Merge 4.14.54 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30
31 /* task_struct member predeclarations (sorted alphabetically): */
32 struct audit_context;
33 struct backing_dev_info;
34 struct bio_list;
35 struct blk_plug;
36 struct cfs_rq;
37 struct fs_struct;
38 struct futex_pi_state;
39 struct io_context;
40 struct mempolicy;
41 struct nameidata;
42 struct nsproxy;
43 struct perf_event_context;
44 struct pid_namespace;
45 struct pipe_inode_info;
46 struct rcu_node;
47 struct reclaim_state;
48 struct robust_list_head;
49 struct sched_attr;
50 struct sched_param;
51 struct seq_file;
52 struct sighand_struct;
53 struct signal_struct;
54 struct task_delay_info;
55 struct task_group;
56
57 /*
58 * Task state bitmask. NOTE! These bits are also
59 * encoded in fs/proc/array.c: get_task_state().
60 *
61 * We have two separate sets of flags: task->state
62 * is about runnability, while task->exit_state are
63 * about the task exiting. Confusing, but this way
64 * modifying one set can't modify the other one by
65 * mistake.
66 */
67
68 /* Used in tsk->state: */
69 #define TASK_RUNNING 0x0000
70 #define TASK_INTERRUPTIBLE 0x0001
71 #define TASK_UNINTERRUPTIBLE 0x0002
72 #define __TASK_STOPPED 0x0004
73 #define __TASK_TRACED 0x0008
74 /* Used in tsk->exit_state: */
75 #define EXIT_DEAD 0x0010
76 #define EXIT_ZOMBIE 0x0020
77 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
78 /* Used in tsk->state again: */
79 #define TASK_PARKED 0x0040
80 #define TASK_DEAD 0x0080
81 #define TASK_WAKEKILL 0x0100
82 #define TASK_WAKING 0x0200
83 #define TASK_NOLOAD 0x0400
84 #define TASK_NEW 0x0800
85 #define TASK_STATE_MAX 0x1000
86
87 /* Convenience macros for the sake of set_current_state: */
88 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
90 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
91
92 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93
94 /* Convenience macros for the sake of wake_up(): */
95 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
97
98 /* get_task_state(): */
99 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 /*
117 * Special states are those that do not use the normal wait-loop pattern. See
118 * the comment with set_special_state().
119 */
120 #define is_special_task_state(state) \
121 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_DEAD))
122
123 #define __set_current_state(state_value) \
124 do { \
125 WARN_ON_ONCE(is_special_task_state(state_value));\
126 current->task_state_change = _THIS_IP_; \
127 current->state = (state_value); \
128 } while (0)
129
130 #define set_current_state(state_value) \
131 do { \
132 WARN_ON_ONCE(is_special_task_state(state_value));\
133 current->task_state_change = _THIS_IP_; \
134 smp_store_mb(current->state, (state_value)); \
135 } while (0)
136
137 #define set_special_state(state_value) \
138 do { \
139 unsigned long flags; /* may shadow */ \
140 WARN_ON_ONCE(!is_special_task_state(state_value)); \
141 raw_spin_lock_irqsave(&current->pi_lock, flags); \
142 current->task_state_change = _THIS_IP_; \
143 current->state = (state_value); \
144 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
145 } while (0)
146 #else
147 /*
148 * set_current_state() includes a barrier so that the write of current->state
149 * is correctly serialised wrt the caller's subsequent test of whether to
150 * actually sleep:
151 *
152 * for (;;) {
153 * set_current_state(TASK_UNINTERRUPTIBLE);
154 * if (!need_sleep)
155 * break;
156 *
157 * schedule();
158 * }
159 * __set_current_state(TASK_RUNNING);
160 *
161 * If the caller does not need such serialisation (because, for instance, the
162 * condition test and condition change and wakeup are under the same lock) then
163 * use __set_current_state().
164 *
165 * The above is typically ordered against the wakeup, which does:
166 *
167 * need_sleep = false;
168 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
169 *
170 * Where wake_up_state() (and all other wakeup primitives) imply enough
171 * barriers to order the store of the variable against wakeup.
172 *
173 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
174 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
175 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
176 *
177 * However, with slightly different timing the wakeup TASK_RUNNING store can
178 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
179 * a problem either because that will result in one extra go around the loop
180 * and our @cond test will save the day.
181 *
182 * Also see the comments of try_to_wake_up().
183 */
184 #define __set_current_state(state_value) \
185 current->state = (state_value)
186
187 #define set_current_state(state_value) \
188 smp_store_mb(current->state, (state_value))
189
190 /*
191 * set_special_state() should be used for those states when the blocking task
192 * can not use the regular condition based wait-loop. In that case we must
193 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
194 * will not collide with our state change.
195 */
196 #define set_special_state(state_value) \
197 do { \
198 unsigned long flags; /* may shadow */ \
199 raw_spin_lock_irqsave(&current->pi_lock, flags); \
200 current->state = (state_value); \
201 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
202 } while (0)
203
204 #endif
205
206 /* Task command name length: */
207 #define TASK_COMM_LEN 16
208
209 enum task_event {
210 PUT_PREV_TASK = 0,
211 PICK_NEXT_TASK = 1,
212 TASK_WAKE = 2,
213 TASK_MIGRATE = 3,
214 TASK_UPDATE = 4,
215 IRQ_UPDATE = 5,
216 };
217
218 extern cpumask_var_t cpu_isolated_map;
219
220 extern void scheduler_tick(void);
221
222 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
223
224 extern long schedule_timeout(long timeout);
225 extern long schedule_timeout_interruptible(long timeout);
226 extern long schedule_timeout_killable(long timeout);
227 extern long schedule_timeout_uninterruptible(long timeout);
228 extern long schedule_timeout_idle(long timeout);
229 asmlinkage void schedule(void);
230 extern void schedule_preempt_disabled(void);
231
232 extern int __must_check io_schedule_prepare(void);
233 extern void io_schedule_finish(int token);
234 extern long io_schedule_timeout(long timeout);
235 extern void io_schedule(void);
236
237 /**
238 * struct prev_cputime - snapshot of system and user cputime
239 * @utime: time spent in user mode
240 * @stime: time spent in system mode
241 * @lock: protects the above two fields
242 *
243 * Stores previous user/system time values such that we can guarantee
244 * monotonicity.
