defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * close() vm_op implementation for relay file mapping.
32 */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40 * fault() vm_op implementation for relay file mapping.
41 */
42 static int relay_buf_fault(struct vm_fault *vmf)
43 {
44 struct page *page;
45 struct rchan_buf *buf = vmf->vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
47
48 if (!buf)
49 return VM_FAULT_OOM;
50
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
56
57 return 0;
58 }
59
60 /*
61 * vm_ops for relay file mappings.
62 */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
66 };
67
68 /*
69 * allocate an array of pointers of struct page
70 */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 const size_t pa_size = n_pages * sizeof(struct page *);
74 if (pa_size > PAGE_SIZE)
75 return vzalloc(pa_size);
76 return kzalloc(pa_size, GFP_KERNEL);
77 }
78
79 /*
80 * free an array of pointers of struct page
81 */
82 static void relay_free_page_array(struct page **array)
83 {
84 kvfree(array);
85 }
86
87 /**
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
91 *
92 * Returns 0 if ok, negative on error
93 *
94 * Caller should already have grabbed mmap_sem.
95 */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 unsigned long length = vma->vm_end - vma->vm_start;
99 struct file *filp = vma->vm_file;
100
101 if (!buf)
102 return -EBADF;
103
104 if (length != (unsigned long)buf->chan->alloc_size)
105 return -EINVAL;
106
107 vma->vm_ops = &relay_file_mmap_ops;
108 vma->vm_flags |= VM_DONTEXPAND;
109 vma->vm_private_data = buf;
110 buf->chan->cb->buf_mapped(buf, filp);
111
112 return 0;
113 }
114
115 /**
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
119 *
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
122 */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 void *mem;
126 unsigned int i, j, n_pages;
127
128 *size = PAGE_ALIGN(*size);
129 n_pages = *size >> PAGE_SHIFT;
130
131 buf->page_array = relay_alloc_page_array(n_pages);
132 if (!buf->page_array)
133 return NULL;
134
135 for (i = 0; i < n_pages; i++) {
136 buf->page_array[i] = alloc_page(GFP_KERNEL);
137 if (unlikely(!buf->page_array[i]))
138 goto depopulate;
139 set_page_private(buf->page_array[i], (unsigned long)buf);
140 }
141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 if (!mem)
143 goto depopulate;
144
145 memset(mem, 0, *size);
146 buf->page_count = n_pages;
147 return mem;
148
149 depopulate:
150 for (j = 0; j < i; j++)
151 __free_page(buf->page_array[j]);
152 relay_free_page_array(buf->page_array);
153 return NULL;
154 }
155
156 /**
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
159 *
160 * Returns channel buffer if successful, %NULL otherwise.
161 */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 struct rchan_buf *buf;
165
166 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167 return NULL;
168
169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 if (!buf)
171 return NULL;
172 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173 if (!buf->padding)
174 goto free_buf;
175
176 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177 if (!buf->start)
178 goto free_buf;
179
180 buf->chan = chan;
181 kref_get(&buf->chan->kref);
182 return buf;
183
184 free_buf:
185 kfree(buf->padding);
186 kfree(buf);
187 return NULL;
188 }
189
190 /**
191 * relay_destroy_channel - free the channel struct
192 * @kref: target kernel reference that contains the relay channel
193 *
194 * Should only be called from kref_put().
195 */
196 static void relay_destroy_channel(struct kref *kref)
197 {
198 struct rchan *chan = container_of(kref, struct rchan, kref);
199 kfree(chan);
200 }
201
202 /**
203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204 * @buf: the buffer struct
205 */
206 static void relay_destroy_buf(struct rchan_buf *buf)
207 {
208 struct rchan *chan = buf->chan;
209 unsigned int i;
210
211 if (likely(buf->start)) {
212 vunmap(buf->start);
213 for (i = 0; i < buf->page_count; i++)
214 __free_page(buf->page_array[i]);
215 relay_free_page_array(buf->page_array);
216 }
217 *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
218 kfree(buf->padding);
219 kfree(buf);
220 kref_put(&chan->kref, relay_destroy_channel);
221 }
222
223 /**
224 * relay_remove_buf - remove a channel buffer
225 * @kref: target kernel reference that contains the relay buffer
226 *
227 * Removes the file from the filesystem, which also frees the
228 * rchan_buf_struct and the channel buffer. Should only be called from
229 * kref_put().
230 */
231 static void relay_remove_buf(struct kref *kref)
232 {
233 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
234 relay_destroy_buf(buf);
235 }
236
237 /**
238 * relay_buf_empty - boolean, is the channel buffer empty?
