UPSTREAM: pidfd: fix a poll race when setting exit_state
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/cpufreq_times.h>
66 #include <linux/ems.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/pgtable.h>
71 #include <asm/mmu_context.h>
72
73 static void __unhash_process(struct task_struct *p, bool group_dead)
74 {
75 nr_threads--;
76 detach_pid(p, PIDTYPE_PID);
77 if (group_dead) {
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89 /*
90 * This function expects the tasklist_lock write-locked.
91 */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 } else {
109 /*
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
113 */
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
116 }
117 #endif
118
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
123 /*
124 * If there is any task waiting for the group exit
125 * then notify it:
126 */
127 if (sig->notify_count > 0 && !--sig->notify_count)
128 wake_up_process(sig->group_exit_task);
129
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
132 }
133
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
136
137 /*
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
142 */
143 task_cputime(tsk, &utime, &stime);
144 write_seqlock(&sig->stats_lock);
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 sig->nr_threads--;
157 __unhash_process(tsk, group_dead);
158 write_sequnlock(&sig->stats_lock);
159
160 /*
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 */
164 flush_sigqueue(&tsk->pending);
165 tsk->sighand = NULL;
166 spin_unlock(&sighand->siglock);
167
168 __cleanup_sighand(sighand);
169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 if (group_dead) {
171 flush_sigqueue(&sig->shared_pending);
172 tty_kref_put(tty);
173 }
174 }
175
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
180 perf_event_delayed_put(tsk);
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
183 }
184
185
186 void release_task(struct task_struct *p)
187 {
188 struct task_struct *leader;
189 int zap_leader;
190 repeat:
191 /* don't need to get the RCU readlock here - the process is dead and
192 * can't be modifying its own credentials. But shut RCU-lockdep up */
193 rcu_read_lock();
194 atomic_dec(&__task_cred(p)->user->processes);
195 rcu_read_unlock();
196
197 proc_flush_task(p);
198
199 write_lock_irq(&tasklist_lock);
200 ptrace_release_task(p);
201 __exit_signal(p);
202
203 /*
204 * If we are the last non-leader member of the thread
205 * group, and the leader is zombie, then notify the
206 * group leader's parent process. (if it wants notification.)
207 */
208 zap_leader = 0;
209 leader = p->group_leader;
210 if (leader != p && thread_group_empty(leader)
211 && leader->exit_state == EXIT_ZOMBIE) {
212 /*
213 * If we were the last child thread and the leader has
214 * exited already, and the leader's parent ignores SIGCHLD,
215 * then we are the one who should release the leader.
216 */
217 zap_leader = do_notify_parent(leader, leader->exit_signal);
218 if (zap_leader)
219 leader->exit_state = EXIT_DEAD;
220 }
221
222 write_unlock_irq(&tasklist_lock);
223 cgroup_release(p);
224 release_thread(p);
225 call_rcu(&p->rcu, delayed_put_task_struct);
226
227 p = leader;
228 if (unlikely(zap_leader))
229 goto repeat;
230 }
231
232 /*
233 * Note that if this function returns a valid task_struct pointer (!NULL)
234 * task->usage must remain >0 for the duration of the RCU critical section.
235 */
236 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
237 {
238 struct sighand_struct *sighand;
239 struct task_struct *task;
240
241 /*
242 * We need to verify that release_task() was not called and thus
243 * delayed_put_task_struct() can't run and drop the last reference
244 * before rcu_read_unlock(). We check task->sighand != NULL,
245 * but we can read the already freed and reused memory.
246 */
247 retry:
248 task = rcu_dereference(*ptask);
249 if (!task)
250 return NULL;
251
252 probe_kernel_address(&task->sighand, sighand);
253
254 /*
255 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
256 * was already freed we can not miss the preceding update of this
257 * pointer.
258 */
259 smp_rmb();
260 if (unlikely(task != READ_ONCE(*ptask)))
261 goto retry;
262
263 /*
264 * We've re-checked that "task == *ptask", now we have two different
265 * cases:
266 *
267 * 1. This is actually the same task/task_struct. In this case
268 * sighand != NULL tells us it is still alive.
269 *
270 * 2. This is another task which got the same memory for task_struct.
271 * We can't know this of course, and we can not trust
272 * sighand != NULL.
273 *
274 * In this case we actually return a random value, but this is
275 * correct.
276 *
277 * If we return NULL - we can pretend that we actually noticed that
278 * *ptask was updated when the previous task has exited. Or pretend
279 * that probe_slab_address(&sighand) reads NULL.
280 *
281 * If we return the new task (because sighand is not NULL for any
282 * reason) - this is fine too. This (new) task can't go away before
283 * another gp pass.
284 *
285 * And note: We could even eliminate the false positive if re-read
286 * task->sighand once again to avoid the falsely NULL. But this case
287 * is very unlikely so we don't care.
288 */
289 if (!sighand)
290 return NULL;
291
292 return task;
293 }
294
295 void rcuwait_wake_up(struct rcuwait *w)
296 {
297 struct task_struct *task;
298
299 rcu_read_lock();
300
301 /*
302 * Order condition vs @task, such that everything prior to the load
303 * of @task is visible. This is the condition as to why the user called
304 * rcuwait_trywake() in the first place. Pairs with set_current_state()
305 * barrier (A) in rcuwait_wait_event().
306 *
307 * WAIT WAKE
308 * [S] tsk = current [S] cond = true
309 * MB (A) MB (B)
310 * [L] cond [L] tsk
311 */
312 smp_mb(); /* (B) */
313
314 /*
315 * Avoid using task_rcu_dereference() magic as long as we are careful,
316 * see comment in rcuwait_wait_event() regarding ->exit_state.
317 */
318 task = rcu_dereference(w->task);
319 if (task)
320 wake_up_process(task);
321 rcu_read_unlock();
322 }
323
324 /*
325 * Determine if a process group is "orphaned", according to the POSIX
326 * definition in 2.2.2.52. Orphaned process groups are not to be affected
327 * by terminal-generated stop signals. Newly orphaned process groups are
328 * to receive a SIGHUP and a SIGCONT.
329 *
330 * "I ask you, have you ever known what it is to be an orphan?"
