page_poison: play nicely with KASAN
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / gup.c
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20
21 #include "internal.h"
22
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
25 {
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37 }
38
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41 {
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61 }
62
63 /*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 struct mm_struct *mm = vma->vm_mm;
77 struct dev_pagemap *pgmap = NULL;
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
81
82 retry:
83 if (unlikely(pmd_bad(*pmd)))
84 return no_page_table(vma, flags);
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
97 if (pte_none(pte))
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
104 goto retry;
105 }
106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 goto no_page;
108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
112
113 page = vm_normal_page(vma, address, pte);
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
140 }
141
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
155 if (flags & FOLL_GET) {
156 get_page(page);
157
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
162 }
163 }
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
168 /*
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
172 */
173 mark_page_accessed(page);
174 }
175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
179
180 /*
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
184 *
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
188 */
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
191 /*
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
196 */
197 mlock_vma_page(page);
198 unlock_page(page);
199 }
200 }
201 out:
202 pte_unmap_unlock(ptep, ptl);
203 return page;
204 no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
207 return NULL;
208 return no_page_table(vma, flags);
209 }
210
211 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
212 unsigned long address, pud_t *pudp,
213 unsigned int flags, unsigned int *page_mask)
214 {
215 pmd_t *pmd;
216 spinlock_t *ptl;
217 struct page *page;
218 struct mm_struct *mm = vma->vm_mm;
219
220 pmd = pmd_offset(pudp, address);
221 if (pmd_none(*pmd))
222 return no_page_table(vma, flags);
223 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
224 page = follow_huge_pmd(mm, address, pmd, flags);
225 if (page)
226 return page;
227 return no_page_table(vma, flags);
228 }
229 if (is_hugepd(__hugepd(pmd_val(*pmd)))) {
230 page = follow_huge_pd(vma, address,
231 __hugepd(pmd_val(*pmd)), flags,
232 PMD_SHIFT);
233 if (page)
234 return page;
235 return no_page_table(vma, flags);
236 }
237 retry:
238 if (!pmd_present(*pmd)) {
239 if (likely(!(flags & FOLL_MIGRATION)))
240 return no_page_table(vma, flags);
241 VM_BUG_ON(thp_migration_supported() &&
242 !is_pmd_migration_entry(*pmd));
243 if (is_pmd_migration_entry(*pmd))
244 pmd_migration_entry_wait(mm, pmd);
245 goto retry;
246 }
247 if (pmd_devmap(*pmd)) {
248 ptl = pmd_lock(mm, pmd);
249 page = follow_devmap_pmd(vma, address, pmd, flags);
250 spin_unlock(ptl);
251 if (page)
252 return page;
253 }
254 if (likely(!pmd_trans_huge(*pmd)))
255 return follow_page_pte(vma, address, pmd, flags);
256
257 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
258 return no_page_table(vma, flags);
259
260 retry_locked:
261 ptl = pmd_lock(mm, pmd);
262 if (unlikely(!pmd_present(*pmd))) {
263 spin_unlock(ptl);
264 if (likely(!(flags & FOLL_MIGRATION)))
265 return no_page_table(vma, flags);
266 pmd_migration_entry_wait(mm, pmd);
267 goto retry_locked;
268 }
269 if (unlikely(!pmd_trans_huge(*pmd))) {
270 spin_unlock(ptl);
271 return follow_page_pte(vma, address, pmd, flags);
272 }
273 if (flags & FOLL_SPLIT) {
274 int ret;
275 page = pmd_page(*pmd);
276 if (is_huge_zero_page(page)) {
277 spin_unlock(ptl);
278 ret = 0;
279 split_huge_pmd(vma, pmd, address);
280 if (pmd_trans_unstable(pmd))
281 ret = -EBUSY;
282 } else {
283 get_page(page);
284 spin_unlock(ptl);
285 lock_page(page);
286 ret = split_huge_page(page);
287 unlock_page(page);
288 put_page(page);
289 if (pmd_none(*pmd))
290 return no_page_table(vma, flags);
291 }
292
293 return ret ? ERR_PTR(ret) :
294 follow_page_pte(vma, address, pmd, flags);
295 }
296 page = follow_trans_huge_pmd(vma, address, pmd, flags);
297 spin_unlock(ptl);
298 *page_mask = HPAGE_PMD_NR - 1;
299 return page;
300 }
301
302
303 static struct page *follow_pud_mask(struct vm_area_struct *vma,
304 unsigned long address, p4d_t *p4dp,
305 unsigned int flags, unsigned int *page_mask)
306 {
307 pud_t *pud;
308 spinlock_t *ptl;
309 struct page *page;
310 struct mm_struct *mm = vma->vm_mm;
311
312 pud = pud_offset(p4dp, address);
313 if (pud_none(*pud))
314 return no_page_table(vma, flags);
315 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
316 page = follow_huge_pud(mm, address, pud, flags);
317 if (page)
318 return page;
319 return no_page_table(vma, flags);
320 }
321 if (is_hugepd(__hugepd(pud_val(*pud)))) {
322 page = follow_huge_pd(vma, address,
323 __hugepd(pud_val(*pud)), flags,
324 PUD_SHIFT);
325 if (page)
326 return page;
327 return no_page_table(vma, flags);
328 }
329 if (pud_devmap(*pud)) {
330 ptl = pud_lock(mm, pud);
331 page = follow_devmap_pud(vma, address, pud, flags);
332 spin_unlock(ptl);
333 if (page)
334 return page;
335 }
336 if (unlikely(pud_bad(*pud)))
337 return no_page_table(vma, flags);
338
339 return follow_pmd_mask(vma, address, pud, flags, page_mask);
340 }
341
342
343 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
344 unsigned long address, pgd_t *pgdp,
345 unsigned int flags, unsigned int *page_mask)
346 {
347 p4d_t *p4d;
348 struct page *page;
349
350 p4d = p4d_offset(pgdp, address);
351 if (p4d_none(*p4d))
352 return no_page_table(vma, flags);
353 BUILD_BUG_ON(p4d_huge(*p4d));
354 if (unlikely(p4d_bad(*p4d)))
355 return no_page_table(vma, flags);
356
357 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
358 page = follow_huge_pd(vma, address,
359 __hugepd(p4d_val(*p4d)), flags,
360 P4D_SHIFT);
361 if (page)
362 return page;
363 return no_page_table(vma, flags);
364 }
365 return follow_pud_mask(vma, address, p4d, flags, page_mask);
366 }
367
368 /**
369 * follow_page_mask - look up a page descriptor from a user-virtual address
370 * @vma: vm_area_struct mapping @address
371 * @address: virtual address to look up
372 * @flags: flags modifying lookup behaviour
373 * @page_mask: on output, *page_mask is set according to the size of the page
374 *
375 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
376 *
377 * Returns the mapped (struct page *), %NULL if no mapping exists, or
378 * an error pointer if there is a mapping to something not represented
379 * by a page descriptor (see also vm_normal_page()).