245 */
246 struct prev_cputime {
247 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
248 u64 utime;
249 u64 stime;
250 raw_spinlock_t lock;
251 #endif
252 };
253
254 /**
255 * struct task_cputime - collected CPU time counts
256 * @utime: time spent in user mode, in nanoseconds
257 * @stime: time spent in kernel mode, in nanoseconds
258 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
259 *
260 * This structure groups together three kinds of CPU time that are tracked for
261 * threads and thread groups. Most things considering CPU time want to group
262 * these counts together and treat all three of them in parallel.
263 */
264 struct task_cputime {
265 u64 utime;
266 u64 stime;
267 unsigned long long sum_exec_runtime;
268 };
269
270 /* Alternate field names when used on cache expirations: */
271 #define virt_exp utime
272 #define prof_exp stime
273 #define sched_exp sum_exec_runtime
274
275 enum vtime_state {
276 /* Task is sleeping or running in a CPU with VTIME inactive: */
277 VTIME_INACTIVE = 0,
278 /* Task runs in userspace in a CPU with VTIME active: */
279 VTIME_USER,
280 /* Task runs in kernelspace in a CPU with VTIME active: */
281 VTIME_SYS,
282 };
283
284 struct vtime {
285 seqcount_t seqcount;
286 unsigned long long starttime;
287 enum vtime_state state;
288 u64 utime;
289 u64 stime;
290 u64 gtime;
291 };
292
293 struct sched_info {
294 #ifdef CONFIG_SCHED_INFO
295 /* Cumulative counters: */
296
297 /* # of times we have run on this CPU: */
298 unsigned long pcount;
299
300 /* Time spent waiting on a runqueue: */
301 unsigned long long run_delay;
302
303 /* Timestamps: */
304
305 /* When did we last run on a CPU? */
306 unsigned long long last_arrival;
307
308 /* When were we last queued to run? */
309 unsigned long long last_queued;
310
311 #endif /* CONFIG_SCHED_INFO */
312 };
313
314 /*
315 * Integer metrics need fixed point arithmetic, e.g., sched/fair
316 * has a few: load, load_avg, util_avg, freq, and capacity.
317 *
318 * We define a basic fixed point arithmetic range, and then formalize
319 * all these metrics based on that basic range.
320 */
321 # define SCHED_FIXEDPOINT_SHIFT 10
322 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
323
324 struct load_weight {
325 unsigned long weight;
326 u32 inv_weight;
327 };
328
329 /*
330 * The load_avg/util_avg accumulates an infinite geometric series
331 * (see __update_load_avg() in kernel/sched/fair.c).
332 *
333 * [load_avg definition]
334 *
335 * load_avg = runnable% * scale_load_down(load)
336 *
337 * where runnable% is the time ratio that a sched_entity is runnable.
338 * For cfs_rq, it is the aggregated load_avg of all runnable and
339 * blocked sched_entities.
340 *
341 * load_avg may also take frequency scaling into account:
342 *
343 * load_avg = runnable% * scale_load_down(load) * freq%
344 *
345 * where freq% is the CPU frequency normalized to the highest frequency.
346 *
347 * [util_avg definition]
348 *
349 * util_avg = running% * SCHED_CAPACITY_SCALE
350 *
351 * where running% is the time ratio that a sched_entity is running on
352 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
353 * and blocked sched_entities.
354 *
355 * util_avg may also factor frequency scaling and CPU capacity scaling:
356 *
357 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
358 *
359 * where freq% is the same as above, and capacity% is the CPU capacity
360 * normalized to the greatest capacity (due to uarch differences, etc).
361 *
362 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
363 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
364 * we therefore scale them to as large a range as necessary. This is for
365 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
366 *
367 * [Overflow issue]
368 *
369 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
370 * with the highest load (=88761), always runnable on a single cfs_rq,
371 * and should not overflow as the number already hits PID_MAX_LIMIT.
372 *
373 * For all other cases (including 32-bit kernels), struct load_weight's
374 * weight will overflow first before we do, because:
375 *
376 * Max(load_avg) <= Max(load.weight)
377 *
378 * Then it is the load_weight's responsibility to consider overflow
379 * issues.
380 */
381 struct sched_avg {
382 u64 last_update_time;
383 u64 load_sum;
384 u32 util_sum;
385 u32 period_contrib;
386 unsigned long load_avg;
387 unsigned long util_avg;
388 };
389
390 struct sched_statistics {
391 #ifdef CONFIG_SCHEDSTATS
392 u64 wait_start;
393 u64 wait_max;
394 u64 wait_count;
395 u64 wait_sum;
396 u64 iowait_count;
397 u64 iowait_sum;
398
399 u64 sleep_start;
400 u64 sleep_max;
401 s64 sum_sleep_runtime;
402
403 u64 block_start;
404 u64 block_max;
405 u64 exec_max;
406 u64 slice_max;
407
408 u64 nr_migrations_cold;
409 u64 nr_failed_migrations_affine;
410 u64 nr_failed_migrations_running;
411 u64 nr_failed_migrations_hot;
412 u64 nr_forced_migrations;
413
414 u64 nr_wakeups;
415 u64 nr_wakeups_sync;
416 u64 nr_wakeups_migrate;
417 u64 nr_wakeups_local;
418 u64 nr_wakeups_remote;
419 u64 nr_wakeups_affine;
420 u64 nr_wakeups_affine_attempts;
421 u64 nr_wakeups_passive;
422 u64 nr_wakeups_idle;
423 #endif
424 };
425
426 struct sched_entity {
427 /* For load-balancing: */
428 struct load_weight load;
429 struct rb_node run_node;
430 struct list_head group_node;
431 unsigned int on_rq;
432
433 u64 exec_start;
434 u64 sum_exec_runtime;
435 u64 vruntime;
436 u64 prev_sum_exec_runtime;
437
438 u64 nr_migrations;
439
440 struct sched_statistics statistics;
441
442 #ifdef CONFIG_FAIR_GROUP_SCHED
443 int depth;
444 struct sched_entity *parent;
445 /* rq on which this entity is (to be) queued: */
446 struct cfs_rq *cfs_rq;
447 /* rq "owned" by this entity/group: */
448 struct cfs_rq *my_q;
449 #endif
450
451 #ifdef CONFIG_SMP
452 /*
453 * Per entity load average tracking.
454 *
455 * Put into separate cache line so it does not
456 * collide with read-mostly values above.
457 */
458 struct sched_avg avg ____cacheline_aligned_in_smp;
459 #endif
460 };
461
462 #ifdef CONFIG_SCHED_WALT
463 #define RAVG_HIST_SIZE_MAX 5
464
465 /* ravg represents frequency scaled cpu-demand of tasks */
466 struct ravg {
467 /*
468 * 'mark_start' marks the beginning of an event (task waking up, task
469 * starting to execute, task being preempted) within a window
470 *
471 * 'sum' represents how runnable a task has been within current
472 * window. It incorporates both running time and wait time and is
473 * frequency scaled.