331 */
332 static int will_become_orphaned_pgrp(struct pid *pgrp,
333 struct task_struct *ignored_task)
334 {
335 struct task_struct *p;
336
337 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
338 if ((p == ignored_task) ||
339 (p->exit_state && thread_group_empty(p)) ||
340 is_global_init(p->real_parent))
341 continue;
342
343 if (task_pgrp(p->real_parent) != pgrp &&
344 task_session(p->real_parent) == task_session(p))
345 return 0;
346 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
347
348 return 1;
349 }
350
351 int is_current_pgrp_orphaned(void)
352 {
353 int retval;
354
355 read_lock(&tasklist_lock);
356 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
357 read_unlock(&tasklist_lock);
358
359 return retval;
360 }
361
362 static bool has_stopped_jobs(struct pid *pgrp)
363 {
364 struct task_struct *p;
365
366 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
367 if (p->signal->flags & SIGNAL_STOP_STOPPED)
368 return true;
369 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
370
371 return false;
372 }
373
374 /*
375 * Check to see if any process groups have become orphaned as
376 * a result of our exiting, and if they have any stopped jobs,
377 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
378 */
379 static void
380 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
381 {
382 struct pid *pgrp = task_pgrp(tsk);
383 struct task_struct *ignored_task = tsk;
384
385 if (!parent)
386 /* exit: our father is in a different pgrp than
387 * we are and we were the only connection outside.
388 */
389 parent = tsk->real_parent;
390 else
391 /* reparent: our child is in a different pgrp than
392 * we are, and it was the only connection outside.
393 */
394 ignored_task = NULL;
395
396 if (task_pgrp(parent) != pgrp &&
397 task_session(parent) == task_session(tsk) &&
398 will_become_orphaned_pgrp(pgrp, ignored_task) &&
399 has_stopped_jobs(pgrp)) {
400 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
401 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
402 }
403 }
404
405 #ifdef CONFIG_MEMCG
406 /*
407 * A task is exiting. If it owned this mm, find a new owner for the mm.
408 */
409 void mm_update_next_owner(struct mm_struct *mm)
410 {
411 struct task_struct *c, *g, *p = current;
412
413 retry:
414 /*
415 * If the exiting or execing task is not the owner, it's
416 * someone else's problem.
417 */
418 if (mm->owner != p)
419 return;
420 /*
421 * The current owner is exiting/execing and there are no other
422 * candidates. Do not leave the mm pointing to a possibly
423 * freed task structure.
424 */
425 if (atomic_read(&mm->mm_users) <= 1) {
426 mm->owner = NULL;
427 return;
428 }
429
430 read_lock(&tasklist_lock);
431 /*
432 * Search in the children
433 */
434 list_for_each_entry(c, &p->children, sibling) {
435 if (c->mm == mm)
436 goto assign_new_owner;
437 }
438
439 /*
440 * Search in the siblings
441 */
442 list_for_each_entry(c, &p->real_parent->children, sibling) {
443 if (c->mm == mm)
444 goto assign_new_owner;
445 }
446
447 /*
448 * Search through everything else, we should not get here often.
449 */
450 for_each_process(g) {
451 if (g->flags & PF_KTHREAD)
452 continue;
453 for_each_thread(g, c) {
454 if (c->mm == mm)
455 goto assign_new_owner;
456 if (c->mm)
457 break;
458 }
459 }
460 read_unlock(&tasklist_lock);
461 /*
462 * We found no owner yet mm_users > 1: this implies that we are
463 * most likely racing with swapoff (try_to_unuse()) or /proc or
464 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
465 */
466 mm->owner = NULL;
467 return;
468
469 assign_new_owner:
470 BUG_ON(c == p);
471 get_task_struct(c);
472 /*
473 * The task_lock protects c->mm from changing.
474 * We always want mm->owner->mm == mm
475 */
476 task_lock(c);
477 /*
478 * Delay read_unlock() till we have the task_lock()
479 * to ensure that c does not slip away underneath us
480 */
481 read_unlock(&tasklist_lock);
482 if (c->mm != mm) {
483 task_unlock(c);
484 put_task_struct(c);
485 goto retry;
486 }
487 mm->owner = c;
488 task_unlock(c);
489 put_task_struct(c);
490 }
491 #endif /* CONFIG_MEMCG */
492
493 /*
494 * Turn us into a lazy TLB process if we
495 * aren't already..
496 */
497 static void exit_mm(void)
498 {
499 struct mm_struct *mm = current->mm;
500 struct core_state *core_state;
501
502 mm_release(current, mm);
503 if (!mm)
504 return;
505 sync_mm_rss(mm);
506 /*
507 * Serialize with any possible pending coredump.
508 * We must hold mmap_sem around checking core_state
509 * and clearing tsk->mm. The core-inducing thread
510 * will increment ->nr_threads for each thread in the
511 * group with ->mm != NULL.
512 */
513 down_read(&mm->mmap_sem);
514 core_state = mm->core_state;
515 if (core_state) {
516 struct core_thread self;
517
518 up_read(&mm->mmap_sem);
519
520 self.task = current;
521 self.next = xchg(&core_state->dumper.next, &self);
522 /*
523 * Implies mb(), the result of xchg() must be visible
524 * to core_state->dumper.
