? NULL : page;
1304 }
1305
1306 static __always_inline
1307 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1308 {
1309 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1310 /*
1311 * Check that at least one mapping still exists, otherwise
1312 * there's no much point to merge and share with this
1313 * stable_node, as the underlying tree_page of the other
1314 * sharer is going to be freed soon.
1315 */
1316 return stable_node->rmap_hlist_len &&
1317 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1318 }
1319
1320 static __always_inline
1321 bool is_page_sharing_candidate(struct stable_node *stable_node)
1322 {
1323 return __is_page_sharing_candidate(stable_node, 0);
1324 }
1325
1326 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1327 struct stable_node **_stable_node,
1328 struct rb_root *root,
1329 bool prune_stale_stable_nodes)
1330 {
1331 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1332 struct hlist_node *hlist_safe;
1333 struct page *_tree_page, *tree_page = NULL;
1334 int nr = 0;
1335 int found_rmap_hlist_len;
1336
1337 if (!prune_stale_stable_nodes ||
1338 time_before(jiffies, stable_node->chain_prune_time +
1339 msecs_to_jiffies(
1340 ksm_stable_node_chains_prune_millisecs)))
1341 prune_stale_stable_nodes = false;
1342 else
1343 stable_node->chain_prune_time = jiffies;
1344
1345 hlist_for_each_entry_safe(dup, hlist_safe,
1346 &stable_node->hlist, hlist_dup) {
1347 cond_resched();
1348 /*
1349 * We must walk all stable_node_dup to prune the stale
1350 * stable nodes during lookup.
1351 *
1352 * get_ksm_page can drop the nodes from the
1353 * stable_node->hlist if they point to freed pages
1354 * (that's why we do a _safe walk). The "dup"
1355 * stable_node parameter itself will be freed from
1356 * under us if it returns NULL.
1357 */
1358 _tree_page = get_ksm_page(dup, false);
1359 if (!_tree_page)
1360 continue;
1361 nr += 1;
1362 if (is_page_sharing_candidate(dup)) {
1363 if (!found ||
1364 dup->rmap_hlist_len > found_rmap_hlist_len) {
1365 if (found)
1366 put_page(tree_page);
1367 found = dup;
1368 found_rmap_hlist_len = found->rmap_hlist_len;
1369 tree_page = _tree_page;
1370
1371 /* skip put_page for found dup */
1372 if (!prune_stale_stable_nodes)
1373 break;
1374 continue;
1375 }
1376 }
1377 put_page(_tree_page);
1378 }
1379
1380 if (found) {
1381 /*
1382 * nr is counting all dups in the chain only if
1383 * prune_stale_stable_nodes is true, otherwise we may
1384 * break the loop at nr == 1 even if there are
1385 * multiple entries.
1386 */
1387 if (prune_stale_stable_nodes && nr == 1) {
1388 /*
1389 * If there's not just one entry it would
1390 * corrupt memory, better BUG_ON. In KSM
1391 * context with no lock held it's not even
1392 * fatal.
1393 */
1394 BUG_ON(stable_node->hlist.first->next);
1395
1396 /*
1397 * There's just one entry and it is below the
1398 * deduplication limit so drop the chain.
1399 */
1400 rb_replace_node(&stable_node->node, &found->node,
1401 root);
1402 free_stable_node(stable_node);
1403 ksm_stable_node_chains--;
1404 ksm_stable_node_dups--;
1405 /*
1406 * NOTE: the caller depends on the stable_node
1407 * to be equal to stable_node_dup if the chain
1408 * was collapsed.
1409 */
1410 *_stable_node = found;
1411 /*
1412 * Just for robustneess as stable_node is
1413 * otherwise left as a stable pointer, the
1414 * compiler shall optimize it away at build
1415 * time.
1416 */
1417 stable_node = NULL;
1418 } else if (stable_node->hlist.first != &found->hlist_dup &&
1419 __is_page_sharing_candidate(found, 1)) {
1420 /*
1421 * If the found stable_node dup can accept one
1422 * more future merge (in addition to the one
1423 * that is underway) and is not at the head of
1424 * the chain, put it there so next search will
1425 * be quicker in the !prune_stale_stable_nodes
1426 * case.
1427 *
1428 * NOTE: it would be inaccurate to use nr > 1
1429 * instead of checking the hlist.first pointer
1430 * directly, because in the
1431 * prune_stale_stable_nodes case "nr" isn't
1432 * the position of the found dup in the chain,
1433 * but the total number of dups in the chain.
1434 */
1435 hlist_del(&found->hlist_dup);
1436 hlist_add_head(&found->hlist_dup,
1437 &stable_node->hlist);
1438 }
1439 }
1440
1441 *_stable_node_dup = found;
1442 return tree_page;
1443 }
1444
1445 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1446 struct rb_root *root)
1447 {
1448 if (!is_stable_node_chain(stable_node))
1449 return stable_node;
1450 if (hlist_empty(&stable_node->hlist)) {
1451 free_stable_node_chain(stable_node, root);
1452 return NULL;
1453 }
1454 return hlist_entry(stable_node->hlist.first,
1455 typeof(*stable_node), hlist_dup);
1456 }
1457
1458 /*
1459 * Like for get_ksm_page, this function can free the *_stable_node and
1460 * *_stable_node_dup if the returned tree_page is NULL.
1461 *
1462 * It can also free and overwrite *_stable_node with the found
1463 * stable_node_dup if the chain is collapsed (in which case
1464 * *_stable_node will be equal to *_stable_node_dup like if the chain
1465 * never existed). It's up to the caller to verify tree_page is not
1466 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1467 *
1468 * *_stable_node_dup is really a second output parameter of this
1469 * function and will be overwritten in all cases, the caller doesn't
1470 * need to initialize it.
1471 */
1472 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1473 struct stable_node **_stable_node,
1474 struct rb_root *root,
1475 bool prune_stale_stable_nodes)
1476 {
1477 struct stable_node *stable_node = *_stable_node;
1478 if (!is_stable_node_chain(stable_node)) {
1479 if (is_page_sharing_candidate(stable_node)) {
1480 *_stable_node_dup = stable_node;
1481 return get_ksm_page(stable_node, false);
1482 }
1483 /*
1484 * _stable_node_dup set to NULL means the stable_node
1485 * reached the ksm_max_page_sharing limit.
1486 */
1487 *_stable_node_dup = NULL;
1488 return NULL;
1489 }
1490 return stable_node_dup(_stable_node_dup, _stable_node, root,
1491 prune_stale_stable_nodes);
1492 }
1493
1494 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1495 struct stable_node **s_n,
1496 struct rb_root *root)
1497 {
1498 return __stable_node_chain(s_n_d, s_n, root, true);
1499 }
1500
1501 static __always_inline struct page *chain(struct stable_node **s_n_d,
1502 struct stable_node *s_n,
1503 struct rb_root *root)
1504 {
1505 struct stable_node *old_stable_node = s_n;
1506 struct page *tree_page;
1507
1508 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1509 /* not pruning dups so s_n cannot have changed */
1510 VM_BUG_ON(s_n != old_stable_node);
1511 return tree_page;
1512 }
1513
1514 /*
1515 * stable_tree_search - search for page inside the stable tree
1516 *
1517 * This function checks if there is a page inside the stable tree
1518 * with identical content to the page that we are scanning right now.
1519 *
1520 * This function returns the stable tree node of identical content if found,
1521 * NULL otherwise.