380 */
381 struct page *follow_page_mask(struct vm_area_struct *vma,
382 unsigned long address, unsigned int flags,
383 unsigned int *page_mask)
384 {
385 pgd_t *pgd;
386 struct page *page;
387 struct mm_struct *mm = vma->vm_mm;
388
389 *page_mask = 0;
390
391 /* make this handle hugepd */
392 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
393 if (!IS_ERR(page)) {
394 BUG_ON(flags & FOLL_GET);
395 return page;
396 }
397
398 pgd = pgd_offset(mm, address);
399
400 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
401 return no_page_table(vma, flags);
402
403 if (pgd_huge(*pgd)) {
404 page = follow_huge_pgd(mm, address, pgd, flags);
405 if (page)
406 return page;
407 return no_page_table(vma, flags);
408 }
409 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
410 page = follow_huge_pd(vma, address,
411 __hugepd(pgd_val(*pgd)), flags,
412 PGDIR_SHIFT);
413 if (page)
414 return page;
415 return no_page_table(vma, flags);
416 }
417
418 return follow_p4d_mask(vma, address, pgd, flags, page_mask);
419 }
420
421 static int get_gate_page(struct mm_struct *mm, unsigned long address,
422 unsigned int gup_flags, struct vm_area_struct **vma,
423 struct page **page)
424 {
425 pgd_t *pgd;
426 p4d_t *p4d;
427 pud_t *pud;
428 pmd_t *pmd;
429 pte_t *pte;
430 int ret = -EFAULT;
431
432 /* user gate pages are read-only */
433 if (gup_flags & FOLL_WRITE)
434 return -EFAULT;
435 if (address > TASK_SIZE)
436 pgd = pgd_offset_k(address);
437 else
438 pgd = pgd_offset_gate(mm, address);
439 BUG_ON(pgd_none(*pgd));
440 p4d = p4d_offset(pgd, address);
441 BUG_ON(p4d_none(*p4d));
442 pud = pud_offset(p4d, address);
443 BUG_ON(pud_none(*pud));
444 pmd = pmd_offset(pud, address);
445 if (!pmd_present(*pmd))
446 return -EFAULT;
447 VM_BUG_ON(pmd_trans_huge(*pmd));
448 pte = pte_offset_map(pmd, address);
449 if (pte_none(*pte))
450 goto unmap;
451 *vma = get_gate_vma(mm);
452 if (!page)
453 goto out;
454 *page = vm_normal_page(*vma, address, *pte);
455 if (!*page) {
456 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
457 goto unmap;
458 *page = pte_page(*pte);
459
460 /*
461 * This should never happen (a device public page in the gate
462 * area).
463 */
464 if (is_device_public_page(*page))
465 goto unmap;
466 }
467 get_page(*page);
468 out:
469 ret = 0;
470 unmap:
471 pte_unmap(pte);
472 return ret;
473 }
474
475 /*
476 * mmap_sem must be held on entry. If @nonblocking != NULL and
477 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
478 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
479 */
480 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
481 unsigned long address, unsigned int *flags, int *nonblocking)
482 {
483 unsigned int fault_flags = 0;
484 int ret;
485
486 /* mlock all present pages, but do not fault in new pages */
487 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
488 return -ENOENT;
489 if (*flags & FOLL_WRITE)
490 fault_flags |= FAULT_FLAG_WRITE;
491 if (*flags & FOLL_REMOTE)
492 fault_flags |= FAULT_FLAG_REMOTE;
493 if (nonblocking)
494 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
495 if (*flags & FOLL_NOWAIT)
496 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
497 if (*flags & FOLL_TRIED) {
498 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
499 fault_flags |= FAULT_FLAG_TRIED;
500 }
501
502 ret = handle_mm_fault(vma, address, fault_flags);
503 if (ret & VM_FAULT_ERROR) {
504 int err = vm_fault_to_errno(ret, *flags);
505
506 if (err)
507 return err;
508 BUG();
509 }
510
511 if (tsk) {
512 if (ret & VM_FAULT_MAJOR)
513 tsk->maj_flt++;
514 else
515 tsk->min_flt++;
516 }
517
518 if (ret & VM_FAULT_RETRY) {
519 if (nonblocking)
520 *nonblocking = 0;
521 return -EBUSY;
522 }
523
524 /*
525 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
526 * necessary, even if maybe_mkwrite decided not to set pte_write. We
527 * can thus safely do subsequent page lookups as if they were reads.
528 * But only do so when looping for pte_write is futile: in some cases
529 * userspace may also be wanting to write to the gotten user page,
530 * which a read fault here might prevent (a readonly page might get
531 * reCOWed by userspace write).
532 */
533 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
534 *flags |= FOLL_COW;
535 return 0;
536 }
537
538 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
539 {
540 vm_flags_t vm_flags = vma->vm_flags;
541 int write = (gup_flags & FOLL_WRITE);
542 int foreign = (gup_flags & FOLL_REMOTE);
543
544 if (vm_flags & (VM_IO | VM_PFNMAP))
545 return -EFAULT;
546
547 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
548 return -EFAULT;
549
550 if (write) {
551 if (!(vm_flags & VM_WRITE)) {
552 if (!(gup_flags & FOLL_FORCE))
553 return -EFAULT;
554 /*
555 * We used to let the write,force case do COW in a
556 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
557 * set a breakpoint in a read-only mapping of an
558 * executable, without corrupting the file (yet only
559 * when that file had been opened for writing!).
560 * Anon pages in shared mappings are surprising: now
561 * just reject it.
562 */
563 if (!is_cow_mapping(vm_flags))
564 return -EFAULT;
565 }
566 } else if (!(vm_flags & VM_READ)) {
567 if (!(gup_flags & FOLL_FORCE))
568 return -EFAULT;
569 /*
570 * Is there actually any vma we can reach here which does not
571 * have VM_MAYREAD set?