525 */
526 if (atomic_dec_and_test(&core_state->nr_threads))
527 complete(&core_state->startup);
528
529 for (;;) {
530 set_current_state(TASK_UNINTERRUPTIBLE);
531 if (!self.task) /* see coredump_finish() */
532 break;
533 freezable_schedule();
534 }
535 __set_current_state(TASK_RUNNING);
536 down_read(&mm->mmap_sem);
537 }
538 mmgrab(mm);
539 BUG_ON(mm != current->active_mm);
540 /* more a memory barrier than a real lock */
541 task_lock(current);
542 current->mm = NULL;
543 up_read(&mm->mmap_sem);
544 enter_lazy_tlb(mm, current);
545 task_unlock(current);
546 mm_update_next_owner(mm);
547 mmput(mm);
548 if (test_thread_flag(TIF_MEMDIE))
549 exit_oom_victim();
550 }
551
552 static struct task_struct *find_alive_thread(struct task_struct *p)
553 {
554 struct task_struct *t;
555
556 for_each_thread(p, t) {
557 if (!(t->flags & PF_EXITING))
558 return t;
559 }
560 return NULL;
561 }
562
563 static struct task_struct *find_child_reaper(struct task_struct *father,
564 struct list_head *dead)
565 __releases(&tasklist_lock)
566 __acquires(&tasklist_lock)
567 {
568 struct pid_namespace *pid_ns = task_active_pid_ns(father);
569 struct task_struct *reaper = pid_ns->child_reaper;
570 struct task_struct *p, *n;
571
572 if (likely(reaper != father))
573 return reaper;
574
575 reaper = find_alive_thread(father);
576 if (reaper) {
577 pid_ns->child_reaper = reaper;
578 return reaper;
579 }
580
581 write_unlock_irq(&tasklist_lock);
582 if (unlikely(pid_ns == &init_pid_ns)) {
583 panic("Attempted to kill init! exitcode=0x%08x\n",
584 father->signal->group_exit_code ?: father->exit_code);
585 }
586
587 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
588 list_del_init(&p->ptrace_entry);
589 release_task(p);
590 }
591
592 zap_pid_ns_processes(pid_ns);
593 write_lock_irq(&tasklist_lock);
594
595 return father;
596 }
597
598 /*
599 * When we die, we re-parent all our children, and try to:
600 * 1. give them to another thread in our thread group, if such a member exists
601 * 2. give it to the first ancestor process which prctl'd itself as a
602 * child_subreaper for its children (like a service manager)
603 * 3. give it to the init process (PID 1) in our pid namespace
604 */
605 static struct task_struct *find_new_reaper(struct task_struct *father,
606 struct task_struct *child_reaper)
607 {
608 struct task_struct *thread, *reaper;
609
610 thread = find_alive_thread(father);
611 if (thread)
612 return thread;
613
614 if (father->signal->has_child_subreaper) {
615 unsigned int ns_level = task_pid(father)->level;
616 /*
617 * Find the first ->is_child_subreaper ancestor in our pid_ns.
618 * We can't check reaper != child_reaper to ensure we do not
619 * cross the namespaces, the exiting parent could be injected
620 * by setns() + fork().
621 * We check pid->level, this is slightly more efficient than
622 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
623 */
624 for (reaper = father->real_parent;
625 task_pid(reaper)->level == ns_level;
626 reaper = reaper->real_parent) {
627 if (reaper == &init_task)
628 break;
629 if (!reaper->signal->is_child_subreaper)
630 continue;
631 thread = find_alive_thread(reaper);
632 if (thread)
633 return thread;
634 }
635 }
636
637 return child_reaper;
638 }
639
640 /*
641 * Any that need to be release_task'd are put on the @dead list.
642 */
643 static void reparent_leader(struct task_struct *father, struct task_struct *p,
644 struct list_head *dead)
645 {
646 if (unlikely(p->exit_state == EXIT_DEAD))
647 return;
648
649 /* We don't want people slaying init. */
650 p->exit_signal = SIGCHLD;
651
652 /* If it has exited notify the new parent about this child's death. */
653 if (!p->ptrace &&
654 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
655 if (do_notify_parent(p, p->exit_signal)) {
656 p->exit_state = EXIT_DEAD;
657 list_add(&p->ptrace_entry, dead);
658 }
659 }
660
661 kill_orphaned_pgrp(p, father);
662 }
663
664 /*
665 * This does two things:
666 *
667 * A. Make init inherit all the child processes
668 * B. Check to see if any process groups have become orphaned
669 * as a result of our exiting, and if they have any stopped
670 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
671 */
672 static void forget_original_parent(struct task_struct *father,
673 struct list_head *dead)
674 {
675 struct task_struct *p, *t, *reaper;
676
677 if (unlikely(!list_empty(&father->ptraced)))
678 exit_ptrace(father, dead);
679
680 /* Can drop and reacquire tasklist_lock */
681 reaper = find_child_reaper(father, dead);
682 if (list_empty(&father->children))
683 return;
684
685 reaper = find_new_reaper(father, reaper);
686 list_for_each_entry(p, &father->children, sibling) {
687 for_each_thread(p, t) {
688 t->real_parent = reaper;
689 BUG_ON((!t->ptrace) != (t->parent == father));
690 if (likely(!t->ptrace))
691 t->parent = t->real_parent;
692 if (t->pdeath_signal)
693 group_send_sig_info(t->pdeath_signal,
694 SEND_SIG_NOINFO, t);
695 }
696 /*
697 * If this is a threaded reparent there is no need to
698 * notify anyone anything has happened.
699 */
700 if (!same_thread_group(reaper, father))
701 reparent_leader(father, p, dead);
702 }
703 list_splice_tail_init(&father->children, &reaper->children);
704 }
705
706 /*
707 * Send signals to all our closest relatives so that they know
708 * to properly mourn us..
709 */
710 static void exit_notify(struct task_struct *tsk, int group_dead)
711 {
712 bool autoreap;
713 struct task_struct *p, *n;
714 LIST_HEAD(dead);
715
716 write_lock_irq(&tasklist_lock);
717 forget_original_parent(tsk, &dead);
718
719 if (group_dead)
720 kill_orphaned_pgrp(tsk->group_leader, NULL);
721
722 tsk->exit_state = EXIT_ZOMBIE;
723 if (unlikely(tsk->ptrace)) {
724 int sig = thread_group_leader(tsk) &&
725 thread_group_empty(tsk) &&
726 !ptrace_reparented(tsk) ?
