[RAMEN9610-8702][COMMON] diskcipher: support f2fs
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / include / linux / blkdev.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7
8 #ifdef CONFIG_BLOCK
9
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30
31 struct module;
32 struct scsi_ioctl_command;
33
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_wb;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46
47 #define BLKDEV_MIN_RQ 4
48 #define BLKDEV_MAX_RQ 128 /* Default maximum */
49
50 /* Must be consisitent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52
53 /*
54 * Maximum number of blkcg policies allowed to be registered concurrently.
55 * Defined here to simplify include dependency.
56 */
57 #define BLKCG_MAX_POLS 3
58
59 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
60
61 #define BLK_RL_SYNCFULL (1U << 0)
62 #define BLK_RL_ASYNCFULL (1U << 1)
63
64 struct request_list {
65 struct request_queue *q; /* the queue this rl belongs to */
66 #ifdef CONFIG_BLK_CGROUP
67 struct blkcg_gq *blkg; /* blkg this request pool belongs to */
68 #endif
69 /*
70 * count[], starved[], and wait[] are indexed by
71 * BLK_RW_SYNC/BLK_RW_ASYNC
72 */
73 int count[2];
74 int starved[2];
75 mempool_t *rq_pool;
76 wait_queue_head_t wait[2];
77 unsigned int flags;
78 };
79
80 /*
81 * request flags */
82 typedef __u32 __bitwise req_flags_t;
83
84 /* elevator knows about this request */
85 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
86 /* drive already may have started this one */
87 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
88 /* uses tagged queueing */
89 #define RQF_QUEUED ((__force req_flags_t)(1 << 2))
90 /* may not be passed by ioscheduler */
91 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
92 /* request for flush sequence */
93 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
94 /* merge of different types, fail separately */
95 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
96 /* track inflight for MQ */
97 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
98 /* don't call prep for this one */
99 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
100 /* set for "ide_preempt" requests and also for requests for which the SCSI
101 "quiesce" state must be ignored. */
102 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
103 /* contains copies of user pages */
104 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
105 /* vaguely specified driver internal error. Ignored by the block layer */
106 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
107 /* don't warn about errors */
108 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
109 /* elevator private data attached */
110 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
111 /* account I/O stat */
112 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
113 /* request came from our alloc pool */
114 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
115 /* runtime pm request */
116 #define RQF_PM ((__force req_flags_t)(1 << 15))
117 /* on IO scheduler merge hash */
118 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
119 /* IO stats tracking on */
120 #define RQF_STATS ((__force req_flags_t)(1 << 17))
121 /* Look at ->special_vec for the actual data payload instead of the
122 bio chain. */
123 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
124
125 /* flags that prevent us from merging requests: */
126 #define RQF_NOMERGE_FLAGS \
127 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
128
129 /*
130 * Try to put the fields that are referenced together in the same cacheline.
131 *
132 * If you modify this structure, make sure to update blk_rq_init() and
133 * especially blk_mq_rq_ctx_init() to take care of the added fields.
134 */
135 struct request {
136 struct list_head queuelist;
137 union {
138 struct __call_single_data csd;
139 u64 fifo_time;
140 };
141
142 struct request_queue *q;
143 struct blk_mq_ctx *mq_ctx;
144
145 int cpu;
146 unsigned int cmd_flags; /* op and common flags */
147 req_flags_t rq_flags;
148
149 int internal_tag;
150
151 unsigned long atomic_flags;
152
153 /* the following two fields are internal, NEVER access directly */
154 unsigned int __data_len; /* total data len */
155 int tag;
156 sector_t __sector; /* sector cursor */
157 #ifdef CONFIG_CRYPTO_DISKCIPHER_DUN
158 u64 __dun; /* dun for UFS */
159 #endif
160 struct bio *bio;
161 struct bio *biotail;
162
163 /*
164 * The hash is used inside the scheduler, and killed once the
165 * request reaches the dispatch list. The ipi_list is only used
166 * to queue the request for softirq completion, which is long
167 * after the request has been unhashed (and even removed from
168 * the dispatch list).