239 * @buf: channel buffer
240 *
241 * Returns 1 if the buffer is empty, 0 otherwise.
242 */
243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247
248 /**
249 * relay_buf_full - boolean, is the channel buffer full?
250 * @buf: channel buffer
251 *
252 * Returns 1 if the buffer is full, 0 otherwise.
253 */
254 int relay_buf_full(struct rchan_buf *buf)
255 {
256 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260
261 /*
262 * High-level relay kernel API and associated functions.
263 */
264
265 /*
266 * rchan_callback implementations defining default channel behavior. Used
267 * in place of corresponding NULL values in client callback struct.
268 */
269
270 /*
271 * subbuf_start() default callback. Does nothing.
272 */
273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274 void *subbuf,
275 void *prev_subbuf,
276 size_t prev_padding)
277 {
278 if (relay_buf_full(buf))
279 return 0;
280
281 return 1;
282 }
283
284 /*
285 * buf_mapped() default callback. Does nothing.
286 */
287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288 struct file *filp)
289 {
290 }
291
292 /*
293 * buf_unmapped() default callback. Does nothing.
294 */
295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296 struct file *filp)
297 {
298 }
299
300 /*
301 * create_buf_file_create() default callback. Does nothing.
302 */
303 static struct dentry *create_buf_file_default_callback(const char *filename,
304 struct dentry *parent,
305 umode_t mode,
306 struct rchan_buf *buf,
307 int *is_global)
308 {
309 return NULL;
310 }
311
312 /*
313 * remove_buf_file() default callback. Does nothing.
314 */
315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317 return -EINVAL;
318 }
319
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322 .subbuf_start = subbuf_start_default_callback,
323 .buf_mapped = buf_mapped_default_callback,
324 .buf_unmapped = buf_unmapped_default_callback,
325 .create_buf_file = create_buf_file_default_callback,
326 .remove_buf_file = remove_buf_file_default_callback,
327 };
328
329 /**
330 * wakeup_readers - wake up readers waiting on a channel
331 * @work: contains the channel buffer
332 *
333 * This is the function used to defer reader waking
334 */
335 static void wakeup_readers(struct irq_work *work)
336 {
337 struct rchan_buf *buf;
338
339 buf = container_of(work, struct rchan_buf, wakeup_work);
340 wake_up_interruptible(&buf->read_wait);
341 }
342
343 /**
344 * __relay_reset - reset a channel buffer
345 * @buf: the channel buffer
346 * @init: 1 if this is a first-time initialization
347 *
348 * See relay_reset() for description of effect.
349 */
350 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
351 {
352 size_t i;
353
354 if (init) {
355 init_waitqueue_head(&buf->read_wait);
356 kref_init(&buf->kref);
357 init_irq_work(&buf->wakeup_work, wakeup_readers);
358 } else {
359 irq_work_sync(&buf->wakeup_work);
360 }
361
362 buf->subbufs_produced = 0;
363 buf->subbufs_consumed = 0;
364 buf->bytes_consumed = 0;
365 buf->finalized = 0;
366 buf->data = buf->start;
367 buf->offset = 0;
368
369 for (i = 0; i < buf->chan->n_subbufs; i++)
370 buf->padding[i] = 0;
371
372 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
373 }
374
375 /**
376 * relay_reset - reset the channel
377 * @chan: the channel
378 *
379 * This has the effect of erasing all data from all channel buffers
380 * and restarting the channel in its initial state. The buffers
381 * are not freed, so any mappings are still in effect.
382 *
383 * NOTE. Care should be taken that the channel isn't actually
384 * being used by anything when this call is made.
385 */
386 void relay_reset(struct rchan *chan)
387 {
388 struct rchan_buf *buf;
389 unsigned int i;
390
391 if (!chan)
392 return;
393
394 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
395 __relay_reset(buf, 0);
396 return;
397 }
398
399 mutex_lock(&relay_channels_mutex);
400 for_each_possible_cpu(i)
401 if ((buf = *per_cpu_ptr(chan->buf, i)))
402 __relay_reset(buf, 0);
403 mutex_unlock(&relay_channels_mutex);
404 }
405 EXPORT_SYMBOL_GPL(relay_reset);
406
407 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
408 struct dentry *dentry)
409 {
410 buf->dentry = dentry;
411 d_inode(buf->dentry)->i_size = buf->early_bytes;
412 }
413
414 static struct dentry *relay_create_buf_file(struct rchan *chan,
415 struct rchan_buf *buf,
416 unsigned int cpu)
417 {
418 struct dentry *dentry;
419 char *tmpname;
420
421 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
422 if (!tmpname)
423 return NULL;
424 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
425
426 /* Create file in fs */
427 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
428 S_IRUSR, buf,
429 &chan->is_global);
430 if (IS_ERR(dentry))
431 dentry = NULL;
432
433 kfree(tmpname);
434
435 return dentry;
436 }
437
438 /*
439 * relay_open_buf - create a new relay channel buffer
440 *
441 * used by relay_open() and CPU hotplug.