1522 */
1523 static struct page *stable_tree_search(struct page *page)
1524 {
1525 int nid;
1526 struct rb_root *root;
1527 struct rb_node **new;
1528 struct rb_node *parent;
1529 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1530 struct stable_node *page_node;
1531
1532 page_node = page_stable_node(page);
1533 if (page_node && page_node->head != &migrate_nodes) {
1534 /* ksm page forked */
1535 get_page(page);
1536 return page;
1537 }
1538
1539 nid = get_kpfn_nid(page_to_pfn(page));
1540 root = root_stable_tree + nid;
1541 again:
1542 new = &root->rb_node;
1543 parent = NULL;
1544
1545 while (*new) {
1546 struct page *tree_page;
1547 int ret;
1548
1549 cond_resched();
1550 stable_node = rb_entry(*new, struct stable_node, node);
1551 stable_node_any = NULL;
1552 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1553 /*
1554 * NOTE: stable_node may have been freed by
1555 * chain_prune() if the returned stable_node_dup is
1556 * not NULL. stable_node_dup may have been inserted in
1557 * the rbtree instead as a regular stable_node (in
1558 * order to collapse the stable_node chain if a single
1559 * stable_node dup was found in it). In such case the
1560 * stable_node is overwritten by the calleee to point
1561 * to the stable_node_dup that was collapsed in the
1562 * stable rbtree and stable_node will be equal to
1563 * stable_node_dup like if the chain never existed.
1564 */
1565 if (!stable_node_dup) {
1566 /*
1567 * Either all stable_node dups were full in
1568 * this stable_node chain, or this chain was
1569 * empty and should be rb_erased.
1570 */
1571 stable_node_any = stable_node_dup_any(stable_node,
1572 root);
1573 if (!stable_node_any) {
1574 /* rb_erase just run */
1575 goto again;
1576 }
1577 /*
1578 * Take any of the stable_node dups page of
1579 * this stable_node chain to let the tree walk
1580 * continue. All KSM pages belonging to the
1581 * stable_node dups in a stable_node chain
1582 * have the same content and they're
1583 * wrprotected at all times. Any will work
1584 * fine to continue the walk.
1585 */
1586 tree_page = get_ksm_page(stable_node_any, false);
1587 }
1588 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1589 if (!tree_page) {
1590 /*
1591 * If we walked over a stale stable_node,
1592 * get_ksm_page() will call rb_erase() and it
1593 * may rebalance the tree from under us. So
1594 * restart the search from scratch. Returning
1595 * NULL would be safe too, but we'd generate
1596 * false negative insertions just because some
1597 * stable_node was stale.
1598 */
1599 goto again;
1600 }
1601
1602 ret = memcmp_pages(page, tree_page);
1603 put_page(tree_page);
1604
1605 parent = *new;
1606 if (ret < 0)
1607 new = &parent->rb_left;
1608 else if (ret > 0)
1609 new = &parent->rb_right;
1610 else {
1611 if (page_node) {
1612 VM_BUG_ON(page_node->head != &migrate_nodes);
1613 /*
1614 * Test if the migrated page should be merged
1615 * into a stable node dup. If the mapcount is
1616 * 1 we can migrate it with another KSM page
1617 * without adding it to the chain.
1618 */
1619 if (page_mapcount(page) > 1)
1620 goto chain_append;
1621 }
1622
1623 if (!stable_node_dup) {
1624 /*
1625 * If the stable_node is a chain and
1626 * we got a payload match in memcmp
1627 * but we cannot merge the scanned
1628 * page in any of the existing
1629 * stable_node dups because they're
1630 * all full, we need to wait the
1631 * scanned page to find itself a match
1632 * in the unstable tree to create a
1633 * brand new KSM page to add later to
1634 * the dups of this stable_node.
1635 */
1636 return NULL;
1637 }
1638
1639 /*
1640 * Lock and unlock the stable_node's page (which
1641 * might already have been migrated) so that page
1642 * migration is sure to notice its raised count.
1643 * It would be more elegant to return stable_node
1644 * than kpage, but that involves more changes.
1645 */
1646 tree_page = get_ksm_page(stable_node_dup, true);
1647 if (unlikely(!tree_page))
1648 /*
1649 * The tree may have been rebalanced,
1650 * so re-evaluate parent and new.
1651 */
1652 goto again;
1653 unlock_page(tree_page);
1654
1655 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1656 NUMA(stable_node_dup->nid)) {
1657 put_page(tree_page);
1658 goto replace;
1659 }
1660 return tree_page;
1661 }
1662 }
1663
1664 if (!page_node)
1665 return NULL;
1666
1667 list_del(&page_node->list);
1668 DO_NUMA(page_node->nid = nid);
1669 rb_link_node(&page_node->node, parent, new);
1670 rb_insert_color(&page_node->node, root);
1671 out:
1672 if (is_page_sharing_candidate(page_node)) {
1673 get_page(page);
1674 return page;
1675 } else
1676 return NULL;
1677
1678 replace:
1679 /*
1680 * If stable_node was a chain and chain_prune collapsed it,
1681 * stable_node has been updated to be the new regular
1682 * stable_node. A collapse of the chain is indistinguishable
1683 * from the case there was no chain in the stable
1684 * rbtree. Otherwise stable_node is the chain and
1685 * stable_node_dup is the dup to replace.
1686 */
1687 if (stable_node_dup == stable_node) {
1688 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1689 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1690 /* there is no chain */
1691 if (page_node) {
1692 VM_BUG_ON(page_node->head != &migrate_nodes);
1693 list_del(&page_node->list);
1694 DO_NUMA(page_node->nid = nid);
1695 rb_replace_node(&stable_node_dup->node,
1696 &page_node->node,
1697 root);
1698 if (is_page_sharing_candidate(page_node))
1699 get_page(page);
1700 else
1701 page = NULL;
1702 } else {
1703 rb_erase(&stable_node_dup->node, root);
1704 page = NULL;
1705 }
1706 } else {
1707 VM_BUG_ON(!is_stable_node_chain(stable_node));
1708 __stable_node_dup_del(stable_node_dup);
1709 if (page_node) {
1710 VM_BUG_ON(page_node->head != &migrate_nodes);
1711 list_del(&page_node->list);
1712 DO_NUMA(page_node->nid = nid);
1713 stable_node_chain_add_dup(page_node, stable_node);
1714 if (is_page_sharing_candidate(page_node))
1715 get_page(page);
1716 else
1717 page = NULL;
1718 } else {
1719 page = NULL;
1720 }
1721 }
1722 stable_node_dup->head = &migrate_nodes;
1723 list_add(&stable_node_dup->list, stable_node_dup->head);
1724 return page;
1725
1726 chain_append:
1727 /* stable_node_dup could be null if it reached the limit */
1728 if (!stable_node_dup)
1729 stable_node_dup = stable_node_any;
1730 /*
1731 * If stable_node was a chain and chain_prune collapsed it,
1732 * stable_node has been updated to be the new regular
1733 * stable_node. A collapse of the chain is indistinguishable
1734 * from the case there was no chain in the stable
1735 * rbtree. Otherwise stable_node is the chain and
1736 * stable_node_dup is the dup to replace.
1737 */
1738 if (stable_node_dup == stable_node) {
1739 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1740 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1741 /* chain is missing so create it */
1742 stable_node = alloc_stable_node_chain(stable_node_dup,
1743 root);
1744 if (!stable_node)
1745 return NULL;
1746 }
1747 /*
1748 * Add this stable_node dup that was
1749 * migrated to the stable_node chain
1750 * of the current nid for this page
1751 * content.