572 */
573 if (!(vm_flags & VM_MAYREAD))
574 return -EFAULT;
575 }
576 /*
577 * gups are always data accesses, not instruction
578 * fetches, so execute=false here
579 */
580 if (!arch_vma_access_permitted(vma, write, false, foreign))
581 return -EFAULT;
582 return 0;
583 }
584
585 /**
586 * __get_user_pages() - pin user pages in memory
587 * @tsk: task_struct of target task
588 * @mm: mm_struct of target mm
589 * @start: starting user address
590 * @nr_pages: number of pages from start to pin
591 * @gup_flags: flags modifying pin behaviour
592 * @pages: array that receives pointers to the pages pinned.
593 * Should be at least nr_pages long. Or NULL, if caller
594 * only intends to ensure the pages are faulted in.
595 * @vmas: array of pointers to vmas corresponding to each page.
596 * Or NULL if the caller does not require them.
597 * @nonblocking: whether waiting for disk IO or mmap_sem contention
598 *
599 * Returns number of pages pinned. This may be fewer than the number
600 * requested. If nr_pages is 0 or negative, returns 0. If no pages
601 * were pinned, returns -errno. Each page returned must be released
602 * with a put_page() call when it is finished with. vmas will only
603 * remain valid while mmap_sem is held.
604 *
605 * Must be called with mmap_sem held. It may be released. See below.
606 *
607 * __get_user_pages walks a process's page tables and takes a reference to
608 * each struct page that each user address corresponds to at a given
609 * instant. That is, it takes the page that would be accessed if a user
610 * thread accesses the given user virtual address at that instant.
611 *
612 * This does not guarantee that the page exists in the user mappings when
613 * __get_user_pages returns, and there may even be a completely different
614 * page there in some cases (eg. if mmapped pagecache has been invalidated
615 * and subsequently re faulted). However it does guarantee that the page
616 * won't be freed completely. And mostly callers simply care that the page
617 * contains data that was valid *at some point in time*. Typically, an IO
618 * or similar operation cannot guarantee anything stronger anyway because
619 * locks can't be held over the syscall boundary.
620 *
621 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
622 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
623 * appropriate) must be called after the page is finished with, and
624 * before put_page is called.
625 *
626 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
627 * or mmap_sem contention, and if waiting is needed to pin all pages,
628 * *@nonblocking will be set to 0. Further, if @gup_flags does not
629 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
630 * this case.
631 *
632 * A caller using such a combination of @nonblocking and @gup_flags
633 * must therefore hold the mmap_sem for reading only, and recognize
634 * when it's been released. Otherwise, it must be held for either
635 * reading or writing and will not be released.
636 *
637 * In most cases, get_user_pages or get_user_pages_fast should be used
638 * instead of __get_user_pages. __get_user_pages should be used only if
639 * you need some special @gup_flags.
640 */
641 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
642 unsigned long start, unsigned long nr_pages,
643 unsigned int gup_flags, struct page **pages,
644 struct vm_area_struct **vmas, int *nonblocking)
645 {
646 long i = 0;
647 unsigned int page_mask;
648 struct vm_area_struct *vma = NULL;
649
650 if (!nr_pages)
651 return 0;
652
653 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
654
655 /*
656 * If FOLL_FORCE is set then do not force a full fault as the hinting
657 * fault information is unrelated to the reference behaviour of a task
658 * using the address space
659 */
660 if (!(gup_flags & FOLL_FORCE))
661 gup_flags |= FOLL_NUMA;
662
663 do {
664 struct page *page;
665 unsigned int foll_flags = gup_flags;
666 unsigned int page_increm;
667
668 /* first iteration or cross vma bound */
669 if (!vma || start >= vma->vm_end) {
670 vma = find_extend_vma(mm, start);
671 if (!vma && in_gate_area(mm, start)) {
672 int ret;
673 ret = get_gate_page(mm, start & PAGE_MASK,
674 gup_flags, &vma,
675 pages ? &pages[i] : NULL);
676 if (ret)
677 return i ? : ret;
678 page_mask = 0;
679 goto next_page;
680 }
681
682 if (!vma || check_vma_flags(vma, gup_flags))
683 return i ? : -EFAULT;
684 if (is_vm_hugetlb_page(vma)) {
685 i = follow_hugetlb_page(mm, vma, pages, vmas,
686 &start, &nr_pages, i,
687 gup_flags, nonblocking);
688 continue;
689 }
690 }
691 retry:
692 /*
693 * If we have a pending SIGKILL, don't keep faulting pages and
694 * potentially allocating memory.
695 */
696 if (unlikely(fatal_signal_pending(current)))
697 return i ? i : -ERESTARTSYS;
698 cond_resched();
699 page = follow_page_mask(vma, start, foll_flags, &page_mask);
700 if (!page) {
701 int ret;
702 ret = faultin_page(tsk, vma, start, &foll_flags,
703 nonblocking);
704 switch (ret) {
705 case 0:
706 goto retry;
707 case -EFAULT:
708 case -ENOMEM:
709 case -EHWPOISON:
710 return i ? i : ret;
711 case -EBUSY:
712 return i;
713 case -ENOENT:
714 goto next_page;
715 }
716 BUG();
717 } else if (PTR_ERR(page) == -EEXIST) {
718 /*
719 * Proper page table entry exists, but no corresponding
720 * struct page.
721 */
722 goto next_page;
723 } else if (IS_ERR(page)) {
724 return i ? i : PTR_ERR(page);
725 }
726 if (pages) {
727 pages[i] = page;
728 flush_anon_page(vma, page, start);
729 flush_dcache_page(page);
730 page_mask = 0;
731 }
732 next_page:
733 if (vmas) {
734 vmas[i] = vma;
735 page_mask = 0;
736 }
737 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
738 if (page_increm > nr_pages)
739 page_increm = nr_pages;
740 i += page_increm;
741 start += page_increm * PAGE_SIZE;
742 nr_pages -= page_increm;
743 } while (nr_pages);
744 return i;
745 }
746
747 static bool vma_permits_fault(struct vm_area_struct *vma,
748 unsigned int fault_flags)
749 {
750 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
751 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
752 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
753
754 if (!(vm_flags & vma->vm_flags))
755 return false;
756
757 /*
758 * The architecture might have a hardware protection
759 * mechanism other than read/write that can deny access.
760 *
761 * gup always represents data access, not instruction
762 * fetches, so execute=false here:
763 */
764 if (!arch_vma_access_permitted(vma, write, false, foreign))
765 return false;
766
767 return true;
768 }
769
770 /*
771 * fixup_user_fault() - manually resolve a user page fault
772 * @tsk: the task_struct to use for page fault accounting, or
773 * NULL if faults are not to be recorded.