474 *
475 * 'sum_history' keeps track of history of 'sum' seen over previous
476 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
477 * ignored.
478 *
479 * 'demand' represents maximum sum seen over previous
480 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
481 * demand for tasks.
482 *
483 * 'curr_window' represents task's contribution to cpu busy time
484 * statistics (rq->curr_runnable_sum) in current window
485 *
486 * 'prev_window' represents task's contribution to cpu busy time
487 * statistics (rq->prev_runnable_sum) in previous window
488 */
489 u64 mark_start;
490 u32 sum, demand;
491 u32 sum_history[RAVG_HIST_SIZE_MAX];
492 u32 curr_window, prev_window;
493 u16 active_windows;
494 };
495 #endif
496
497 struct sched_rt_entity {
498 struct list_head run_list;
499 unsigned long timeout;
500 unsigned long watchdog_stamp;
501 unsigned int time_slice;
502 unsigned short on_rq;
503 unsigned short on_list;
504
505 struct sched_rt_entity *back;
506 #ifdef CONFIG_RT_GROUP_SCHED
507 struct sched_rt_entity *parent;
508 /* rq on which this entity is (to be) queued: */
509 struct rt_rq *rt_rq;
510 /* rq "owned" by this entity/group: */
511 struct rt_rq *my_q;
512 #endif
513 } __randomize_layout;
514
515 struct sched_dl_entity {
516 struct rb_node rb_node;
517
518 /*
519 * Original scheduling parameters. Copied here from sched_attr
520 * during sched_setattr(), they will remain the same until
521 * the next sched_setattr().
522 */
523 u64 dl_runtime; /* Maximum runtime for each instance */
524 u64 dl_deadline; /* Relative deadline of each instance */
525 u64 dl_period; /* Separation of two instances (period) */
526 u64 dl_bw; /* dl_runtime / dl_period */
527 u64 dl_density; /* dl_runtime / dl_deadline */
528
529 /*
530 * Actual scheduling parameters. Initialized with the values above,
531 * they are continously updated during task execution. Note that
532 * the remaining runtime could be < 0 in case we are in overrun.
533 */
534 s64 runtime; /* Remaining runtime for this instance */
535 u64 deadline; /* Absolute deadline for this instance */
536 unsigned int flags; /* Specifying the scheduler behaviour */
537
538 /*
539 * Some bool flags:
540 *
541 * @dl_throttled tells if we exhausted the runtime. If so, the
542 * task has to wait for a replenishment to be performed at the
543 * next firing of dl_timer.
544 *
545 * @dl_boosted tells if we are boosted due to DI. If so we are
546 * outside bandwidth enforcement mechanism (but only until we
547 * exit the critical section);
548 *
549 * @dl_yielded tells if task gave up the CPU before consuming
550 * all its available runtime during the last job.
551 *
552 * @dl_non_contending tells if the task is inactive while still
553 * contributing to the active utilization. In other words, it
554 * indicates if the inactive timer has been armed and its handler
555 * has not been executed yet. This flag is useful to avoid race
556 * conditions between the inactive timer handler and the wakeup
557 * code.
558 */
559 int dl_throttled;
560 int dl_boosted;
561 int dl_yielded;
562 int dl_non_contending;
563
564 /*
565 * Bandwidth enforcement timer. Each -deadline task has its
566 * own bandwidth to be enforced, thus we need one timer per task.
567 */
568 struct hrtimer dl_timer;
569
570 /*
571 * Inactive timer, responsible for decreasing the active utilization
572 * at the "0-lag time". When a -deadline task blocks, it contributes
573 * to GRUB's active utilization until the "0-lag time", hence a
574 * timer is needed to decrease the active utilization at the correct
575 * time.
576 */
577 struct hrtimer inactive_timer;
578 };
579
580 union rcu_special {
581 struct {
582 u8 blocked;
583 u8 need_qs;
584 u8 exp_need_qs;
585
586 /* Otherwise the compiler can store garbage here: */
587 u8 pad;
588 } b; /* Bits. */
589 u32 s; /* Set of bits. */
590 };
591
592 enum perf_event_task_context {
593 perf_invalid_context = -1,
594 perf_hw_context = 0,
595 perf_sw_context,
596 perf_nr_task_contexts,
597 };
598
599 struct wake_q_node {
600 struct wake_q_node *next;
601 };
602
603 struct task_struct {
604 #ifdef CONFIG_THREAD_INFO_IN_TASK
605 /*
606 * For reasons of header soup (see current_thread_info()), this
607 * must be the first element of task_struct.
608 */
609 struct thread_info thread_info;
610 #endif
611 /* -1 unrunnable, 0 runnable, >0 stopped: */
612 volatile long state;
613
614 /*
615 * This begins the randomizable portion of task_struct. Only
616 * scheduling-critical items should be added above here.
