Merge 4.14.80 into android-4.14-p
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30
31 /* task_struct member predeclarations (sorted alphabetically): */
32 struct audit_context;
33 struct backing_dev_info;
34 struct bio_list;
35 struct blk_plug;
36 struct cfs_rq;
37 struct fs_struct;
38 struct futex_pi_state;
39 struct io_context;
40 struct mempolicy;
41 struct nameidata;
42 struct nsproxy;
43 struct perf_event_context;
44 struct pid_namespace;
45 struct pipe_inode_info;
46 struct rcu_node;
47 struct reclaim_state;
48 struct robust_list_head;
49 struct sched_attr;
50 struct sched_param;
51 struct seq_file;
52 struct sighand_struct;
53 struct signal_struct;
54 struct task_delay_info;
55 struct task_group;
56
57 /*
58 * Task state bitmask. NOTE! These bits are also
59 * encoded in fs/proc/array.c: get_task_state().
60 *
61 * We have two separate sets of flags: task->state
62 * is about runnability, while task->exit_state are
63 * about the task exiting. Confusing, but this way
64 * modifying one set can't modify the other one by
65 * mistake.
66 */
67
68 /* Used in tsk->state: */
69 #define TASK_RUNNING 0x0000
70 #define TASK_INTERRUPTIBLE 0x0001
71 #define TASK_UNINTERRUPTIBLE 0x0002
72 #define __TASK_STOPPED 0x0004
73 #define __TASK_TRACED 0x0008
74 /* Used in tsk->exit_state: */
75 #define EXIT_DEAD 0x0010
76 #define EXIT_ZOMBIE 0x0020
77 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
78 /* Used in tsk->state again: */
79 #define TASK_PARKED 0x0040
80 #define TASK_DEAD 0x0080
81 #define TASK_WAKEKILL 0x0100
82 #define TASK_WAKING 0x0200
83 #define TASK_NOLOAD 0x0400
84 #define TASK_NEW 0x0800
85 #define TASK_STATE_MAX 0x1000
86
87 /* Convenience macros for the sake of set_current_state: */
88 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
90 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
91
92 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93
94 /* Convenience macros for the sake of wake_up(): */
95 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
97
98 /* get_task_state(): */
99 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 /*
117 * Special states are those that do not use the normal wait-loop pattern. See
118 * the comment with set_special_state().
119 */
120 #define is_special_task_state(state) \
121 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_DEAD))
122
123 #define __set_current_state(state_value) \
124 do { \
125 WARN_ON_ONCE(is_special_task_state(state_value));\
126 current->task_state_change = _THIS_IP_; \
127 current->state = (state_value); \
128 } while (0)
129
130 #define set_current_state(state_value) \
131 do { \
132 WARN_ON_ONCE(is_special_task_state(state_value));\
133 current->task_state_change = _THIS_IP_; \
134 smp_store_mb(current->state, (state_value)); \
135 } while (0)
136
137 #define set_special_state(state_value) \
138 do { \
139 unsigned long flags; /* may shadow */ \
140 WARN_ON_ONCE(!is_special_task_state(state_value)); \
141 raw_spin_lock_irqsave(&current->pi_lock, flags); \
142 current->task_state_change = _THIS_IP_; \
143 current->state = (state_value); \
144 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
145 } while (0)
146 #else
147 /*
148 * set_current_state() includes a barrier so that the write of current->state
149 * is correctly serialised wrt the caller's subsequent test of whether to
150 * actually sleep:
151 *
152 * for (;;) {
153 * set_current_state(TASK_UNINTERRUPTIBLE);
154 * if (!need_sleep)
155 * break;
156 *
157 * schedule();
158 * }
159 * __set_current_state(TASK_RUNNING);
160 *
161 * If the caller does not need such serialisation (because, for instance, the
162 * condition test and condition change and wakeup are under the same lock) then
163 * use __set_current_state().
164 *
165 * The above is typically ordered against the wakeup, which does:
166 *
167 * need_sleep = false;
168 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
169 *
170 * Where wake_up_state() (and all other wakeup primitives) imply enough
171 * barriers to order the store of the variable against wakeup.
172 *
173 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
174 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
175 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
176 *
177 * However, with slightly different timing the wakeup TASK_RUNNING store can
178 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
179 * a problem either because that will result in one extra go around the loop
180 * and our @cond test will save the day.
181 *
182 * Also see the comments of try_to_wake_up().
183 */
184 #define __set_current_state(state_value) \
185 current->state = (state_value)
186
187 #define set_current_state(state_value) \
188 smp_store_mb(current->state, (state_value))
189
190 /*
191 * set_special_state() should be used for those states when the blocking task
192 * can not use the regular condition based wait-loop. In that case we must
193 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
194 * will not collide with our state change.
195 */
196 #define set_special_state(state_value) \
197 do { \
198 unsigned long flags; /* may shadow */ \
199 raw_spin_lock_irqsave(&current->pi_lock, flags); \
200 current->state = (state_value); \
201 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
202 } while (0)
203
204 #endif
205
206 /* Task command name length: */
207 #define TASK_COMM_LEN 16
208
209 enum task_event {
210 PUT_PREV_TASK = 0,
211 PICK_NEXT_TASK = 1,
212 TASK_WAKE = 2,
213 TASK_MIGRATE = 3,
214 TASK_UPDATE = 4,
215 IRQ_UPDATE = 5,
216 };
217
218 extern cpumask_var_t cpu_isolated_map;
219
220 extern void scheduler_tick(void);
221
222 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
223
224 extern long schedule_timeout(long timeout);
225 extern long schedule_timeout_interruptible(long timeout);
226 extern long schedule_timeout_killable(long timeout);
227 extern long schedule_timeout_uninterruptible(long timeout);
228 extern long schedule_timeout_idle(long timeout);
229 asmlinkage void schedule(void);
230 extern void schedule_preempt_disabled(void);
231
232 extern int __must_check io_schedule_prepare(void);
233 extern void io_schedule_finish(int token);
234 extern long io_schedule_timeout(long timeout);
235 extern void io_schedule(void);
236
237 /**
238 * struct prev_cputime - snapshot of system and user cputime
239 * @utime: time spent in user mode
240 * @stime: time spent in system mode
241 * @lock: protects the above two fields
242 *
243 * Stores previous user/system time values such that we can guarantee
244 * monotonicity.
245 */
246 struct prev_cputime {
247 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
248 u64 utime;
249 u64 stime;
250 raw_spinlock_t lock;
251 #endif
252 };
253
254 /**
255 * struct task_cputime - collected CPU time counts
256 * @utime: time spent in user mode, in nanoseconds
257 * @stime: time spent in kernel mode, in nanoseconds
258 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
259 *
260 * This structure groups together three kinds of CPU time that are tracked for
261 * threads and thread groups. Most things considering CPU time want to group
262 * these counts together and treat all three of them in parallel.