774 * @mm: mm_struct of target mm
775 * @address: user address
776 * @fault_flags:flags to pass down to handle_mm_fault()
777 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
778 * does not allow retry
779 *
780 * This is meant to be called in the specific scenario where for locking reasons
781 * we try to access user memory in atomic context (within a pagefault_disable()
782 * section), this returns -EFAULT, and we want to resolve the user fault before
783 * trying again.
784 *
785 * Typically this is meant to be used by the futex code.
786 *
787 * The main difference with get_user_pages() is that this function will
788 * unconditionally call handle_mm_fault() which will in turn perform all the
789 * necessary SW fixup of the dirty and young bits in the PTE, while
790 * get_user_pages() only guarantees to update these in the struct page.
791 *
792 * This is important for some architectures where those bits also gate the
793 * access permission to the page because they are maintained in software. On
794 * such architectures, gup() will not be enough to make a subsequent access
795 * succeed.
796 *
797 * This function will not return with an unlocked mmap_sem. So it has not the
798 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
799 */
800 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
801 unsigned long address, unsigned int fault_flags,
802 bool *unlocked)
803 {
804 struct vm_area_struct *vma;
805 int ret, major = 0;
806
807 if (unlocked)
808 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
809
810 retry:
811 vma = find_extend_vma(mm, address);
812 if (!vma || address < vma->vm_start)
813 return -EFAULT;
814
815 if (!vma_permits_fault(vma, fault_flags))
816 return -EFAULT;
817
818 ret = handle_mm_fault(vma, address, fault_flags);
819 major |= ret & VM_FAULT_MAJOR;
820 if (ret & VM_FAULT_ERROR) {
821 int err = vm_fault_to_errno(ret, 0);
822
823 if (err)
824 return err;
825 BUG();
826 }
827
828 if (ret & VM_FAULT_RETRY) {
829 down_read(&mm->mmap_sem);
830 if (!(fault_flags & FAULT_FLAG_TRIED)) {
831 *unlocked = true;
832 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
833 fault_flags |= FAULT_FLAG_TRIED;
834 goto retry;
835 }
836 }
837
838 if (tsk) {
839 if (major)
840 tsk->maj_flt++;
841 else
842 tsk->min_flt++;
843 }
844 return 0;
845 }
846 EXPORT_SYMBOL_GPL(fixup_user_fault);
847
848 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
849 struct mm_struct *mm,
850 unsigned long start,
851 unsigned long nr_pages,
852 struct page **pages,
853 struct vm_area_struct **vmas,
854 int *locked, bool notify_drop,
855 unsigned int flags)
856 {
857 long ret, pages_done;
858 bool lock_dropped;
859
860 if (locked) {
861 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
862 BUG_ON(vmas);
863 /* check caller initialized locked */
864 BUG_ON(*locked != 1);
865 }
866
867 if (pages)
868 flags |= FOLL_GET;
869
870 pages_done = 0;
871 lock_dropped = false;
872 for (;;) {
873 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
874 vmas, locked);
875 if (!locked)
876 /* VM_FAULT_RETRY couldn't trigger, bypass */
877 return ret;
878
879 /* VM_FAULT_RETRY cannot return errors */
880 if (!*locked) {
881 BUG_ON(ret < 0);
882 BUG_ON(ret >= nr_pages);
883 }
884
885 if (!pages)
886 /* If it's a prefault don't insist harder */
887 return ret;
888
889 if (ret > 0) {
890 nr_pages -= ret;
891 pages_done += ret;
892 if (!nr_pages)
893 break;
894 }
895 if (*locked) {
896 /* VM_FAULT_RETRY didn't trigger */
897 if (!pages_done)
898 pages_done = ret;
899 break;
900 }
901 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
902 pages += ret;
903 start += ret << PAGE_SHIFT;
904
905 /*
906 * Repeat on the address that fired VM_FAULT_RETRY
907 * without FAULT_FLAG_ALLOW_RETRY but with
908 * FAULT_FLAG_TRIED.
909 */
910 *locked = 1;
911 lock_dropped = true;
912 down_read(&mm->mmap_sem);
913 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
914 pages, NULL, NULL);
915 if (ret != 1) {
916 BUG_ON(ret > 1);
917 if (!pages_done)
918 pages_done = ret;
919 break;
920 }
921 nr_pages--;
922 pages_done++;
923 if (!nr_pages)
924 break;
925 pages++;
926 start += PAGE_SIZE;
927 }
928 if (notify_drop && lock_dropped && *locked) {
929 /*
930 * We must let the caller know we temporarily dropped the lock
931 * and so the critical section protected by it was lost.
932 */
933 up_read(&mm->mmap_sem);
934 *locked = 0;
935 }
936 return pages_done;
937 }
938
939 /*
940 * We can leverage the VM_FAULT_RETRY functionality in the page fault
941 * paths better by using either get_user_pages_locked() or
942 * get_user_pages_unlocked().
943 *
944 * get_user_pages_locked() is suitable to replace the form:
945 *
946 * down_read(&mm->mmap_sem);
947 * do_something()
948 * get_user_pages(tsk, mm, ..., pages, NULL);
949 * up_read(&mm->mmap_sem);
950 *
951 * to:
952 *
953 * int locked = 1;
954 * down_read(&mm->mmap_sem);
955 * do_something()
956 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
957 * if (locked)
958 * up_read(&mm->mmap_sem);
959 */
960 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
961 unsigned int gup_flags, struct page **pages,
962 int *locked)
963 {
964 return __get_user_pages_locked(current, current->mm, start, nr_pages,
965 pages, NULL, locked, true,
966 gup_flags | FOLL_TOUCH);
967 }
968 EXPORT_SYMBOL(get_user_pages_locked);
969
970 /*
971 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
972 * tsk, mm to be specified.
973 *
974 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
975 * caller if required (just like with __get_user_pages). "FOLL_GET"
976 * is set implicitly if "pages" is non-NULL.
977 */
978 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
979 struct mm_struct *mm, unsigned long start,
980 unsigned long nr_pages, struct page **pages,
981 unsigned int gup_flags)
982 {
983 long ret;
984 int locked = 1;
985
986 down_read(&mm->mmap_sem);
987 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
988 &locked, false, gup_flags);
989 if (locked)
990 up_read(&mm->mmap_sem);
991 return ret;
992 }
993
994 /*
995 * get_user_pages_unlocked() is suitable to replace the form:
996 *
997 * down_read(&mm->mmap_sem);
998 * get_user_pages(tsk, mm, ..., pages, NULL);
999 * up_read(&mm->mmap_sem);
1000 *
1001 * with:
1002 *
1003 * get_user_pages_unlocked(tsk, mm, ..., pages);
1004 *
1005 * It is functionally equivalent to get_user_pages_fast so
1006 * get_user_pages_fast should be used instead if specific gup_flags
1007 * (e.g. FOLL_FORCE) are not required.
