[COMMON] sched: fair: ontime task must wake up from specified target_cpu
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30
31 /* task_struct member predeclarations (sorted alphabetically): */
32 struct audit_context;
33 struct backing_dev_info;
34 struct bio_list;
35 struct blk_plug;
36 struct cfs_rq;
37 struct fs_struct;
38 struct futex_pi_state;
39 struct io_context;
40 struct mempolicy;
41 struct nameidata;
42 struct nsproxy;
43 struct perf_event_context;
44 struct pid_namespace;
45 struct pipe_inode_info;
46 struct rcu_node;
47 struct reclaim_state;
48 struct robust_list_head;
49 struct sched_attr;
50 struct sched_param;
51 struct seq_file;
52 struct sighand_struct;
53 struct signal_struct;
54 struct task_delay_info;
55 struct task_group;
56
57 /*
58 * Task state bitmask. NOTE! These bits are also
59 * encoded in fs/proc/array.c: get_task_state().
60 *
61 * We have two separate sets of flags: task->state
62 * is about runnability, while task->exit_state are
63 * about the task exiting. Confusing, but this way
64 * modifying one set can't modify the other one by
65 * mistake.
66 */
67
68 /* Used in tsk->state: */
69 #define TASK_RUNNING 0x0000
70 #define TASK_INTERRUPTIBLE 0x0001
71 #define TASK_UNINTERRUPTIBLE 0x0002
72 #define __TASK_STOPPED 0x0004
73 #define __TASK_TRACED 0x0008
74 /* Used in tsk->exit_state: */
75 #define EXIT_DEAD 0x0010
76 #define EXIT_ZOMBIE 0x0020
77 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
78 /* Used in tsk->state again: */
79 #define TASK_PARKED 0x0040
80 #define TASK_DEAD 0x0080
81 #define TASK_WAKEKILL 0x0100
82 #define TASK_WAKING 0x0200
83 #define TASK_NOLOAD 0x0400
84 #define TASK_NEW 0x0800
85 #define TASK_STATE_MAX 0x1000
86
87 /* Convenience macros for the sake of set_current_state: */
88 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
90 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
91
92 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93
94 /* Convenience macros for the sake of wake_up(): */
95 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
97
98 /* get_task_state(): */
99 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 #define __set_current_state(state_value) \
117 do { \
118 current->task_state_change = _THIS_IP_; \
119 current->state = (state_value); \
120 } while (0)
121 #define set_current_state(state_value) \
122 do { \
123 current->task_state_change = _THIS_IP_; \
124 smp_store_mb(current->state, (state_value)); \
125 } while (0)
126
127 #else
128 /*
129 * set_current_state() includes a barrier so that the write of current->state
130 * is correctly serialised wrt the caller's subsequent test of whether to
131 * actually sleep:
132 *
133 * for (;;) {
134 * set_current_state(TASK_UNINTERRUPTIBLE);
135 * if (!need_sleep)
136 * break;
137 *
138 * schedule();
139 * }
140 * __set_current_state(TASK_RUNNING);
141 *
142 * If the caller does not need such serialisation (because, for instance, the
143 * condition test and condition change and wakeup are under the same lock) then
144 * use __set_current_state().
145 *
146 * The above is typically ordered against the wakeup, which does:
147 *
148 * need_sleep = false;
149 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
150 *
151 * Where wake_up_state() (and all other wakeup primitives) imply enough
152 * barriers to order the store of the variable against wakeup.
153 *
154 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
157 *
158 * This is obviously fine, since they both store the exact same value.
159 *
160 * Also see the comments of try_to_wake_up().
161 */
162 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163 #define set_current_state(state_value) smp_store_mb(current->state, (state_value))
164 #endif
165
166 /* Task command name length: */
167 #define TASK_COMM_LEN 16
168
169 enum task_event {
170 PUT_PREV_TASK = 0,
171 PICK_NEXT_TASK = 1,
172 TASK_WAKE = 2,
173 TASK_MIGRATE = 3,
174 TASK_UPDATE = 4,
175 IRQ_UPDATE = 5,
176 };
177
178 extern cpumask_var_t cpu_isolated_map;
179
180 extern void scheduler_tick(void);
181
182 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
183
184 extern long schedule_timeout(long timeout);
185 extern long schedule_timeout_interruptible(long timeout);
186 extern long schedule_timeout_killable(long timeout);
187 extern long schedule_timeout_uninterruptible(long timeout);
188 extern long schedule_timeout_idle(long timeout);
189 asmlinkage void schedule(void);
190 extern void schedule_preempt_disabled(void);
191
192 extern int __must_check io_schedule_prepare(void);
193 extern void io_schedule_finish(int token);
194 extern long io_schedule_timeout(long timeout);
195 extern void io_schedule(void);
196
197 /**
198 * struct prev_cputime - snapshot of system and user cputime
199 * @utime: time spent in user mode
200 * @stime: time spent in system mode
201 * @lock: protects the above two fields
202 *
203 * Stores previous user/system time values such that we can guarantee
204 * monotonicity.
205 */
206 struct prev_cputime {
207 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
208 u64 utime;
209 u64 stime;
210 raw_spinlock_t lock;
211 #endif
212 };
213
214 /**
215 * struct task_cputime - collected CPU time counts
216 * @utime: time spent in user mode, in nanoseconds
217 * @stime: time spent in kernel mode, in nanoseconds
218 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
219 *
220 * This structure groups together three kinds of CPU time that are tracked for
221 * threads and thread groups. Most things considering CPU time want to group
222 * these counts together and treat all three of them in parallel.
223 */
224 struct task_cputime {
225 u64 utime;
226 u64 stime;
227 unsigned long long sum_exec_runtime;
228 };
229
230 /* Alternate field names when used on cache expirations: */
231 #define virt_exp utime
232 #define prof_exp stime
233 #define sched_exp sum_exec_runtime
234
235 enum vtime_state {
236 /* Task is sleeping or running in a CPU with VTIME inactive: */
237 VTIME_INACTIVE = 0,
238 /* Task runs in userspace in a CPU with VTIME active: */
239 VTIME_USER,
240 /* Task runs in kernelspace in a CPU with VTIME active: */
241 VTIME_SYS,
242 };
243
244 struct vtime {
245 seqcount_t seqcount;
246 unsigned long long starttime;
247 enum vtime_state state;
248 u64 utime;
249 u64 stime;
250 u64 gtime;
251 };
252
253 struct sched_info {
254 #ifdef CONFIG_SCHED_INFO
255 /* Cumulative counters: */
256
257 /* # of times we have run on this CPU: */
258 unsigned long pcount;
259
260 /* Time spent waiting on a runqueue: */
261 unsigned long long run_delay;
262
263 /* Timestamps: */
264
265 /* When did we last run on a CPU? */
266 unsigned long long last_arrival;
267
268 /* When were we last queued to run? */
269 unsigned long long last_queued;
270
271 #endif /* CONFIG_SCHED_INFO */
272 };
273
274 /*
275 * Integer metrics need fixed point arithmetic, e.g., sched/fair
276 * has a few: load, load_avg, util_avg, freq, and capacity.