263 */
264 struct task_cputime {
265 u64 utime;
266 u64 stime;
267 unsigned long long sum_exec_runtime;
268 };
269
270 /* Alternate field names when used on cache expirations: */
271 #define virt_exp utime
272 #define prof_exp stime
273 #define sched_exp sum_exec_runtime
274
275 enum vtime_state {
276 /* Task is sleeping or running in a CPU with VTIME inactive: */
277 VTIME_INACTIVE = 0,
278 /* Task runs in userspace in a CPU with VTIME active: */
279 VTIME_USER,
280 /* Task runs in kernelspace in a CPU with VTIME active: */
281 VTIME_SYS,
282 };
283
284 struct vtime {
285 seqcount_t seqcount;
286 unsigned long long starttime;
287 enum vtime_state state;
288 u64 utime;
289 u64 stime;
290 u64 gtime;
291 };
292
293 struct sched_info {
294 #ifdef CONFIG_SCHED_INFO
295 /* Cumulative counters: */
296
297 /* # of times we have run on this CPU: */
298 unsigned long pcount;
299
300 /* Time spent waiting on a runqueue: */
301 unsigned long long run_delay;
302
303 /* Timestamps: */
304
305 /* When did we last run on a CPU? */
306 unsigned long long last_arrival;
307
308 /* When were we last queued to run? */
309 unsigned long long last_queued;
310
311 #endif /* CONFIG_SCHED_INFO */
312 };
313
314 /*
315 * Integer metrics need fixed point arithmetic, e.g., sched/fair
316 * has a few: load, load_avg, util_avg, freq, and capacity.
317 *
318 * We define a basic fixed point arithmetic range, and then formalize
319 * all these metrics based on that basic range.
320 */
321 # define SCHED_FIXEDPOINT_SHIFT 10
322 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
323
324 struct load_weight {
325 unsigned long weight;
326 u32 inv_weight;
327 };
328
329 /**
330 * struct util_est - Estimation utilization of FAIR tasks
331 * @enqueued: instantaneous estimated utilization of a task/cpu
332 * @ewma: the Exponential Weighted Moving Average (EWMA)
333 * utilization of a task
334 *
335 * Support data structure to track an Exponential Weighted Moving Average
336 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
337 * average each time a task completes an activation. Sample's weight is chosen
338 * so that the EWMA will be relatively insensitive to transient changes to the
339 * task's workload.
340 *
341 * The enqueued attribute has a slightly different meaning for tasks and cpus:
342 * - task: the task's util_avg at last task dequeue time
343 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
344 * Thus, the util_est.enqueued of a task represents the contribution on the
345 * estimated utilization of the CPU where that task is currently enqueued.
346 *
347 * Only for tasks we track a moving average of the past instantaneous
348 * estimated utilization. This allows to absorb sporadic drops in utilization
349 * of an otherwise almost periodic task.
350 */
351 struct util_est {
352 unsigned int enqueued;
353 unsigned int ewma;
354 #define UTIL_EST_WEIGHT_SHIFT 2
355 };
356
357 /*
358 * The load_avg/util_avg accumulates an infinite geometric series
359 * (see __update_load_avg() in kernel/sched/fair.c).
360 *
361 * [load_avg definition]
362 *
363 * load_avg = runnable% * scale_load_down(load)
364 *
365 * where runnable% is the time ratio that a sched_entity is runnable.
366 * For cfs_rq, it is the aggregated load_avg of all runnable and
367 * blocked sched_entities.
368 *
369 * load_avg may also take frequency scaling into account:
370 *
371 * load_avg = runnable% * scale_load_down(load) * freq%
372 *
373 * where freq% is the CPU frequency normalized to the highest frequency.
374 *
375 * [util_avg definition]
376 *
377 * util_avg = running% * SCHED_CAPACITY_SCALE
378 *
379 * where running% is the time ratio that a sched_entity is running on
380 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
381 * and blocked sched_entities.
382 *
383 * util_avg may also factor frequency scaling and CPU capacity scaling:
384 *
385 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
386 *
387 * where freq% is the same as above, and capacity% is the CPU capacity
388 * normalized to the greatest capacity (due to uarch differences, etc).
389 *
390 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
391 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
392 * we therefore scale them to as large a range as necessary. This is for
393 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
394 *
395 * [Overflow issue]
396 *
397 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
398 * with the highest load (=88761), always runnable on a single cfs_rq,
399 * and should not overflow as the number already hits PID_MAX_LIMIT.
400 *
401 * For all other cases (including 32-bit kernels), struct load_weight's
402 * weight will overflow first before we do, because:
403 *
404 * Max(load_avg) <= Max(load.weight)
405 *
406 * Then it is the load_weight's responsibility to consider overflow
407 * issues.
408 */
409 struct sched_avg {
410 u64 last_update_time;
411 u64 load_sum;
412 u32 util_sum;
413 u32 period_contrib;
414 unsigned long load_avg;
415 unsigned long util_avg;
416 struct util_est util_est;
417 };
418
419 struct sched_statistics {
420 #ifdef CONFIG_SCHEDSTATS
421 u64 wait_start;
422 u64 wait_max;
423 u64 wait_count;
424 u64 wait_sum;
425 u64 iowait_count;
426 u64 iowait_sum;
427
428 u64 sleep_start;
429 u64 sleep_max;
430 s64 sum_sleep_runtime;
431
432 u64 block_start;
433 u64 block_max;
434 u64 exec_max;
435 u64 slice_max;
436
437 u64 nr_migrations_cold;
438 u64 nr_failed_migrations_affine;
439 u64 nr_failed_migrations_running;
440 u64 nr_failed_migrations_hot;
441 u64 nr_forced_migrations;
442
443 u64 nr_wakeups;
444 u64 nr_wakeups_sync;
445 u64 nr_wakeups_migrate;
446 u64 nr_wakeups_local;
447 u64 nr_wakeups_remote;
448 u64 nr_wakeups_affine;
449 u64 nr_wakeups_affine_attempts;
450 u64 nr_wakeups_passive;
451 u64 nr_wakeups_idle;
452 #endif
453 };
454
455 struct sched_entity {
456 /* For load-balancing: */
457 struct load_weight load;
458 struct rb_node run_node;
459 struct list_head group_node;
460 unsigned int on_rq;
461
462 u64 exec_start;
463 u64 sum_exec_runtime;
464 u64 vruntime;
465 u64 prev_sum_exec_runtime;
466
467 u64 nr_migrations;
468
469 struct sched_statistics statistics;
470
471 #ifdef CONFIG_FAIR_GROUP_SCHED
472 int depth;
473 struct sched_entity *parent;
474 /* rq on which this entity is (to be) queued: */
475 struct cfs_rq *cfs_rq;
476 /* rq "owned" by this entity/group: */
477 struct cfs_rq *my_q;
478 #endif
479
480 #ifdef CONFIG_SMP
481 /*
482 * Per entity load average tracking.