1752 */
1753 VM_BUG_ON(!is_stable_node_chain(stable_node));
1754 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1755 VM_BUG_ON(page_node->head != &migrate_nodes);
1756 list_del(&page_node->list);
1757 DO_NUMA(page_node->nid = nid);
1758 stable_node_chain_add_dup(page_node, stable_node);
1759 goto out;
1760 }
1761
1762 /*
1763 * stable_tree_insert - insert stable tree node pointing to new ksm page
1764 * into the stable tree.
1765 *
1766 * This function returns the stable tree node just allocated on success,
1767 * NULL otherwise.
1768 */
1769 static struct stable_node *stable_tree_insert(struct page *kpage)
1770 {
1771 int nid;
1772 unsigned long kpfn;
1773 struct rb_root *root;
1774 struct rb_node **new;
1775 struct rb_node *parent;
1776 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1777 bool need_chain = false;
1778
1779 kpfn = page_to_pfn(kpage);
1780 nid = get_kpfn_nid(kpfn);
1781 root = root_stable_tree + nid;
1782 again:
1783 parent = NULL;
1784 new = &root->rb_node;
1785
1786 while (*new) {
1787 struct page *tree_page;
1788 int ret;
1789
1790 cond_resched();
1791 stable_node = rb_entry(*new, struct stable_node, node);
1792 stable_node_any = NULL;
1793 tree_page = chain(&stable_node_dup, stable_node, root);
1794 if (!stable_node_dup) {
1795 /*
1796 * Either all stable_node dups were full in
1797 * this stable_node chain, or this chain was
1798 * empty and should be rb_erased.
1799 */
1800 stable_node_any = stable_node_dup_any(stable_node,
1801 root);
1802 if (!stable_node_any) {
1803 /* rb_erase just run */
1804 goto again;
1805 }
1806 /*
1807 * Take any of the stable_node dups page of
1808 * this stable_node chain to let the tree walk
1809 * continue. All KSM pages belonging to the
1810 * stable_node dups in a stable_node chain
1811 * have the same content and they're
1812 * wrprotected at all times. Any will work
1813 * fine to continue the walk.
1814 */
1815 tree_page = get_ksm_page(stable_node_any, false);
1816 }
1817 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1818 if (!tree_page) {
1819 /*
1820 * If we walked over a stale stable_node,
1821 * get_ksm_page() will call rb_erase() and it
1822 * may rebalance the tree from under us. So
1823 * restart the search from scratch. Returning
1824 * NULL would be safe too, but we'd generate
1825 * false negative insertions just because some
1826 * stable_node was stale.
1827 */
1828 goto again;
1829 }
1830
1831 ret = memcmp_pages(kpage, tree_page);
1832 put_page(tree_page);
1833
1834 parent = *new;
1835 if (ret < 0)
1836 new = &parent->rb_left;
1837 else if (ret > 0)
1838 new = &parent->rb_right;
1839 else {
1840 need_chain = true;
1841 break;
1842 }
1843 }
1844
1845 stable_node_dup = alloc_stable_node();
1846 if (!stable_node_dup)
1847 return NULL;
1848
1849 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1850 stable_node_dup->kpfn = kpfn;
1851 set_page_stable_node(kpage, stable_node_dup);
1852 stable_node_dup->rmap_hlist_len = 0;
1853 DO_NUMA(stable_node_dup->nid = nid);
1854 if (!need_chain) {
1855 rb_link_node(&stable_node_dup->node, parent, new);
1856 rb_insert_color(&stable_node_dup->node, root);
1857 } else {
1858 if (!is_stable_node_chain(stable_node)) {
1859 struct stable_node *orig = stable_node;
1860 /* chain is missing so create it */
1861 stable_node = alloc_stable_node_chain(orig, root);
1862 if (!stable_node) {
1863 free_stable_node(stable_node_dup);
1864 return NULL;
1865 }
1866 }
1867 stable_node_chain_add_dup(stable_node_dup, stable_node);
1868 }
1869
1870 return stable_node_dup;
1871 }
1872
1873 /*
1874 * unstable_tree_search_insert - search for identical page,
1875 * else insert rmap_item into the unstable tree.
1876 *
1877 * This function searches for a page in the unstable tree identical to the
1878 * page currently being scanned; and if no identical page is found in the
1879 * tree, we insert rmap_item as a new object into the unstable tree.
1880 *
1881 * This function returns pointer to rmap_item found to be identical
1882 * to the currently scanned page, NULL otherwise.
1883 *
1884 * This function does both searching and inserting, because they share
1885 * the same walking algorithm in an rbtree.
1886 */
1887 static
1888 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1889 struct page *page,
1890 struct page **tree_pagep)
1891 {
1892 struct rb_node **new;
1893 struct rb_root *root;
1894 struct rb_node *parent = NULL;
1895 int nid;
1896
1897 nid = get_kpfn_nid(page_to_pfn(page));
1898 root = root_unstable_tree + nid;
1899 new = &root->rb_node;
1900
1901 while (*new) {
1902 struct rmap_item *tree_rmap_item;
1903 struct page *tree_page;
1904 int ret;
1905
1906 cond_resched();
1907 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1908 tree_page = get_mergeable_page(tree_rmap_item);
1909 if (!tree_page)
1910 return NULL;
1911
1912 /*
1913 * Don't substitute a ksm page for a forked page.
1914 */
1915 if (page == tree_page) {
1916 put_page(tree_page);
1917 return NULL;
1918 }
1919
1920 ret = memcmp_pages(page, tree_page);
1921
1922 parent = *new;
1923 if (ret < 0) {
1924 put_page(tree_page);
1925 new = &parent->rb_left;
1926 } else if (ret > 0) {
1927 put_page(tree_page);
1928 new = &parent->rb_right;
1929 } else if (!ksm_merge_across_nodes &&
1930 page_to_nid(tree_page) != nid) {
1931 /*
1932 * If tree_page has been migrated to another NUMA node,
1933 * it will be flushed out and put in the right unstable
1934 * tree next time: only merge with it when across_nodes.
1935 */
1936 put_page(tree_page);
1937 return NULL;
1938 } else {
1939 *tree_pagep = tree_page;
1940 return tree_rmap_item;
1941 }
1942 }
1943
1944 rmap_item->address |= UNSTABLE_FLAG;
1945 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1946 DO_NUMA(rmap_item->nid = nid);
1947 rb_link_node(&rmap_item->node, parent, new);
1948 rb_insert_color(&rmap_item->node, root);
1949
1950 ksm_pages_unshared++;
1951 return NULL;
1952 }
1953
1954 /*
1955 * stable_tree_append - add another rmap_item to the linked list of
1956 * rmap_items hanging off a given node of the stable tree, all sharing
1957 * the same ksm page.
1958 */
1959 static void stable_tree_append(struct rmap_item *rmap_item,
1960 struct stable_node *stable_node,
1961 bool max_page_sharing_bypass)
1962 {
1963 /*
1964 * rmap won't find this mapping if we don't insert the
1965 * rmap_item in the right stable_node
1966 * duplicate. page_migration could break later if rmap breaks,
1967 * so we can as well crash here. We really need to check for
1968 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1969 * for other negative values as an undeflow if detected here
1970 * for the first time (and not when decreasing rmap_hlist_len)
1971 * would be sign of memory corruption in the stable_node.