277 *
278 * We define a basic fixed point arithmetic range, and then formalize
279 * all these metrics based on that basic range.
280 */
281 # define SCHED_FIXEDPOINT_SHIFT 10
282 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
283
284 struct load_weight {
285 unsigned long weight;
286 u32 inv_weight;
287 };
288
289 /*
290 * The load_avg/util_avg accumulates an infinite geometric series
291 * (see __update_load_avg() in kernel/sched/fair.c).
292 *
293 * [load_avg definition]
294 *
295 * load_avg = runnable% * scale_load_down(load)
296 *
297 * where runnable% is the time ratio that a sched_entity is runnable.
298 * For cfs_rq, it is the aggregated load_avg of all runnable and
299 * blocked sched_entities.
300 *
301 * load_avg may also take frequency scaling into account:
302 *
303 * load_avg = runnable% * scale_load_down(load) * freq%
304 *
305 * where freq% is the CPU frequency normalized to the highest frequency.
306 *
307 * [util_avg definition]
308 *
309 * util_avg = running% * SCHED_CAPACITY_SCALE
310 *
311 * where running% is the time ratio that a sched_entity is running on
312 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
313 * and blocked sched_entities.
314 *
315 * util_avg may also factor frequency scaling and CPU capacity scaling:
316 *
317 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
318 *
319 * where freq% is the same as above, and capacity% is the CPU capacity
320 * normalized to the greatest capacity (due to uarch differences, etc).
321 *
322 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
323 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
324 * we therefore scale them to as large a range as necessary. This is for
325 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
326 *
327 * [Overflow issue]
328 *
329 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
330 * with the highest load (=88761), always runnable on a single cfs_rq,
331 * and should not overflow as the number already hits PID_MAX_LIMIT.
332 *
333 * For all other cases (including 32-bit kernels), struct load_weight's
334 * weight will overflow first before we do, because:
335 *
336 * Max(load_avg) <= Max(load.weight)
337 *
338 * Then it is the load_weight's responsibility to consider overflow
339 * issues.
340 */
341 struct sched_avg {
342 u64 last_update_time;
343 u64 load_sum;
344 u32 util_sum;
345 u32 period_contrib;
346 unsigned long load_avg;
347 unsigned long util_avg;
348 };
349
350 #ifdef CONFIG_SCHED_EHMP
351 #define NOT_ONTIME 1
352 #define ONTIME_MIGRATING 2
353 #define ONTIME 4
354
355 #define ontime_of(p) (&p->se.ontime)
356
357 struct ontime_avg {
358 u64 ontime_migration_time;
359 u64 load_sum;
360 u32 period_contrib;
361 unsigned long load_avg;
362 };
363
364 struct ontime_entity {
365 struct ontime_avg avg;
366 int flags;
367 int cpu;
368 };
369 #endif
370
371 struct sched_statistics {
372 #ifdef CONFIG_SCHEDSTATS
373 u64 wait_start;
374 u64 wait_max;
375 u64 wait_count;
376 u64 wait_sum;
377 u64 iowait_count;
378 u64 iowait_sum;
379
380 u64 sleep_start;
381 u64 sleep_max;
382 s64 sum_sleep_runtime;
383
384 u64 block_start;
385 u64 block_max;
386 u64 exec_max;
387 u64 slice_max;
388
389 u64 nr_migrations_cold;
390 u64 nr_failed_migrations_affine;
391 u64 nr_failed_migrations_running;
392 u64 nr_failed_migrations_hot;
393 u64 nr_forced_migrations;
394
395 u64 nr_wakeups;
396 u64 nr_wakeups_sync;
397 u64 nr_wakeups_migrate;
398 u64 nr_wakeups_local;
399 u64 nr_wakeups_remote;
400 u64 nr_wakeups_affine;
401 u64 nr_wakeups_affine_attempts;
402 u64 nr_wakeups_passive;
403 u64 nr_wakeups_idle;
404 #endif
405 };
406
407 struct sched_entity {
408 /* For load-balancing: */
409 struct load_weight load;
410 struct rb_node run_node;
411 struct list_head group_node;
412 unsigned int on_rq;
413
414 u64 exec_start;
415 u64 sum_exec_runtime;
416 u64 vruntime;
417 u64 prev_sum_exec_runtime;
418
419 u64 nr_migrations;
420
421 struct sched_statistics statistics;
422
423 #ifdef CONFIG_FAIR_GROUP_SCHED
424 int depth;
425 struct sched_entity *parent;
426 /* rq on which this entity is (to be) queued: */
427 struct cfs_rq *cfs_rq;
428 /* rq "owned" by this entity/group: */
429 struct cfs_rq *my_q;
430 #endif
431
432 #ifdef CONFIG_SMP
433 /*
434 * Per entity load average tracking.
435 *
436 * Put into separate cache line so it does not
437 * collide with read-mostly values above.
438 */
439 struct sched_avg avg ____cacheline_aligned_in_smp;
440 #endif
441 #ifdef CONFIG_SCHED_EHMP
442 struct ontime_entity ontime;
443 #endif
444 };
445
446 #ifdef CONFIG_SCHED_WALT
447 #define RAVG_HIST_SIZE_MAX 5
448
449 /* ravg represents frequency scaled cpu-demand of tasks */
450 struct ravg {
451 /*
452 * 'mark_start' marks the beginning of an event (task waking up, task
453 * starting to execute, task being preempted) within a window
454 *
455 * 'sum' represents how runnable a task has been within current
456 * window. It incorporates both running time and wait time and is
457 * frequency scaled.
458 *
459 * 'sum_history' keeps track of history of 'sum' seen over previous
460 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
461 * ignored.
462 *
463 * 'demand' represents maximum sum seen over previous
464 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
465 * demand for tasks.