483 *
484 * Put into separate cache line so it does not
485 * collide with read-mostly values above.
486 */
487 struct sched_avg avg ____cacheline_aligned_in_smp;
488 #endif
489 };
490
491 #ifdef CONFIG_SCHED_WALT
492 #define RAVG_HIST_SIZE_MAX 5
493
494 /* ravg represents frequency scaled cpu-demand of tasks */
495 struct ravg {
496 /*
497 * 'mark_start' marks the beginning of an event (task waking up, task
498 * starting to execute, task being preempted) within a window
499 *
500 * 'sum' represents how runnable a task has been within current
501 * window. It incorporates both running time and wait time and is
502 * frequency scaled.
503 *
504 * 'sum_history' keeps track of history of 'sum' seen over previous
505 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
506 * ignored.
507 *
508 * 'demand' represents maximum sum seen over previous
509 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
510 * demand for tasks.
511 *
512 * 'curr_window' represents task's contribution to cpu busy time
513 * statistics (rq->curr_runnable_sum) in current window
514 *
515 * 'prev_window' represents task's contribution to cpu busy time
516 * statistics (rq->prev_runnable_sum) in previous window
517 */
518 u64 mark_start;
519 u32 sum, demand;
520 u32 sum_history[RAVG_HIST_SIZE_MAX];
521 u32 curr_window, prev_window;
522 u16 active_windows;
523 };
524 #endif
525
526 struct sched_rt_entity {
527 struct list_head run_list;
528 unsigned long timeout;
529 unsigned long watchdog_stamp;
530 unsigned int time_slice;
531 unsigned short on_rq;
532 unsigned short on_list;
533
534 struct sched_rt_entity *back;
535 #ifdef CONFIG_RT_GROUP_SCHED
536 struct sched_rt_entity *parent;
537 /* rq on which this entity is (to be) queued: */
538 struct rt_rq *rt_rq;
539 /* rq "owned" by this entity/group: */
540 struct rt_rq *my_q;
541 #endif
542 } __randomize_layout;
543
544 struct sched_dl_entity {
545 struct rb_node rb_node;
546
547 /*
548 * Original scheduling parameters. Copied here from sched_attr
549 * during sched_setattr(), they will remain the same until
550 * the next sched_setattr().
551 */
552 u64 dl_runtime; /* Maximum runtime for each instance */
553 u64 dl_deadline; /* Relative deadline of each instance */
554 u64 dl_period; /* Separation of two instances (period) */
555 u64 dl_bw; /* dl_runtime / dl_period */
556 u64 dl_density; /* dl_runtime / dl_deadline */
557
558 /*
559 * Actual scheduling parameters. Initialized with the values above,
560 * they are continously updated during task execution. Note that
561 * the remaining runtime could be < 0 in case we are in overrun.
562 */
563 s64 runtime; /* Remaining runtime for this instance */
564 u64 deadline; /* Absolute deadline for this instance */
565 unsigned int flags; /* Specifying the scheduler behaviour */
566
567 /*
568 * Some bool flags:
569 *
570 * @dl_throttled tells if we exhausted the runtime. If so, the
571 * task has to wait for a replenishment to be performed at the
572 * next firing of dl_timer.
573 *
574 * @dl_boosted tells if we are boosted due to DI. If so we are
575 * outside bandwidth enforcement mechanism (but only until we
576 * exit the critical section);
577 *
578 * @dl_yielded tells if task gave up the CPU before consuming
579 * all its available runtime during the last job.
580 *
581 * @dl_non_contending tells if the task is inactive while still
582 * contributing to the active utilization. In other words, it
583 * indicates if the inactive timer has been armed and its handler
584 * has not been executed yet. This flag is useful to avoid race
585 * conditions between the inactive timer handler and the wakeup
586 * code.
587 */
588 int dl_throttled;
589 int dl_boosted;
590 int dl_yielded;
591 int dl_non_contending;
592
593 /*
594 * Bandwidth enforcement timer. Each -deadline task has its
595 * own bandwidth to be enforced, thus we need one timer per task.
596 */
597 struct hrtimer dl_timer;
598
599 /*
600 * Inactive timer, responsible for decreasing the active utilization
601 * at the "0-lag time". When a -deadline task blocks, it contributes
602 * to GRUB's active utilization until the "0-lag time", hence a
603 * timer is needed to decrease the active utilization at the correct
604 * time.
605 */
606 struct hrtimer inactive_timer;
607 };
608
609 union rcu_special {
610 struct {
611 u8 blocked;
612 u8 need_qs;
613 u8 exp_need_qs;
614
615 /* Otherwise the compiler can store garbage here: */
616 u8 pad;
617 } b; /* Bits. */
618 u32 s; /* Set of bits. */
619 };
620
621 enum perf_event_task_context {
622 perf_invalid_context = -1,
623 perf_hw_context = 0,
624 perf_sw_context,
625 perf_nr_task_contexts,
626 };
627
628 struct wake_q_node {
629 struct wake_q_node *next;
630 };
631
632 struct task_struct {
633 #ifdef CONFIG_THREAD_INFO_IN_TASK
634 /*
635 * For reasons of header soup (see current_thread_info()), this
636 * must be the first element of task_struct.
637 */
638 struct thread_info thread_info;
639 #endif
640 /* -1 unrunnable, 0 runnable, >0 stopped: */
641 volatile long state;
642
643 /*
644 * This begins the randomizable portion of task_struct. Only
645 * scheduling-critical items should be added above here.