169 */
170 union {
171 struct hlist_node hash; /* merge hash */
172 struct list_head ipi_list;
173 };
174
175 /*
176 * The rb_node is only used inside the io scheduler, requests
177 * are pruned when moved to the dispatch queue. So let the
178 * completion_data share space with the rb_node.
179 */
180 union {
181 struct rb_node rb_node; /* sort/lookup */
182 struct bio_vec special_vec;
183 void *completion_data;
184 int error_count; /* for legacy drivers, don't use */
185 };
186
187 /*
188 * Three pointers are available for the IO schedulers, if they need
189 * more they have to dynamically allocate it. Flush requests are
190 * never put on the IO scheduler. So let the flush fields share
191 * space with the elevator data.
192 */
193 union {
194 struct {
195 struct io_cq *icq;
196 void *priv[2];
197 } elv;
198
199 struct {
200 unsigned int seq;
201 struct list_head list;
202 rq_end_io_fn *saved_end_io;
203 } flush;
204 };
205
206 struct gendisk *rq_disk;
207 struct hd_struct *part;
208 unsigned long start_time;
209 struct blk_issue_stat issue_stat;
210 #ifdef CONFIG_BLK_CGROUP
211 struct request_list *rl; /* rl this rq is alloced from */
212 unsigned long long start_time_ns;
213 unsigned long long io_start_time_ns; /* when passed to hardware */
214 #endif
215 /* Number of scatter-gather DMA addr+len pairs after
216 * physical address coalescing is performed.
217 */
218 unsigned short nr_phys_segments;
219 #if defined(CONFIG_BLK_DEV_INTEGRITY)
220 unsigned short nr_integrity_segments;
221 #endif
222
223 unsigned short ioprio;
224
225 unsigned int timeout;
226
227 void *special; /* opaque pointer available for LLD use */
228
229 unsigned int extra_len; /* length of alignment and padding */
230
231 unsigned short write_hint;
232
233 unsigned long deadline;
234 struct list_head timeout_list;
235
236 /*
237 * completion callback.
238 */
239 rq_end_io_fn *end_io;
240 void *end_io_data;
241
242 /* for bidi */
243 struct request *next_rq;
244 };
245
246 static inline bool blk_op_is_scsi(unsigned int op)
247 {
248 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
249 }
250
251 static inline bool blk_op_is_private(unsigned int op)
252 {
253 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
254 }
255
256 static inline bool blk_rq_is_scsi(struct request *rq)
257 {
258 return blk_op_is_scsi(req_op(rq));
259 }
260
261 static inline bool blk_rq_is_private(struct request *rq)
262 {
263 return blk_op_is_private(req_op(rq));
264 }
265
266 static inline bool blk_rq_is_passthrough(struct request *rq)
267 {
268 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
269 }
270
271 static inline bool bio_is_passthrough(struct bio *bio)
272 {
273 unsigned op = bio_op(bio);
274
275 return blk_op_is_scsi(op) || blk_op_is_private(op);
276 }
277
278 static inline unsigned short req_get_ioprio(struct request *req)
279 {
280 return req->ioprio;
281 }
282
283 #include <linux/elevator.h>
284
285 struct blk_queue_ctx;
286
287 typedef void (request_fn_proc) (struct request_queue *q);
288 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
289 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
290 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
291
292 struct bio_vec;
293 typedef void (softirq_done_fn)(struct request *);
294 typedef int (dma_drain_needed_fn)(struct request *);
295 typedef int (lld_busy_fn) (struct request_queue *q);
296 typedef int (bsg_job_fn) (struct bsg_job *);
297 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
298 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
299
300 enum blk_eh_timer_return {
301 BLK_EH_NOT_HANDLED,
302 BLK_EH_HANDLED,
303 BLK_EH_RESET_TIMER,
304 };
305
306 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
307
308 enum blk_queue_state {
309 Queue_down,
310 Queue_up,
311 };
312
313 struct blk_queue_tag {
314 struct request **tag_index; /* map of busy tags */
315 unsigned long *tag_map; /* bit map of free/busy tags */
316 int max_depth; /* what we will send to device */
317 int real_max_depth; /* what the array can hold */
318 atomic_t refcnt; /* map can be shared */
319 int alloc_policy; /* tag allocation policy */
320 int next_tag; /* next tag */
321 };
322 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
323 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
324
325 #define BLK_SCSI_MAX_CMDS (256)
326 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
327
328 /*
329 * Zoned block device models (zoned limit).