1972 */
1973 BUG_ON(stable_node->rmap_hlist_len < 0);
1974
1975 stable_node->rmap_hlist_len++;
1976 if (!max_page_sharing_bypass)
1977 /* possibly non fatal but unexpected overflow, only warn */
1978 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1979 ksm_max_page_sharing);
1980
1981 rmap_item->head = stable_node;
1982 rmap_item->address |= STABLE_FLAG;
1983 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1984
1985 if (rmap_item->hlist.next)
1986 ksm_pages_sharing++;
1987 else
1988 ksm_pages_shared++;
1989 }
1990
1991 /*
1992 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1993 * if not, compare checksum to previous and if it's the same, see if page can
1994 * be inserted into the unstable tree, or merged with a page already there and
1995 * both transferred to the stable tree.
1996 *
1997 * @page: the page that we are searching identical page to.
1998 * @rmap_item: the reverse mapping into the virtual address of this page
1999 */
2000 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2001 {
2002 struct mm_struct *mm = rmap_item->mm;
2003 struct rmap_item *tree_rmap_item;
2004 struct page *tree_page = NULL;
2005 struct stable_node *stable_node;
2006 struct page *kpage;
2007 unsigned int checksum;
2008 int err;
2009 bool max_page_sharing_bypass = false;
2010
2011 stable_node = page_stable_node(page);
2012 if (stable_node) {
2013 if (stable_node->head != &migrate_nodes &&
2014 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2015 NUMA(stable_node->nid)) {
2016 stable_node_dup_del(stable_node);
2017 stable_node->head = &migrate_nodes;
2018 list_add(&stable_node->list, stable_node->head);
2019 }
2020 if (stable_node->head != &migrate_nodes &&
2021 rmap_item->head == stable_node)
2022 return;
2023 /*
2024 * If it's a KSM fork, allow it to go over the sharing limit
2025 * without warnings.
2026 */
2027 if (!is_page_sharing_candidate(stable_node))
2028 max_page_sharing_bypass = true;
2029 }
2030
2031 /* We first start with searching the page inside the stable tree */
2032 kpage = stable_tree_search(page);
2033 if (kpage == page && rmap_item->head == stable_node) {
2034 put_page(kpage);
2035 return;
2036 }
2037
2038 remove_rmap_item_from_tree(rmap_item);
2039
2040 if (kpage) {
2041 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2042 if (!err) {
2043 /*
2044 * The page was successfully merged:
2045 * add its rmap_item to the stable tree.
2046 */
2047 lock_page(kpage);
2048 stable_tree_append(rmap_item, page_stable_node(kpage),
2049 max_page_sharing_bypass);
2050 unlock_page(kpage);
2051 }
2052 put_page(kpage);
2053 return;
2054 }
2055
2056 /*
2057 * If the hash value of the page has changed from the last time
2058 * we calculated it, this page is changing frequently: therefore we
2059 * don't want to insert it in the unstable tree, and we don't want
2060 * to waste our time searching for something identical to it there.
2061 */
2062 checksum = calc_checksum(page);
2063 if (rmap_item->oldchecksum != checksum) {
2064 rmap_item->oldchecksum = checksum;
2065 return;
2066 }
2067
2068 /*
2069 * Same checksum as an empty page. We attempt to merge it with the
2070 * appropriate zero page if the user enabled this via sysfs.
2071 */
2072 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2073 struct vm_area_struct *vma;
2074
2075 down_read(&mm->mmap_sem);
2076 vma = find_mergeable_vma(mm, rmap_item->address);
2077 err = try_to_merge_one_page(vma, page,
2078 ZERO_PAGE(rmap_item->address));
2079 up_read(&mm->mmap_sem);
2080 /*
2081 * In case of failure, the page was not really empty, so we
2082 * need to continue. Otherwise we're done.
2083 */
2084 if (!err)
2085 return;
2086 }
2087 tree_rmap_item =
2088 unstable_tree_search_insert(rmap_item, page, &tree_page);
2089 if (tree_rmap_item) {
2090 bool split;
2091
2092 kpage = try_to_merge_two_pages(rmap_item, page,
2093 tree_rmap_item, tree_page);
2094 /*
2095 * If both pages we tried to merge belong to the same compound
2096 * page, then we actually ended up increasing the reference
2097 * count of the same compound page twice, and split_huge_page
2098 * failed.
2099 * Here we set a flag if that happened, and we use it later to
2100 * try split_huge_page again. Since we call put_page right
2101 * afterwards, the reference count will be correct and
2102 * split_huge_page should succeed.
2103 */
2104 split = PageTransCompound(page)
2105 && compound_head(page) == compound_head(tree_page);
2106 put_page(tree_page);
2107 if (kpage) {
2108 /*
2109 * The pages were successfully merged: insert new
2110 * node in the stable tree and add both rmap_items.
2111 */
2112 lock_page(kpage);
2113 stable_node = stable_tree_insert(kpage);
2114 if (stable_node) {
2115 stable_tree_append(tree_rmap_item, stable_node,
2116 false);
2117 stable_tree_append(rmap_item, stable_node,
2118 false);
2119 }
2120 unlock_page(kpage);
2121
2122 /*
2123 * If we fail to insert the page into the stable tree,
2124 * we will have 2 virtual addresses that are pointing
2125 * to a ksm page left outside the stable tree,
2126 * in which case we need to break_cow on both.
2127 */
2128 if (!stable_node) {
2129 break_cow(tree_rmap_item);
2130 break_cow(rmap_item);
2131 }
2132 } else if (split) {
2133 /*
2134 * We are here if we tried to merge two pages and
2135 * failed because they both belonged to the same
2136 * compound page. We will split the page now, but no
2137 * merging will take place.
2138 * We do not want to add the cost of a full lock; if
2139 * the page is locked, it is better to skip it and
2140 * perhaps try again later.
2141 */
2142 if (!trylock_page(page))
2143 return;
2144 split_huge_page(page);
2145 unlock_page(page);
2146 }
2147 }
2148 }
2149
2150 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2151 struct rmap_item **rmap_list,
2152 unsigned long addr)
2153 {
2154 struct rmap_item *rmap_item;
2155
2156 while (*rmap_list) {
2157 rmap_item = *rmap_list;
2158 if ((rmap_item->address & PAGE_MASK) == addr)
2159 return rmap_item;
2160 if (rmap_item->address > addr)
2161 break;
2162 *rmap_list = rmap_item->rmap_list;
2163 remove_rmap_item_from_tree(rmap_item);
2164 free_rmap_item(rmap_item);
2165 }
2166
2167 rmap_item = alloc_rmap_item();
2168 if (rmap_item) {
2169 /* It has already been zeroed */
2170 rmap_item->mm = mm_slot->mm;
2171 rmap_item->address = addr;
2172 rmap_item->rmap_list = *rmap_list;
2173 *rmap_list = rmap_item;
2174 }
2175 return rmap_item;
2176 }
2177
2178 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2179 {
2180 struct mm_struct *mm;
2181 struct mm_slot *slot;
2182 struct vm_area_struct *vma;
2183 struct rmap_item *rmap_item;
2184 int nid;
2185
2186 if (list_empty(&ksm_mm_head.mm_list))
2187 return NULL;
2188
2189 slot = ksm_scan.mm_slot;
2190 if (slot == &ksm_mm_head) {
2191 /*
2192 * A number of pages can hang around indefinitely on per-cpu
2193 * pagevecs, raised page count preventing write_protect_page
2194 * from merging them. Though it doesn't really matter much,
2195 * it is puzzling to see some stuck in pages_volatile until
2196 * other activity jostles them out, and they also prevented
2197 * LTP's KSM test from succeeding deterministically; so drain
2198 * them here (here rather than on entry to ksm_do_scan(),
2199 * so we don't IPI too often when pages_to_scan is set low).