1008 */
1009 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1010 struct page **pages, unsigned int gup_flags)
1011 {
1012 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
1013 pages, gup_flags | FOLL_TOUCH);
1014 }
1015 EXPORT_SYMBOL(get_user_pages_unlocked);
1016
1017 /*
1018 * get_user_pages_remote() - pin user pages in memory
1019 * @tsk: the task_struct to use for page fault accounting, or
1020 * NULL if faults are not to be recorded.
1021 * @mm: mm_struct of target mm
1022 * @start: starting user address
1023 * @nr_pages: number of pages from start to pin
1024 * @gup_flags: flags modifying lookup behaviour
1025 * @pages: array that receives pointers to the pages pinned.
1026 * Should be at least nr_pages long. Or NULL, if caller
1027 * only intends to ensure the pages are faulted in.
1028 * @vmas: array of pointers to vmas corresponding to each page.
1029 * Or NULL if the caller does not require them.
1030 * @locked: pointer to lock flag indicating whether lock is held and
1031 * subsequently whether VM_FAULT_RETRY functionality can be
1032 * utilised. Lock must initially be held.
1033 *
1034 * Returns number of pages pinned. This may be fewer than the number
1035 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1036 * were pinned, returns -errno. Each page returned must be released
1037 * with a put_page() call when it is finished with. vmas will only
1038 * remain valid while mmap_sem is held.
1039 *
1040 * Must be called with mmap_sem held for read or write.
1041 *
1042 * get_user_pages walks a process's page tables and takes a reference to
1043 * each struct page that each user address corresponds to at a given
1044 * instant. That is, it takes the page that would be accessed if a user
1045 * thread accesses the given user virtual address at that instant.
1046 *
1047 * This does not guarantee that the page exists in the user mappings when
1048 * get_user_pages returns, and there may even be a completely different
1049 * page there in some cases (eg. if mmapped pagecache has been invalidated
1050 * and subsequently re faulted). However it does guarantee that the page
1051 * won't be freed completely. And mostly callers simply care that the page
1052 * contains data that was valid *at some point in time*. Typically, an IO
1053 * or similar operation cannot guarantee anything stronger anyway because
1054 * locks can't be held over the syscall boundary.
1055 *
1056 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1057 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1058 * be called after the page is finished with, and before put_page is called.
1059 *
1060 * get_user_pages is typically used for fewer-copy IO operations, to get a
1061 * handle on the memory by some means other than accesses via the user virtual
1062 * addresses. The pages may be submitted for DMA to devices or accessed via
1063 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1064 * use the correct cache flushing APIs.
1065 *
1066 * See also get_user_pages_fast, for performance critical applications.
1067 *
1068 * get_user_pages should be phased out in favor of
1069 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1070 * should use get_user_pages because it cannot pass
1071 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1072 */
1073 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1074 unsigned long start, unsigned long nr_pages,
1075 unsigned int gup_flags, struct page **pages,
1076 struct vm_area_struct **vmas, int *locked)
1077 {
1078 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1079 locked, true,
1080 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1081 }
1082 EXPORT_SYMBOL(get_user_pages_remote);
1083
1084 /*
1085 * This is the same as get_user_pages_remote(), just with a
1086 * less-flexible calling convention where we assume that the task
1087 * and mm being operated on are the current task's and don't allow
1088 * passing of a locked parameter. We also obviously don't pass
1089 * FOLL_REMOTE in here.
1090 */
1091 long get_user_pages(unsigned long start, unsigned long nr_pages,
1092 unsigned int gup_flags, struct page **pages,
1093 struct vm_area_struct **vmas)
1094 {
1095 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1096 pages, vmas, NULL, false,
1097 gup_flags | FOLL_TOUCH);
1098 }
1099 EXPORT_SYMBOL(get_user_pages);
1100
1101 #ifdef CONFIG_FS_DAX
1102 /*
1103 * This is the same as get_user_pages() in that it assumes we are
1104 * operating on the current task's mm, but it goes further to validate
1105 * that the vmas associated with the address range are suitable for
1106 * longterm elevated page reference counts. For example, filesystem-dax
1107 * mappings are subject to the lifetime enforced by the filesystem and
1108 * we need guarantees that longterm users like RDMA and V4L2 only
1109 * establish mappings that have a kernel enforced revocation mechanism.
1110 *
1111 * "longterm" == userspace controlled elevated page count lifetime.
1112 * Contrast this to iov_iter_get_pages() usages which are transient.
1113 */
1114 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1115 unsigned int gup_flags, struct page **pages,
1116 struct vm_area_struct **vmas_arg)
1117 {
1118 struct vm_area_struct **vmas = vmas_arg;
1119 struct vm_area_struct *vma_prev = NULL;
1120 long rc, i;
1121
1122 if (!pages)
1123 return -EINVAL;
1124
1125 if (!vmas) {
1126 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1127 GFP_KERNEL);
1128 if (!vmas)
1129 return -ENOMEM;
1130 }
1131
1132 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1133
1134 for (i = 0; i < rc; i++) {
1135 struct vm_area_struct *vma = vmas[i];
1136
1137 if (vma == vma_prev)
1138 continue;
1139
1140 vma_prev = vma;
1141
1142 if (vma_is_fsdax(vma))
1143 break;
1144 }
1145
1146 /*
1147 * Either get_user_pages() failed, or the vma validation
1148 * succeeded, in either case we don't need to put_page() before
1149 * returning.
1150 */
1151 if (i >= rc)
1152 goto out;
1153
1154 for (i = 0; i < rc; i++)
1155 put_page(pages[i]);
1156 rc = -EOPNOTSUPP;
1157 out:
1158 if (vmas != vmas_arg)
1159 kfree(vmas);
1160 return rc;
1161 }
1162 EXPORT_SYMBOL(get_user_pages_longterm);
1163 #endif /* CONFIG_FS_DAX */
1164
1165 /**
1166 * populate_vma_page_range() - populate a range of pages in the vma.
1167 * @vma: target vma
1168 * @start: start address
1169 * @end: end address
1170 * @nonblocking:
1171 *
1172 * This takes care of mlocking the pages too if VM_LOCKED is set.
1173 *
1174 * return 0 on success, negative error code on error.
1175 *
1176 * vma->vm_mm->mmap_sem must be held.
1177 *
1178 * If @nonblocking is NULL, it may be held for read or write and will
1179 * be unperturbed.