617 */
618 randomized_struct_fields_start
619
620 void *stack;
621 atomic_t usage;
622 /* Per task flags (PF_*), defined further below: */
623 unsigned int flags;
624 unsigned int ptrace;
625
626 #ifdef CONFIG_SMP
627 struct llist_node wake_entry;
628 int on_cpu;
629 #ifdef CONFIG_THREAD_INFO_IN_TASK
630 /* Current CPU: */
631 unsigned int cpu;
632 #endif
633 unsigned int wakee_flips;
634 unsigned long wakee_flip_decay_ts;
635 struct task_struct *last_wakee;
636
637 int wake_cpu;
638 #endif
639 int on_rq;
640
641 int prio;
642 int static_prio;
643 int normal_prio;
644 unsigned int rt_priority;
645
646 const struct sched_class *sched_class;
647 struct sched_entity se;
648 struct sched_rt_entity rt;
649 #ifdef CONFIG_SCHED_WALT
650 struct ravg ravg;
651 /*
652 * 'init_load_pct' represents the initial task load assigned to children
653 * of this task
654 */
655 u32 init_load_pct;
656 u64 last_sleep_ts;
657 #endif
658
659 #ifdef CONFIG_CGROUP_SCHED
660 struct task_group *sched_task_group;
661 #endif
662 struct sched_dl_entity dl;
663
664 #ifdef CONFIG_PREEMPT_NOTIFIERS
665 /* List of struct preempt_notifier: */
666 struct hlist_head preempt_notifiers;
667 #endif
668
669 #ifdef CONFIG_BLK_DEV_IO_TRACE
670 unsigned int btrace_seq;
671 #endif
672
673 unsigned int policy;
674 int nr_cpus_allowed;
675 cpumask_t cpus_allowed;
676
677 #ifdef CONFIG_PREEMPT_RCU
678 int rcu_read_lock_nesting;
679 union rcu_special rcu_read_unlock_special;
680 struct list_head rcu_node_entry;
681 struct rcu_node *rcu_blocked_node;
682 #endif /* #ifdef CONFIG_PREEMPT_RCU */
683
684 #ifdef CONFIG_TASKS_RCU
685 unsigned long rcu_tasks_nvcsw;
686 u8 rcu_tasks_holdout;
687 u8 rcu_tasks_idx;
688 int rcu_tasks_idle_cpu;
689 struct list_head rcu_tasks_holdout_list;
690 #endif /* #ifdef CONFIG_TASKS_RCU */
691
692 struct sched_info sched_info;
693
694 struct list_head tasks;
695 #ifdef CONFIG_SMP
696 struct plist_node pushable_tasks;
697 struct rb_node pushable_dl_tasks;
698 #endif
699
700 struct mm_struct *mm;
701 struct mm_struct *active_mm;
702
703 /* Per-thread vma caching: */
704 struct vmacache vmacache;
705
706 #ifdef SPLIT_RSS_COUNTING
707 struct task_rss_stat rss_stat;
708 #endif
709 int exit_state;
710 int exit_code;
711 int exit_signal;
712 /* The signal sent when the parent dies: */
713 int pdeath_signal;
714 /* JOBCTL_*, siglock protected: */
715 unsigned long jobctl;
716
717 /* Used for emulating ABI behavior of previous Linux versions: */
718 unsigned int personality;
719
720 /* Scheduler bits, serialized by scheduler locks: */
721 unsigned sched_reset_on_fork:1;
722 unsigned sched_contributes_to_load:1;
723 unsigned sched_migrated:1;
724 unsigned sched_remote_wakeup:1;
725 /* Force alignment to the next boundary: */
726 unsigned :0;
727
728 /* Unserialized, strictly 'current' */
729
730 /* Bit to tell LSMs we're in execve(): */
731 unsigned in_execve:1;
732 unsigned in_iowait:1;
733 #ifndef TIF_RESTORE_SIGMASK
734 unsigned restore_sigmask:1;
735 #endif
736 #ifdef CONFIG_MEMCG
737 unsigned memcg_may_oom:1;
738 #ifndef CONFIG_SLOB
739 unsigned memcg_kmem_skip_account:1;
740 #endif
741 #endif
742 #ifdef CONFIG_COMPAT_BRK
743 unsigned brk_randomized:1;
744 #endif
745 #ifdef CONFIG_CGROUPS
746 /* disallow userland-initiated cgroup migration */
747 unsigned no_cgroup_migration:1;
748 #endif
749
750 unsigned long atomic_flags; /* Flags requiring atomic access. */
751
752 struct restart_block restart_block;
753
754 pid_t pid;
755 pid_t tgid;
756
757 #ifdef CONFIG_CC_STACKPROTECTOR
758 /* Canary value for the -fstack-protector GCC feature: */
759 unsigned long stack_canary;
760 #endif
761 /*
762 * Pointers to the (original) parent process, youngest child, younger sibling,
763 * older sibling, respectively. (p->father can be replaced with
764 * p->real_parent->pid)
765 */
766
767 /* Real parent process: */
768 struct task_struct __rcu *real_parent;
769
770 /* Recipient of SIGCHLD, wait4() reports: */
771 struct task_struct __rcu *parent;
772
773 /*
774 * Children/sibling form the list of natural children:
775 */
776 struct list_head children;
777 struct list_head sibling;
778 struct task_struct *group_leader;
779
780 /*
781 * 'ptraced' is the list of tasks this task is using ptrace() on.
782 *
783 * This includes both natural children and PTRACE_ATTACH targets.
784 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
785 */
786 struct list_head ptraced;
787 struct list_head ptrace_entry;
788
789 /* PID/PID hash table linkage. */
790 struct pid_link pids[PIDTYPE_MAX];
791 struct list_head thread_group;
792 struct list_head thread_node;
793
794 struct completion *vfork_done;
795
796 /* CLONE_CHILD_SETTID: */
797 int __user *set_child_tid;
798
799 /* CLONE_CHILD_CLEARTID: */
800 int __user *clear_child_tid;
801
802 u64 utime;
803 u64 stime;
804 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
805 u64 utimescaled;
806 u64 stimescaled;
807 #endif
808 u64 gtime;
809 #ifdef CONFIG_CPU_FREQ_TIMES
810 u64 *time_in_state;
811 unsigned int max_state;
812 #endif
813 struct prev_cputime prev_cputime;
814 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
815 struct vtime vtime;
816 #endif
817
818 #ifdef CONFIG_NO_HZ_FULL
819 atomic_t tick_dep_mask;
820 #endif
821 /* Context switch counts: */
822 unsigned long nvcsw;
823 unsigned long nivcsw;
824
825 /* Monotonic time in nsecs: */
826 u64 start_time;
827
828 /* Boot based time in nsecs: */
829 u64 real_start_time;
830
831 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
832 unsigned long min_flt;
833 unsigned long maj_flt;
834
835 #ifdef CONFIG_POSIX_TIMERS
836 struct task_cputime cputime_expires;
837 struct list_head cpu_timers[3];
838 #endif
839
840 /* Process credentials: */
841
842 /* Tracer's credentials at attach: */
843 const struct cred __rcu *ptracer_cred;
844
845 /* Objective and real subjective task credentials (COW): */
846 const struct cred __rcu *real_cred;
847
848 /* Effective (overridable) subjective task credentials (COW): */
849 const struct cred __rcu *cred;
850
851 /*
852 * executable name, excluding path.