466 *
467 * 'curr_window' represents task's contribution to cpu busy time
468 * statistics (rq->curr_runnable_sum) in current window
469 *
470 * 'prev_window' represents task's contribution to cpu busy time
471 * statistics (rq->prev_runnable_sum) in previous window
472 */
473 u64 mark_start;
474 u32 sum, demand;
475 u32 sum_history[RAVG_HIST_SIZE_MAX];
476 u32 curr_window, prev_window;
477 u16 active_windows;
478 };
479 #endif
480
481 struct sched_rt_entity {
482 struct list_head run_list;
483 unsigned long timeout;
484 unsigned long watchdog_stamp;
485 unsigned int time_slice;
486 unsigned short on_rq;
487 unsigned short on_list;
488
489 struct sched_rt_entity *back;
490 #ifdef CONFIG_RT_GROUP_SCHED
491 struct sched_rt_entity *parent;
492 /* rq on which this entity is (to be) queued: */
493 struct rt_rq *rt_rq;
494 /* rq "owned" by this entity/group: */
495 struct rt_rq *my_q;
496 #endif
497 } __randomize_layout;
498
499 struct sched_dl_entity {
500 struct rb_node rb_node;
501
502 /*
503 * Original scheduling parameters. Copied here from sched_attr
504 * during sched_setattr(), they will remain the same until
505 * the next sched_setattr().
506 */
507 u64 dl_runtime; /* Maximum runtime for each instance */
508 u64 dl_deadline; /* Relative deadline of each instance */
509 u64 dl_period; /* Separation of two instances (period) */
510 u64 dl_bw; /* dl_runtime / dl_period */
511 u64 dl_density; /* dl_runtime / dl_deadline */
512
513 /*
514 * Actual scheduling parameters. Initialized with the values above,
515 * they are continously updated during task execution. Note that
516 * the remaining runtime could be < 0 in case we are in overrun.
517 */
518 s64 runtime; /* Remaining runtime for this instance */
519 u64 deadline; /* Absolute deadline for this instance */
520 unsigned int flags; /* Specifying the scheduler behaviour */
521
522 /*
523 * Some bool flags:
524 *
525 * @dl_throttled tells if we exhausted the runtime. If so, the
526 * task has to wait for a replenishment to be performed at the
527 * next firing of dl_timer.
528 *
529 * @dl_boosted tells if we are boosted due to DI. If so we are
530 * outside bandwidth enforcement mechanism (but only until we
531 * exit the critical section);
532 *
533 * @dl_yielded tells if task gave up the CPU before consuming
534 * all its available runtime during the last job.
535 *
536 * @dl_non_contending tells if the task is inactive while still
537 * contributing to the active utilization. In other words, it
538 * indicates if the inactive timer has been armed and its handler
539 * has not been executed yet. This flag is useful to avoid race
540 * conditions between the inactive timer handler and the wakeup
541 * code.
542 */
543 int dl_throttled;
544 int dl_boosted;
545 int dl_yielded;
546 int dl_non_contending;
547
548 /*
549 * Bandwidth enforcement timer. Each -deadline task has its
550 * own bandwidth to be enforced, thus we need one timer per task.
551 */
552 struct hrtimer dl_timer;
553
554 /*
555 * Inactive timer, responsible for decreasing the active utilization
556 * at the "0-lag time". When a -deadline task blocks, it contributes
557 * to GRUB's active utilization until the "0-lag time", hence a
558 * timer is needed to decrease the active utilization at the correct
559 * time.
560 */
561 struct hrtimer inactive_timer;
562 };
563
564 union rcu_special {
565 struct {
566 u8 blocked;
567 u8 need_qs;
568 u8 exp_need_qs;
569
570 /* Otherwise the compiler can store garbage here: */
571 u8 pad;
572 } b; /* Bits. */
573 u32 s; /* Set of bits. */
574 };
575
576 enum perf_event_task_context {
577 perf_invalid_context = -1,
578 perf_hw_context = 0,
579 perf_sw_context,
580 perf_nr_task_contexts,
581 };
582
583 struct wake_q_node {
584 struct wake_q_node *next;
585 };
586
587 struct task_struct {
588 #ifdef CONFIG_THREAD_INFO_IN_TASK
589 /*
590 * For reasons of header soup (see current_thread_info()), this
591 * must be the first element of task_struct.
592 */
593 struct thread_info thread_info;
594 #endif
595 /* -1 unrunnable, 0 runnable, >0 stopped: */
596 volatile long state;
597
598 /*
599 * This begins the randomizable portion of task_struct. Only
600 * scheduling-critical items should be added above here.