727 tsk->exit_signal : SIGCHLD;
728 autoreap = do_notify_parent(tsk, sig);
729 } else if (thread_group_leader(tsk)) {
730 autoreap = thread_group_empty(tsk) &&
731 do_notify_parent(tsk, tsk->exit_signal);
732 } else {
733 autoreap = true;
734 }
735
736 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
737 if (tsk->exit_state == EXIT_DEAD)
738 list_add(&tsk->ptrace_entry, &dead);
739
740 /* mt-exec, de_thread() is waiting for group leader */
741 if (unlikely(tsk->signal->notify_count < 0))
742 wake_up_process(tsk->signal->group_exit_task);
743 write_unlock_irq(&tasklist_lock);
744
745 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
746 list_del_init(&p->ptrace_entry);
747 release_task(p);
748 }
749 }
750
751 #ifdef CONFIG_DEBUG_STACK_USAGE
752 static void check_stack_usage(void)
753 {
754 static DEFINE_SPINLOCK(low_water_lock);
755 static int lowest_to_date = THREAD_SIZE;
756 unsigned long free;
757
758 free = stack_not_used(current);
759
760 if (free >= lowest_to_date)
761 return;
762
763 spin_lock(&low_water_lock);
764 if (free < lowest_to_date) {
765 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
766 current->comm, task_pid_nr(current), free);
767 lowest_to_date = free;
768 }
769 spin_unlock(&low_water_lock);
770 }
771 #else
772 static inline void check_stack_usage(void) {}
773 #endif
774
775 void __noreturn do_exit(long code)
776 {
777 struct task_struct *tsk = current;
778 int group_dead;
779
780 profile_task_exit(tsk);
781 kcov_task_exit(tsk);
782
783 WARN_ON(blk_needs_flush_plug(tsk));
784
785 if (unlikely(in_interrupt()))
786 panic("Aiee, killing interrupt handler!");
787 if (unlikely(!tsk->pid))
788 panic("Attempted to kill the idle task!");
789
790 /*
791 * If do_exit is called because this processes oopsed, it's possible
792 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
793 * continuing. Amongst other possible reasons, this is to prevent
794 * mm_release()->clear_child_tid() from writing to a user-controlled
795 * kernel address.
796 */
797 set_fs(USER_DS);
798
799 ptrace_event(PTRACE_EVENT_EXIT, code);
800
801 validate_creds_for_do_exit(tsk);
802
803 /*
804 * We're taking recursive faults here in do_exit. Safest is to just
805 * leave this task alone and wait for reboot.
806 */
807 if (unlikely(tsk->flags & PF_EXITING)) {
808 pr_alert("Fixing recursive fault but reboot is needed!\n");
809 /*
810 * We can do this unlocked here. The futex code uses
811 * this flag just to verify whether the pi state
812 * cleanup has been done or not. In the worst case it
813 * loops once more. We pretend that the cleanup was
814 * done as there is no way to return. Either the
815 * OWNER_DIED bit is set by now or we push the blocked
816 * task into the wait for ever nirwana as well.
817 */
818 tsk->flags |= PF_EXITPIDONE;
819 set_current_state(TASK_UNINTERRUPTIBLE);
820 schedule();
821 }
822
823 exit_signals(tsk); /* sets PF_EXITING */
824 sync_band(tsk, LEAVE_BAND);
825
826 /*
827 * Ensure that all new tsk->pi_lock acquisitions must observe
828 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
829 */
830 smp_mb();
831 /*
832 * Ensure that we must observe the pi_state in exit_mm() ->
833 * mm_release() -> exit_pi_state_list().
834 */
835 raw_spin_lock_irq(&tsk->pi_lock);
836 raw_spin_unlock_irq(&tsk->pi_lock);
837
838 if (unlikely(in_atomic())) {
839 pr_info("note: %s[%d] exited with preempt_count %d\n",
840 current->comm, task_pid_nr(current),
841 preempt_count());
842 preempt_count_set(PREEMPT_ENABLED);
843 }
844
845 /* sync mm's RSS info before statistics gathering */
846 if (tsk->mm)
847 sync_mm_rss(tsk->mm);
848 acct_update_integrals(tsk);
849 group_dead = atomic_dec_and_test(&tsk->signal->live);
850 if (group_dead) {
851 #ifdef CONFIG_POSIX_TIMERS
852 hrtimer_cancel(&tsk->signal->real_timer);
853 exit_itimers(tsk->signal);
854 #endif
855 if (tsk->mm)
856 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
857 }
858 acct_collect(code, group_dead);
859 if (group_dead)
860 tty_audit_exit();
861 audit_free(tsk);
862
863 tsk->exit_code = code;
864 taskstats_exit(tsk, group_dead);
865
866 exit_mm();
867
868 if (group_dead)
869 acct_process();
870 trace_sched_process_exit(tsk);
871
872 exit_sem(tsk);
873 exit_shm(tsk);
874 exit_files(tsk);
875 exit_fs(tsk);
876 if (group_dead)
877 disassociate_ctty(1);
878 exit_task_namespaces(tsk);
879 exit_task_work(tsk);
880 exit_thread(tsk);
881
882 /*
883 * Flush inherited counters to the parent - before the parent
884 * gets woken up by child-exit notifications.
885 *
886 * because of cgroup mode, must be called before cgroup_exit()
887 */
888 perf_event_exit_task(tsk);
889
890 sched_autogroup_exit_task(tsk);
891 cgroup_exit(tsk);
892
893 /*
894 * FIXME: do that only when needed, using sched_exit tracepoint
895 */
896 flush_ptrace_hw_breakpoint(tsk);
897
898 exit_tasks_rcu_start();
899 exit_notify(tsk, group_dead);
900 proc_exit_connector(tsk);
901 mpol_put_task_policy(tsk);
902 #ifdef CONFIG_FUTEX
903 if (unlikely(current->pi_state_cache))
904 kfree(current->pi_state_cache);
905 #endif
906 /*
907 * Make sure we are holding no locks:
908 */
909 debug_check_no_locks_held();
910 /*
911 * We can do this unlocked here. The futex code uses this flag
912 * just to verify whether the pi state cleanup has been done
913 * or not. In the worst case it loops once more.
914 */
915 tsk->flags |= PF_EXITPIDONE;
916
917 if (tsk->io_context)
918 exit_io_context(tsk);
919
920 if (tsk->splice_pipe)
921 free_pipe_info(tsk->splice_pipe);
922
923 if (tsk->task_frag.page)
924 put_page(tsk->task_frag.page);
925
926 validate_creds_for_do_exit(tsk);
927
928 check_stack_usage();
929 preempt_disable();
930 if (tsk->nr_dirtied)
931 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
932 exit_rcu();
933 exit_tasks_rcu_finish();
934
935 lockdep_free_task(tsk);
936 do_task_dead();
937 }
938 EXPORT_SYMBOL_GPL(do_exit);
939
940 void complete_and_exit(struct completion *comp, long code)
941 {
942 if (comp)
943 complete(comp);
944
945 do_exit(code);
946 }
947 EXPORT_SYMBOL(complete_and_exit);
948
949 SYSCALL_DEFINE1(exit, int, error_code)
950 {
951 do_exit((error_code&0xff)<<8);
952 }
953
954 /*
955 * Take down every thread in the group. This is called by fatal signals
956 * as well as by sys_exit_group (below).