442 */
443 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
444 {
445 struct rchan_buf *buf = NULL;
446 struct dentry *dentry;
447
448 if (chan->is_global)
449 return *per_cpu_ptr(chan->buf, 0);
450
451 buf = relay_create_buf(chan);
452 if (!buf)
453 return NULL;
454
455 if (chan->has_base_filename) {
456 dentry = relay_create_buf_file(chan, buf, cpu);
457 if (!dentry)
458 goto free_buf;
459 relay_set_buf_dentry(buf, dentry);
460 } else {
461 /* Only retrieve global info, nothing more, nothing less */
462 dentry = chan->cb->create_buf_file(NULL, NULL,
463 S_IRUSR, buf,
464 &chan->is_global);
465 if (IS_ERR_OR_NULL(dentry))
466 goto free_buf;
467 }
468
469 buf->cpu = cpu;
470 __relay_reset(buf, 1);
471
472 if(chan->is_global) {
473 *per_cpu_ptr(chan->buf, 0) = buf;
474 buf->cpu = 0;
475 }
476
477 return buf;
478
479 free_buf:
480 relay_destroy_buf(buf);
481 return NULL;
482 }
483
484 /**
485 * relay_close_buf - close a channel buffer
486 * @buf: channel buffer
487 *
488 * Marks the buffer finalized and restores the default callbacks.
489 * The channel buffer and channel buffer data structure are then freed
490 * automatically when the last reference is given up.
491 */
492 static void relay_close_buf(struct rchan_buf *buf)
493 {
494 buf->finalized = 1;
495 irq_work_sync(&buf->wakeup_work);
496 buf->chan->cb->remove_buf_file(buf->dentry);
497 kref_put(&buf->kref, relay_remove_buf);
498 }
499
500 static void setup_callbacks(struct rchan *chan,
501 struct rchan_callbacks *cb)
502 {
503 if (!cb) {
504 chan->cb = &default_channel_callbacks;
505 return;
506 }
507
508 if (!cb->subbuf_start)
509 cb->subbuf_start = subbuf_start_default_callback;
510 if (!cb->buf_mapped)
511 cb->buf_mapped = buf_mapped_default_callback;
512 if (!cb->buf_unmapped)
513 cb->buf_unmapped = buf_unmapped_default_callback;
514 if (!cb->create_buf_file)
515 cb->create_buf_file = create_buf_file_default_callback;
516 if (!cb->remove_buf_file)
517 cb->remove_buf_file = remove_buf_file_default_callback;
518 chan->cb = cb;
519 }
520
521 int relay_prepare_cpu(unsigned int cpu)
522 {
523 struct rchan *chan;
524 struct rchan_buf *buf;
525
526 mutex_lock(&relay_channels_mutex);
527 list_for_each_entry(chan, &relay_channels, list) {
528 if ((buf = *per_cpu_ptr(chan->buf, cpu)))
529 continue;
530 buf = relay_open_buf(chan, cpu);
531 if (!buf) {
532 pr_err("relay: cpu %d buffer creation failed\n", cpu);
533 mutex_unlock(&relay_channels_mutex);
534 return -ENOMEM;
535 }
536 *per_cpu_ptr(chan->buf, cpu) = buf;
537 }
538 mutex_unlock(&relay_channels_mutex);
539 return 0;
540 }
541
542 /**
543 * relay_open - create a new relay channel
544 * @base_filename: base name of files to create, %NULL for buffering only
545 * @parent: dentry of parent directory, %NULL for root directory or buffer
546 * @subbuf_size: size of sub-buffers
547 * @n_subbufs: number of sub-buffers
548 * @cb: client callback functions
549 * @private_data: user-defined data
550 *
551 * Returns channel pointer if successful, %NULL otherwise.
552 *
553 * Creates a channel buffer for each cpu using the sizes and
554 * attributes specified. The created channel buffer files
555 * will be named base_filename0...base_filenameN-1. File
556 * permissions will be %S_IRUSR.
557 *
558 * If opening a buffer (@parent = NULL) that you later wish to register
559 * in a filesystem, call relay_late_setup_files() once the @parent dentry
560 * is available.