601 */
602 randomized_struct_fields_start
603
604 void *stack;
605 atomic_t usage;
606 /* Per task flags (PF_*), defined further below: */
607 unsigned int flags;
608 unsigned int ptrace;
609
610 #ifdef CONFIG_SMP
611 struct llist_node wake_entry;
612 int on_cpu;
613 #ifdef CONFIG_THREAD_INFO_IN_TASK
614 /* Current CPU: */
615 unsigned int cpu;
616 #endif
617 unsigned int wakee_flips;
618 unsigned long wakee_flip_decay_ts;
619 struct task_struct *last_wakee;
620
621 int wake_cpu;
622 #endif
623 int on_rq;
624
625 int prio;
626 int static_prio;
627 int normal_prio;
628 unsigned int rt_priority;
629
630 const struct sched_class *sched_class;
631 struct sched_entity se;
632 struct sched_rt_entity rt;
633 #ifdef CONFIG_SCHED_WALT
634 struct ravg ravg;
635 /*
636 * 'init_load_pct' represents the initial task load assigned to children
637 * of this task
638 */
639 u32 init_load_pct;
640 u64 last_sleep_ts;
641 #endif
642
643 #ifdef CONFIG_CGROUP_SCHED
644 struct task_group *sched_task_group;
645 #endif
646 struct sched_dl_entity dl;
647
648 #ifdef CONFIG_PREEMPT_NOTIFIERS
649 /* List of struct preempt_notifier: */
650 struct hlist_head preempt_notifiers;
651 #endif
652
653 #ifdef CONFIG_BLK_DEV_IO_TRACE
654 unsigned int btrace_seq;
655 #endif
656
657 unsigned int policy;
658 int nr_cpus_allowed;
659 cpumask_t cpus_allowed;
660
661 #ifdef CONFIG_PREEMPT_RCU
662 int rcu_read_lock_nesting;
663 union rcu_special rcu_read_unlock_special;
664 struct list_head rcu_node_entry;
665 struct rcu_node *rcu_blocked_node;
666 #endif /* #ifdef CONFIG_PREEMPT_RCU */
667
668 #ifdef CONFIG_TASKS_RCU
669 unsigned long rcu_tasks_nvcsw;
670 u8 rcu_tasks_holdout;
671 u8 rcu_tasks_idx;
672 int rcu_tasks_idle_cpu;
673 struct list_head rcu_tasks_holdout_list;
674 #endif /* #ifdef CONFIG_TASKS_RCU */
675
676 struct sched_info sched_info;
677
678 struct list_head tasks;
679 #ifdef CONFIG_SMP
680 struct plist_node pushable_tasks;
681 struct rb_node pushable_dl_tasks;
682 #endif
683
684 struct mm_struct *mm;
685 struct mm_struct *active_mm;
686
687 /* Per-thread vma caching: */
688 struct vmacache vmacache;
689
690 #ifdef SPLIT_RSS_COUNTING
691 struct task_rss_stat rss_stat;
692 #endif
693 int exit_state;
694 int exit_code;
695 int exit_signal;
696 /* The signal sent when the parent dies: */
697 int pdeath_signal;
698 /* JOBCTL_*, siglock protected: */
699 unsigned long jobctl;
700
701 /* Used for emulating ABI behavior of previous Linux versions: */
702 unsigned int personality;
703
704 /* Scheduler bits, serialized by scheduler locks: */
705 unsigned sched_reset_on_fork:1;
706 unsigned sched_contributes_to_load:1;
707 unsigned sched_migrated:1;
708 unsigned sched_remote_wakeup:1;
709 /* Force alignment to the next boundary: */
710 unsigned :0;
711
712 /* Unserialized, strictly 'current' */
713
714 /* Bit to tell LSMs we're in execve(): */
715 unsigned in_execve:1;
716 unsigned in_iowait:1;
717 #ifndef TIF_RESTORE_SIGMASK
718 unsigned restore_sigmask:1;
719 #endif
720 #ifdef CONFIG_MEMCG
721 unsigned memcg_may_oom:1;
722 #ifndef CONFIG_SLOB
723 unsigned memcg_kmem_skip_account:1;
724 #endif
725 #endif
726 #ifdef CONFIG_COMPAT_BRK
727 unsigned brk_randomized:1;
728 #endif
729 #ifdef CONFIG_CGROUPS
730 /* disallow userland-initiated cgroup migration */
731 unsigned no_cgroup_migration:1;
732 #endif
733
734 unsigned long atomic_flags; /* Flags requiring atomic access. */
735
736 struct restart_block restart_block;
737
738 pid_t pid;
739 pid_t tgid;
740
741 #ifdef CONFIG_CC_STACKPROTECTOR
742 /* Canary value for the -fstack-protector GCC feature: */
743 unsigned long stack_canary;
744 #endif
745 /*
746 * Pointers to the (original) parent process, youngest child, younger sibling,
747 * older sibling, respectively. (p->father can be replaced with
748 * p->real_parent->pid)
749 */
750
751 /* Real parent process: */
752 struct task_struct __rcu *real_parent;
753
754 /* Recipient of SIGCHLD, wait4() reports: */
755 struct task_struct __rcu *parent;
756
757 /*
758 * Children/sibling form the list of natural children:
759 */
760 struct list_head children;
761 struct list_head sibling;
762 struct task_struct *group_leader;
763
764 /*
765 * 'ptraced' is the list of tasks this task is using ptrace() on.
766 *
767 * This includes both natural children and PTRACE_ATTACH targets.
768 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
769 */
770 struct list_head ptraced;
771 struct list_head ptrace_entry;
772
773 /* PID/PID hash table linkage. */
774 struct pid_link pids[PIDTYPE_MAX];
775 struct list_head thread_group;
776 struct list_head thread_node;
777
778 struct completion *vfork_done;
779
780 /* CLONE_CHILD_SETTID: */
781 int __user *set_child_tid;
782
783 /* CLONE_CHILD_CLEARTID: */
784 int __user *clear_child_tid;
785
786 u64 utime;
787 u64 stime;
788 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
789 u64 utimescaled;
790 u64 stimescaled;
791 #endif
792 u64 gtime;
793 struct prev_cputime prev_cputime;
794 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
795 struct vtime vtime;
796 #endif
797
798 #ifdef CONFIG_NO_HZ_FULL
799 atomic_t tick_dep_mask;
800 #endif
801 /* Context switch counts: */
802 unsigned long nvcsw;
803 unsigned long nivcsw;
804
805 /* Monotonic time in nsecs: */
806 u64 start_time;
807
808 /* Boot based time in nsecs: */
809 u64 real_start_time;
810
811 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
812 unsigned long min_flt;
813 unsigned long maj_flt;
814
815 #ifdef CONFIG_POSIX_TIMERS
816 struct task_cputime cputime_expires;
817 struct list_head cpu_timers[3];
818 #endif
819
820 /* Process credentials: */
821
822 /* Tracer's credentials at attach: */
823 const struct cred __rcu *ptracer_cred;
824
825 /* Objective and real subjective task credentials (COW): */
826 const struct cred __rcu *real_cred;
827
828 /* Effective (overridable) subjective task credentials (COW): */
829 const struct cred __rcu *cred;
830
831 /*
832 * executable name, excluding path.