1180 *
1181 * If @nonblocking is non-NULL, it must held for read only and may be
1182 * released. If it's released, *@nonblocking will be set to 0.
1183 */
1184 long populate_vma_page_range(struct vm_area_struct *vma,
1185 unsigned long start, unsigned long end, int *nonblocking)
1186 {
1187 struct mm_struct *mm = vma->vm_mm;
1188 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1189 int gup_flags;
1190
1191 VM_BUG_ON(start & ~PAGE_MASK);
1192 VM_BUG_ON(end & ~PAGE_MASK);
1193 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1194 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1195 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1196
1197 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1198 if (vma->vm_flags & VM_LOCKONFAULT)
1199 gup_flags &= ~FOLL_POPULATE;
1200 /*
1201 * We want to touch writable mappings with a write fault in order
1202 * to break COW, except for shared mappings because these don't COW
1203 * and we would not want to dirty them for nothing.
1204 */
1205 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1206 gup_flags |= FOLL_WRITE;
1207
1208 /*
1209 * We want mlock to succeed for regions that have any permissions
1210 * other than PROT_NONE.
1211 */
1212 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1213 gup_flags |= FOLL_FORCE;
1214
1215 /*
1216 * We made sure addr is within a VMA, so the following will
1217 * not result in a stack expansion that recurses back here.
1218 */
1219 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1220 NULL, NULL, nonblocking);
1221 }
1222
1223 /*
1224 * __mm_populate - populate and/or mlock pages within a range of address space.
1225 *
1226 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1227 * flags. VMAs must be already marked with the desired vm_flags, and
1228 * mmap_sem must not be held.
1229 */
1230 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1231 {
1232 struct mm_struct *mm = current->mm;
1233 unsigned long end, nstart, nend;
1234 struct vm_area_struct *vma = NULL;
1235 int locked = 0;
1236 long ret = 0;
1237
1238 end = start + len;
1239
1240 for (nstart = start; nstart < end; nstart = nend) {
1241 /*
1242 * We want to fault in pages for [nstart; end) address range.
1243 * Find first corresponding VMA.
1244 */
1245 if (!locked) {
1246 locked = 1;
1247 down_read(&mm->mmap_sem);
1248 vma = find_vma(mm, nstart);
1249 } else if (nstart >= vma->vm_end)
1250 vma = vma->vm_next;
1251 if (!vma || vma->vm_start >= end)
1252 break;
1253 /*
1254 * Set [nstart; nend) to intersection of desired address
1255 * range with the first VMA. Also, skip undesirable VMA types.
1256 */
1257 nend = min(end, vma->vm_end);
1258 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1259 continue;
1260 if (nstart < vma->vm_start)
1261 nstart = vma->vm_start;
1262 /*
1263 * Now fault in a range of pages. populate_vma_page_range()
1264 * double checks the vma flags, so that it won't mlock pages
1265 * if the vma was already munlocked.
1266 */
1267 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1268 if (ret < 0) {
1269 if (ignore_errors) {
1270 ret = 0;
1271 continue; /* continue at next VMA */
1272 }
1273 break;
1274 }
1275 nend = nstart + ret * PAGE_SIZE;
1276 ret = 0;
1277 }
1278 if (locked)
1279 up_read(&mm->mmap_sem);
1280 return ret; /* 0 or negative error code */
1281 }
1282
1283 /**
1284 * get_dump_page() - pin user page in memory while writing it to core dump
1285 * @addr: user address
1286 *
1287 * Returns struct page pointer of user page pinned for dump,
1288 * to be freed afterwards by put_page().
1289 *
1290 * Returns NULL on any kind of failure - a hole must then be inserted into
1291 * the corefile, to preserve alignment with its headers; and also returns
1292 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1293 * allowing a hole to be left in the corefile to save diskspace.
1294 *
1295 * Called without mmap_sem, but after all other threads have been killed.
1296 */
1297 #ifdef CONFIG_ELF_CORE
1298 struct page *get_dump_page(unsigned long addr)
1299 {
1300 struct vm_area_struct *vma;
1301 struct page *page;
1302
1303 if (__get_user_pages(current, current->mm, addr, 1,
1304 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1305 NULL) < 1)
1306 return NULL;
1307 flush_cache_page(vma, addr, page_to_pfn(page));
1308 return page;
1309 }
1310 #endif /* CONFIG_ELF_CORE */
1311
1312 /*
1313 * Generic Fast GUP
1314 *
1315 * get_user_pages_fast attempts to pin user pages by walking the page
1316 * tables directly and avoids taking locks. Thus the walker needs to be
1317 * protected from page table pages being freed from under it, and should
1318 * block any THP splits.
1319 *
1320 * One way to achieve this is to have the walker disable interrupts, and
1321 * rely on IPIs from the TLB flushing code blocking before the page table
1322 * pages are freed. This is unsuitable for architectures that do not need
1323 * to broadcast an IPI when invalidating TLBs.
1324 *
1325 * Another way to achieve this is to batch up page table containing pages
1326 * belonging to more than one mm_user, then rcu_sched a callback to free those
1327 * pages. Disabling interrupts will allow the fast_gup walker to both block
1328 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1329 * (which is a relatively rare event). The code below adopts this strategy.
1330 *
1331 * Before activating this code, please be aware that the following assumptions
1332 * are currently made:
1333 *
1334 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1335 * free pages containing page tables or TLB flushing requires IPI broadcast.
1336 *
1337 * *) ptes can be read atomically by the architecture.
1338 *
1339 * *) access_ok is sufficient to validate userspace address ranges.
1340 *
1341 * The last two assumptions can be relaxed by the addition of helper functions.
1342 *
1343 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1344 */
1345 #ifdef CONFIG_HAVE_GENERIC_GUP
1346
1347 #ifndef gup_get_pte
1348 /*
1349 * We assume that the PTE can be read atomically. If this is not the case for
1350 * your architecture, please provide the helper.
1351 */
1352 static inline pte_t gup_get_pte(pte_t *ptep)
1353 {
1354 return READ_ONCE(*ptep);
1355 }
1356 #endif
1357
1358 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1359 {
1360 while ((*nr) - nr_start) {
1361 struct page *page = pages[--(*nr)];
1362
1363 ClearPageReferenced(page);
1364 put_page(page);
1365 }
1366 }
1367
1368 #ifdef __HAVE_ARCH_PTE_SPECIAL
1369 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1370 int write, struct page **pages, int *nr)
1371 {
1372 struct dev_pagemap *pgmap = NULL;
1373 int nr_start = *nr, ret = 0;
1374 pte_t *ptep, *ptem;
1375
1376 ptem = ptep = pte_offset_map(&pmd, addr);
1377 do {
1378 pte_t pte = gup_get_pte(ptep);
1379 struct page *head, *page;
1380
1381 /*
1382 * Similar to the PMD case below, NUMA hinting must take slow
1383 * path using the pte_protnone check.