561 */
562 struct rchan *relay_open(const char *base_filename,
563 struct dentry *parent,
564 size_t subbuf_size,
565 size_t n_subbufs,
566 struct rchan_callbacks *cb,
567 void *private_data)
568 {
569 unsigned int i;
570 struct rchan *chan;
571 struct rchan_buf *buf;
572
573 if (!(subbuf_size && n_subbufs))
574 return NULL;
575 if (subbuf_size > UINT_MAX / n_subbufs)
576 return NULL;
577
578 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
579 if (!chan)
580 return NULL;
581
582 chan->buf = alloc_percpu(struct rchan_buf *);
583 chan->version = RELAYFS_CHANNEL_VERSION;
584 chan->n_subbufs = n_subbufs;
585 chan->subbuf_size = subbuf_size;
586 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
587 chan->parent = parent;
588 chan->private_data = private_data;
589 if (base_filename) {
590 chan->has_base_filename = 1;
591 strlcpy(chan->base_filename, base_filename, NAME_MAX);
592 }
593 setup_callbacks(chan, cb);
594 kref_init(&chan->kref);
595
596 mutex_lock(&relay_channels_mutex);
597 for_each_online_cpu(i) {
598 buf = relay_open_buf(chan, i);
599 if (!buf)
600 goto free_bufs;
601 *per_cpu_ptr(chan->buf, i) = buf;
602 }
603 list_add(&chan->list, &relay_channels);
604 mutex_unlock(&relay_channels_mutex);
605
606 return chan;
607
608 free_bufs:
609 for_each_possible_cpu(i) {
610 if ((buf = *per_cpu_ptr(chan->buf, i)))
611 relay_close_buf(buf);
612 }
613
614 kref_put(&chan->kref, relay_destroy_channel);
615 mutex_unlock(&relay_channels_mutex);
616 return NULL;
617 }
618 EXPORT_SYMBOL_GPL(relay_open);
619
620 struct rchan_percpu_buf_dispatcher {
621 struct rchan_buf *buf;
622 struct dentry *dentry;
623 };
624
625 /* Called in atomic context. */
626 static void __relay_set_buf_dentry(void *info)
627 {
628 struct rchan_percpu_buf_dispatcher *p = info;
629
630 relay_set_buf_dentry(p->buf, p->dentry);
631 }
632
633 /**
634 * relay_late_setup_files - triggers file creation
635 * @chan: channel to operate on
636 * @base_filename: base name of files to create
637 * @parent: dentry of parent directory, %NULL for root directory
638 *
639 * Returns 0 if successful, non-zero otherwise.
640 *
641 * Use to setup files for a previously buffer-only channel created
642 * by relay_open() with a NULL parent dentry.
643 *
644 * For example, this is useful for perfomring early tracing in kernel,
645 * before VFS is up and then exposing the early results once the dentry
646 * is available.
647 */
648 int relay_late_setup_files(struct rchan *chan,
649 const char *base_filename,
650 struct dentry *parent)
651 {
652 int err = 0;
653 unsigned int i, curr_cpu;
654 unsigned long flags;
655 struct dentry *dentry;
656 struct rchan_buf *buf;
657 struct rchan_percpu_buf_dispatcher disp;
658
659 if (!chan || !base_filename)
660 return -EINVAL;
661
662 strlcpy(chan->base_filename, base_filename, NAME_MAX);
663
664 mutex_lock(&relay_channels_mutex);
665 /* Is chan already set up? */
666 if (unlikely(chan->has_base_filename)) {
667 mutex_unlock(&relay_channels_mutex);
668 return -EEXIST;
669 }
670 chan->has_base_filename = 1;
671 chan->parent = parent;
672
673 if (chan->is_global) {
674 err = -EINVAL;
675 buf = *per_cpu_ptr(chan->buf, 0);
676 if (!WARN_ON_ONCE(!buf)) {
677 dentry = relay_create_buf_file(chan, buf, 0);
678 if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
679 relay_set_buf_dentry(buf, dentry);
680 err = 0;
681 }
682 }
683 mutex_unlock(&relay_channels_mutex);
684 return err;
685 }
686
687 curr_cpu = get_cpu();
688 /*
689 * The CPU hotplug notifier ran before us and created buffers with
690 * no files associated. So it's safe to call relay_setup_buf_file()
691 * on all currently online CPUs.