833 *
834 * - normally initialized setup_new_exec()
835 * - access it with [gs]et_task_comm()
836 * - lock it with task_lock()
837 */
838 char comm[TASK_COMM_LEN];
839
840 struct nameidata *nameidata;
841
842 #ifdef CONFIG_SYSVIPC
843 struct sysv_sem sysvsem;
844 struct sysv_shm sysvshm;
845 #endif
846 #ifdef CONFIG_DETECT_HUNG_TASK
847 unsigned long last_switch_count;
848 #endif
849 /* Filesystem information: */
850 struct fs_struct *fs;
851
852 /* Open file information: */
853 struct files_struct *files;
854
855 /* Namespaces: */
856 struct nsproxy *nsproxy;
857
858 /* Signal handlers: */
859 struct signal_struct *signal;
860 struct sighand_struct *sighand;
861 sigset_t blocked;
862 sigset_t real_blocked;
863 /* Restored if set_restore_sigmask() was used: */
864 sigset_t saved_sigmask;
865 struct sigpending pending;
866 unsigned long sas_ss_sp;
867 size_t sas_ss_size;
868 unsigned int sas_ss_flags;
869
870 struct callback_head *task_works;
871
872 struct audit_context *audit_context;
873 #ifdef CONFIG_AUDITSYSCALL
874 kuid_t loginuid;
875 unsigned int sessionid;
876 #endif
877 struct seccomp seccomp;
878
879 /* Thread group tracking: */
880 u32 parent_exec_id;
881 u32 self_exec_id;
882
883 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
884 spinlock_t alloc_lock;
885
886 /* Protection of the PI data structures: */
887 raw_spinlock_t pi_lock;
888
889 struct wake_q_node wake_q;
890
891 #ifdef CONFIG_RT_MUTEXES
892 /* PI waiters blocked on a rt_mutex held by this task: */
893 struct rb_root_cached pi_waiters;
894 /* Updated under owner's pi_lock and rq lock */
895 struct task_struct *pi_top_task;
896 /* Deadlock detection and priority inheritance handling: */
897 struct rt_mutex_waiter *pi_blocked_on;
898 #endif
899
900 #ifdef CONFIG_DEBUG_MUTEXES
901 /* Mutex deadlock detection: */
902 struct mutex_waiter *blocked_on;
903 #endif
904
905 #ifdef CONFIG_TRACE_IRQFLAGS
906 unsigned int irq_events;
907 unsigned long hardirq_enable_ip;
908 unsigned long hardirq_disable_ip;
909 unsigned int hardirq_enable_event;
910 unsigned int hardirq_disable_event;
911 int hardirqs_enabled;
912 int hardirq_context;
913 unsigned long softirq_disable_ip;
914 unsigned long softirq_enable_ip;
915 unsigned int softirq_disable_event;
916 unsigned int softirq_enable_event;
917 int softirqs_enabled;
918 int softirq_context;
919 #endif
920
921 #ifdef CONFIG_LOCKDEP
922 # define MAX_LOCK_DEPTH 48UL
923 u64 curr_chain_key;
924 int lockdep_depth;
925 unsigned int lockdep_recursion;
926 struct held_lock held_locks[MAX_LOCK_DEPTH];
927 #endif
928
929 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
930 #define MAX_XHLOCKS_NR 64UL
931 struct hist_lock *xhlocks; /* Crossrelease history locks */
932 unsigned int xhlock_idx;
933 /* For restoring at history boundaries */
934 unsigned int xhlock_idx_hist[XHLOCK_CTX_NR];
935 unsigned int hist_id;
936 /* For overwrite check at each context exit */
937 unsigned int hist_id_save[XHLOCK_CTX_NR];
938 #endif
939
940 #ifdef CONFIG_UBSAN
941 unsigned int in_ubsan;
942 #endif
943
944 /* Journalling filesystem info: */
945 void *journal_info;
946
947 /* Stacked block device info: */
948 struct bio_list *bio_list;
949
950 #ifdef CONFIG_BLOCK
951 /* Stack plugging: */
952 struct blk_plug *plug;
953 #endif
954
955 /* VM state: */
956 struct reclaim_state *reclaim_state;
957
958 struct backing_dev_info *backing_dev_info;
959
960 struct io_context *io_context;
961
962 /* Ptrace state: */
963 unsigned long ptrace_message;
964 siginfo_t *last_siginfo;
965
966 struct task_io_accounting ioac;
967 #ifdef CONFIG_TASK_XACCT
968 /* Accumulated RSS usage: */
969 u64 acct_rss_mem1;
970 /* Accumulated virtual memory usage: */
971 u64 acct_vm_mem1;
972 /* stime + utime since last update: */
973 u64 acct_timexpd;
974 #endif
975 #ifdef CONFIG_CPUSETS
976 /* Protected by ->alloc_lock: */
977 nodemask_t mems_allowed;
978 /* Seqence number to catch updates: */
979 seqcount_t mems_allowed_seq;
980 int cpuset_mem_spread_rotor;
981 int cpuset_slab_spread_rotor;
982 #endif
983 #ifdef CONFIG_CGROUPS
984 /* Control Group info protected by css_set_lock: */
985 struct css_set __rcu *cgroups;
986 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
987 struct list_head cg_list;
988 #endif
989 #ifdef CONFIG_INTEL_RDT
990 u32 closid;
991 u32 rmid;
992 #endif
993 #ifdef CONFIG_FUTEX
994 struct robust_list_head __user *robust_list;
995 #ifdef CONFIG_COMPAT
996 struct compat_robust_list_head __user *compat_robust_list;
997 #endif
998 struct list_head pi_state_list;
999 struct futex_pi_state *pi_state_cache;
1000 #endif
1001 #ifdef CONFIG_PERF_EVENTS
1002 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1003 struct mutex perf_event_mutex;
1004 struct list_head perf_event_list;
1005 #endif
1006 #ifdef CONFIG_DEBUG_PREEMPT
1007 unsigned long preempt_disable_ip;
1008 #endif
1009 #ifdef CONFIG_NUMA
1010 /* Protected by alloc_lock: */
1011 struct mempolicy *mempolicy;
1012 short il_prev;
1013 short pref_node_fork;
1014 #endif
1015 #ifdef CONFIG_NUMA_BALANCING
1016 int numa_scan_seq;
1017 unsigned int numa_scan_period;
1018 unsigned int numa_scan_period_max;
1019 int numa_preferred_nid;
1020 unsigned long numa_migrate_retry;
1021 /* Migration stamp: */
1022 u64 node_stamp;
1023 u64 last_task_numa_placement;
1024 u64 last_sum_exec_runtime;
1025 struct callback_head numa_work;
1026
1027 struct list_head numa_entry;
1028 struct numa_group *numa_group;
1029
1030 /*
1031 * numa_faults is an array split into four regions:
1032 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1033 * in this precise order.
1034 *
1035 * faults_memory: Exponential decaying average of faults on a per-node
1036 * basis. Scheduling placement decisions are made based on these
1037 * counts. The values remain static for the duration of a PTE scan.
1038 * faults_cpu: Track the nodes the process was running on when a NUMA
1039 * hinting fault was incurred.
1040 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1041 * during the current scan window. When the scan completes, the counts
1042 * in faults_memory and faults_cpu decay and these values are copied.