957 */
958 void
959 do_group_exit(int exit_code)
960 {
961 struct signal_struct *sig = current->signal;
962
963 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
964
965 if (signal_group_exit(sig))
966 exit_code = sig->group_exit_code;
967 else if (!thread_group_empty(current)) {
968 struct sighand_struct *const sighand = current->sighand;
969
970 spin_lock_irq(&sighand->siglock);
971 if (signal_group_exit(sig))
972 /* Another thread got here before we took the lock. */
973 exit_code = sig->group_exit_code;
974 else {
975 sig->group_exit_code = exit_code;
976 sig->flags = SIGNAL_GROUP_EXIT;
977 zap_other_threads(current);
978 }
979 spin_unlock_irq(&sighand->siglock);
980 }
981
982 do_exit(exit_code);
983 /* NOTREACHED */
984 }
985
986 /*
987 * this kills every thread in the thread group. Note that any externally
988 * wait4()-ing process will get the correct exit code - even if this
989 * thread is not the thread group leader.
990 */
991 SYSCALL_DEFINE1(exit_group, int, error_code)
992 {
993 do_group_exit((error_code & 0xff) << 8);
994 /* NOTREACHED */
995 return 0;
996 }
997
998 struct waitid_info {
999 pid_t pid;
1000 uid_t uid;
1001 int status;
1002 int cause;
1003 };
1004
1005 struct wait_opts {
1006 enum pid_type wo_type;
1007 int wo_flags;
1008 struct pid *wo_pid;
1009
1010 struct waitid_info *wo_info;
1011 int wo_stat;
1012 struct rusage *wo_rusage;
1013
1014 wait_queue_entry_t child_wait;
1015 int notask_error;
1016 };
1017
1018 static inline
1019 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1020 {
1021 if (type != PIDTYPE_PID)
1022 task = task->group_leader;
1023 return task->pids[type].pid;
1024 }
1025
1026 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1027 {
1028 return wo->wo_type == PIDTYPE_MAX ||
1029 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1030 }
1031
1032 static int
1033 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1034 {
1035 if (!eligible_pid(wo, p))
1036 return 0;
1037
1038 /*
1039 * Wait for all children (clone and not) if __WALL is set or
1040 * if it is traced by us.
1041 */
1042 if (ptrace || (wo->wo_flags & __WALL))
1043 return 1;
1044
1045 /*
1046 * Otherwise, wait for clone children *only* if __WCLONE is set;
1047 * otherwise, wait for non-clone children *only*.
1048 *
1049 * Note: a "clone" child here is one that reports to its parent
1050 * using a signal other than SIGCHLD, or a non-leader thread which
1051 * we can only see if it is traced by us.
1052 */
1053 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1054 return 0;
1055
1056 return 1;
1057 }
1058
1059 /*
1060 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1061 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1062 * the lock and this task is uninteresting. If we return nonzero, we have
1063 * released the lock and the system call should return.
1064 */
1065 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1066 {
1067 int state, status;
1068 pid_t pid = task_pid_vnr(p);
1069 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1070 struct waitid_info *infop;
1071
1072 if (!likely(wo->wo_flags & WEXITED))
1073 return 0;
1074
1075 if (unlikely(wo->wo_flags & WNOWAIT)) {
1076 status = p->exit_code;
1077 get_task_struct(p);
1078 read_unlock(&tasklist_lock);
1079 sched_annotate_sleep();
1080 if (wo->wo_rusage)
1081 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1082 put_task_struct(p);
1083 goto out_info;
1084 }
1085 /*
1086 * Move the task's state to DEAD/TRACE, only one thread can do this.
1087 */
1088 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1089 EXIT_TRACE : EXIT_DEAD;
1090 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1091 return 0;
1092 /*
1093 * We own this thread, nobody else can reap it.
1094 */
1095 read_unlock(&tasklist_lock);
1096 sched_annotate_sleep();
1097
1098 /*
1099 * Check thread_group_leader() to exclude the traced sub-threads.
1100 */
1101 if (state == EXIT_DEAD && thread_group_leader(p)) {
1102 struct signal_struct *sig = p->signal;
1103 struct signal_struct *psig = current->signal;
1104 unsigned long maxrss;
1105 u64 tgutime, tgstime;
1106
1107 /*
1108 * The resource counters for the group leader are in its
1109 * own task_struct. Those for dead threads in the group
1110 * are in its signal_struct, as are those for the child
1111 * processes it has previously reaped. All these
1112 * accumulate in the parent's signal_struct c* fields.
1113 *
1114 * We don't bother to take a lock here to protect these
1115 * p->signal fields because the whole thread group is dead
1116 * and nobody can change them.
1117 *
1118 * psig->stats_lock also protects us from our sub-theads
1119 * which can reap other children at the same time. Until
1120 * we change k_getrusage()-like users to rely on this lock
1121 * we have to take ->siglock as well.
1122 *
1123 * We use thread_group_cputime_adjusted() to get times for
1124 * the thread group, which consolidates times for all threads
1125 * in the group including the group leader.