692 */
693 for_each_online_cpu(i) {
694 buf = *per_cpu_ptr(chan->buf, i);
695 if (unlikely(!buf)) {
696 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
697 err = -EINVAL;
698 break;
699 }
700
701 dentry = relay_create_buf_file(chan, buf, i);
702 if (unlikely(!dentry)) {
703 err = -EINVAL;
704 break;
705 }
706
707 if (curr_cpu == i) {
708 local_irq_save(flags);
709 relay_set_buf_dentry(buf, dentry);
710 local_irq_restore(flags);
711 } else {
712 disp.buf = buf;
713 disp.dentry = dentry;
714 smp_mb();
715 /* relay_channels_mutex must be held, so wait. */
716 err = smp_call_function_single(i,
717 __relay_set_buf_dentry,
718 &disp, 1);
719 }
720 if (unlikely(err))
721 break;
722 }
723 put_cpu();
724 mutex_unlock(&relay_channels_mutex);
725
726 return err;
727 }
728 EXPORT_SYMBOL_GPL(relay_late_setup_files);
729
730 /**
731 * relay_switch_subbuf - switch to a new sub-buffer
732 * @buf: channel buffer
733 * @length: size of current event
734 *
735 * Returns either the length passed in or 0 if full.
736 *
737 * Performs sub-buffer-switch tasks such as invoking callbacks,
738 * updating padding counts, waking up readers, etc.
739 */
740 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
741 {
742 void *old, *new;
743 size_t old_subbuf, new_subbuf;
744
745 if (unlikely(length > buf->chan->subbuf_size))
746 goto toobig;
747
748 if (buf->offset != buf->chan->subbuf_size + 1) {
749 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
750 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
751 buf->padding[old_subbuf] = buf->prev_padding;
752 buf->subbufs_produced++;
753 if (buf->dentry)
754 d_inode(buf->dentry)->i_size +=
755 buf->chan->subbuf_size -
756 buf->padding[old_subbuf];
757 else
758 buf->early_bytes += buf->chan->subbuf_size -
759 buf->padding[old_subbuf];
760 smp_mb();
761 if (waitqueue_active(&buf->read_wait)) {
762 /*
763 * Calling wake_up_interruptible() from here
764 * will deadlock if we happen to be logging
765 * from the scheduler (trying to re-grab
766 * rq->lock), so defer it.
767 */
768 irq_work_queue(&buf->wakeup_work);
769 }
770 }
771
772 old = buf->data;
773 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
774 new = buf->start + new_subbuf * buf->chan->subbuf_size;
775 buf->offset = 0;
776 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
777 buf->offset = buf->chan->subbuf_size + 1;
778 return 0;
779 }
780 buf->data = new;
781 buf->padding[new_subbuf] = 0;
782
783 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
784 goto toobig;
785
786 return length;
787
788 toobig:
789 buf->chan->last_toobig = length;
790 return 0;
791 }
792 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
793
794 /**
795 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
796 * @chan: the channel
797 * @cpu: the cpu associated with the channel buffer to update
798 * @subbufs_consumed: number of sub-buffers to add to current buf's count
799 *
800 * Adds to the channel buffer's consumed sub-buffer count.
801 * subbufs_consumed should be the number of sub-buffers newly consumed,
802 * not the total consumed.
803 *
804 * NOTE. Kernel clients don't need to call this function if the channel
805 * mode is 'overwrite'.
806 */
807 void relay_subbufs_consumed(struct rchan *chan,
808 unsigned int cpu,
809 size_t subbufs_consumed)
810 {
811 struct rchan_buf *buf;
812
813 if (!chan || cpu >= NR_CPUS)
814 return;
815
816 buf = *per_cpu_ptr(chan->buf, cpu);
817 if (!buf || subbufs_consumed > chan->n_subbufs)
818 return;
819
820 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
821 buf->subbufs_consumed = buf->subbufs_produced;
822 else
823 buf->subbufs_consumed += subbufs_consumed;
824 }
825 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
826
827 /**
828 * relay_close - close the channel
829 * @chan: the channel
830 *
831 * Closes all channel buffers and frees the channel.
832 */
833 void relay_close(struct rchan *chan)
834 {
835 struct rchan_buf *buf;
836 unsigned int i;
837
838 if (!chan)
839 return;
840
841 mutex_lock(&relay_channels_mutex);
842 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
843 relay_close_buf(buf);
844 else
845 for_each_possible_cpu(i)
846 if ((buf = *per_cpu_ptr(chan->buf, i)))
847 relay_close_buf(buf);
848
849 if (chan->last_toobig)
850 printk(KERN_WARNING "relay: one or more items not logged "
851 "[item size (%zd) > sub-buffer size (%zd)]\n",
852 chan->last_toobig, chan->subbuf_size);
853
854 list_del(&chan->list);
855 kref_put(&chan->kref, relay_destroy_channel);
856 mutex_unlock(&relay_channels_mutex);
857 }
858 EXPORT_SYMBOL_GPL(relay_close);
859
860 /**
861 * relay_flush - close the channel
862 * @chan: the channel
863 *
864 * Flushes all channel buffers, i.e. forces buffer switch.