1043 */
1044 unsigned long *numa_faults;
1045 unsigned long total_numa_faults;
1046
1047 /*
1048 * numa_faults_locality tracks if faults recorded during the last
1049 * scan window were remote/local or failed to migrate. The task scan
1050 * period is adapted based on the locality of the faults with different
1051 * weights depending on whether they were shared or private faults
1052 */
1053 unsigned long numa_faults_locality[3];
1054
1055 unsigned long numa_pages_migrated;
1056 #endif /* CONFIG_NUMA_BALANCING */
1057
1058 struct tlbflush_unmap_batch tlb_ubc;
1059
1060 struct rcu_head rcu;
1061
1062 /* Cache last used pipe for splice(): */
1063 struct pipe_inode_info *splice_pipe;
1064
1065 struct page_frag task_frag;
1066
1067 #ifdef CONFIG_TASK_DELAY_ACCT
1068 struct task_delay_info *delays;
1069 #endif
1070
1071 #ifdef CONFIG_FAULT_INJECTION
1072 int make_it_fail;
1073 unsigned int fail_nth;
1074 #endif
1075 /*
1076 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1077 * balance_dirty_pages() for a dirty throttling pause:
1078 */
1079 int nr_dirtied;
1080 int nr_dirtied_pause;
1081 /* Start of a write-and-pause period: */
1082 unsigned long dirty_paused_when;
1083
1084 #ifdef CONFIG_LATENCYTOP
1085 int latency_record_count;
1086 struct latency_record latency_record[LT_SAVECOUNT];
1087 #endif
1088 /*
1089 * Time slack values; these are used to round up poll() and
1090 * select() etc timeout values. These are in nanoseconds.
1091 */
1092 u64 timer_slack_ns;
1093 u64 default_timer_slack_ns;
1094
1095 #ifdef CONFIG_KASAN
1096 unsigned int kasan_depth;
1097 #endif
1098
1099 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1100 /* Index of current stored address in ret_stack: */
1101 int curr_ret_stack;
1102
1103 /* Stack of return addresses for return function tracing: */
1104 struct ftrace_ret_stack *ret_stack;
1105
1106 /* Timestamp for last schedule: */
1107 unsigned long long ftrace_timestamp;
1108
1109 /*
1110 * Number of functions that haven't been traced
1111 * because of depth overrun:
1112 */
1113 atomic_t trace_overrun;
1114
1115 /* Pause tracing: */
1116 atomic_t tracing_graph_pause;
1117 #endif
1118
1119 #ifdef CONFIG_TRACING
1120 /* State flags for use by tracers: */
1121 unsigned long trace;
1122
1123 /* Bitmask and counter of trace recursion: */
1124 unsigned long trace_recursion;
1125 #endif /* CONFIG_TRACING */
1126
1127 #ifdef CONFIG_KCOV
1128 /* Coverage collection mode enabled for this task (0 if disabled): */
1129 enum kcov_mode kcov_mode;
1130
1131 /* Size of the kcov_area: */
1132 unsigned int kcov_size;
1133
1134 /* Buffer for coverage collection: */
1135 void *kcov_area;
1136
1137 /* KCOV descriptor wired with this task or NULL: */
1138 struct kcov *kcov;
1139 #endif
1140
1141 #ifdef CONFIG_MEMCG
1142 struct mem_cgroup *memcg_in_oom;
1143 gfp_t memcg_oom_gfp_mask;
1144 int memcg_oom_order;
1145
1146 /* Number of pages to reclaim on returning to userland: */
1147 unsigned int memcg_nr_pages_over_high;
1148 #endif
1149
1150 #ifdef CONFIG_UPROBES
1151 struct uprobe_task *utask;
1152 #endif
1153 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1154 unsigned int sequential_io;
1155 unsigned int sequential_io_avg;
1156 #endif
1157 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1158 unsigned long task_state_change;
1159 #endif
1160 int pagefault_disabled;
1161 #ifdef CONFIG_MMU
1162 struct task_struct *oom_reaper_list;
1163 #endif
1164 #ifdef CONFIG_VMAP_STACK
1165 struct vm_struct *stack_vm_area;
1166 #endif
1167 #ifdef CONFIG_THREAD_INFO_IN_TASK
1168 /* A live task holds one reference: */
1169 atomic_t stack_refcount;
1170 #endif
1171 #ifdef CONFIG_LIVEPATCH
1172 int patch_state;
1173 #endif
1174 #ifdef CONFIG_SECURITY
1175 /* Used by LSM modules for access restriction: */
1176 void *security;
1177 #endif
1178
1179 /*
1180 * New fields for task_struct should be added above here, so that
1181 * they are included in the randomized portion of task_struct.
1182 */
1183 randomized_struct_fields_end
1184
1185 /* CPU-specific state of this task: */
1186 struct thread_struct thread;
1187
1188 /*
1189 * WARNING: on x86, 'thread_struct' contains a variable-sized
1190 * structure. It *MUST* be at the end of 'task_struct'.
1191 *
1192 * Do not put anything below here!
1193 */
1194 };
1195
1196 static inline struct pid *task_pid(struct task_struct *task)
1197 {
1198 return task->pids[PIDTYPE_PID].pid;
1199 }
1200
1201 static inline struct pid *task_tgid(struct task_struct *task)
1202 {
1203 return task->group_leader->pids[PIDTYPE_PID].pid;
1204 }
1205
1206 /*
1207 * Without tasklist or RCU lock it is not safe to dereference
1208 * the result of task_pgrp/task_session even if task == current,
1209 * we can race with another thread doing sys_setsid/sys_setpgid.
1210 */
1211 static inline struct pid *task_pgrp(struct task_struct *task)
1212 {
1213 return task->group_leader->pids[PIDTYPE_PGID].pid;
1214 }
1215
1216 static inline struct pid *task_session(struct task_struct *task)
1217 {
1218 return task->group_leader->pids[PIDTYPE_SID].pid;
1219 }
1220
1221 /*
1222 * the helpers to get the task's different pids as they are seen
1223 * from various namespaces
1224 *
1225 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1226 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1227 * current.
1228 * task_xid_nr_ns() : id seen from the ns specified;
1229 *
1230 * see also pid_nr() etc in include/linux/pid.h
1231 */
1232 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1233
1234 static inline pid_t task_pid_nr(struct task_struct *tsk)
1235 {
1236 return tsk->pid;
1237 }
1238
1239 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1240 {
1241 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1242 }
1243
1244 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1245 {
1246 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1247 }
1248
1249
1250 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1251 {
1252 return tsk->tgid;
1253 }
1254
1255 /**
1256 * pid_alive - check that a task structure is not stale
1257 * @p: Task structure to be checked.