330 */
331 enum blk_zoned_model {
332 BLK_ZONED_NONE, /* Regular block device */
333 BLK_ZONED_HA, /* Host-aware zoned block device */
334 BLK_ZONED_HM, /* Host-managed zoned block device */
335 };
336
337 struct queue_limits {
338 unsigned long bounce_pfn;
339 unsigned long seg_boundary_mask;
340 unsigned long virt_boundary_mask;
341
342 unsigned int max_hw_sectors;
343 unsigned int max_dev_sectors;
344 unsigned int chunk_sectors;
345 unsigned int max_sectors;
346 unsigned int max_segment_size;
347 unsigned int physical_block_size;
348 unsigned int alignment_offset;
349 unsigned int io_min;
350 unsigned int io_opt;
351 unsigned int max_discard_sectors;
352 unsigned int max_hw_discard_sectors;
353 unsigned int max_write_same_sectors;
354 unsigned int max_write_zeroes_sectors;
355 unsigned int discard_granularity;
356 unsigned int discard_alignment;
357
358 unsigned short logical_block_size;
359 unsigned short max_segments;
360 unsigned short max_integrity_segments;
361 unsigned short max_discard_segments;
362
363 unsigned char misaligned;
364 unsigned char discard_misaligned;
365 unsigned char cluster;
366 unsigned char raid_partial_stripes_expensive;
367 enum blk_zoned_model zoned;
368 };
369
370 #ifdef CONFIG_BLK_DEV_ZONED
371
372 struct blk_zone_report_hdr {
373 unsigned int nr_zones;
374 u8 padding[60];
375 };
376
377 extern int blkdev_report_zones(struct block_device *bdev,
378 sector_t sector, struct blk_zone *zones,
379 unsigned int *nr_zones, gfp_t gfp_mask);
380 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
381 sector_t nr_sectors, gfp_t gfp_mask);
382
383 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
384 unsigned int cmd, unsigned long arg);
385 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
386 unsigned int cmd, unsigned long arg);
387
388 #else /* CONFIG_BLK_DEV_ZONED */
389
390 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
391 fmode_t mode, unsigned int cmd,
392 unsigned long arg)
393 {
394 return -ENOTTY;
395 }
396
397 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
398 fmode_t mode, unsigned int cmd,
399 unsigned long arg)
400 {
401 return -ENOTTY;
402 }
403
404 #endif /* CONFIG_BLK_DEV_ZONED */
405
406 struct request_queue {
407 /*
408 * Together with queue_head for cacheline sharing
409 */
410 struct list_head queue_head;
411 struct request *last_merge;
412 struct elevator_queue *elevator;
413 int nr_rqs[2]; /* # allocated [a]sync rqs */
414 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */
415
416 atomic_t shared_hctx_restart;
417
418 struct blk_queue_stats *stats;
419 struct rq_wb *rq_wb;
420
421 /*
422 * If blkcg is not used, @q->root_rl serves all requests. If blkcg
423 * is used, root blkg allocates from @q->root_rl and all other
424 * blkgs from their own blkg->rl. Which one to use should be
425 * determined using bio_request_list().