865 */
866 void relay_flush(struct rchan *chan)
867 {
868 struct rchan_buf *buf;
869 unsigned int i;
870
871 if (!chan)
872 return;
873
874 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
875 relay_switch_subbuf(buf, 0);
876 return;
877 }
878
879 mutex_lock(&relay_channels_mutex);
880 for_each_possible_cpu(i)
881 if ((buf = *per_cpu_ptr(chan->buf, i)))
882 relay_switch_subbuf(buf, 0);
883 mutex_unlock(&relay_channels_mutex);
884 }
885 EXPORT_SYMBOL_GPL(relay_flush);
886
887 /**
888 * relay_file_open - open file op for relay files
889 * @inode: the inode
890 * @filp: the file
891 *
892 * Increments the channel buffer refcount.
893 */
894 static int relay_file_open(struct inode *inode, struct file *filp)
895 {
896 struct rchan_buf *buf = inode->i_private;
897 kref_get(&buf->kref);
898 filp->private_data = buf;
899
900 return nonseekable_open(inode, filp);
901 }
902
903 /**
904 * relay_file_mmap - mmap file op for relay files
905 * @filp: the file
906 * @vma: the vma describing what to map
907 *
908 * Calls upon relay_mmap_buf() to map the file into user space.
909 */
910 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
911 {
912 struct rchan_buf *buf = filp->private_data;
913 return relay_mmap_buf(buf, vma);
914 }
915
916 /**
917 * relay_file_poll - poll file op for relay files
918 * @filp: the file
919 * @wait: poll table
920 *
921 * Poll implemention.
922 */
923 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
924 {
925 unsigned int mask = 0;
926 struct rchan_buf *buf = filp->private_data;
927
928 if (buf->finalized)
929 return POLLERR;
930
931 if (filp->f_mode & FMODE_READ) {
932 poll_wait(filp, &buf->read_wait, wait);
933 if (!relay_buf_empty(buf))
934 mask |= POLLIN | POLLRDNORM;
935 }
936
937 return mask;
938 }
939
940 /**
941 * relay_file_release - release file op for relay files
942 * @inode: the inode
943 * @filp: the file
944 *
945 * Decrements the channel refcount, as the filesystem is
946 * no longer using it.
947 */
948 static int relay_file_release(struct inode *inode, struct file *filp)
949 {
950 struct rchan_buf *buf = filp->private_data;
951 kref_put(&buf->kref, relay_remove_buf);
952
953 return 0;
954 }
955
956 /*
957 * relay_file_read_consume - update the consumed count for the buffer
958 */
959 static void relay_file_read_consume(struct rchan_buf *buf,
960 size_t read_pos,
961 size_t bytes_consumed)
962 {
963 size_t subbuf_size = buf->chan->subbuf_size;
964 size_t n_subbufs = buf->chan->n_subbufs;
965 size_t read_subbuf;
966
967 if (buf->subbufs_produced == buf->subbufs_consumed &&
968 buf->offset == buf->bytes_consumed)
969 return;
970
971 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
972 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
973 buf->bytes_consumed = 0;
974 }
975
976 buf->bytes_consumed += bytes_consumed;
977 if (!read_pos)
978 read_subbuf = buf->subbufs_consumed % n_subbufs;
979 else
980 read_subbuf = read_pos / buf->chan->subbuf_size;
981 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
982 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
983 (buf->offset == subbuf_size))
984 return;
985 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
986 buf->bytes_consumed = 0;
987 }
988 }
989
990 /*
991 * relay_file_read_avail - boolean, are there unconsumed bytes available?