853 *
854 * - normally initialized setup_new_exec()
855 * - access it with [gs]et_task_comm()
856 * - lock it with task_lock()
857 */
858 char comm[TASK_COMM_LEN];
859
860 struct nameidata *nameidata;
861
862 #ifdef CONFIG_SYSVIPC
863 struct sysv_sem sysvsem;
864 struct sysv_shm sysvshm;
865 #endif
866 #ifdef CONFIG_DETECT_HUNG_TASK
867 unsigned long last_switch_count;
868 #endif
869 /* Filesystem information: */
870 struct fs_struct *fs;
871
872 /* Open file information: */
873 struct files_struct *files;
874
875 /* Namespaces: */
876 struct nsproxy *nsproxy;
877
878 /* Signal handlers: */
879 struct signal_struct *signal;
880 struct sighand_struct *sighand;
881 sigset_t blocked;
882 sigset_t real_blocked;
883 /* Restored if set_restore_sigmask() was used: */
884 sigset_t saved_sigmask;
885 struct sigpending pending;
886 unsigned long sas_ss_sp;
887 size_t sas_ss_size;
888 unsigned int sas_ss_flags;
889
890 struct callback_head *task_works;
891
892 struct audit_context *audit_context;
893 #ifdef CONFIG_AUDITSYSCALL
894 kuid_t loginuid;
895 unsigned int sessionid;
896 #endif
897 struct seccomp seccomp;
898
899 /* Thread group tracking: */
900 u32 parent_exec_id;
901 u32 self_exec_id;
902
903 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
904 spinlock_t alloc_lock;
905
906 /* Protection of the PI data structures: */
907 raw_spinlock_t pi_lock;
908
909 struct wake_q_node wake_q;
910
911 #ifdef CONFIG_RT_MUTEXES
912 /* PI waiters blocked on a rt_mutex held by this task: */
913 struct rb_root_cached pi_waiters;
914 /* Updated under owner's pi_lock and rq lock */
915 struct task_struct *pi_top_task;
916 /* Deadlock detection and priority inheritance handling: */
917 struct rt_mutex_waiter *pi_blocked_on;
918 #endif
919
920 #ifdef CONFIG_DEBUG_MUTEXES
921 /* Mutex deadlock detection: */
922 struct mutex_waiter *blocked_on;
923 #endif
924
925 #ifdef CONFIG_TRACE_IRQFLAGS
926 unsigned int irq_events;
927 unsigned long hardirq_enable_ip;
928 unsigned long hardirq_disable_ip;
929 unsigned int hardirq_enable_event;
930 unsigned int hardirq_disable_event;
931 int hardirqs_enabled;
932 int hardirq_context;
933 unsigned long softirq_disable_ip;
934 unsigned long softirq_enable_ip;
935 unsigned int softirq_disable_event;
936 unsigned int softirq_enable_event;
937 int softirqs_enabled;
938 int softirq_context;
939 #endif
940
941 #ifdef CONFIG_LOCKDEP
942 # define MAX_LOCK_DEPTH 48UL
943 u64 curr_chain_key;
944 int lockdep_depth;
945 unsigned int lockdep_recursion;
946 struct held_lock held_locks[MAX_LOCK_DEPTH];
947 #endif
948
949 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
950 #define MAX_XHLOCKS_NR 64UL
951 struct hist_lock *xhlocks; /* Crossrelease history locks */
952 unsigned int xhlock_idx;
953 /* For restoring at history boundaries */
954 unsigned int xhlock_idx_hist[XHLOCK_CTX_NR];
955 unsigned int hist_id;
956 /* For overwrite check at each context exit */
957 unsigned int hist_id_save[XHLOCK_CTX_NR];
958 #endif
959
960 #ifdef CONFIG_UBSAN
961 unsigned int in_ubsan;
962 #endif
963
964 /* Journalling filesystem info: */
965 void *journal_info;
966
967 /* Stacked block device info: */
968 struct bio_list *bio_list;
969
970 #ifdef CONFIG_BLOCK
971 /* Stack plugging: */
972 struct blk_plug *plug;
973 #endif
974
975 /* VM state: */
976 struct reclaim_state *reclaim_state;
977
978 struct backing_dev_info *backing_dev_info;
979
980 struct io_context *io_context;
981
982 /* Ptrace state: */
983 unsigned long ptrace_message;
984 siginfo_t *last_siginfo;
985
986 struct task_io_accounting ioac;
987 #ifdef CONFIG_TASK_XACCT
988 /* Accumulated RSS usage: */
989 u64 acct_rss_mem1;
990 /* Accumulated virtual memory usage: */
991 u64 acct_vm_mem1;
992 /* stime + utime since last update: */
993 u64 acct_timexpd;
994 #endif
995 #ifdef CONFIG_CPUSETS
996 /* Protected by ->alloc_lock: */
997 nodemask_t mems_allowed;
998 /* Seqence number to catch updates: */
999 seqcount_t mems_allowed_seq;
1000 int cpuset_mem_spread_rotor;
1001 int cpuset_slab_spread_rotor;
1002 #endif
1003 #ifdef CONFIG_CGROUPS
1004 /* Control Group info protected by css_set_lock: */
1005 struct css_set __rcu *cgroups;
1006 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1007 struct list_head cg_list;
1008 #endif
1009 #ifdef CONFIG_INTEL_RDT
1010 u32 closid;
1011 u32 rmid;
1012 #endif
1013 #ifdef CONFIG_FUTEX
1014 struct robust_list_head __user *robust_list;
1015 #ifdef CONFIG_COMPAT
1016 struct compat_robust_list_head __user *compat_robust_list;
1017 #endif
1018 struct list_head pi_state_list;
1019 struct futex_pi_state *pi_state_cache;
1020 #endif
1021 #ifdef CONFIG_PERF_EVENTS
1022 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1023 struct mutex perf_event_mutex;
1024 struct list_head perf_event_list;
1025 #endif
1026 #ifdef CONFIG_DEBUG_PREEMPT
1027 unsigned long preempt_disable_ip;
1028 #endif
1029 #ifdef CONFIG_NUMA
1030 /* Protected by alloc_lock: */
1031 struct mempolicy *mempolicy;
1032 short il_prev;
1033 short pref_node_fork;
1034 #endif
1035 #ifdef CONFIG_NUMA_BALANCING
1036 int numa_scan_seq;
1037 unsigned int numa_scan_period;
1038 unsigned int numa_scan_period_max;
1039 int numa_preferred_nid;
1040 unsigned long numa_migrate_retry;
1041 /* Migration stamp: */
1042 u64 node_stamp;
1043 u64 last_task_numa_placement;
1044 u64 last_sum_exec_runtime;
1045 struct callback_head numa_work;
1046
1047 struct list_head numa_entry;
1048 struct numa_group *numa_group;
1049
1050 /*
1051 * numa_faults is an array split into four regions:
1052 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1053 * in this precise order.
1054 *
1055 * faults_memory: Exponential decaying average of faults on a per-node
1056 * basis. Scheduling placement decisions are made based on these
1057 * counts. The values remain static for the duration of a PTE scan.