646 */
647 randomized_struct_fields_start
648
649 void *stack;
650 atomic_t usage;
651 /* Per task flags (PF_*), defined further below: */
652 unsigned int flags;
653 unsigned int ptrace;
654
655 #ifdef CONFIG_SMP
656 struct llist_node wake_entry;
657 int on_cpu;
658 #ifdef CONFIG_THREAD_INFO_IN_TASK
659 /* Current CPU: */
660 unsigned int cpu;
661 #endif
662 unsigned int wakee_flips;
663 unsigned long wakee_flip_decay_ts;
664 struct task_struct *last_wakee;
665
666 int wake_cpu;
667 #endif
668 int on_rq;
669
670 int prio;
671 int static_prio;
672 int normal_prio;
673 unsigned int rt_priority;
674
675 const struct sched_class *sched_class;
676 struct sched_entity se;
677 struct sched_rt_entity rt;
678 #ifdef CONFIG_SCHED_WALT
679 struct ravg ravg;
680 /*
681 * 'init_load_pct' represents the initial task load assigned to children
682 * of this task
683 */
684 u32 init_load_pct;
685 u64 last_sleep_ts;
686 #endif
687
688 #ifdef CONFIG_CGROUP_SCHED
689 struct task_group *sched_task_group;
690 #endif
691 struct sched_dl_entity dl;
692
693 #ifdef CONFIG_PREEMPT_NOTIFIERS
694 /* List of struct preempt_notifier: */
695 struct hlist_head preempt_notifiers;
696 #endif
697
698 #ifdef CONFIG_BLK_DEV_IO_TRACE
699 unsigned int btrace_seq;
700 #endif
701
702 unsigned int policy;
703 int nr_cpus_allowed;
704 cpumask_t cpus_allowed;
705
706 #ifdef CONFIG_PREEMPT_RCU
707 int rcu_read_lock_nesting;
708 union rcu_special rcu_read_unlock_special;
709 struct list_head rcu_node_entry;
710 struct rcu_node *rcu_blocked_node;
711 #endif /* #ifdef CONFIG_PREEMPT_RCU */
712
713 #ifdef CONFIG_TASKS_RCU
714 unsigned long rcu_tasks_nvcsw;
715 u8 rcu_tasks_holdout;
716 u8 rcu_tasks_idx;
717 int rcu_tasks_idle_cpu;
718 struct list_head rcu_tasks_holdout_list;
719 #endif /* #ifdef CONFIG_TASKS_RCU */
720
721 struct sched_info sched_info;
722
723 struct list_head tasks;
724 #ifdef CONFIG_SMP
725 struct plist_node pushable_tasks;
726 struct rb_node pushable_dl_tasks;
727 #endif
728
729 struct mm_struct *mm;
730 struct mm_struct *active_mm;
731
732 /* Per-thread vma caching: */
733 struct vmacache vmacache;
734
735 #ifdef SPLIT_RSS_COUNTING
736 struct task_rss_stat rss_stat;
737 #endif
738 int exit_state;
739 int exit_code;
740 int exit_signal;
741 /* The signal sent when the parent dies: */
742 int pdeath_signal;
743 /* JOBCTL_*, siglock protected: */
744 unsigned long jobctl;
745
746 /* Used for emulating ABI behavior of previous Linux versions: */
747 unsigned int personality;
748
749 /* Scheduler bits, serialized by scheduler locks: */
750 unsigned sched_reset_on_fork:1;
751 unsigned sched_contributes_to_load:1;
752 unsigned sched_migrated:1;
753 unsigned sched_remote_wakeup:1;
754 /* Force alignment to the next boundary: */
755 unsigned :0;
756
757 /* Unserialized, strictly 'current' */
758
759 /* Bit to tell LSMs we're in execve(): */
760 unsigned in_execve:1;
761 unsigned in_iowait:1;
762 #ifndef TIF_RESTORE_SIGMASK
763 unsigned restore_sigmask:1;
764 #endif
765 #ifdef CONFIG_MEMCG
766 unsigned memcg_may_oom:1;
767 #ifndef CONFIG_SLOB
768 unsigned memcg_kmem_skip_account:1;
769 #endif
770 #endif
771 #ifdef CONFIG_COMPAT_BRK
772 unsigned brk_randomized:1;
773 #endif
774 #ifdef CONFIG_CGROUPS
775 /* disallow userland-initiated cgroup migration */
776 unsigned no_cgroup_migration:1;
777 #endif
778
779 unsigned long atomic_flags; /* Flags requiring atomic access. */
780
781 struct restart_block restart_block;
782
783 pid_t pid;
784 pid_t tgid;
785
786 #ifdef CONFIG_CC_STACKPROTECTOR
787 /* Canary value for the -fstack-protector GCC feature: */
788 unsigned long stack_canary;
789 #endif
790 /*
791 * Pointers to the (original) parent process, youngest child, younger sibling,
792 * older sibling, respectively. (p->father can be replaced with
793 * p->real_parent->pid)
794 */
795
796 /* Real parent process: */
797 struct task_struct __rcu *real_parent;
798
799 /* Recipient of SIGCHLD, wait4() reports: */
800 struct task_struct __rcu *parent;
801
802 /*
803 * Children/sibling form the list of natural children:
804 */
805 struct list_head children;
806 struct list_head sibling;
807 struct task_struct *group_leader;
808
809 /*
810 * 'ptraced' is the list of tasks this task is using ptrace() on.
811 *
812 * This includes both natural children and PTRACE_ATTACH targets.
813 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
814 */
815 struct list_head ptraced;
816 struct list_head ptrace_entry;
817
818 /* PID/PID hash table linkage. */
819 struct pid_link pids[PIDTYPE_MAX];
820 struct list_head thread_group;
821 struct list_head thread_node;
822
823 struct completion *vfork_done;
824
825 /* CLONE_CHILD_SETTID: */
826 int __user *set_child_tid;
827
828 /* CLONE_CHILD_CLEARTID: */
829 int __user *clear_child_tid;
830
831 u64 utime;
832 u64 stime;
833 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
834 u64 utimescaled;
835 u64 stimescaled;
836 #endif
837 u64 gtime;
838 #ifdef CONFIG_CPU_FREQ_TIMES
839 u64 *time_in_state;
840 unsigned int max_state;
841 #endif
842 struct prev_cputime prev_cputime;
843 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
844 struct vtime vtime;
845 #endif
846
847 #ifdef CONFIG_NO_HZ_FULL
848 atomic_t tick_dep_mask;
849 #endif
850 /* Context switch counts: */
851 unsigned long nvcsw;
852 unsigned long nivcsw;
853
854 /* Monotonic time in nsecs: */
855 u64 start_time;
856
857 /* Boot based time in nsecs: */
858 u64 real_start_time;
859
860 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
861 unsigned long min_flt;
862 unsigned long maj_flt;
863
864 #ifdef CONFIG_POSIX_TIMERS
865 struct task_cputime cputime_expires;
866 struct list_head cpu_timers[3];
867 #endif
868
869 /* Process credentials: */
870
871 /* Tracer's credentials at attach: */
872 const struct cred __rcu *ptracer_cred;
873
874 /* Objective and real subjective task credentials (COW): */
875 const struct cred __rcu *real_cred;
876
877 /* Effective (overridable) subjective task credentials (COW): */
878 const struct cred __rcu *cred;
879
880 /*
881 * executable name, excluding path.