1126 */
1127 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1128 spin_lock_irq(&current->sighand->siglock);
1129 write_seqlock(&psig->stats_lock);
1130 psig->cutime += tgutime + sig->cutime;
1131 psig->cstime += tgstime + sig->cstime;
1132 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1133 psig->cmin_flt +=
1134 p->min_flt + sig->min_flt + sig->cmin_flt;
1135 psig->cmaj_flt +=
1136 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1137 psig->cnvcsw +=
1138 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1139 psig->cnivcsw +=
1140 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1141 psig->cinblock +=
1142 task_io_get_inblock(p) +
1143 sig->inblock + sig->cinblock;
1144 psig->coublock +=
1145 task_io_get_oublock(p) +
1146 sig->oublock + sig->coublock;
1147 maxrss = max(sig->maxrss, sig->cmaxrss);
1148 if (psig->cmaxrss < maxrss)
1149 psig->cmaxrss = maxrss;
1150 task_io_accounting_add(&psig->ioac, &p->ioac);
1151 task_io_accounting_add(&psig->ioac, &sig->ioac);
1152 write_sequnlock(&psig->stats_lock);
1153 spin_unlock_irq(&current->sighand->siglock);
1154 }
1155
1156 if (wo->wo_rusage)
1157 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1158 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1159 ? p->signal->group_exit_code : p->exit_code;
1160 wo->wo_stat = status;
1161
1162 if (state == EXIT_TRACE) {
1163 write_lock_irq(&tasklist_lock);
1164 /* We dropped tasklist, ptracer could die and untrace */
1165 ptrace_unlink(p);
1166
1167 /* If parent wants a zombie, don't release it now */
1168 state = EXIT_ZOMBIE;
1169 if (do_notify_parent(p, p->exit_signal))
1170 state = EXIT_DEAD;
1171 p->exit_state = state;
1172 write_unlock_irq(&tasklist_lock);
1173 }
1174 if (state == EXIT_DEAD)
1175 release_task(p);
1176
1177 out_info:
1178 infop = wo->wo_info;
1179 if (infop) {
1180 if ((status & 0x7f) == 0) {
1181 infop->cause = CLD_EXITED;
1182 infop->status = status >> 8;
1183 } else {
1184 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1185 infop->status = status & 0x7f;
1186 }
1187 infop->pid = pid;
1188 infop->uid = uid;
1189 }
1190
1191 return pid;
1192 }
1193
1194 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1195 {
1196 if (ptrace) {
1197 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1198 return &p->exit_code;
1199 } else {
1200 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1201 return &p->signal->group_exit_code;
1202 }
1203 return NULL;
1204 }
1205
1206 /**
1207 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1208 * @wo: wait options
1209 * @ptrace: is the wait for ptrace
1210 * @p: task to wait for
1211 *
1212 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1213 *
1214 * CONTEXT:
1215 * read_lock(&tasklist_lock), which is released if return value is
1216 * non-zero. Also, grabs and releases @p->sighand->siglock.
1217 *
1218 * RETURNS:
1219 * 0 if wait condition didn't exist and search for other wait conditions
1220 * should continue. Non-zero return, -errno on failure and @p's pid on
1221 * success, implies that tasklist_lock is released and wait condition
1222 * search should terminate.
1223 */
1224 static int wait_task_stopped(struct wait_opts *wo,
1225 int ptrace, struct task_struct *p)
1226 {
1227 struct waitid_info *infop;
1228 int exit_code, *p_code, why;
1229 uid_t uid = 0; /* unneeded, required by compiler */
1230 pid_t pid;
1231
1232 /*
1233 * Traditionally we see ptrace'd stopped tasks regardless of options.
1234 */
1235 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1236 return 0;
1237
1238 if (!task_stopped_code(p, ptrace))
1239 return 0;
1240
1241 exit_code = 0;
1242 spin_lock_irq(&p->sighand->siglock);
1243
1244 p_code = task_stopped_code(p, ptrace);
1245 if (unlikely(!p_code))
1246 goto unlock_sig;
1247
1248 exit_code = *p_code;
1249 if (!exit_code)
1250 goto unlock_sig;
1251
1252 if (!unlikely(wo->wo_flags & WNOWAIT))
1253 *p_code = 0;
1254
1255 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1256 unlock_sig:
1257 spin_unlock_irq(&p->sighand->siglock);
1258 if (!exit_code)
1259 return 0;
1260
1261 /*
1262 * Now we are pretty sure this task is interesting.
1263 * Make sure it doesn't get reaped out from under us while we
1264 * give up the lock and then examine it below. We don't want to
1265 * keep holding onto the tasklist_lock while we call getrusage and
1266 * possibly take page faults for user memory.
1267 */
1268 get_task_struct(p);
1269 pid = task_pid_vnr(p);
1270 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1271 read_unlock(&tasklist_lock);
1272 sched_annotate_sleep();
1273 if (wo->wo_rusage)
1274 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1275 put_task_struct(p);
1276
1277 if (likely(!(wo->wo_flags & WNOWAIT)))
1278 wo->wo_stat = (exit_code << 8) | 0x7f;
1279
1280 infop = wo->wo_info;
1281 if (infop) {
1282 infop->cause = why;
1283 infop->status = exit_code;
1284 infop->pid = pid;
1285 infop->uid = uid;
1286 }
1287 return pid;
1288 }
1289
1290 /*
1291 * Handle do_wait work for one task in a live, non-stopped state.
1292 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1293 * the lock and this task is uninteresting. If we return nonzero, we have
1294 * released the lock and the system call should return.
1295 */
1296 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1297 {
1298 struct waitid_info *infop;
1299 pid_t pid;
1300 uid_t uid;
1301
1302 if (!unlikely(wo->wo_flags & WCONTINUED))
1303 return 0;
1304
1305 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1306 return 0;
1307
1308 spin_lock_irq(&p->sighand->siglock);
1309 /* Re-check with the lock held. */
1310 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1311 spin_unlock_irq(&p->sighand->siglock);
1312 return 0;
1313 }
1314 if (!unlikely(wo->wo_flags & WNOWAIT))
1315 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1316 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1317 spin_unlock_irq(&p->sighand->siglock);
1318
1319 pid = task_pid_vnr(p);
1320 get_task_struct(p);
1321 read_unlock(&tasklist_lock);
1322 sched_annotate_sleep();
1323 if (wo->wo_rusage)
1324 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1325 put_task_struct(p);
1326
1327 infop = wo->wo_info;
1328 if (!infop) {
1329 wo->wo_stat = 0xffff;
1330 } else {
1331 infop->cause = CLD_CONTINUED;
1332 infop->pid = pid;
1333 infop->uid = uid;
1334 infop->status = SIGCONT;
1335 }
1336 return pid;
1337 }
1338
1339 /*
1340 * Consider @p for a wait by @parent.
1341 *
1342 * -ECHILD should be in ->notask_error before the first call.
1343 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1344 * Returns zero if the search for a child should continue;
1345 * then ->notask_error is 0 if @p is an eligible child,
1346 * or still -ECHILD.
1347 */
1348 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1349 struct task_struct *p)
1350 {
1351 /*
1352 * We can race with wait_task_zombie() from another thread.
1353 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1354 * can't confuse the checks below.