2200 */
2201 lru_add_drain_all();
2202
2203 /*
2204 * Whereas stale stable_nodes on the stable_tree itself
2205 * get pruned in the regular course of stable_tree_search(),
2206 * those moved out to the migrate_nodes list can accumulate:
2207 * so prune them once before each full scan.
2208 */
2209 if (!ksm_merge_across_nodes) {
2210 struct stable_node *stable_node, *next;
2211 struct page *page;
2212
2213 list_for_each_entry_safe(stable_node, next,
2214 &migrate_nodes, list) {
2215 page = get_ksm_page(stable_node, false);
2216 if (page)
2217 put_page(page);
2218 cond_resched();
2219 }
2220 }
2221
2222 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2223 root_unstable_tree[nid] = RB_ROOT;
2224
2225 spin_lock(&ksm_mmlist_lock);
2226 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2227 ksm_scan.mm_slot = slot;
2228 spin_unlock(&ksm_mmlist_lock);
2229 /*
2230 * Although we tested list_empty() above, a racing __ksm_exit
2231 * of the last mm on the list may have removed it since then.
2232 */
2233 if (slot == &ksm_mm_head)
2234 return NULL;
2235 next_mm:
2236 ksm_scan.address = 0;
2237 ksm_scan.rmap_list = &slot->rmap_list;
2238 }
2239
2240 mm = slot->mm;
2241 down_read(&mm->mmap_sem);
2242 if (ksm_test_exit(mm))
2243 vma = NULL;
2244 else
2245 vma = find_vma(mm, ksm_scan.address);
2246
2247 for (; vma; vma = vma->vm_next) {
2248 if (!(vma->vm_flags & VM_MERGEABLE))
2249 continue;
2250 if (ksm_scan.address < vma->vm_start)
2251 ksm_scan.address = vma->vm_start;
2252 if (!vma->anon_vma)
2253 ksm_scan.address = vma->vm_end;
2254
2255 while (ksm_scan.address < vma->vm_end) {
2256 if (ksm_test_exit(mm))
2257 break;
2258 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2259 if (IS_ERR_OR_NULL(*page)) {
2260 ksm_scan.address += PAGE_SIZE;
2261 cond_resched();
2262 continue;
2263 }
2264 if (PageAnon(*page)) {
2265 flush_anon_page(vma, *page, ksm_scan.address);
2266 flush_dcache_page(*page);
2267 rmap_item = get_next_rmap_item(slot,
2268 ksm_scan.rmap_list, ksm_scan.address);
2269 if (rmap_item) {
2270 ksm_scan.rmap_list =
2271 &rmap_item->rmap_list;
2272 ksm_scan.address += PAGE_SIZE;
2273 } else
2274 put_page(*page);
2275 up_read(&mm->mmap_sem);
2276 return rmap_item;
2277 }
2278 put_page(*page);
2279 ksm_scan.address += PAGE_SIZE;
2280 cond_resched();
2281 }
2282 }
2283
2284 if (ksm_test_exit(mm)) {
2285 ksm_scan.address = 0;
2286 ksm_scan.rmap_list = &slot->rmap_list;
2287 }
2288 /*
2289 * Nuke all the rmap_items that are above this current rmap:
2290 * because there were no VM_MERGEABLE vmas with such addresses.
2291 */
2292 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2293
2294 spin_lock(&ksm_mmlist_lock);
2295 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2296 struct mm_slot, mm_list);
2297 if (ksm_scan.address == 0) {
2298 /*
2299 * We've completed a full scan of all vmas, holding mmap_sem
2300 * throughout, and found no VM_MERGEABLE: so do the same as
2301 * __ksm_exit does to remove this mm from all our lists now.
2302 * This applies either when cleaning up after __ksm_exit
2303 * (but beware: we can reach here even before __ksm_exit),
2304 * or when all VM_MERGEABLE areas have been unmapped (and
2305 * mmap_sem then protects against race with MADV_MERGEABLE).
2306 */
2307 hash_del(&slot->link);
2308 list_del(&slot->mm_list);
2309 spin_unlock(&ksm_mmlist_lock);
2310
2311 free_mm_slot(slot);
2312 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2313 up_read(&mm->mmap_sem);
2314 mmdrop(mm);
2315 } else {
2316 up_read(&mm->mmap_sem);
2317 /*
2318 * up_read(&mm->mmap_sem) first because after
2319 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2320 * already have been freed under us by __ksm_exit()
2321 * because the "mm_slot" is still hashed and
2322 * ksm_scan.mm_slot doesn't point to it anymore.
2323 */
2324 spin_unlock(&ksm_mmlist_lock);
2325 }
2326
2327 /* Repeat until we've completed scanning the whole list */
2328 slot = ksm_scan.mm_slot;
2329 if (slot != &ksm_mm_head)
2330 goto next_mm;
2331
2332 ksm_scan.seqnr++;
2333 return NULL;
2334 }
2335
2336 /**
2337 * ksm_do_scan - the ksm scanner main worker function.
2338 * @scan_npages - number of pages we want to scan before we return.
2339 */
2340 static void ksm_do_scan(unsigned int scan_npages)
2341 {
2342 struct rmap_item *rmap_item;
2343 struct page *uninitialized_var(page);
2344
2345 while (scan_npages-- && likely(!freezing(current))) {
2346 cond_resched();
2347 rmap_item = scan_get_next_rmap_item(&page);
2348 if (!rmap_item)
2349 return;
2350 cmp_and_merge_page(page, rmap_item);
2351 put_page(page);
2352 }
2353 }
2354
2355 static int ksmd_should_run(void)
2356 {
2357 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2358 }
2359
2360 static int ksm_scan_thread(void *nothing)
2361 {
2362 set_freezable();
2363 set_user_nice(current, 5);
2364
2365 while (!kthread_should_stop()) {
2366 mutex_lock(&ksm_thread_mutex);
2367 wait_while_offlining();
2368 if (ksmd_should_run())
2369 ksm_do_scan(ksm_thread_pages_to_scan);
2370 mutex_unlock(&ksm_thread_mutex);
2371
2372 try_to_freeze();
2373
2374 if (ksmd_should_run()) {
2375 schedule_timeout_interruptible(
2376 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2377 } else {
2378 wait_event_freezable(ksm_thread_wait,
2379 ksmd_should_run() || kthread_should_stop());
2380 }
2381 }
2382 return 0;
2383 }
2384
2385 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2386 unsigned long end, int advice, unsigned long *vm_flags)
2387 {
2388 struct mm_struct *mm = vma->vm_mm;
2389 int err;
2390
2391 switch (advice) {
2392 case MADV_MERGEABLE:
2393 /*
2394 * Be somewhat over-protective for now!
2395 */
2396 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2397 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2398 VM_HUGETLB | VM_MIXEDMAP))
2399 return 0; /* just ignore the advice */
2400
2401 #ifdef VM_SAO
2402 if (*vm_flags & VM_SAO)
2403 return 0;
2404 #endif
2405
2406 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2407 err = __ksm_enter(mm);
2408 if (err)
2409 return err;
2410 }
2411
2412 *vm_flags |= VM_MERGEABLE;
2413 break;
2414
2415 case MADV_UNMERGEABLE:
2416 if (!(*vm_flags & VM_MERGEABLE))
2417 return 0; /* just ignore the advice */
2418
2419 if (vma->anon_vma) {
2420 err = unmerge_ksm_pages(vma, start, end);
2421 if (err)
2422 return err;
2423 }
2424
2425 *vm_flags &= ~VM_MERGEABLE;
2426 break;
2427 }
2428
2429 return 0;
2430 }
2431
2432 int __ksm_enter(struct mm_struct *mm)
2433 {
2434 struct mm_slot *mm_slot;
2435 int needs_wakeup;
2436
2437 mm_slot = alloc_mm_slot();
2438 if (!mm_slot)
2439 return -ENOMEM;
2440
2441 /* Check ksm_run too? Would need tighter locking */
2442 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2443
2444 spin_lock(&ksm_mmlist_lock);
2445 insert_to_mm_slots_hash(mm, mm_slot);
2446 /*
2447 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2448 * insert just behind the scanning cursor, to let the area settle
2449 * down a little; when fork is followed by immediate exec, we don't
2450 * want ksmd to waste time setting up and tearing down an rmap_list.