426 */
427 struct request_list root_rl;
428
429 request_fn_proc *request_fn;
430 make_request_fn *make_request_fn;
431 prep_rq_fn *prep_rq_fn;
432 unprep_rq_fn *unprep_rq_fn;
433 softirq_done_fn *softirq_done_fn;
434 rq_timed_out_fn *rq_timed_out_fn;
435 dma_drain_needed_fn *dma_drain_needed;
436 lld_busy_fn *lld_busy_fn;
437 /* Called just after a request is allocated */
438 init_rq_fn *init_rq_fn;
439 /* Called just before a request is freed */
440 exit_rq_fn *exit_rq_fn;
441 /* Called from inside blk_get_request() */
442 void (*initialize_rq_fn)(struct request *rq);
443
444 const struct blk_mq_ops *mq_ops;
445
446 unsigned int *mq_map;
447
448 /* sw queues */
449 struct blk_mq_ctx __percpu *queue_ctx;
450 unsigned int nr_queues;
451
452 unsigned int queue_depth;
453
454 /* hw dispatch queues */
455 struct blk_mq_hw_ctx **queue_hw_ctx;
456 unsigned int nr_hw_queues;
457
458 /*
459 * Dispatch queue sorting
460 */
461 sector_t end_sector;
462 struct request *boundary_rq;
463
464 /*
465 * Delayed queue handling
466 */
467 struct delayed_work delay_work;
468
469 struct backing_dev_info *backing_dev_info;
470
471 /*
472 * The queue owner gets to use this for whatever they like.
473 * ll_rw_blk doesn't touch it.
474 */
475 void *queuedata;
476
477 /*
478 * various queue flags, see QUEUE_* below
479 */
480 unsigned long queue_flags;
481
482 /*
483 * ida allocated id for this queue. Used to index queues from
484 * ioctx.
485 */
486 int id;
487
488 /*
489 * queue needs bounce pages for pages above this limit
490 */
491 gfp_t bounce_gfp;
492
493 /*
494 * protects queue structures from reentrancy. ->__queue_lock should
495 * _never_ be used directly, it is queue private. always use
496 * ->queue_lock.
497 */
498 spinlock_t __queue_lock;
499 spinlock_t *queue_lock;
500
501 /*
502 * queue kobject
503 */
504 struct kobject kobj;
505
506 /*
507 * mq queue kobject
508 */
509 struct kobject mq_kobj;
510
511 #ifdef CONFIG_BLK_DEV_INTEGRITY
512 struct blk_integrity integrity;
513 #endif /* CONFIG_BLK_DEV_INTEGRITY */
514
515 #ifdef CONFIG_PM
516 struct device *dev;
517 int rpm_status;
518 unsigned int nr_pending;
519 #endif
520
521 /*
522 * queue settings
523 */
524 unsigned long nr_requests; /* Max # of requests */
525 unsigned int nr_congestion_on;
526 unsigned int nr_congestion_off;
527 unsigned int nr_batching;
528
529 unsigned int dma_drain_size;
530 void *dma_drain_buffer;
531 unsigned int dma_pad_mask;
532 unsigned int dma_alignment;
533
534 struct blk_queue_tag *queue_tags;
535 struct list_head tag_busy_list;
536
537 unsigned int nr_sorted;
538 unsigned int in_flight[2];
539
540 /*
541 * Number of active block driver functions for which blk_drain_queue()
542 * must wait. Must be incremented around functions that unlock the
543 * queue_lock internally, e.g. scsi_request_fn().