882 *
883 * - normally initialized setup_new_exec()
884 * - access it with [gs]et_task_comm()
885 * - lock it with task_lock()
886 */
887 char comm[TASK_COMM_LEN];
888
889 struct nameidata *nameidata;
890
891 #ifdef CONFIG_SYSVIPC
892 struct sysv_sem sysvsem;
893 struct sysv_shm sysvshm;
894 #endif
895 #ifdef CONFIG_DETECT_HUNG_TASK
896 unsigned long last_switch_count;
897 #endif
898 /* Filesystem information: */
899 struct fs_struct *fs;
900
901 /* Open file information: */
902 struct files_struct *files;
903
904 /* Namespaces: */
905 struct nsproxy *nsproxy;
906
907 /* Signal handlers: */
908 struct signal_struct *signal;
909 struct sighand_struct *sighand;
910 sigset_t blocked;
911 sigset_t real_blocked;
912 /* Restored if set_restore_sigmask() was used: */
913 sigset_t saved_sigmask;
914 struct sigpending pending;
915 unsigned long sas_ss_sp;
916 size_t sas_ss_size;
917 unsigned int sas_ss_flags;
918
919 struct callback_head *task_works;
920
921 struct audit_context *audit_context;
922 #ifdef CONFIG_AUDITSYSCALL
923 kuid_t loginuid;
924 unsigned int sessionid;
925 #endif
926 struct seccomp seccomp;
927
928 /* Thread group tracking: */
929 u32 parent_exec_id;
930 u32 self_exec_id;
931
932 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
933 spinlock_t alloc_lock;
934
935 /* Protection of the PI data structures: */
936 raw_spinlock_t pi_lock;
937
938 struct wake_q_node wake_q;
939
940 #ifdef CONFIG_RT_MUTEXES
941 /* PI waiters blocked on a rt_mutex held by this task: */
942 struct rb_root_cached pi_waiters;
943 /* Updated under owner's pi_lock and rq lock */
944 struct task_struct *pi_top_task;
945 /* Deadlock detection and priority inheritance handling: */
946 struct rt_mutex_waiter *pi_blocked_on;
947 #endif
948
949 #ifdef CONFIG_DEBUG_MUTEXES
950 /* Mutex deadlock detection: */
951 struct mutex_waiter *blocked_on;
952 #endif
953
954 #ifdef CONFIG_TRACE_IRQFLAGS
955 unsigned int irq_events;
956 unsigned long hardirq_enable_ip;
957 unsigned long hardirq_disable_ip;
958 unsigned int hardirq_enable_event;
959 unsigned int hardirq_disable_event;
960 int hardirqs_enabled;
961 int hardirq_context;
962 unsigned long softirq_disable_ip;
963 unsigned long softirq_enable_ip;
964 unsigned int softirq_disable_event;
965 unsigned int softirq_enable_event;
966 int softirqs_enabled;
967 int softirq_context;
968 #endif
969
970 #ifdef CONFIG_LOCKDEP
971 # define MAX_LOCK_DEPTH 48UL
972 u64 curr_chain_key;
973 int lockdep_depth;
974 unsigned int lockdep_recursion;
975 struct held_lock held_locks[MAX_LOCK_DEPTH];
976 #endif
977
978 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
979 #define MAX_XHLOCKS_NR 64UL
980 struct hist_lock *xhlocks; /* Crossrelease history locks */
981 unsigned int xhlock_idx;
982 /* For restoring at history boundaries */
983 unsigned int xhlock_idx_hist[XHLOCK_CTX_NR];
984 unsigned int hist_id;
985 /* For overwrite check at each context exit */
986 unsigned int hist_id_save[XHLOCK_CTX_NR];
987 #endif
988
989 #ifdef CONFIG_UBSAN
990 unsigned int in_ubsan;
991 #endif
992
993 /* Journalling filesystem info: */
994 void *journal_info;
995
996 /* Stacked block device info: */
997 struct bio_list *bio_list;
998
999 #ifdef CONFIG_BLOCK
1000 /* Stack plugging: */
1001 struct blk_plug *plug;
1002 #endif
1003
1004 /* VM state: */
1005 struct reclaim_state *reclaim_state;
1006
1007 struct backing_dev_info *backing_dev_info;
1008
1009 struct io_context *io_context;
1010
1011 /* Ptrace state: */
1012 unsigned long ptrace_message;
1013 siginfo_t *last_siginfo;
1014
1015 struct task_io_accounting ioac;
1016 #ifdef CONFIG_TASK_XACCT
1017 /* Accumulated RSS usage: */
1018 u64 acct_rss_mem1;
1019 /* Accumulated virtual memory usage: */
1020 u64 acct_vm_mem1;
1021 /* stime + utime since last update: */
1022 u64 acct_timexpd;
1023 #endif
1024 #ifdef CONFIG_CPUSETS
1025 /* Protected by ->alloc_lock: */
1026 nodemask_t mems_allowed;
1027 /* Seqence number to catch updates: */
1028 seqcount_t mems_allowed_seq;
1029 int cpuset_mem_spread_rotor;
1030 int cpuset_slab_spread_rotor;
1031 #endif
1032 #ifdef CONFIG_CGROUPS
1033 /* Control Group info protected by css_set_lock: */
1034 struct css_set __rcu *cgroups;
1035 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1036 struct list_head cg_list;
1037 #endif
1038 #ifdef CONFIG_INTEL_RDT
1039 u32 closid;
1040 u32 rmid;
1041 #endif
1042 #ifdef CONFIG_FUTEX
1043 struct robust_list_head __user *robust_list;
1044 #ifdef CONFIG_COMPAT
1045 struct compat_robust_list_head __user *compat_robust_list;
1046 #endif
1047 struct list_head pi_state_list;
1048 struct futex_pi_state *pi_state_cache;
1049 #endif
1050 #ifdef CONFIG_PERF_EVENTS
1051 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1052 struct mutex perf_event_mutex;
1053 struct list_head perf_event_list;
1054 #endif
1055 #ifdef CONFIG_DEBUG_PREEMPT
1056 unsigned long preempt_disable_ip;
1057 #endif
1058 #ifdef CONFIG_NUMA
1059 /* Protected by alloc_lock: */
1060 struct mempolicy *mempolicy;
1061 short il_prev;
1062 short pref_node_fork;
1063 #endif
1064 #ifdef CONFIG_NUMA_BALANCING
1065 int numa_scan_seq;
1066 unsigned int numa_scan_period;
1067 unsigned int numa_scan_period_max;
1068 int numa_preferred_nid;
1069 unsigned long numa_migrate_retry;
1070 /* Migration stamp: */
1071 u64 node_stamp;
1072 u64 last_task_numa_placement;
1073 u64 last_sum_exec_runtime;
1074 struct callback_head numa_work;
1075
1076 struct list_head numa_entry;
1077 struct numa_group *numa_group;
1078
1079 /*
1080 * numa_faults is an array split into four regions:
1081 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1082 * in this precise order.