992 */
993 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
994 {
995 size_t subbuf_size = buf->chan->subbuf_size;
996 size_t n_subbufs = buf->chan->n_subbufs;
997 size_t produced = buf->subbufs_produced;
998 size_t consumed = buf->subbufs_consumed;
999
1000 relay_file_read_consume(buf, read_pos, 0);
1001
1002 consumed = buf->subbufs_consumed;
1003
1004 if (unlikely(buf->offset > subbuf_size)) {
1005 if (produced == consumed)
1006 return 0;
1007 return 1;
1008 }
1009
1010 if (unlikely(produced - consumed >= n_subbufs)) {
1011 consumed = produced - n_subbufs + 1;
1012 buf->subbufs_consumed = consumed;
1013 buf->bytes_consumed = 0;
1014 }
1015
1016 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1017 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1018
1019 if (consumed > produced)
1020 produced += n_subbufs * subbuf_size;
1021
1022 if (consumed == produced) {
1023 if (buf->offset == subbuf_size &&
1024 buf->subbufs_produced > buf->subbufs_consumed)
1025 return 1;
1026 return 0;
1027 }
1028
1029 return 1;
1030 }
1031
1032 /**
1033 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1034 * @read_pos: file read position
1035 * @buf: relay channel buffer
1036 */
1037 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1038 struct rchan_buf *buf)
1039 {
1040 size_t padding, avail = 0;
1041 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1042 size_t subbuf_size = buf->chan->subbuf_size;
1043
1044 write_subbuf = (buf->data - buf->start) / subbuf_size;
1045 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1046 read_subbuf = read_pos / subbuf_size;
1047 read_offset = read_pos % subbuf_size;
1048 padding = buf->padding[read_subbuf];
1049
1050 if (read_subbuf == write_subbuf) {
1051 if (read_offset + padding < write_offset)
1052 avail = write_offset - (read_offset + padding);
1053 } else
1054 avail = (subbuf_size - padding) - read_offset;
1055
1056 return avail;
1057 }
1058
1059 /**
1060 * relay_file_read_start_pos - find the first available byte to read
1061 * @read_pos: file read position
1062 * @buf: relay channel buffer
1063 *
1064 * If the @read_pos is in the middle of padding, return the
1065 * position of the first actually available byte, otherwise
1066 * return the original value.
1067 */
1068 static size_t relay_file_read_start_pos(size_t read_pos,
1069 struct rchan_buf *buf)
1070 {
1071 size_t read_subbuf, padding, padding_start, padding_end;
1072 size_t subbuf_size = buf->chan->subbuf_size;
1073 size_t n_subbufs = buf->chan->n_subbufs;
1074 size_t consumed = buf->subbufs_consumed % n_subbufs;
1075
1076 if (!read_pos)
1077 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1078 read_subbuf = read_pos / subbuf_size;
1079 padding = buf->padding[read_subbuf];
1080 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1081 padding_end = (read_subbuf + 1) * subbuf_size;
1082 if (read_pos >= padding_start && read_pos < padding_end) {
1083 read_subbuf = (read_subbuf + 1) % n_subbufs;
1084 read_pos = read_subbuf * subbuf_size;
1085 }
1086
1087 return read_pos;
1088 }
1089
1090 /**
1091 * relay_file_read_end_pos - return the new read position
1092 * @read_pos: file read position
1093 * @buf: relay channel buffer
1094 * @count: number of bytes to be read
1095 */
1096 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1097 size_t read_pos,
1098 size_t count)
1099 {
1100 size_t read_subbuf, padding, end_pos;
1101 size_t subbuf_size = buf->chan->subbuf_size;
1102 size_t n_subbufs = buf->chan->n_subbufs;
1103
1104 read_subbuf = read_pos / subbuf_size;
1105 padding = buf->padding[read_subbuf];
1106 if (read_pos % subbuf_size + count + padding == subbuf_size)
1107 end_pos = (read_subbuf + 1) * subbuf_size;
1108 else
1109 end_pos = read_pos + count;
1110 if (end_pos >= subbuf_size * n_subbufs)
1111 end_pos = 0;
1112
1113 return end_pos;
1114 }
1115
1116 static ssize_t relay_file_read(struct file *filp,
1117 char __user *buffer,
1118 size_t count,
1119 loff_t *ppos)
1120 {
1121 struct rchan_buf *buf = filp->private_data;
1122 size_t read_start, avail;
1123 size_t written = 0;
1124 int ret;
1125
1126 if (!count)
1127 return 0;
1128
1129 inode_lock(file_inode(filp));
1130 do {
1131 void *from;
1132
1133 if (!relay_file_read_avail(buf, *ppos))
1134 break;
1135
1136 read_start = relay_file_read_start_pos(*ppos, buf);
1137 avail = relay_file_read_subbuf_avail(read_start, buf);
1138 if (!avail)
1139 break;
1140
1141 avail = min(count, avail);
1142 from = buf->start + read_start;
1143 ret = avail;
1144 if (copy_to_user(buffer, from, avail))
1145 break;
1146
1147 buffer += ret;
1148 written += ret;
1149 count -= ret;
1150
1151 relay_file_read_consume(buf, read_start, ret);
1152 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1153 } while (count);