1258 *
1259 * Test if a process is not yet dead (at most zombie state)
1260 * If pid_alive fails, then pointers within the task structure
1261 * can be stale and must not be dereferenced.
1262 *
1263 * Return: 1 if the process is alive. 0 otherwise.
1264 */
1265 static inline int pid_alive(const struct task_struct *p)
1266 {
1267 return p->pids[PIDTYPE_PID].pid != NULL;
1268 }
1269
1270 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1271 {
1272 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1273 }
1274
1275 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1276 {
1277 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1278 }
1279
1280
1281 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1282 {
1283 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1284 }
1285
1286 static inline pid_t task_session_vnr(struct task_struct *tsk)
1287 {
1288 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1289 }
1290
1291 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1292 {
1293 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1294 }
1295
1296 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1297 {
1298 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1299 }
1300
1301 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1302 {
1303 pid_t pid = 0;
1304
1305 rcu_read_lock();
1306 if (pid_alive(tsk))
1307 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1308 rcu_read_unlock();
1309
1310 return pid;
1311 }
1312
1313 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1314 {
1315 return task_ppid_nr_ns(tsk, &init_pid_ns);
1316 }
1317
1318 /* Obsolete, do not use: */
1319 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1320 {
1321 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1322 }
1323
1324 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1325 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1326
1327 static inline unsigned int __get_task_state(struct task_struct *tsk)
1328 {
1329 unsigned int tsk_state = READ_ONCE(tsk->state);
1330 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1331
1332 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1333
1334 if (tsk_state == TASK_IDLE)
1335 state = TASK_REPORT_IDLE;
1336
1337 return fls(state);
1338 }
1339
1340 static inline char __task_state_to_char(unsigned int state)
1341 {
1342 static const char state_char[] = "RSDTtXZPI";
1343
1344 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1345
1346 return state_char[state];
1347 }
1348
1349 static inline char task_state_to_char(struct task_struct *tsk)
1350 {
1351 return __task_state_to_char(__get_task_state(tsk));
1352 }
1353
1354 /**
1355 * is_global_init - check if a task structure is init. Since init
1356 * is free to have sub-threads we need to check tgid.
1357 * @tsk: Task structure to be checked.
1358 *
1359 * Check if a task structure is the first user space task the kernel created.
1360 *
1361 * Return: 1 if the task structure is init. 0 otherwise.
1362 */
1363 static inline int is_global_init(struct task_struct *tsk)
1364 {
1365 return task_tgid_nr(tsk) == 1;
1366 }
1367
1368 extern struct pid *cad_pid;
1369
1370 /*
1371 * Per process flags
1372 */
1373 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1374 #define PF_EXITING 0x00000004 /* Getting shut down */
1375 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1376 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1377 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1378 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1379 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1380 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1381 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1382 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1383 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1384 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1385 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1386 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1387 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1388 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1389 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1390 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1391 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1392 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1393 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1394 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1395 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1396 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1397 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1398 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1399 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1400 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1401
1402 /*
1403 * Only the _current_ task can read/write to tsk->flags, but other
1404 * tasks can access tsk->flags in readonly mode for example
1405 * with tsk_used_math (like during threaded core dumping).
1406 * There is however an exception to this rule during ptrace
1407 * or during fork: the ptracer task is allowed to write to the
1408 * child->flags of its traced child (same goes for fork, the parent
1409 * can write to the child->flags), because we're guaranteed the
1410 * child is not running and in turn not changing child->flags
1411 * at the same time the parent does it.
1412 */
1413 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1414 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1415 #define clear_used_math() clear_stopped_child_used_math(current)
1416 #define set_used_math() set_stopped_child_used_math(current)
1417
1418 #define conditional_stopped_child_used_math(condition, child) \
1419 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1420
1421 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1422
1423 #define copy_to_stopped_child_used_math(child) \
1424 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1425
1426 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1427 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1428 #define used_math() tsk_used_math(current)
1429
1430 static inline bool is_percpu_thread(void)
1431 {
1432 #ifdef CONFIG_SMP
1433 return (current->flags & PF_NO_SETAFFINITY) &&
1434 (current->nr_cpus_allowed == 1);
1435 #else
1436 return true;
1437 #endif
1438 }
1439
1440 /* Per-process atomic flags. */
1441 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1442 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1443 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1444
1445
1446 #define TASK_PFA_TEST(name, func) \
1447 static inline bool task_##func(struct task_struct *p) \
1448 { return test_bit(PFA_##name, &p->atomic_flags); }
1449
1450 #define TASK_PFA_SET(name, func) \
1451 static inline void task_set_##func(struct task_struct *p) \
1452 { set_bit(PFA_##name, &p->atomic_flags); }
1453
1454 #define TASK_PFA_CLEAR(name, func) \
1455 static inline void task_clear_##func(struct task_struct *p) \
1456 { clear_bit(PFA_##name, &p->atomic_flags); }
1457
1458 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1459 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1460
1461 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1462 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1463 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1464
1465 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1466 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1467 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1468
1469 static inline void
1470 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1471 {
1472 current->flags &= ~flags;
1473 current->flags |= orig_flags & flags;
1474 }
1475
1476 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1477 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1478 #ifdef CONFIG_SMP
1479 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1480 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1481 #else
1482 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1483 {
1484 }
1485 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1486 {
1487 if (!cpumask_test_cpu(0, new_mask))
1488 return -EINVAL;
1489 return 0;
1490 }
1491 #endif
1492
1493 #ifndef cpu_relax_yield
1494 #define cpu_relax_yield() cpu_relax()
1495 #endif
1496
1497 extern int yield_to(struct task_struct *p, bool preempt);
1498 extern void set_user_nice(struct task_struct *p, long nice);
1499 extern int task_prio(const struct task_struct *p);
1500
1501 /**
1502 * task_nice - return the nice value of a given task.
1503 * @p: the task in question.
1504 *
1505 * Return: The nice value [ -20 ... 0 ... 19 ].
1506 */
1507 static inline int task_nice(const struct task_struct *p)
1508 {
1509 return PRIO_TO_NICE((p)->static_prio);
1510 }
1511
1512 extern int can_nice(const struct task_struct *p, const int nice);
1513 extern int task_curr(const struct task_struct *p);
1514 extern int idle_cpu(int cpu);
1515 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1516 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1517 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1518 extern struct task_struct *idle_task(int cpu);
1519
1520 /**
1521 * is_idle_task - is the specified task an idle task?