1083 *
1084 * faults_memory: Exponential decaying average of faults on a per-node
1085 * basis. Scheduling placement decisions are made based on these
1086 * counts. The values remain static for the duration of a PTE scan.
1087 * faults_cpu: Track the nodes the process was running on when a NUMA
1088 * hinting fault was incurred.
1089 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1090 * during the current scan window. When the scan completes, the counts
1091 * in faults_memory and faults_cpu decay and these values are copied.
1092 */
1093 unsigned long *numa_faults;
1094 unsigned long total_numa_faults;
1095
1096 /*
1097 * numa_faults_locality tracks if faults recorded during the last
1098 * scan window were remote/local or failed to migrate. The task scan
1099 * period is adapted based on the locality of the faults with different
1100 * weights depending on whether they were shared or private faults
1101 */
1102 unsigned long numa_faults_locality[3];
1103
1104 unsigned long numa_pages_migrated;
1105 #endif /* CONFIG_NUMA_BALANCING */
1106
1107 struct tlbflush_unmap_batch tlb_ubc;
1108
1109 struct rcu_head rcu;
1110
1111 /* Cache last used pipe for splice(): */
1112 struct pipe_inode_info *splice_pipe;
1113
1114 struct page_frag task_frag;
1115
1116 #ifdef CONFIG_TASK_DELAY_ACCT
1117 struct task_delay_info *delays;
1118 #endif
1119
1120 #ifdef CONFIG_FAULT_INJECTION
1121 int make_it_fail;
1122 unsigned int fail_nth;
1123 #endif
1124 /*
1125 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1126 * balance_dirty_pages() for a dirty throttling pause:
1127 */
1128 int nr_dirtied;
1129 int nr_dirtied_pause;
1130 /* Start of a write-and-pause period: */
1131 unsigned long dirty_paused_when;
1132
1133 #ifdef CONFIG_LATENCYTOP
1134 int latency_record_count;
1135 struct latency_record latency_record[LT_SAVECOUNT];
1136 #endif
1137 /*
1138 * Time slack values; these are used to round up poll() and
1139 * select() etc timeout values. These are in nanoseconds.
1140 */
1141 u64 timer_slack_ns;
1142 u64 default_timer_slack_ns;
1143
1144 #ifdef CONFIG_KASAN
1145 unsigned int kasan_depth;
1146 #endif
1147
1148 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1149 /* Index of current stored address in ret_stack: */
1150 int curr_ret_stack;
1151
1152 /* Stack of return addresses for return function tracing: */
1153 struct ftrace_ret_stack *ret_stack;
1154
1155 /* Timestamp for last schedule: */
1156 unsigned long long ftrace_timestamp;
1157
1158 /*
1159 * Number of functions that haven't been traced
1160 * because of depth overrun:
1161 */
1162 atomic_t trace_overrun;
1163
1164 /* Pause tracing: */
1165 atomic_t tracing_graph_pause;
1166 #endif
1167
1168 #ifdef CONFIG_TRACING
1169 /* State flags for use by tracers: */
1170 unsigned long trace;
1171
1172 /* Bitmask and counter of trace recursion: */
1173 unsigned long trace_recursion;
1174 #endif /* CONFIG_TRACING */
1175
1176 #ifdef CONFIG_KCOV
1177 /* Coverage collection mode enabled for this task (0 if disabled): */
1178 enum kcov_mode kcov_mode;
1179
1180 /* Size of the kcov_area: */
1181 unsigned int kcov_size;
1182
1183 /* Buffer for coverage collection: */
1184 void *kcov_area;
1185
1186 /* KCOV descriptor wired with this task or NULL: */
1187 struct kcov *kcov;
1188 #endif
1189
1190 #ifdef CONFIG_MEMCG
1191 struct mem_cgroup *memcg_in_oom;
1192 gfp_t memcg_oom_gfp_mask;
1193 int memcg_oom_order;
1194
1195 /* Number of pages to reclaim on returning to userland: */
1196 unsigned int memcg_nr_pages_over_high;
1197 #endif
1198
1199 #ifdef CONFIG_UPROBES
1200 struct uprobe_task *utask;
1201 #endif
1202 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1203 unsigned int sequential_io;
1204 unsigned int sequential_io_avg;
1205 #endif
1206 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1207 unsigned long task_state_change;
1208 #endif
1209 int pagefault_disabled;
1210 #ifdef CONFIG_MMU
1211 struct task_struct *oom_reaper_list;
1212 #endif
1213 #ifdef CONFIG_VMAP_STACK
1214 struct vm_struct *stack_vm_area;
1215 #endif
1216 #ifdef CONFIG_THREAD_INFO_IN_TASK
1217 /* A live task holds one reference: */
1218 atomic_t stack_refcount;
1219 #endif
1220 #ifdef CONFIG_LIVEPATCH
1221 int patch_state;
1222 #endif
1223 #ifdef CONFIG_SECURITY
1224 /* Used by LSM modules for access restriction: */
1225 void *security;
1226 #endif
1227
1228 /*
1229 * New fields for task_struct should be added above here, so that
1230 * they are included in the randomized portion of task_struct.
1231 */
1232 randomized_struct_fields_end
1233
1234 /* CPU-specific state of this task: */
1235 struct thread_struct thread;
1236
1237 /*
1238 * WARNING: on x86, 'thread_struct' contains a variable-sized
1239 * structure. It *MUST* be at the end of 'task_struct'.
1240 *
1241 * Do not put anything below here!
1242 */
1243 };
1244
1245 static inline struct pid *task_pid(struct task_struct *task)
1246 {
1247 return task->pids[PIDTYPE_PID].pid;
1248 }
1249
1250 static inline struct pid *task_tgid(struct task_struct *task)
1251 {
1252 return task->group_leader->pids[PIDTYPE_PID].pid;
1253 }
1254
1255 /*
1256 * Without tasklist or RCU lock it is not safe to dereference
1257 * the result of task_pgrp/task_session even if task == current,
1258 * we can race with another thread doing sys_setsid/sys_setpgid.
1259 */
1260 static inline struct pid *task_pgrp(struct task_struct *task)
1261 {
1262 return task->group_leader->pids[PIDTYPE_PGID].pid;
1263 }
1264
1265 static inline struct pid *task_session(struct task_struct *task)
1266 {
1267 return task->group_leader->pids[PIDTYPE_SID].pid;
1268 }
1269
1270 /*
1271 * the helpers to get the task's different pids as they are seen
1272 * from various namespaces
1273 *
1274 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1275 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1276 * current.