1154 inode_unlock(file_inode(filp));
1155
1156 return written;
1157 }
1158
1159 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1160 {
1161 rbuf->bytes_consumed += bytes_consumed;
1162
1163 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1164 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1165 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1166 }
1167 }
1168
1169 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1170 struct pipe_buffer *buf)
1171 {
1172 struct rchan_buf *rbuf;
1173
1174 rbuf = (struct rchan_buf *)page_private(buf->page);
1175 relay_consume_bytes(rbuf, buf->private);
1176 }
1177
1178 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1179 .can_merge = 0,
1180 .confirm = generic_pipe_buf_confirm,
1181 .release = relay_pipe_buf_release,
1182 .steal = generic_pipe_buf_steal,
1183 .get = generic_pipe_buf_get,
1184 };
1185
1186 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1187 {
1188 }
1189
1190 /*
1191 * subbuf_splice_actor - splice up to one subbuf's worth of data
1192 */
1193 static ssize_t subbuf_splice_actor(struct file *in,
1194 loff_t *ppos,
1195 struct pipe_inode_info *pipe,
1196 size_t len,
1197 unsigned int flags,
1198 int *nonpad_ret)
1199 {
1200 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1201 struct rchan_buf *rbuf = in->private_data;
1202 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1203 uint64_t pos = (uint64_t) *ppos;
1204 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1205 size_t read_start = (size_t) do_div(pos, alloc_size);
1206 size_t read_subbuf = read_start / subbuf_size;
1207 size_t padding = rbuf->padding[read_subbuf];
1208 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1209 struct page *pages[PIPE_DEF_BUFFERS];
1210 struct partial_page partial[PIPE_DEF_BUFFERS];
1211 struct splice_pipe_desc spd = {
1212 .pages = pages,
1213 .nr_pages = 0,
1214 .nr_pages_max = PIPE_DEF_BUFFERS,
1215 .partial = partial,
1216 .ops = &relay_pipe_buf_ops,
1217 .spd_release = relay_page_release,
1218 };
1219 ssize_t ret;
1220
1221 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1222 return 0;
1223 if (splice_grow_spd(pipe, &spd))
1224 return -ENOMEM;
1225
1226 /*
1227 * Adjust read len, if longer than what is available
1228 */
1229 if (len > (subbuf_size - read_start % subbuf_size))
1230 len = subbuf_size - read_start % subbuf_size;
1231
1232 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1233 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1234 poff = read_start & ~PAGE_MASK;
1235 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1236
1237 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1238 unsigned int this_len, this_end, private;
1239 unsigned int cur_pos = read_start + total_len;
1240
1241 if (!len)
1242 break;
1243
1244 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1245 private = this_len;
1246
1247 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1248 spd.partial[spd.nr_pages].offset = poff;
1249
1250 this_end = cur_pos + this_len;
1251 if (this_end >= nonpad_end) {
1252 this_len = nonpad_end - cur_pos;
1253 private = this_len + padding;
1254 }
1255 spd.partial[spd.nr_pages].len = this_len;
1256 spd.partial[spd.nr_pages].private = private;
1257
1258 len -= this_len;
1259 total_len += this_len;
1260 poff = 0;
1261 pidx = (pidx + 1) % subbuf_pages;
1262
1263 if (this_end >= nonpad_end) {
1264 spd.nr_pages++;
1265 break;
1266 }
1267 }
1268
1269 ret = 0;
1270 if (!spd.nr_pages)
1271 goto out;
1272
1273 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1274 if (ret < 0 || ret < total_len)
1275 goto out;
1276
1277 if (read_start + ret == nonpad_end)
1278 ret += padding;
1279
1280 out:
1281 splice_shrink_spd(&spd);
1282 return ret;
1283 }
1284
1285 static ssize_t relay_file_splice_read(struct file *in,
1286 loff_t *ppos,
1287 struct pipe_inode_info *pipe,
1288 size_t len,
1289 unsigned int flags)
1290 {
1291 ssize_t spliced;
1292 int ret;
1293 int nonpad_ret = 0;
1294
1295 ret = 0;
1296 spliced = 0;
1297
1298 while (len && !spliced) {
1299 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1300 if (ret < 0)
1301 break;
1302 else if (!ret) {
1303 if (flags & SPLICE_F_NONBLOCK)
1304 ret = -EAGAIN;
1305 break;
1306 }
1307
1308 *ppos += ret;
1309 if (ret > len)
1310 len = 0;
1311 else
1312 len -= ret;
1313 spliced += nonpad_ret;
1314 nonpad_ret = 0;
1315 }
1316
1317 if (spliced)
1318 return spliced;
1319
1320 return ret;
1321 }
1322
1323 const struct file_operations relay_file_operations = {
1324 .open = relay_file_open,
1325 .poll = relay_file_poll,
1326 .mmap = relay_file_mmap,
1327 .read = relay_file_read,
1328 .llseek = no_llseek,
1329 .release = relay_file_release,
1330 .splice_read = relay_file_splice_read,
1331 };
1332 EXPORT_SYMBOL_GPL(relay_file_operations);