544 */
545 unsigned int request_fn_active;
546
547 unsigned int rq_timeout;
548 int poll_nsec;
549
550 struct blk_stat_callback *poll_cb;
551 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
552
553 struct timer_list timeout;
554 struct work_struct timeout_work;
555 struct list_head timeout_list;
556
557 struct list_head icq_list;
558 #ifdef CONFIG_BLK_CGROUP
559 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
560 struct blkcg_gq *root_blkg;
561 struct list_head blkg_list;
562 #endif
563
564 struct queue_limits limits;
565
566 /*
567 * sg stuff
568 */
569 unsigned int sg_timeout;
570 unsigned int sg_reserved_size;
571 int node;
572 #ifdef CONFIG_BLK_DEV_IO_TRACE
573 struct blk_trace *blk_trace;
574 struct mutex blk_trace_mutex;
575 #endif
576 /*
577 * for flush operations
578 */
579 struct blk_flush_queue *fq;
580
581 struct list_head requeue_list;
582 spinlock_t requeue_lock;
583 struct delayed_work requeue_work;
584
585 struct mutex sysfs_lock;
586
587 int bypass_depth;
588 atomic_t mq_freeze_depth;
589
590 #if defined(CONFIG_BLK_DEV_BSG)
591 bsg_job_fn *bsg_job_fn;
592 struct bsg_class_device bsg_dev;
593 #endif
594
595 #ifdef CONFIG_BLK_DEV_THROTTLING
596 /* Throttle data */
597 struct throtl_data *td;
598 #endif
599 struct rcu_head rcu_head;
600 wait_queue_head_t mq_freeze_wq;
601 struct percpu_ref q_usage_counter;
602 struct list_head all_q_node;
603
604 struct blk_mq_tag_set *tag_set;
605 struct list_head tag_set_list;
606 struct bio_set *bio_split;
607
608 #ifdef CONFIG_BLK_DEBUG_FS
609 struct dentry *debugfs_dir;
610 struct dentry *sched_debugfs_dir;
611 #endif
612
613 bool mq_sysfs_init_done;
614
615 size_t cmd_size;
616 void *rq_alloc_data;
617
618 struct work_struct release_work;
619
620 #define BLK_MAX_WRITE_HINTS 5
621 u64 write_hints[BLK_MAX_WRITE_HINTS];
622 };
623
624 #define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */
625 #define QUEUE_FLAG_STOPPED 1 /* queue is stopped */
626 #define QUEUE_FLAG_DYING 2 /* queue being torn down */
627 #define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */
628 #define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */
629 #define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */
630 #define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */
631 #define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */
632 #define QUEUE_FLAG_STACKABLE 8 /* supports request stacking */
633 #define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */
634 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
635 #define QUEUE_FLAG_IO_STAT 10 /* do IO stats */
636 #define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */
637 #define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */
638 #define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */
639 #define QUEUE_FLAG_SECERASE 14 /* supports secure erase */
640 #define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */
641 #define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */
642 #define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */
643 #define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/
644 #define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */
645 #define QUEUE_FLAG_WC 20 /* Write back caching */
646 #define QUEUE_FLAG_FUA 21 /* device supports FUA writes */
647 #define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */
648 #define QUEUE_FLAG_DAX 23 /* device supports DAX */
649 #define QUEUE_FLAG_STATS 24 /* track rq completion times */
650 #define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */
651 #define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */
652 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */
653 #define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */
654
655 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
656 (1 << QUEUE_FLAG_STACKABLE) | \
657 (1 << QUEUE_FLAG_SAME_COMP) | \
658 (1 << QUEUE_FLAG_ADD_RANDOM))
659
660 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
661 (1 << QUEUE_FLAG_STACKABLE) | \
662 (1 << QUEUE_FLAG_SAME_COMP) | \
663 (1 << QUEUE_FLAG_POLL))
664
665 /*
666 * @q->queue_lock is set while a queue is being initialized. Since we know
667 * that no other threads access the queue object before @q->queue_lock has
668 * been set, it is safe to manipulate queue flags without holding the
669 * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and
670 * blk_init_allocated_queue().