2451 *
2452 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2453 * scanning cursor, otherwise KSM pages in newly forked mms will be
2454 * missed: then we might as well insert at the end of the list.
2455 */
2456 if (ksm_run & KSM_RUN_UNMERGE)
2457 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2458 else
2459 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2460 spin_unlock(&ksm_mmlist_lock);
2461
2462 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2463 mmgrab(mm);
2464
2465 if (needs_wakeup)
2466 wake_up_interruptible(&ksm_thread_wait);
2467
2468 return 0;
2469 }
2470
2471 void __ksm_exit(struct mm_struct *mm)
2472 {
2473 struct mm_slot *mm_slot;
2474 int easy_to_free = 0;
2475
2476 /*
2477 * This process is exiting: if it's straightforward (as is the
2478 * case when ksmd was never running), free mm_slot immediately.
2479 * But if it's at the cursor or has rmap_items linked to it, use
2480 * mmap_sem to synchronize with any break_cows before pagetables
2481 * are freed, and leave the mm_slot on the list for ksmd to free.
2482 * Beware: ksm may already have noticed it exiting and freed the slot.
2483 */
2484
2485 spin_lock(&ksm_mmlist_lock);
2486 mm_slot = get_mm_slot(mm);
2487 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2488 if (!mm_slot->rmap_list) {
2489 hash_del(&mm_slot->link);
2490 list_del(&mm_slot->mm_list);
2491 easy_to_free = 1;
2492 } else {
2493 list_move(&mm_slot->mm_list,
2494 &ksm_scan.mm_slot->mm_list);
2495 }
2496 }
2497 spin_unlock(&ksm_mmlist_lock);
2498
2499 if (easy_to_free) {
2500 free_mm_slot(mm_slot);
2501 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2502 mmdrop(mm);
2503 } else if (mm_slot) {
2504 down_write(&mm->mmap_sem);
2505 up_write(&mm->mmap_sem);
2506 }
2507 }
2508
2509 struct page *ksm_might_need_to_copy(struct page *page,
2510 struct vm_area_struct *vma, unsigned long address)
2511 {
2512 struct anon_vma *anon_vma = page_anon_vma(page);
2513 struct page *new_page;
2514
2515 if (PageKsm(page)) {
2516 if (page_stable_node(page) &&
2517 !(ksm_run & KSM_RUN_UNMERGE))
2518 return page; /* no need to copy it */
2519 } else if (!anon_vma) {
2520 return page; /* no need to copy it */
2521 } else if (anon_vma->root == vma->anon_vma->root &&
2522 page->index == linear_page_index(vma, address)) {
2523 return page; /* still no need to copy it */
2524 }
2525 if (!PageUptodate(page))
2526 return page; /* let do_swap_page report the error */
2527
2528 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2529 if (new_page) {
2530 copy_user_highpage(new_page, page, address, vma);
2531
2532 SetPageDirty(new_page);
2533 __SetPageUptodate(new_page);
2534 __SetPageLocked(new_page);
2535 }
2536
2537 return new_page;
2538 }
2539
2540 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2541 {
2542 struct stable_node *stable_node;
2543 struct rmap_item *rmap_item;
2544 int search_new_forks = 0;
2545
2546 VM_BUG_ON_PAGE(!PageKsm(page), page);
2547
2548 /*
2549 * Rely on the page lock to protect against concurrent modifications
2550 * to that page's node of the stable tree.
2551 */
2552 VM_BUG_ON_PAGE(!PageLocked(page), page);
2553
2554 stable_node = page_stable_node(page);
2555 if (!stable_node)
2556 return;
2557 again:
2558 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2559 struct anon_vma *anon_vma = rmap_item->anon_vma;
2560 struct anon_vma_chain *vmac;
2561 struct vm_area_struct *vma;
2562
2563 cond_resched();
2564 anon_vma_lock_read(anon_vma);
2565 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2566 0, ULONG_MAX) {
2567 unsigned long addr;
2568
2569 cond_resched();
2570 vma = vmac->vma;
2571
2572 /* Ignore the stable/unstable/sqnr flags */
2573 addr = rmap_item->address & ~KSM_FLAG_MASK;
2574
2575 if (addr < vma->vm_start || addr >= vma->vm_end)
2576 continue;
2577 /*
2578 * Initially we examine only the vma which covers this
2579 * rmap_item; but later, if there is still work to do,
2580 * we examine covering vmas in other mms: in case they
2581 * were forked from the original since ksmd passed.
2582 */
2583 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2584 continue;
2585
2586 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2587 continue;
2588
2589 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2590 anon_vma_unlock_read(anon_vma);
2591 return;
2592 }
2593 if (rwc->done && rwc->done(page)) {
2594 anon_vma_unlock_read(anon_vma);
2595 return;
2596 }
2597 }
2598 anon_vma_unlock_read(anon_vma);
2599 }
2600 if (!search_new_forks++)
2601 goto again;
2602 }
2603
2604 #ifdef CONFIG_MIGRATION
2605 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2606 {
2607 struct stable_node *stable_node;
2608
2609 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2610 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2611 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2612
2613 stable_node = page_stable_node(newpage);
2614 if (stable_node) {
2615 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2616 stable_node->kpfn = page_to_pfn(newpage);
2617 /*
2618 * newpage->mapping was set in advance; now we need smp_wmb()
2619 * to make sure that the new stable_node->kpfn is visible
2620 * to get_ksm_page() before it can see that oldpage->mapping
2621 * has gone stale (or that PageSwapCache has been cleared).