1277 * task_xid_nr_ns() : id seen from the ns specified;
1278 *
1279 * see also pid_nr() etc in include/linux/pid.h
1280 */
1281 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1282
1283 static inline pid_t task_pid_nr(struct task_struct *tsk)
1284 {
1285 return tsk->pid;
1286 }
1287
1288 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1289 {
1290 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1291 }
1292
1293 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1294 {
1295 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1296 }
1297
1298
1299 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1300 {
1301 return tsk->tgid;
1302 }
1303
1304 /**
1305 * pid_alive - check that a task structure is not stale
1306 * @p: Task structure to be checked.
1307 *
1308 * Test if a process is not yet dead (at most zombie state)
1309 * If pid_alive fails, then pointers within the task structure
1310 * can be stale and must not be dereferenced.
1311 *
1312 * Return: 1 if the process is alive. 0 otherwise.
1313 */
1314 static inline int pid_alive(const struct task_struct *p)
1315 {
1316 return p->pids[PIDTYPE_PID].pid != NULL;
1317 }
1318
1319 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1320 {
1321 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1322 }
1323
1324 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1325 {
1326 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1327 }
1328
1329
1330 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1331 {
1332 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1333 }
1334
1335 static inline pid_t task_session_vnr(struct task_struct *tsk)
1336 {
1337 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1338 }
1339
1340 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1341 {
1342 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1343 }
1344
1345 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1346 {
1347 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1348 }
1349
1350 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1351 {
1352 pid_t pid = 0;
1353
1354 rcu_read_lock();
1355 if (pid_alive(tsk))
1356 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1357 rcu_read_unlock();
1358
1359 return pid;
1360 }
1361
1362 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1363 {
1364 return task_ppid_nr_ns(tsk, &init_pid_ns);
1365 }
1366
1367 /* Obsolete, do not use: */
1368 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1369 {
1370 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1371 }
1372
1373 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1374 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1375
1376 static inline unsigned int __get_task_state(struct task_struct *tsk)
1377 {
1378 unsigned int tsk_state = READ_ONCE(tsk->state);
1379 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1380
1381 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1382
1383 if (tsk_state == TASK_IDLE)
1384 state = TASK_REPORT_IDLE;
1385
1386 return fls(state);
1387 }
1388
1389 static inline char __task_state_to_char(unsigned int state)
1390 {
1391 static const char state_char[] = "RSDTtXZPI";
1392
1393 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1394
1395 return state_char[state];
1396 }
1397
1398 static inline char task_state_to_char(struct task_struct *tsk)
1399 {
1400 return __task_state_to_char(__get_task_state(tsk));
1401 }
1402
1403 /**
1404 * is_global_init - check if a task structure is init. Since init
1405 * is free to have sub-threads we need to check tgid.
1406 * @tsk: Task structure to be checked.
1407 *
1408 * Check if a task structure is the first user space task the kernel created.
1409 *
1410 * Return: 1 if the task structure is init. 0 otherwise.
1411 */
1412 static inline int is_global_init(struct task_struct *tsk)
1413 {
1414 return task_tgid_nr(tsk) == 1;
1415 }
1416
1417 extern struct pid *cad_pid;
1418
1419 /*
1420 * Per process flags
1421 */
1422 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1423 #define PF_EXITING 0x00000004 /* Getting shut down */
1424 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1425 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1426 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1427 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1428 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1429 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1430 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1431 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1432 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1433 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1434 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1435 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1436 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1437 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1438 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1439 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1440 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1441 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1442 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1443 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1444 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1445 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1446 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1447 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1448 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1449 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1450
1451 /*
1452 * Only the _current_ task can read/write to tsk->flags, but other
1453 * tasks can access tsk->flags in readonly mode for example
1454 * with tsk_used_math (like during threaded core dumping).
1455 * There is however an exception to this rule during ptrace
1456 * or during fork: the ptracer task is allowed to write to the
1457 * child->flags of its traced child (same goes for fork, the parent
1458 * can write to the child->flags), because we're guaranteed the
1459 * child is not running and in turn not changing child->flags
1460 * at the same time the parent does it.
1461 */
1462 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1463 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1464 #define clear_used_math() clear_stopped_child_used_math(current)
1465 #define set_used_math() set_stopped_child_used_math(current)
1466
1467 #define conditional_stopped_child_used_math(condition, child) \
1468 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1469
1470 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1471
1472 #define copy_to_stopped_child_used_math(child) \
1473 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1474
1475 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1476 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1477 #define used_math() tsk_used_math(current)
1478
1479 static inline bool is_percpu_thread(void)
1480 {
1481 #ifdef CONFIG_SMP
1482 return (current->flags & PF_NO_SETAFFINITY) &&
1483 (current->nr_cpus_allowed == 1);
1484 #else
1485 return true;
1486 #endif
1487 }
1488
1489 /* Per-process atomic flags. */
1490 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1491 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1492 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1493 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1494 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1495
1496 #define TASK_PFA_TEST(name, func) \
1497 static inline bool task_##func(struct task_struct *p) \
1498 { return test_bit(PFA_##name, &p->atomic_flags); }
1499
1500 #define TASK_PFA_SET(name, func) \
1501 static inline void task_set_##func(struct task_struct *p) \
1502 { set_bit(PFA_##name, &p->atomic_flags); }
1503
1504 #define TASK_PFA_CLEAR(name, func) \
1505 static inline void task_clear_##func(struct task_struct *p) \
1506 { clear_bit(PFA_##name, &p->atomic_flags); }
1507
1508 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1509 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1510
1511 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1512 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1513 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1514
1515 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1516 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1517 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1518
1519 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1520 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1521 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1522
1523 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1524 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1525
1526 static inline void
1527 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1528 {
1529 current->flags &= ~flags;
1530 current->flags |= orig_flags & flags;
1531 }
1532
1533 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1534 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1535 #ifdef CONFIG_SMP
1536 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1537 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1538 #else
1539 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1540 {
1541 }
1542 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1543 {
1544 if (!cpumask_test_cpu(0, new_mask))
1545 return -EINVAL;
1546 return 0;
1547 }
1548 #endif
1549
1550 #ifndef cpu_relax_yield
1551 #define cpu_relax_yield() cpu_relax()
1552 #endif
1553
1554 extern int yield_to(struct task_struct *p, bool preempt);
1555 extern void set_user_nice(struct task_struct *p, long nice);
1556 extern int task_prio(const struct task_struct *p);
1557
1558 /**
1559 * task_nice - return the nice value of a given task.
1560 * @p: the task in question.
1561 *
1562 * Return: The nice value [ -20 ... 0 ... 19 ].