1355 */
1356 int exit_state = ACCESS_ONCE(p->exit_state);
1357 int ret;
1358
1359 if (unlikely(exit_state == EXIT_DEAD))
1360 return 0;
1361
1362 ret = eligible_child(wo, ptrace, p);
1363 if (!ret)
1364 return ret;
1365
1366 if (unlikely(exit_state == EXIT_TRACE)) {
1367 /*
1368 * ptrace == 0 means we are the natural parent. In this case
1369 * we should clear notask_error, debugger will notify us.
1370 */
1371 if (likely(!ptrace))
1372 wo->notask_error = 0;
1373 return 0;
1374 }
1375
1376 if (likely(!ptrace) && unlikely(p->ptrace)) {
1377 /*
1378 * If it is traced by its real parent's group, just pretend
1379 * the caller is ptrace_do_wait() and reap this child if it
1380 * is zombie.
1381 *
1382 * This also hides group stop state from real parent; otherwise
1383 * a single stop can be reported twice as group and ptrace stop.
1384 * If a ptracer wants to distinguish these two events for its
1385 * own children it should create a separate process which takes
1386 * the role of real parent.
1387 */
1388 if (!ptrace_reparented(p))
1389 ptrace = 1;
1390 }
1391
1392 /* slay zombie? */
1393 if (exit_state == EXIT_ZOMBIE) {
1394 /* we don't reap group leaders with subthreads */
1395 if (!delay_group_leader(p)) {
1396 /*
1397 * A zombie ptracee is only visible to its ptracer.
1398 * Notification and reaping will be cascaded to the
1399 * real parent when the ptracer detaches.
1400 */
1401 if (unlikely(ptrace) || likely(!p->ptrace))
1402 return wait_task_zombie(wo, p);
1403 }
1404
1405 /*
1406 * Allow access to stopped/continued state via zombie by
1407 * falling through. Clearing of notask_error is complex.
1408 *
1409 * When !@ptrace:
1410 *
1411 * If WEXITED is set, notask_error should naturally be
1412 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1413 * so, if there are live subthreads, there are events to
1414 * wait for. If all subthreads are dead, it's still safe
1415 * to clear - this function will be called again in finite
1416 * amount time once all the subthreads are released and
1417 * will then return without clearing.
1418 *
1419 * When @ptrace:
1420 *
1421 * Stopped state is per-task and thus can't change once the
1422 * target task dies. Only continued and exited can happen.
1423 * Clear notask_error if WCONTINUED | WEXITED.
1424 */
1425 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1426 wo->notask_error = 0;
1427 } else {
1428 /*
1429 * @p is alive and it's gonna stop, continue or exit, so
1430 * there always is something to wait for.
1431 */
1432 wo->notask_error = 0;
1433 }
1434
1435 /*
1436 * Wait for stopped. Depending on @ptrace, different stopped state
1437 * is used and the two don't interact with each other.
1438 */
1439 ret = wait_task_stopped(wo, ptrace, p);
1440 if (ret)
1441 return ret;
1442
1443 /*
1444 * Wait for continued. There's only one continued state and the
1445 * ptracer can consume it which can confuse the real parent. Don't
1446 * use WCONTINUED from ptracer. You don't need or want it.
1447 */
1448 return wait_task_continued(wo, p);
1449 }
1450
1451 /*
1452 * Do the work of do_wait() for one thread in the group, @tsk.
1453 *
1454 * -ECHILD should be in ->notask_error before the first call.
1455 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1456 * Returns zero if the search for a child should continue; then
1457 * ->notask_error is 0 if there were any eligible children,
1458 * or still -ECHILD.
1459 */
1460 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1461 {
1462 struct task_struct *p;
1463
1464 list_for_each_entry(p, &tsk->children, sibling) {
1465 int ret = wait_consider_task(wo, 0, p);
1466
1467 if (ret)
1468 return ret;
1469 }
1470
1471 return 0;
1472 }
1473
1474 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1475 {
1476 struct task_struct *p;
1477
1478 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1479 int ret = wait_consider_task(wo, 1, p);
1480
1481 if (ret)
1482 return ret;
1483 }
1484
1485 return 0;
1486 }
1487
1488 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1489 int sync, void *key)
1490 {
1491 struct wait_opts *wo = container_of(wait, struct wait_opts,
1492 child_wait);
1493 struct task_struct *p = key;
1494
1495 if (!eligible_pid(wo, p))
1496 return 0;
1497
1498 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1499 return 0;
1500
1501 return default_wake_function(wait, mode, sync, key);
1502 }
1503
1504 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1505 {
1506 __wake_up_sync_key(&parent->signal->wait_chldexit,
1507 TASK_INTERRUPTIBLE, 1, p);
1508 }
1509
1510 static long do_wait(struct wait_opts *wo)
1511 {
1512 struct task_struct *tsk;
1513 int retval;
1514
1515 trace_sched_process_wait(wo->wo_pid);
1516
1517 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1518 wo->child_wait.private = current;
1519 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1520 repeat:
1521 /*
1522 * If there is nothing that can match our criteria, just get out.
1523 * We will clear ->notask_error to zero if we see any child that
1524 * might later match our criteria, even if we are not able to reap
1525 * it yet.