2622 */
2623 smp_wmb();
2624 set_page_stable_node(oldpage, NULL);
2625 }
2626 }
2627 #endif /* CONFIG_MIGRATION */
2628
2629 #ifdef CONFIG_MEMORY_HOTREMOVE
2630 static void wait_while_offlining(void)
2631 {
2632 while (ksm_run & KSM_RUN_OFFLINE) {
2633 mutex_unlock(&ksm_thread_mutex);
2634 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2635 TASK_UNINTERRUPTIBLE);
2636 mutex_lock(&ksm_thread_mutex);
2637 }
2638 }
2639
2640 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2641 unsigned long start_pfn,
2642 unsigned long end_pfn)
2643 {
2644 if (stable_node->kpfn >= start_pfn &&
2645 stable_node->kpfn < end_pfn) {
2646 /*
2647 * Don't get_ksm_page, page has already gone:
2648 * which is why we keep kpfn instead of page*
2649 */
2650 remove_node_from_stable_tree(stable_node);
2651 return true;
2652 }
2653 return false;
2654 }
2655
2656 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2657 unsigned long start_pfn,
2658 unsigned long end_pfn,
2659 struct rb_root *root)
2660 {
2661 struct stable_node *dup;
2662 struct hlist_node *hlist_safe;
2663
2664 if (!is_stable_node_chain(stable_node)) {
2665 VM_BUG_ON(is_stable_node_dup(stable_node));
2666 return stable_node_dup_remove_range(stable_node, start_pfn,
2667 end_pfn);
2668 }
2669
2670 hlist_for_each_entry_safe(dup, hlist_safe,
2671 &stable_node->hlist, hlist_dup) {
2672 VM_BUG_ON(!is_stable_node_dup(dup));
2673 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2674 }
2675 if (hlist_empty(&stable_node->hlist)) {
2676 free_stable_node_chain(stable_node, root);
2677 return true; /* notify caller that tree was rebalanced */
2678 } else
2679 return false;
2680 }
2681
2682 static void ksm_check_stable_tree(unsigned long start_pfn,
2683 unsigned long end_pfn)
2684 {
2685 struct stable_node *stable_node, *next;
2686 struct rb_node *node;
2687 int nid;
2688
2689 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2690 node = rb_first(root_stable_tree + nid);
2691 while (node) {
2692 stable_node = rb_entry(node, struct stable_node, node);
2693 if (stable_node_chain_remove_range(stable_node,
2694 start_pfn, end_pfn,
2695 root_stable_tree +
2696 nid))
2697 node = rb_first(root_stable_tree + nid);
2698 else
2699 node = rb_next(node);
2700 cond_resched();
2701 }
2702 }
2703 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2704 if (stable_node->kpfn >= start_pfn &&
2705 stable_node->kpfn < end_pfn)
2706 remove_node_from_stable_tree(stable_node);
2707 cond_resched();
2708 }
2709 }
2710
2711 static int ksm_memory_callback(struct notifier_block *self,
2712 unsigned long action, void *arg)
2713 {
2714 struct memory_notify *mn = arg;
2715
2716 switch (action) {
2717 case MEM_GOING_OFFLINE:
2718 /*
2719 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2720 * and remove_all_stable_nodes() while memory is going offline:
2721 * it is unsafe for them to touch the stable tree at this time.
2722 * But unmerge_ksm_pages(), rmap lookups and other entry points
2723 * which do not need the ksm_thread_mutex are all safe.
2724 */
2725 mutex_lock(&ksm_thread_mutex);
2726 ksm_run |= KSM_RUN_OFFLINE;
2727 mutex_unlock(&ksm_thread_mutex);
2728 break;
2729
2730 case MEM_OFFLINE:
2731 /*
2732 * Most of the work is done by page migration; but there might
2733 * be a few stable_nodes left over, still pointing to struct
2734 * pages which have been offlined: prune those from the tree,
2735 * otherwise get_ksm_page() might later try to access a
2736 * non-existent struct page.
2737 */
2738 ksm_check_stable_tree(mn->start_pfn,
2739 mn->start_pfn + mn->nr_pages);
2740 /* fallthrough */
2741
2742 case MEM_CANCEL_OFFLINE:
2743 mutex_lock(&ksm_thread_mutex);
2744 ksm_run &= ~KSM_RUN_OFFLINE;
2745 mutex_unlock(&ksm_thread_mutex);
2746
2747 smp_mb(); /* wake_up_bit advises this */
2748 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2749 break;
2750 }
2751 return NOTIFY_OK;
2752 }
2753 #else
2754 static void wait_while_offlining(void)
2755 {
2756 }
2757 #endif /* CONFIG_MEMORY_HOTREMOVE */
2758
2759 #ifdef CONFIG_SYSFS
2760 /*
2761 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2762 */
2763
2764 #define KSM_ATTR_RO(_name) \
2765 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2766 #define KSM_ATTR(_name) \
2767 static struct kobj_attribute _name##_attr = \
2768 __ATTR(_name, 0644, _name##_show, _name##_store)
2769
2770 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2771 struct kobj_attribute *attr, char *buf)
2772 {
2773 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2774 }
2775
2776 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2777 struct kobj_attribute *attr,
2778 const char *buf, size_t count)
2779 {
2780 unsigned long msecs;
2781 int err;
2782
2783 err = kstrtoul(buf, 10, &msecs);
2784 if (err || msecs > UINT_MAX)
2785 return -EINVAL;
2786
2787 ksm_thread_sleep_millisecs = msecs;
2788
2789 return count;
2790 }
2791 KSM_ATTR(sleep_millisecs);
2792
2793 static ssize_t pages_to_scan_show(struct kobject *kobj,
2794 struct kobj_attribute *attr, char *buf)
2795 {
2796 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2797 }
2798
2799 static ssize_t pages_to_scan_store(struct kobject *kobj,
2800 struct kobj_attribute *attr,
2801 const char *buf, size_t count)
2802 {
2803 int err;
2804 unsigned long nr_pages;
2805
2806 err = kstrtoul(buf, 10, &nr_pages);
2807 if (err || nr_pages > UINT_MAX)
2808 return -EINVAL;
2809
2810 ksm_thread_pages_to_scan = nr_pages;
2811
2812 return count;
2813 }
2814 KSM_ATTR(pages_to_scan);
2815
2816 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2817 char *buf)
2818 {
2819 return sprintf(buf, "%lu\n", ksm_run);
2820 }
2821
2822 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2823 const char *buf, size_t count)
2824 {
2825 int err;
2826 unsigned long flags;
2827
2828 err = kstrtoul(buf, 10, &flags);
2829 if (err || flags > UINT_MAX)
2830 return -EINVAL;
2831 if (flags > KSM_RUN_UNMERGE)
2832 return -EINVAL;
2833
2834 /*
2835 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2836 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2837 * breaking COW to free the pages_shared (but leaves mm_slots
2838 * on the list for when ksmd may be set running again).
2839 */
2840
2841 mutex_lock(&ksm_thread_mutex);
2842 wait_while_offlining();
2843 if (ksm_run != flags) {
2844 ksm_run = flags;
2845 if (flags & KSM_RUN_UNMERGE) {
2846 set_current_oom_origin();
2847 err = unmerge_and_remove_all_rmap_items();
2848 clear_current_oom_origin();
2849 if (err) {
2850 ksm_run = KSM_RUN_STOP;
2851 count = err;
2852 }
2853 }
2854 }
2855 mutex_unlock(&ksm_thread_mutex);
2856
2857 if (flags & KSM_RUN_MERGE)
2858 wake_up_interruptible(&ksm_thread_wait);
2859
2860 return count;
2861 }
2862 KSM_ATTR(run);
2863
2864 #ifdef CONFIG_NUMA
2865 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2866 struct kobj_attribute *attr, char *buf)
2867 {
2868 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2869 }
2870
2871 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2872 struct kobj_attribute *attr,
2873 const char *buf, size_t count)
2874 {
2875 int err;
2876 unsigned long knob;
2877
2878 err = kstrtoul(buf, 10, &knob);
2879 if (err)
2880 return err;
2881 if (knob > 1)
2882 return -EINVAL;
2883
2884 mutex_lock(&ksm_thread_mutex);
2885 wait_while_offlining();
2886 if (ksm_merge_across_nodes != knob) {
2887 if (ksm_pages_shared || remove_all_stable_nodes())
2888 err = -EBUSY;
2889 else if (root_stable_tree == one_stable_tree) {
2890 struct rb_root *buf;
2891 /*
2892 * This is the first time that we switch away from the
2893 * default of merging across nodes: must now allocate
2894 * a buffer to hold as many roots as may be needed.
2895 * Allocate stable and unstable together:
2896 * MAXSMP NODES_SHIFT 10 will use 16kB.