1384 */
1385 if (pte_protnone(pte))
1386 goto pte_unmap;
1387
1388 if (!pte_access_permitted(pte, write))
1389 goto pte_unmap;
1390
1391 if (pte_devmap(pte)) {
1392 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1393 if (unlikely(!pgmap)) {
1394 undo_dev_pagemap(nr, nr_start, pages);
1395 goto pte_unmap;
1396 }
1397 } else if (pte_special(pte))
1398 goto pte_unmap;
1399
1400 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1401 page = pte_page(pte);
1402 head = compound_head(page);
1403
1404 if (!page_cache_get_speculative(head))
1405 goto pte_unmap;
1406
1407 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1408 put_page(head);
1409 goto pte_unmap;
1410 }
1411
1412 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1413
1414 put_dev_pagemap(pgmap);
1415 SetPageReferenced(page);
1416 pages[*nr] = page;
1417 (*nr)++;
1418
1419 } while (ptep++, addr += PAGE_SIZE, addr != end);
1420
1421 ret = 1;
1422
1423 pte_unmap:
1424 pte_unmap(ptem);
1425 return ret;
1426 }
1427 #else
1428
1429 /*
1430 * If we can't determine whether or not a pte is special, then fail immediately
1431 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1432 * to be special.
1433 *
1434 * For a futex to be placed on a THP tail page, get_futex_key requires a
1435 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1436 * useful to have gup_huge_pmd even if we can't operate on ptes.
1437 */
1438 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1439 int write, struct page **pages, int *nr)
1440 {
1441 return 0;
1442 }
1443 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1444
1445 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1446 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1447 unsigned long end, struct page **pages, int *nr)
1448 {
1449 int nr_start = *nr;
1450 struct dev_pagemap *pgmap = NULL;
1451
1452 do {
1453 struct page *page = pfn_to_page(pfn);
1454
1455 pgmap = get_dev_pagemap(pfn, pgmap);
1456 if (unlikely(!pgmap)) {
1457 undo_dev_pagemap(nr, nr_start, pages);
1458 return 0;
1459 }
1460 SetPageReferenced(page);
1461 pages[*nr] = page;
1462 get_page(page);
1463 put_dev_pagemap(pgmap);
1464 (*nr)++;
1465 pfn++;
1466 } while (addr += PAGE_SIZE, addr != end);
1467 return 1;
1468 }
1469
1470 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1471 unsigned long end, struct page **pages, int *nr)
1472 {
1473 unsigned long fault_pfn;
1474 int nr_start = *nr;
1475
1476 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1477 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1478 return 0;
1479
1480 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1481 undo_dev_pagemap(nr, nr_start, pages);
1482 return 0;
1483 }
1484 return 1;
1485 }
1486
1487 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1488 unsigned long end, struct page **pages, int *nr)
1489 {
1490 unsigned long fault_pfn;
1491 int nr_start = *nr;
1492
1493 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1494 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1495 return 0;
1496
1497 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1498 undo_dev_pagemap(nr, nr_start, pages);
1499 return 0;
1500 }
1501 return 1;
1502 }
1503 #else
1504 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1505 unsigned long end, struct page **pages, int *nr)
1506 {
1507 BUILD_BUG();
1508 return 0;
1509 }
1510
1511 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1512 unsigned long end, struct page **pages, int *nr)
1513 {
1514 BUILD_BUG();
1515 return 0;
1516 }
1517 #endif
1518
1519 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1520 unsigned long end, int write, struct page **pages, int *nr)
1521 {
1522 struct page *head, *page;
1523 int refs;
1524
1525 if (!pmd_access_permitted(orig, write))
1526 return 0;
1527
1528 if (pmd_devmap(orig))
1529 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1530
1531 refs = 0;
1532 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1533 do {
1534 pages[*nr] = page;
1535 (*nr)++;
1536 page++;
1537 refs++;
1538 } while (addr += PAGE_SIZE, addr != end);
1539
1540 head = compound_head(pmd_page(orig));
1541 if (!page_cache_add_speculative(head, refs)) {
1542 *nr -= refs;
1543 return 0;
1544 }
1545
1546 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1547 *nr -= refs;
1548 while (refs--)
1549 put_page(head);
1550 return 0;
1551 }
1552
1553 SetPageReferenced(head);
1554 return 1;
1555 }
1556
1557 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1558 unsigned long end, int write, struct page **pages, int *nr)
1559 {
1560 struct page *head, *page;
1561 int refs;
1562
1563 if (!pud_access_permitted(orig, write))
1564 return 0;
1565
1566 if (pud_devmap(orig))
1567 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1568
1569 refs = 0;
1570 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1571 do {
1572 pages[*nr] = page;
1573 (*nr)++;
1574 page++;
1575 refs++;
1576 } while (addr += PAGE_SIZE, addr != end);
1577
1578 head = compound_head(pud_page(orig));
1579 if (!page_cache_add_speculative(head, refs)) {
1580 *nr -= refs;
1581 return 0;
1582 }
1583
1584 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1585 *nr -= refs;
1586 while (refs--)
1587 put_page(head);
1588 return 0;
1589 }
1590
1591 SetPageReferenced(head);
1592 return 1;
1593 }
1594
1595 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1596 unsigned long end, int write,
1597 struct page **pages, int *nr)
1598 {
1599 int refs;
1600 struct page *head, *page;
1601
1602 if (!pgd_access_permitted(orig, write))
1603 return 0;
1604
1605 BUILD_BUG_ON(pgd_devmap(orig));
1606 refs = 0;
1607 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1608 do {
1609 pages[*nr] = page;
1610 (*nr)++;
1611 page++;
1612 refs++;
1613 } while (addr += PAGE_SIZE, addr != end);
1614
1615 head = compound_head(pgd_page(orig));
1616 if (!page_cache_add_speculative(head, refs)) {
1617 *nr -= refs;
1618 return 0;
1619 }
1620
1621 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1622 *nr -= refs;
1623 while (refs--)
1624 put_page(head);
1625 return 0;
1626 }
1627
1628 SetPageReferenced(head);
1629 return 1;
1630 }
1631
1632 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1633 int write, struct page **pages, int *nr)
1634 {
1635 unsigned long next;
1636 pmd_t *pmdp;
1637
1638 pmdp = pmd_offset(&pud, addr);
1639 do {
1640 pmd_t pmd = READ_ONCE(*pmdp);
1641
1642 next = pmd_addr_end(addr, end);
1643 if (!pmd_present(pmd))
1644 return 0;
1645
1646 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
1647 pmd_devmap(pmd))) {
1648 /*
1649 * NUMA hinting faults need to be handled in the GUP
1650 * slowpath for accounting purposes and so that they
1651 * can be serialised against THP migration.