1563 */
1564 static inline int task_nice(const struct task_struct *p)
1565 {
1566 return PRIO_TO_NICE((p)->static_prio);
1567 }
1568
1569 extern int can_nice(const struct task_struct *p, const int nice);
1570 extern int task_curr(const struct task_struct *p);
1571 extern int idle_cpu(int cpu);
1572 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1573 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1574 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1575 extern struct task_struct *idle_task(int cpu);
1576
1577 /**
1578 * is_idle_task - is the specified task an idle task?
1579 * @p: the task in question.
1580 *
1581 * Return: 1 if @p is an idle task. 0 otherwise.
1582 */
1583 static inline bool is_idle_task(const struct task_struct *p)
1584 {
1585 return !!(p->flags & PF_IDLE);
1586 }
1587
1588 extern struct task_struct *curr_task(int cpu);
1589 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1590
1591 void yield(void);
1592
1593 union thread_union {
1594 #ifndef CONFIG_THREAD_INFO_IN_TASK
1595 struct thread_info thread_info;
1596 #endif
1597 unsigned long stack[THREAD_SIZE/sizeof(long)];
1598 };
1599
1600 #ifdef CONFIG_THREAD_INFO_IN_TASK
1601 static inline struct thread_info *task_thread_info(struct task_struct *task)
1602 {
1603 return &task->thread_info;
1604 }
1605 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1606 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1607 #endif
1608
1609 /*
1610 * find a task by one of its numerical ids
1611 *
1612 * find_task_by_pid_ns():
1613 * finds a task by its pid in the specified namespace
1614 * find_task_by_vpid():
1615 * finds a task by its virtual pid
1616 *
1617 * see also find_vpid() etc in include/linux/pid.h
1618 */
1619
1620 extern struct task_struct *find_task_by_vpid(pid_t nr);
1621 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1622
1623 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1624 extern int wake_up_process(struct task_struct *tsk);
1625 extern void wake_up_new_task(struct task_struct *tsk);
1626
1627 #ifdef CONFIG_SMP
1628 extern void kick_process(struct task_struct *tsk);
1629 #else
1630 static inline void kick_process(struct task_struct *tsk) { }
1631 #endif
1632
1633 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1634
1635 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1636 {
1637 __set_task_comm(tsk, from, false);
1638 }
1639
1640 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1641 #define get_task_comm(buf, tsk) ({ \
1642 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1643 __get_task_comm(buf, sizeof(buf), tsk); \
1644 })
1645
1646 #ifdef CONFIG_SMP
1647 void scheduler_ipi(void);
1648 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1649 #else
1650 static inline void scheduler_ipi(void) { }
1651 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1652 {
1653 return 1;
1654 }
1655 #endif
1656
1657 /*
1658 * Set thread flags in other task's structures.
1659 * See asm/thread_info.h for TIF_xxxx flags available:
1660 */
1661 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1662 {
1663 set_ti_thread_flag(task_thread_info(tsk), flag);
1664 }
1665
1666 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1667 {
1668 clear_ti_thread_flag(task_thread_info(tsk), flag);
1669 }
1670
1671 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1672 {
1673 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1674 }
1675
1676 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1677 {
1678 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1679 }
1680
1681 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1682 {
1683 return test_ti_thread_flag(task_thread_info(tsk), flag);
1684 }
1685
1686 static inline void set_tsk_need_resched(struct task_struct *tsk)
1687 {
1688 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1689 }
1690
1691 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1692 {
1693 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1694 }
1695
1696 static inline int test_tsk_need_resched(struct task_struct *tsk)
1697 {
1698 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1699 }
1700
1701 /*
1702 * cond_resched() and cond_resched_lock(): latency reduction via
1703 * explicit rescheduling in places that are safe. The return
1704 * value indicates whether a reschedule was done in fact.
1705 * cond_resched_lock() will drop the spinlock before scheduling,
1706 * cond_resched_softirq() will enable bhs before scheduling.
1707 */
1708 #ifndef CONFIG_PREEMPT
1709 extern int _cond_resched(void);
1710 #else
1711 static inline int _cond_resched(void) { return 0; }
1712 #endif
1713
1714 #define cond_resched() ({ \
1715 ___might_sleep(__FILE__, __LINE__, 0); \
1716 _cond_resched(); \
1717 })
1718
1719 extern int __cond_resched_lock(spinlock_t *lock);
1720
1721 #define cond_resched_lock(lock) ({ \
1722 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1723 __cond_resched_lock(lock); \
1724 })
1725
1726 extern int __cond_resched_softirq(void);
1727
1728 #define cond_resched_softirq() ({ \
1729 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1730 __cond_resched_softirq(); \
1731 })
1732
1733 static inline void cond_resched_rcu(void)
1734 {
1735 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1736 rcu_read_unlock();
1737 cond_resched();
1738 rcu_read_lock();
1739 #endif
1740 }
1741
1742 /*
1743 * Does a critical section need to be broken due to another
1744 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1745 * but a general need for low latency)
1746 */
1747 static inline int spin_needbreak(spinlock_t *lock)
1748 {
1749 #ifdef CONFIG_PREEMPT
1750 return spin_is_contended(lock);
1751 #else
1752 return 0;
1753 #endif
1754 }
1755
1756 static __always_inline bool need_resched(void)
1757 {
1758 return unlikely(tif_need_resched());
1759 }
1760
1761 /*
1762 * Wrappers for p->thread_info->cpu access. No-op on UP.
1763 */
1764 #ifdef CONFIG_SMP
1765
1766 static inline unsigned int task_cpu(const struct task_struct *p)
1767 {
1768 #ifdef CONFIG_THREAD_INFO_IN_TASK
1769 return p->cpu;
1770 #else
1771 return task_thread_info(p)->cpu;
1772 #endif
1773 }
1774
1775 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1776
1777 #else
1778
1779 static inline unsigned int task_cpu(const struct task_struct *p)
1780 {
1781 return 0;
1782 }
1783
1784 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1785 {
1786 }
1787
1788 #endif /* CONFIG_SMP */
1789
1790 /*
1791 * In order to reduce various lock holder preemption latencies provide an
1792 * interface to see if a vCPU is currently running or not.
1793 *
1794 * This allows us to terminate optimistic spin loops and block, analogous to
1795 * the native optimistic spin heuristic of testing if the lock owner task is
1796 * running or not.
1797 */
1798 #ifndef vcpu_is_preempted
1799 # define vcpu_is_preempted(cpu) false
1800 #endif
1801
1802 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1803 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1804
1805 #ifndef TASK_SIZE_OF
1806 #define TASK_SIZE_OF(tsk) TASK_SIZE
1807 #endif
1808
1809 #endif