2897 */
2898 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2899 GFP_KERNEL);
2900 /* Let us assume that RB_ROOT is NULL is zero */
2901 if (!buf)
2902 err = -ENOMEM;
2903 else {
2904 root_stable_tree = buf;
2905 root_unstable_tree = buf + nr_node_ids;
2906 /* Stable tree is empty but not the unstable */
2907 root_unstable_tree[0] = one_unstable_tree[0];
2908 }
2909 }
2910 if (!err) {
2911 ksm_merge_across_nodes = knob;
2912 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2913 }
2914 }
2915 mutex_unlock(&ksm_thread_mutex);
2916
2917 return err ? err : count;
2918 }
2919 KSM_ATTR(merge_across_nodes);
2920 #endif
2921
2922 static ssize_t use_zero_pages_show(struct kobject *kobj,
2923 struct kobj_attribute *attr, char *buf)
2924 {
2925 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2926 }
2927 static ssize_t use_zero_pages_store(struct kobject *kobj,
2928 struct kobj_attribute *attr,
2929 const char *buf, size_t count)
2930 {
2931 int err;
2932 bool value;
2933
2934 err = kstrtobool(buf, &value);
2935 if (err)
2936 return -EINVAL;
2937
2938 ksm_use_zero_pages = value;
2939
2940 return count;
2941 }
2942 KSM_ATTR(use_zero_pages);
2943
2944 static ssize_t max_page_sharing_show(struct kobject *kobj,
2945 struct kobj_attribute *attr, char *buf)
2946 {
2947 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2948 }
2949
2950 static ssize_t max_page_sharing_store(struct kobject *kobj,
2951 struct kobj_attribute *attr,
2952 const char *buf, size_t count)
2953 {
2954 int err;
2955 int knob;
2956
2957 err = kstrtoint(buf, 10, &knob);
2958 if (err)
2959 return err;
2960 /*
2961 * When a KSM page is created it is shared by 2 mappings. This
2962 * being a signed comparison, it implicitly verifies it's not
2963 * negative.
2964 */
2965 if (knob < 2)
2966 return -EINVAL;
2967
2968 if (READ_ONCE(ksm_max_page_sharing) == knob)
2969 return count;
2970
2971 mutex_lock(&ksm_thread_mutex);
2972 wait_while_offlining();
2973 if (ksm_max_page_sharing != knob) {
2974 if (ksm_pages_shared || remove_all_stable_nodes())
2975 err = -EBUSY;
2976 else
2977 ksm_max_page_sharing = knob;
2978 }
2979 mutex_unlock(&ksm_thread_mutex);
2980
2981 return err ? err : count;
2982 }
2983 KSM_ATTR(max_page_sharing);
2984
2985 static ssize_t pages_shared_show(struct kobject *kobj,
2986 struct kobj_attribute *attr, char *buf)
2987 {
2988 return sprintf(buf, "%lu\n", ksm_pages_shared);
2989 }
2990 KSM_ATTR_RO(pages_shared);
2991
2992 static ssize_t pages_sharing_show(struct kobject *kobj,
2993 struct kobj_attribute *attr, char *buf)
2994 {
2995 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2996 }
2997 KSM_ATTR_RO(pages_sharing);
2998
2999 static ssize_t pages_unshared_show(struct kobject *kobj,
3000 struct kobj_attribute *attr, char *buf)
3001 {
3002 return sprintf(buf, "%lu\n", ksm_pages_unshared);
3003 }
3004 KSM_ATTR_RO(pages_unshared);
3005
3006 static ssize_t pages_volatile_show(struct kobject *kobj,
3007 struct kobj_attribute *attr, char *buf)
3008 {
3009 long ksm_pages_volatile;
3010
3011 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3012 - ksm_pages_sharing - ksm_pages_unshared;
3013 /*
3014 * It was not worth any locking to calculate that statistic,
3015 * but it might therefore sometimes be negative: conceal that.
3016 */
3017 if (ksm_pages_volatile < 0)
3018 ksm_pages_volatile = 0;
3019 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3020 }
3021 KSM_ATTR_RO(pages_volatile);
3022
3023 static ssize_t stable_node_dups_show(struct kobject *kobj,
3024 struct kobj_attribute *attr, char *buf)
3025 {
3026 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3027 }
3028 KSM_ATTR_RO(stable_node_dups);
3029
3030 static ssize_t stable_node_chains_show(struct kobject *kobj,
3031 struct kobj_attribute *attr, char *buf)
3032 {
3033 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3034 }
3035 KSM_ATTR_RO(stable_node_chains);
3036
3037 static ssize_t
3038 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3039 struct kobj_attribute *attr,
3040 char *buf)
3041 {
3042 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3043 }
3044
3045 static ssize_t
3046 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3047 struct kobj_attribute *attr,
3048 const char *buf, size_t count)
3049 {
3050 unsigned long msecs;
3051 int err;
3052
3053 err = kstrtoul(buf, 10, &msecs);
3054 if (err || msecs > UINT_MAX)
3055 return -EINVAL;
3056
3057 ksm_stable_node_chains_prune_millisecs = msecs;
3058
3059 return count;
3060 }
3061 KSM_ATTR(stable_node_chains_prune_millisecs);
3062
3063 static ssize_t full_scans_show(struct kobject *kobj,
3064 struct kobj_attribute *attr, char *buf)
3065 {
3066 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3067 }
3068 KSM_ATTR_RO(full_scans);
3069
3070 static struct attribute *ksm_attrs[] = {
3071 &sleep_millisecs_attr.attr,
3072 &pages_to_scan_attr.attr,
3073 &run_attr.attr,
3074 &pages_shared_attr.attr,
3075 &pages_sharing_attr.attr,
3076 &pages_unshared_attr.attr,
3077 &pages_volatile_attr.attr,
3078 &full_scans_attr.attr,
3079 #ifdef CONFIG_NUMA
3080 &merge_across_nodes_attr.attr,
3081 #endif
3082 &max_page_sharing_attr.attr,
3083 &stable_node_chains_attr.attr,
3084 &stable_node_dups_attr.attr,
3085 &stable_node_chains_prune_millisecs_attr.attr,
3086 &use_zero_pages_attr.attr,
3087 NULL,
3088 };
3089
3090 static const struct attribute_group ksm_attr_group = {
3091 .attrs = ksm_attrs,
3092 .name = "ksm",
3093 };
3094 #endif /* CONFIG_SYSFS */
3095
3096 static int __init ksm_init(void)
3097 {
3098 struct task_struct *ksm_thread;
3099 int err;
3100
3101 /* The correct value depends on page size and endianness */
3102 zero_checksum = calc_checksum(ZERO_PAGE(0));
3103 /* Default to false for backwards compatibility */
3104 ksm_use_zero_pages = false;
3105
3106 err = ksm_slab_init();
3107 if (err)
3108 goto out;
3109
3110 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3111 if (IS_ERR(ksm_thread)) {
3112 pr_err("ksm: creating kthread failed\n");
3113 err = PTR_ERR(ksm_thread);
3114 goto out_free;
3115 }
3116
3117 #ifdef CONFIG_SYSFS
3118 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3119 if (err) {
3120 pr_err("ksm: register sysfs failed\n");
3121 kthread_stop(ksm_thread);
3122 goto out_free;
3123 }
3124 #else
3125 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3126
3127 #endif /* CONFIG_SYSFS */
3128
3129 #ifdef CONFIG_MEMORY_HOTREMOVE
3130 /* There is no significance to this priority 100 */
3131 hotplug_memory_notifier(ksm_memory_callback, 100);
3132 #endif
3133 return 0;
3134
3135 out_free:
3136 ksm_slab_free();
3137 out:
3138 return err;
3139 }
3140 subsys_initcall(ksm_init);