1652 */
1653 if (pmd_protnone(pmd))
1654 return 0;
1655
1656 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1657 pages, nr))
1658 return 0;
1659
1660 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1661 /*
1662 * architecture have different format for hugetlbfs
1663 * pmd format and THP pmd format
1664 */
1665 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1666 PMD_SHIFT, next, write, pages, nr))
1667 return 0;
1668 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1669 return 0;
1670 } while (pmdp++, addr = next, addr != end);
1671
1672 return 1;
1673 }
1674
1675 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1676 int write, struct page **pages, int *nr)
1677 {
1678 unsigned long next;
1679 pud_t *pudp;
1680
1681 pudp = pud_offset(&p4d, addr);
1682 do {
1683 pud_t pud = READ_ONCE(*pudp);
1684
1685 next = pud_addr_end(addr, end);
1686 if (pud_none(pud))
1687 return 0;
1688 if (unlikely(pud_huge(pud))) {
1689 if (!gup_huge_pud(pud, pudp, addr, next, write,
1690 pages, nr))
1691 return 0;
1692 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1693 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1694 PUD_SHIFT, next, write, pages, nr))
1695 return 0;
1696 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1697 return 0;
1698 } while (pudp++, addr = next, addr != end);
1699
1700 return 1;
1701 }
1702
1703 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1704 int write, struct page **pages, int *nr)
1705 {
1706 unsigned long next;
1707 p4d_t *p4dp;
1708
1709 p4dp = p4d_offset(&pgd, addr);
1710 do {
1711 p4d_t p4d = READ_ONCE(*p4dp);
1712
1713 next = p4d_addr_end(addr, end);
1714 if (p4d_none(p4d))
1715 return 0;
1716 BUILD_BUG_ON(p4d_huge(p4d));
1717 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1718 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1719 P4D_SHIFT, next, write, pages, nr))
1720 return 0;
1721 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1722 return 0;
1723 } while (p4dp++, addr = next, addr != end);
1724
1725 return 1;
1726 }
1727
1728 static void gup_pgd_range(unsigned long addr, unsigned long end,
1729 int write, struct page **pages, int *nr)
1730 {
1731 unsigned long next;
1732 pgd_t *pgdp;
1733
1734 pgdp = pgd_offset(current->mm, addr);
1735 do {
1736 pgd_t pgd = READ_ONCE(*pgdp);
1737
1738 next = pgd_addr_end(addr, end);
1739 if (pgd_none(pgd))
1740 return;
1741 if (unlikely(pgd_huge(pgd))) {
1742 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1743 pages, nr))
1744 return;
1745 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1746 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1747 PGDIR_SHIFT, next, write, pages, nr))
1748 return;
1749 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1750 return;
1751 } while (pgdp++, addr = next, addr != end);
1752 }
1753
1754 #ifndef gup_fast_permitted
1755 /*
1756 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1757 * we need to fall back to the slow version:
1758 */
1759 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1760 {
1761 unsigned long len, end;
1762
1763 len = (unsigned long) nr_pages << PAGE_SHIFT;
1764 end = start + len;
1765 return end >= start;
1766 }
1767 #endif
1768
1769 /*
1770 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1771 * the regular GUP. It will only return non-negative values.
1772 */
1773 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1774 struct page **pages)
1775 {
1776 unsigned long addr, len, end;
1777 unsigned long flags;
1778 int nr = 0;
1779
1780 start &= PAGE_MASK;
1781 addr = start;
1782 len = (unsigned long) nr_pages << PAGE_SHIFT;
1783 end = start + len;
1784
1785 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1786 (void __user *)start, len)))
1787 return 0;
1788
1789 /*
1790 * Disable interrupts. We use the nested form as we can already have
1791 * interrupts disabled by get_futex_key.
1792 *
1793 * With interrupts disabled, we block page table pages from being
1794 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1795 * for more details.
1796 *
1797 * We do not adopt an rcu_read_lock(.) here as we also want to
1798 * block IPIs that come from THPs splitting.
1799 */
1800
1801 if (gup_fast_permitted(start, nr_pages, write)) {
1802 local_irq_save(flags);
1803 gup_pgd_range(addr, end, write, pages, &nr);
1804 local_irq_restore(flags);
1805 }
1806
1807 return nr;
1808 }
1809
1810 /**
1811 * get_user_pages_fast() - pin user pages in memory
1812 * @start: starting user address
1813 * @nr_pages: number of pages from start to pin
1814 * @write: whether pages will be written to
1815 * @pages: array that receives pointers to the pages pinned.
1816 * Should be at least nr_pages long.
1817 *
1818 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1819 * If not successful, it will fall back to taking the lock and
1820 * calling get_user_pages().
1821 *
1822 * Returns number of pages pinned. This may be fewer than the number
1823 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1824 * were pinned, returns -errno.
1825 */
1826 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1827 struct page **pages)
1828 {
1829 unsigned long addr, len, end;
1830 int nr = 0, ret = 0;
1831
1832 start &= PAGE_MASK;
1833 addr = start;
1834 len = (unsigned long) nr_pages << PAGE_SHIFT;
1835 end = start + len;
1836
1837 if (nr_pages <= 0)
1838 return 0;
1839
1840 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1841 (void __user *)start, len)))
1842 return -EFAULT;
1843
1844 if (gup_fast_permitted(start, nr_pages, write)) {
1845 local_irq_disable();
1846 gup_pgd_range(addr, end, write, pages, &nr);
1847 local_irq_enable();
1848 ret = nr;
1849 }
1850
1851 if (nr < nr_pages) {
1852 /* Try to get the remaining pages with get_user_pages */
1853 start += nr << PAGE_SHIFT;
1854 pages += nr;
1855
1856 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1857 write ? FOLL_WRITE : 0);
1858
1859 /* Have to be a bit careful with return values */
1860 if (nr > 0) {
1861 if (ret < 0)
1862 ret = nr;
1863 else
1864 ret += nr;
1865 }
1866 }
1867
1868 return ret;
1869 }
1870
1871 #endif /* CONFIG_HAVE_GENERIC_GUP */