1058 * faults_cpu: Track the nodes the process was running on when a NUMA
1059 * hinting fault was incurred.
1060 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1061 * during the current scan window. When the scan completes, the counts
1062 * in faults_memory and faults_cpu decay and these values are copied.
1063 */
1064 unsigned long *numa_faults;
1065 unsigned long total_numa_faults;
1066
1067 /*
1068 * numa_faults_locality tracks if faults recorded during the last
1069 * scan window were remote/local or failed to migrate. The task scan
1070 * period is adapted based on the locality of the faults with different
1071 * weights depending on whether they were shared or private faults
1072 */
1073 unsigned long numa_faults_locality[3];
1074
1075 unsigned long numa_pages_migrated;
1076 #endif /* CONFIG_NUMA_BALANCING */
1077
1078 struct tlbflush_unmap_batch tlb_ubc;
1079
1080 struct rcu_head rcu;
1081
1082 /* Cache last used pipe for splice(): */
1083 struct pipe_inode_info *splice_pipe;
1084
1085 struct page_frag task_frag;
1086
1087 #ifdef CONFIG_TASK_DELAY_ACCT
1088 struct task_delay_info *delays;
1089 #endif
1090
1091 #ifdef CONFIG_FAULT_INJECTION
1092 int make_it_fail;
1093 unsigned int fail_nth;
1094 #endif
1095 /*
1096 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1097 * balance_dirty_pages() for a dirty throttling pause:
1098 */
1099 int nr_dirtied;
1100 int nr_dirtied_pause;
1101 /* Start of a write-and-pause period: */
1102 unsigned long dirty_paused_when;
1103
1104 #ifdef CONFIG_LATENCYTOP
1105 int latency_record_count;
1106 struct latency_record latency_record[LT_SAVECOUNT];
1107 #endif
1108 /*
1109 * Time slack values; these are used to round up poll() and
1110 * select() etc timeout values. These are in nanoseconds.
1111 */
1112 u64 timer_slack_ns;
1113 u64 default_timer_slack_ns;
1114
1115 #ifdef CONFIG_KASAN
1116 unsigned int kasan_depth;
1117 #endif
1118
1119 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1120 /* Index of current stored address in ret_stack: */
1121 int curr_ret_stack;
1122
1123 /* Stack of return addresses for return function tracing: */
1124 struct ftrace_ret_stack *ret_stack;
1125
1126 /* Timestamp for last schedule: */
1127 unsigned long long ftrace_timestamp;
1128
1129 /*
1130 * Number of functions that haven't been traced
1131 * because of depth overrun:
1132 */
1133 atomic_t trace_overrun;
1134
1135 /* Pause tracing: */
1136 atomic_t tracing_graph_pause;
1137 #endif
1138
1139 #ifdef CONFIG_TRACING
1140 /* State flags for use by tracers: */
1141 unsigned long trace;
1142
1143 /* Bitmask and counter of trace recursion: */
1144 unsigned long trace_recursion;
1145 #endif /* CONFIG_TRACING */
1146
1147 #ifdef CONFIG_KCOV
1148 /* Coverage collection mode enabled for this task (0 if disabled): */
1149 enum kcov_mode kcov_mode;
1150
1151 /* Size of the kcov_area: */
1152 unsigned int kcov_size;
1153
1154 /* Buffer for coverage collection: */
1155 void *kcov_area;
1156
1157 /* KCOV descriptor wired with this task or NULL: */
1158 struct kcov *kcov;
1159 #endif
1160
1161 #ifdef CONFIG_MEMCG
1162 struct mem_cgroup *memcg_in_oom;
1163 gfp_t memcg_oom_gfp_mask;
1164 int memcg_oom_order;
1165
1166 /* Number of pages to reclaim on returning to userland: */
1167 unsigned int memcg_nr_pages_over_high;
1168 #endif
1169
1170 #ifdef CONFIG_UPROBES
1171 struct uprobe_task *utask;
1172 #endif
1173 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1174 unsigned int sequential_io;
1175 unsigned int sequential_io_avg;
1176 #endif
1177 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1178 unsigned long task_state_change;
1179 #endif
1180 int pagefault_disabled;
1181 #ifdef CONFIG_MMU
1182 struct task_struct *oom_reaper_list;
1183 #endif
1184 #ifdef CONFIG_VMAP_STACK
1185 struct vm_struct *stack_vm_area;
1186 #endif
1187 #ifdef CONFIG_THREAD_INFO_IN_TASK
1188 /* A live task holds one reference: */
1189 atomic_t stack_refcount;
1190 #endif
1191 #ifdef CONFIG_LIVEPATCH
1192 int patch_state;
1193 #endif
1194 #ifdef CONFIG_SECURITY
1195 /* Used by LSM modules for access restriction: */
1196 void *security;
1197 #endif
1198
1199 /*
1200 * New fields for task_struct should be added above here, so that
1201 * they are included in the randomized portion of task_struct.
1202 */
1203 randomized_struct_fields_end
1204
1205 /* CPU-specific state of this task: */
1206 struct thread_struct thread;
1207
1208 /*
1209 * WARNING: on x86, 'thread_struct' contains a variable-sized
1210 * structure. It *MUST* be at the end of 'task_struct'.
1211 *
1212 * Do not put anything below here!
1213 */
1214 };
1215
1216 static inline struct pid *task_pid(struct task_struct *task)
1217 {
1218 return task->pids[PIDTYPE_PID].pid;
1219 }
1220
1221 static inline struct pid *task_tgid(struct task_struct *task)
1222 {
1223 return task->group_leader->pids[PIDTYPE_PID].pid;
1224 }
1225
1226 /*
1227 * Without tasklist or RCU lock it is not safe to dereference
1228 * the result of task_pgrp/task_session even if task == current,
1229 * we can race with another thread doing sys_setsid/sys_setpgid.
1230 */
1231 static inline struct pid *task_pgrp(struct task_struct *task)
1232 {
1233 return task->group_leader->pids[PIDTYPE_PGID].pid;
1234 }
1235
1236 static inline struct pid *task_session(struct task_struct *task)
1237 {
1238 return task->group_leader->pids[PIDTYPE_SID].pid;
1239 }
1240
1241 /*
1242 * the helpers to get the task's different pids as they are seen
1243 * from various namespaces
1244 *
1245 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1246 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1247 * current.