1526 */
1527 wo->notask_error = -ECHILD;
1528 if ((wo->wo_type < PIDTYPE_MAX) &&
1529 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1530 goto notask;
1531
1532 set_current_state(TASK_INTERRUPTIBLE);
1533 read_lock(&tasklist_lock);
1534 tsk = current;
1535 do {
1536 retval = do_wait_thread(wo, tsk);
1537 if (retval)
1538 goto end;
1539
1540 retval = ptrace_do_wait(wo, tsk);
1541 if (retval)
1542 goto end;
1543
1544 if (wo->wo_flags & __WNOTHREAD)
1545 break;
1546 } while_each_thread(current, tsk);
1547 read_unlock(&tasklist_lock);
1548
1549 notask:
1550 retval = wo->notask_error;
1551 if (!retval && !(wo->wo_flags & WNOHANG)) {
1552 retval = -ERESTARTSYS;
1553 if (!signal_pending(current)) {
1554 schedule();
1555 goto repeat;
1556 }
1557 }
1558 end:
1559 __set_current_state(TASK_RUNNING);
1560 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1561 return retval;
1562 }
1563
1564 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1565 int options, struct rusage *ru)
1566 {
1567 struct wait_opts wo;
1568 struct pid *pid = NULL;
1569 enum pid_type type;
1570 long ret;
1571
1572 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1573 __WNOTHREAD|__WCLONE|__WALL))
1574 return -EINVAL;
1575 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1576 return -EINVAL;
1577
1578 switch (which) {
1579 case P_ALL:
1580 type = PIDTYPE_MAX;
1581 break;
1582 case P_PID:
1583 type = PIDTYPE_PID;
1584 if (upid <= 0)
1585 return -EINVAL;
1586 break;
1587 case P_PGID:
1588 type = PIDTYPE_PGID;
1589 if (upid <= 0)
1590 return -EINVAL;
1591 break;
1592 default:
1593 return -EINVAL;
1594 }
1595
1596 if (type < PIDTYPE_MAX)
1597 pid = find_get_pid(upid);
1598
1599 wo.wo_type = type;
1600 wo.wo_pid = pid;
1601 wo.wo_flags = options;
1602 wo.wo_info = infop;
1603 wo.wo_rusage = ru;
1604 ret = do_wait(&wo);
1605
1606 put_pid(pid);
1607 return ret;
1608 }
1609
1610 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1611 infop, int, options, struct rusage __user *, ru)
1612 {
1613 struct rusage r;
1614 struct waitid_info info = {.status = 0};
1615 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1616 int signo = 0;
1617
1618 if (err > 0) {
1619 signo = SIGCHLD;
1620 err = 0;
1621 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1622 return -EFAULT;
1623 }
1624 if (!infop)
1625 return err;
1626
1627 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1628 return -EFAULT;
1629
1630 user_access_begin();
1631 unsafe_put_user(signo, &infop->si_signo, Efault);
1632 unsafe_put_user(0, &infop->si_errno, Efault);
1633 unsafe_put_user(info.cause, &infop->si_code, Efault);
1634 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1635 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1636 unsafe_put_user(info.status, &infop->si_status, Efault);
1637 user_access_end();
1638 return err;
1639 Efault:
1640 user_access_end();
1641 return -EFAULT;
1642 }
1643
1644 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1645 struct rusage *ru)
1646 {
1647 struct wait_opts wo;
1648 struct pid *pid = NULL;
1649 enum pid_type type;
1650 long ret;
1651
1652 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1653 __WNOTHREAD|__WCLONE|__WALL))
1654 return -EINVAL;
1655
1656 /* -INT_MIN is not defined */
1657 if (upid == INT_MIN)
1658 return -ESRCH;
1659
1660 if (upid == -1)
1661 type = PIDTYPE_MAX;
1662 else if (upid < 0) {
1663 type = PIDTYPE_PGID;
1664 pid = find_get_pid(-upid);
1665 } else if (upid == 0) {
1666 type = PIDTYPE_PGID;
1667 pid = get_task_pid(current, PIDTYPE_PGID);
1668 } else /* upid > 0 */ {
1669 type = PIDTYPE_PID;
1670 pid = find_get_pid(upid);
1671 }
1672
1673 wo.wo_type = type;
1674 wo.wo_pid = pid;
1675 wo.wo_flags = options | WEXITED;
1676 wo.wo_info = NULL;
1677 wo.wo_stat = 0;
1678 wo.wo_rusage = ru;
1679 ret = do_wait(&wo);
1680 put_pid(pid);
1681 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1682 ret = -EFAULT;
1683
1684 return ret;
1685 }
1686
1687 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1688 int, options, struct rusage __user *, ru)
1689 {
1690 struct rusage r;
1691 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1692
1693 if (err > 0) {
1694 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1695 return -EFAULT;
1696 }
1697 return err;
1698 }
1699
1700 #ifdef __ARCH_WANT_SYS_WAITPID
1701
1702 /*
1703 * sys_waitpid() remains for compatibility. waitpid() should be
1704 * implemented by calling sys_wait4() from libc.a.
1705 */
1706 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1707 {
1708 return sys_wait4(pid, stat_addr, options, NULL);
1709 }
1710
1711 #endif
1712
1713 #ifdef CONFIG_COMPAT
1714 COMPAT_SYSCALL_DEFINE4(wait4,
1715 compat_pid_t, pid,
1716 compat_uint_t __user *, stat_addr,
1717 int, options,
1718 struct compat_rusage __user *, ru)
1719 {
1720 struct rusage r;
1721 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1722 if (err > 0) {
1723 if (ru && put_compat_rusage(&r, ru))
1724 return -EFAULT;
1725 }
1726 return err;
1727 }
1728
1729 COMPAT_SYSCALL_DEFINE5(waitid,
1730 int, which, compat_pid_t, pid,
1731 struct compat_siginfo __user *, infop, int, options,
1732 struct compat_rusage __user *, uru)
1733 {
1734 struct rusage ru;
1735 struct waitid_info info = {.status = 0};
1736 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1737 int signo = 0;
1738 if (err > 0) {
1739 signo = SIGCHLD;
1740 err = 0;
1741 if (uru) {
1742 /* kernel_waitid() overwrites everything in ru */
1743 if (COMPAT_USE_64BIT_TIME)
1744 err = copy_to_user(uru, &ru, sizeof(ru));
1745 else
1746 err = put_compat_rusage(&ru, uru);
1747 if (err)
1748 return -EFAULT;
1749 }
1750 }
1751
1752 if (!infop)
1753 return err;
1754
1755 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1756 return -EFAULT;
1757
1758 user_access_begin();
1759 unsafe_put_user(signo, &infop->si_signo, Efault);
1760 unsafe_put_user(0, &infop->si_errno, Efault);
1761 unsafe_put_user(info.cause, &infop->si_code, Efault);
1762 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1763 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1764 unsafe_put_user(info.status, &infop->si_status, Efault);
1765 user_access_end();
1766 return err;
1767 Efault:
1768 user_access_end();
1769 return -EFAULT;
1770 }
1771 #endif
1772
1773 __weak void abort(void)
1774 {
1775 BUG();
1776
1777 /* if that doesn't kill us, halt */
1778 panic("Oops failed to kill thread");
1779 }
1780 EXPORT_SYMBOL(abort);