1522 * @p: the task in question.
1523 *
1524 * Return: 1 if @p is an idle task. 0 otherwise.
1525 */
1526 static inline bool is_idle_task(const struct task_struct *p)
1527 {
1528 return !!(p->flags & PF_IDLE);
1529 }
1530
1531 extern struct task_struct *curr_task(int cpu);
1532 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1533
1534 void yield(void);
1535
1536 union thread_union {
1537 #ifndef CONFIG_THREAD_INFO_IN_TASK
1538 struct thread_info thread_info;
1539 #endif
1540 unsigned long stack[THREAD_SIZE/sizeof(long)];
1541 };
1542
1543 #ifdef CONFIG_THREAD_INFO_IN_TASK
1544 static inline struct thread_info *task_thread_info(struct task_struct *task)
1545 {
1546 return &task->thread_info;
1547 }
1548 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1549 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1550 #endif
1551
1552 /*
1553 * find a task by one of its numerical ids
1554 *
1555 * find_task_by_pid_ns():
1556 * finds a task by its pid in the specified namespace
1557 * find_task_by_vpid():
1558 * finds a task by its virtual pid
1559 *
1560 * see also find_vpid() etc in include/linux/pid.h
1561 */
1562
1563 extern struct task_struct *find_task_by_vpid(pid_t nr);
1564 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1565
1566 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1567 extern int wake_up_process(struct task_struct *tsk);
1568 extern void wake_up_new_task(struct task_struct *tsk);
1569
1570 #ifdef CONFIG_SMP
1571 extern void kick_process(struct task_struct *tsk);
1572 #else
1573 static inline void kick_process(struct task_struct *tsk) { }
1574 #endif
1575
1576 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1577
1578 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1579 {
1580 __set_task_comm(tsk, from, false);
1581 }
1582
1583 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1584 #define get_task_comm(buf, tsk) ({ \
1585 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1586 __get_task_comm(buf, sizeof(buf), tsk); \
1587 })
1588
1589 #ifdef CONFIG_SMP
1590 void scheduler_ipi(void);
1591 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1592 #else
1593 static inline void scheduler_ipi(void) { }
1594 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1595 {
1596 return 1;
1597 }
1598 #endif
1599
1600 /*
1601 * Set thread flags in other task's structures.
1602 * See asm/thread_info.h for TIF_xxxx flags available:
1603 */
1604 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1605 {
1606 set_ti_thread_flag(task_thread_info(tsk), flag);
1607 }
1608
1609 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1610 {
1611 clear_ti_thread_flag(task_thread_info(tsk), flag);
1612 }
1613
1614 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1615 {
1616 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1617 }
1618
1619 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1620 {
1621 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1622 }
1623
1624 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1625 {
1626 return test_ti_thread_flag(task_thread_info(tsk), flag);
1627 }
1628
1629 static inline void set_tsk_need_resched(struct task_struct *tsk)
1630 {
1631 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1632 }
1633
1634 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1635 {
1636 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1637 }
1638
1639 static inline int test_tsk_need_resched(struct task_struct *tsk)
1640 {
1641 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1642 }
1643
1644 /*
1645 * cond_resched() and cond_resched_lock(): latency reduction via
1646 * explicit rescheduling in places that are safe. The return
1647 * value indicates whether a reschedule was done in fact.
1648 * cond_resched_lock() will drop the spinlock before scheduling,
1649 * cond_resched_softirq() will enable bhs before scheduling.
1650 */
1651 #ifndef CONFIG_PREEMPT
1652 extern int _cond_resched(void);
1653 #else
1654 static inline int _cond_resched(void) { return 0; }
1655 #endif
1656
1657 #define cond_resched() ({ \
1658 ___might_sleep(__FILE__, __LINE__, 0); \
1659 _cond_resched(); \
1660 })
1661
1662 extern int __cond_resched_lock(spinlock_t *lock);
1663
1664 #define cond_resched_lock(lock) ({ \
1665 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1666 __cond_resched_lock(lock); \
1667 })
1668
1669 extern int __cond_resched_softirq(void);
1670
1671 #define cond_resched_softirq() ({ \
1672 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1673 __cond_resched_softirq(); \
1674 })
1675
1676 static inline void cond_resched_rcu(void)
1677 {
1678 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1679 rcu_read_unlock();
1680 cond_resched();
1681 rcu_read_lock();
1682 #endif
1683 }
1684
1685 /*
1686 * Does a critical section need to be broken due to another
1687 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1688 * but a general need for low latency)
1689 */
1690 static inline int spin_needbreak(spinlock_t *lock)
1691 {
1692 #ifdef CONFIG_PREEMPT
1693 return spin_is_contended(lock);
1694 #else
1695 return 0;
1696 #endif
1697 }
1698
1699 static __always_inline bool need_resched(void)
1700 {
1701 return unlikely(tif_need_resched());
1702 }
1703
1704 /*
1705 * Wrappers for p->thread_info->cpu access. No-op on UP.
1706 */
1707 #ifdef CONFIG_SMP
1708
1709 static inline unsigned int task_cpu(const struct task_struct *p)
1710 {
1711 #ifdef CONFIG_THREAD_INFO_IN_TASK
1712 return p->cpu;
1713 #else
1714 return task_thread_info(p)->cpu;
1715 #endif
1716 }
1717
1718 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1719
1720 #else
1721
1722 static inline unsigned int task_cpu(const struct task_struct *p)
1723 {
1724 return 0;
1725 }
1726
1727 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1728 {
1729 }
1730
1731 #endif /* CONFIG_SMP */
1732
1733 /*
1734 * In order to reduce various lock holder preemption latencies provide an
1735 * interface to see if a vCPU is currently running or not.
1736 *
1737 * This allows us to terminate optimistic spin loops and block, analogous to
1738 * the native optimistic spin heuristic of testing if the lock owner task is
1739 * running or not.
1740 */
1741 #ifndef vcpu_is_preempted
1742 # define vcpu_is_preempted(cpu) false
1743 #endif
1744
1745 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1746 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1747
1748 #ifndef TASK_SIZE_OF
1749 #define TASK_SIZE_OF(tsk) TASK_SIZE
1750 #endif
1751
1752 #endif