1248 * task_xid_nr_ns() : id seen from the ns specified;
1249 *
1250 * see also pid_nr() etc in include/linux/pid.h
1251 */
1252 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1253
1254 static inline pid_t task_pid_nr(struct task_struct *tsk)
1255 {
1256 return tsk->pid;
1257 }
1258
1259 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1260 {
1261 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1262 }
1263
1264 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1265 {
1266 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1267 }
1268
1269
1270 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1271 {
1272 return tsk->tgid;
1273 }
1274
1275 /**
1276 * pid_alive - check that a task structure is not stale
1277 * @p: Task structure to be checked.
1278 *
1279 * Test if a process is not yet dead (at most zombie state)
1280 * If pid_alive fails, then pointers within the task structure
1281 * can be stale and must not be dereferenced.
1282 *
1283 * Return: 1 if the process is alive. 0 otherwise.
1284 */
1285 static inline int pid_alive(const struct task_struct *p)
1286 {
1287 return p->pids[PIDTYPE_PID].pid != NULL;
1288 }
1289
1290 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1291 {
1292 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1293 }
1294
1295 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1296 {
1297 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1298 }
1299
1300
1301 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1302 {
1303 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1304 }
1305
1306 static inline pid_t task_session_vnr(struct task_struct *tsk)
1307 {
1308 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1309 }
1310
1311 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1312 {
1313 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1314 }
1315
1316 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1317 {
1318 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1319 }
1320
1321 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1322 {
1323 pid_t pid = 0;
1324
1325 rcu_read_lock();
1326 if (pid_alive(tsk))
1327 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1328 rcu_read_unlock();
1329
1330 return pid;
1331 }
1332
1333 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1334 {
1335 return task_ppid_nr_ns(tsk, &init_pid_ns);
1336 }
1337
1338 /* Obsolete, do not use: */
1339 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1340 {
1341 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1342 }
1343
1344 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1345 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1346
1347 static inline unsigned int __get_task_state(struct task_struct *tsk)
1348 {
1349 unsigned int tsk_state = READ_ONCE(tsk->state);
1350 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1351
1352 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1353
1354 if (tsk_state == TASK_IDLE)
1355 state = TASK_REPORT_IDLE;
1356
1357 return fls(state);
1358 }
1359
1360 static inline char __task_state_to_char(unsigned int state)
1361 {
1362 static const char state_char[] = "RSDTtXZPI";
1363
1364 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1365
1366 return state_char[state];
1367 }
1368
1369 static inline char task_state_to_char(struct task_struct *tsk)
1370 {
1371 return __task_state_to_char(__get_task_state(tsk));
1372 }
1373
1374 /**
1375 * is_global_init - check if a task structure is init. Since init
1376 * is free to have sub-threads we need to check tgid.
1377 * @tsk: Task structure to be checked.
1378 *
1379 * Check if a task structure is the first user space task the kernel created.
1380 *
1381 * Return: 1 if the task structure is init. 0 otherwise.
1382 */
1383 static inline int is_global_init(struct task_struct *tsk)
1384 {
1385 return task_tgid_nr(tsk) == 1;
1386 }
1387
1388 extern struct pid *cad_pid;
1389
1390 /*
1391 * Per process flags
1392 */
1393 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1394 #define PF_EXITING 0x00000004 /* Getting shut down */
1395 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1396 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1397 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1398 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1399 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1400 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1401 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1402 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1403 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1404 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1405 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1406 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1407 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1408 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1409 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1410 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1411 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1412 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1413 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1414 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1415 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1416 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1417 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1418 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1419 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1420 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1421
1422 /*
1423 * Only the _current_ task can read/write to tsk->flags, but other
1424 * tasks can access tsk->flags in readonly mode for example
1425 * with tsk_used_math (like during threaded core dumping).
1426 * There is however an exception to this rule during ptrace
1427 * or during fork: the ptracer task is allowed to write to the
1428 * child->flags of its traced child (same goes for fork, the parent
1429 * can write to the child->flags), because we're guaranteed the
1430 * child is not running and in turn not changing child->flags
1431 * at the same time the parent does it.
1432 */
1433 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1434 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1435 #define clear_used_math() clear_stopped_child_used_math(current)
1436 #define set_used_math() set_stopped_child_used_math(current)
1437
1438 #define conditional_stopped_child_used_math(condition, child) \
1439 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1440
1441 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1442
1443 #define copy_to_stopped_child_used_math(child) \
1444 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1445
1446 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1447 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1448 #define used_math() tsk_used_math(current)
1449
1450 static inline bool is_percpu_thread(void)
1451 {
1452 #ifdef CONFIG_SMP
1453 return (current->flags & PF_NO_SETAFFINITY) &&
1454 (current->nr_cpus_allowed == 1);
1455 #else
1456 return true;
1457 #endif
1458 }
1459
1460 /* Per-process atomic flags. */
1461 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1462 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1463 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1464 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1465 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1466
1467 #define TASK_PFA_TEST(name, func) \
1468 static inline bool task_##func(struct task_struct *p) \
1469 { return test_bit(PFA_##name, &p->atomic_flags); }
1470
1471 #define TASK_PFA_SET(name, func) \
1472 static inline void task_set_##func(struct task_struct *p) \
1473 { set_bit(PFA_##name, &p->atomic_flags); }
1474
1475 #define TASK_PFA_CLEAR(name, func) \
1476 static inline void task_clear_##func(struct task_struct *p) \
1477 { clear_bit(PFA_##name, &p->atomic_flags); }
1478
1479 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1480 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1481
1482 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1483 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1484 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1485
1486 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1487 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1488 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1489
1490 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1491 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1492 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1493
1494 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1495 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1496
1497 static inline void
1498 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1499 {
1500 current->flags &= ~flags;
1501 current->flags |= orig_flags & flags;
1502 }
1503
1504 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1505 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1506 #ifdef CONFIG_SMP
1507 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1508 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1509 #else
1510 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1511 {
1512 }
1513 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1514 {
1515 if (!cpumask_test_cpu(0, new_mask))
1516 return -EINVAL;
1517 return 0;
1518 }
1519 #endif
1520
1521 #ifndef cpu_relax_yield
1522 #define cpu_relax_yield() cpu_relax()
1523 #endif
1524
1525 extern int yield_to(struct task_struct *p, bool preempt);
1526 extern void set_user_nice(struct task_struct *p, long nice);
1527 extern int task_prio(const struct task_struct *p);
1528
1529 /**
1530 * task_nice - return the nice value of a given task.
1531 * @p: the task in question.
1532 *
1533 * Return: The nice value [ -20 ... 0 ... 19 ].
1534 */
1535 static inline int task_nice(const struct task_struct *p)
1536 {
1537 return PRIO_TO_NICE((p)->static_prio);
1538 }
1539
1540 extern int can_nice(const struct task_struct *p, const int nice);
1541 extern int task_curr(const struct task_struct *p);
1542 extern int idle_cpu(int cpu);
1543 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1544 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1545 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1546 extern struct task_struct *idle_task(int cpu);
1547
1548 /**
1549 * is_idle_task - is the specified task an idle task?
1550 * @p: the task in question.
1551 *
1552 * Return: 1 if @p is an idle task. 0 otherwise.
1553 */
1554 static inline bool is_idle_task(const struct task_struct *p)
1555 {
1556 return !!(p->flags & PF_IDLE);
1557 }
1558
1559 extern struct task_struct *curr_task(int cpu);
1560 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1561
1562 void yield(void);
1563
1564 union thread_union {
1565 #ifndef CONFIG_THREAD_INFO_IN_TASK
1566 struct thread_info thread_info;
1567 #endif
1568 unsigned long stack[THREAD_SIZE/sizeof(long)];
1569 };
1570
1571 #ifdef CONFIG_THREAD_INFO_IN_TASK
1572 static inline struct thread_info *task_thread_info(struct task_struct *task)
1573 {
1574 return &task->thread_info;
1575 }
1576 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1577 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1578 #endif
1579
1580 /*
1581 * find a task by one of its numerical ids
1582 *
1583 * find_task_by_pid_ns():
1584 * finds a task by its pid in the specified namespace
1585 * find_task_by_vpid():
1586 * finds a task by its virtual pid
1587 *
1588 * see also find_vpid() etc in include/linux/pid.h
1589 */
1590
1591 extern struct task_struct *find_task_by_vpid(pid_t nr);
1592 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1593
1594 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1595 extern int wake_up_process(struct task_struct *tsk);
1596 extern void wake_up_new_task(struct task_struct *tsk);
1597
1598 #ifdef CONFIG_SMP
1599 extern void kick_process(struct task_struct *tsk);
1600 #else
1601 static inline void kick_process(struct task_struct *tsk) { }
1602 #endif
1603
1604 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1605
1606 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1607 {
1608 __set_task_comm(tsk, from, false);
1609 }
1610
1611 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1612 #define get_task_comm(buf, tsk) ({ \
1613 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1614 __get_task_comm(buf, sizeof(buf), tsk); \
1615 })
1616
1617 #ifdef CONFIG_SMP
1618 void scheduler_ipi(void);
1619 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1620 #else
1621 static inline void scheduler_ipi(void) { }
1622 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1623 {
1624 return 1;
1625 }
1626 #endif
1627
1628 /*
1629 * Set thread flags in other task's structures.
1630 * See asm/thread_info.h for TIF_xxxx flags available:
1631 */
1632 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1633 {
1634 set_ti_thread_flag(task_thread_info(tsk), flag);
1635 }
1636
1637 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1638 {
1639 clear_ti_thread_flag(task_thread_info(tsk), flag);
1640 }
1641
1642 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1643 {
1644 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1645 }
1646
1647 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1648 {
1649 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1650 }
1651
1652 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1653 {
1654 return test_ti_thread_flag(task_thread_info(tsk), flag);
1655 }
1656
1657 static inline void set_tsk_need_resched(struct task_struct *tsk)
1658 {
1659 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1660 }
1661
1662 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1663 {
1664 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1665 }
1666
1667 static inline int test_tsk_need_resched(struct task_struct *tsk)
1668 {
1669 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1670 }
1671
1672 /*
1673 * cond_resched() and cond_resched_lock(): latency reduction via
1674 * explicit rescheduling in places that are safe. The return
1675 * value indicates whether a reschedule was done in fact.
1676 * cond_resched_lock() will drop the spinlock before scheduling,
1677 * cond_resched_softirq() will enable bhs before scheduling.
1678 */
1679 #ifndef CONFIG_PREEMPT
1680 extern int _cond_resched(void);
1681 #else
1682 static inline int _cond_resched(void) { return 0; }
1683 #endif
1684
1685 #define cond_resched() ({ \
1686 ___might_sleep(__FILE__, __LINE__, 0); \
1687 _cond_resched(); \
1688 })
1689
1690 extern int __cond_resched_lock(spinlock_t *lock);
1691
1692 #define cond_resched_lock(lock) ({ \
1693 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1694 __cond_resched_lock(lock); \
1695 })
1696
1697 extern int __cond_resched_softirq(void);
1698
1699 #define cond_resched_softirq() ({ \
1700 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1701 __cond_resched_softirq(); \
1702 })
1703
1704 static inline void cond_resched_rcu(void)
1705 {
1706 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1707 rcu_read_unlock();
1708 cond_resched();
1709 rcu_read_lock();
1710 #endif
1711 }
1712
1713 /*
1714 * Does a critical section need to be broken due to another
1715 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1716 * but a general need for low latency)
1717 */
1718 static inline int spin_needbreak(spinlock_t *lock)
1719 {
1720 #ifdef CONFIG_PREEMPT
1721 return spin_is_contended(lock);
1722 #else
1723 return 0;
1724 #endif
1725 }
1726
1727 static __always_inline bool need_resched(void)
1728 {
1729 return unlikely(tif_need_resched());
1730 }
1731
1732 /*
1733 * Wrappers for p->thread_info->cpu access. No-op on UP.
1734 */
1735 #ifdef CONFIG_SMP
1736
1737 static inline unsigned int task_cpu(const struct task_struct *p)
1738 {
1739 #ifdef CONFIG_THREAD_INFO_IN_TASK
1740 return p->cpu;
1741 #else
1742 return task_thread_info(p)->cpu;
1743 #endif
1744 }
1745
1746 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1747
1748 #else
1749
1750 static inline unsigned int task_cpu(const struct task_struct *p)
1751 {
1752 return 0;
1753 }
1754
1755 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1756 {
1757 }
1758
1759 #endif /* CONFIG_SMP */
1760
1761 /*
1762 * In order to reduce various lock holder preemption latencies provide an
1763 * interface to see if a vCPU is currently running or not.
1764 *
1765 * This allows us to terminate optimistic spin loops and block, analogous to
1766 * the native optimistic spin heuristic of testing if the lock owner task is
1767 * running or not.
1768 */
1769 #ifndef vcpu_is_preempted
1770 # define vcpu_is_preempted(cpu) false
1771 #endif
1772
1773 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1774 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1775
1776 #ifndef TASK_SIZE_OF
1777 #define TASK_SIZE_OF(tsk) TASK_SIZE
1778 #endif
1779
1780 #endif