671 */
672 static inline void queue_lockdep_assert_held(struct request_queue *q)
673 {
674 if (q->queue_lock)
675 lockdep_assert_held(q->queue_lock);
676 }
677
678 static inline void queue_flag_set_unlocked(unsigned int flag,
679 struct request_queue *q)
680 {
681 __set_bit(flag, &q->queue_flags);
682 }
683
684 static inline int queue_flag_test_and_clear(unsigned int flag,
685 struct request_queue *q)
686 {
687 queue_lockdep_assert_held(q);
688
689 if (test_bit(flag, &q->queue_flags)) {
690 __clear_bit(flag, &q->queue_flags);
691 return 1;
692 }
693
694 return 0;
695 }
696
697 static inline int queue_flag_test_and_set(unsigned int flag,
698 struct request_queue *q)
699 {
700 queue_lockdep_assert_held(q);
701
702 if (!test_bit(flag, &q->queue_flags)) {
703 __set_bit(flag, &q->queue_flags);
704 return 0;
705 }
706
707 return 1;
708 }
709
710 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
711 {
712 queue_lockdep_assert_held(q);
713 __set_bit(flag, &q->queue_flags);
714 }
715
716 static inline void queue_flag_clear_unlocked(unsigned int flag,
717 struct request_queue *q)
718 {
719 __clear_bit(flag, &q->queue_flags);
720 }
721
722 static inline int queue_in_flight(struct request_queue *q)
723 {
724 return q->in_flight[0] + q->in_flight[1];
725 }
726
727 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
728 {
729 queue_lockdep_assert_held(q);
730 __clear_bit(flag, &q->queue_flags);
731 }
732
733 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
734 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
735 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
736 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
737 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
738 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
739 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
740 #define blk_queue_noxmerges(q) \
741 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
742 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
743 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
744 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
745 #define blk_queue_stackable(q) \
746 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
747 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
748 #define blk_queue_secure_erase(q) \
749 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
750 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
751 #define blk_queue_scsi_passthrough(q) \
752 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
753
754 #define blk_noretry_request(rq) \
755 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
756 REQ_FAILFAST_DRIVER))
757 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
758
759 static inline bool blk_account_rq(struct request *rq)
760 {
761 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
762 }
763
764 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1)
765 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL)
766 /* rq->queuelist of dequeued request must be list_empty() */
767 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist))
768
769 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
770
771 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
772
773 /*
774 * Driver can handle struct request, if it either has an old style
775 * request_fn defined, or is blk-mq based.
776 */
777 static inline bool queue_is_rq_based(struct request_queue *q)
778 {
779 return q->request_fn || q->mq_ops;
780 }
781
782 static inline unsigned int blk_queue_cluster(struct request_queue *q)
783 {
784 return q->limits.cluster;
785 }
786
787 static inline enum blk_zoned_model
788 blk_queue_zoned_model(struct request_queue *q)
789 {
790 return q->limits.zoned;
791 }
792
793 static inline bool blk_queue_is_zoned(struct request_queue *q)
794 {
795 switch (blk_queue_zoned_model(q)) {
796 case BLK_ZONED_HA:
797 case BLK_ZONED_HM:
798 return true;
799 default:
800 return false;
801 }
802 }
803
804 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
805 {
806 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
807 }
808
809 static inline bool rq_is_sync(struct request *rq)
810 {
811 return op_is_sync(rq->cmd_flags);
812 }
813
814 static inline bool blk_rl_full(struct request_list *rl, bool sync)
815 {
816 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
817
818 return rl->flags & flag;
819 }
820
821 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
822 {
823 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
824
825 rl->flags |= flag;
826 }
827
828 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
829 {
830 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
831
832 rl->flags &= ~flag;
833 }
834
835 static inline bool rq_mergeable(struct request *rq)
836 {
837 if (blk_rq_is_passthrough(rq))
838 return false;
839
840 if (req_op(rq) == REQ_OP_FLUSH)
841 return false;
842
843 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
844 return false;
845
846 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
847 return false;
848 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
849 return false;
850
851 return true;
852 }
853
854 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
855 {
856 if (bio_page(a) == bio_page(b) &&
857 bio_offset(a) == bio_offset(b))
858 return true;
859
860 return false;
861 }
862
863 static inline unsigned int blk_queue_depth(struct request_queue *q)
864 {
865 if (q->queue_depth)
866 return q->queue_depth;
867
868 return q->nr_requests;
869 }
870
871 /*
872 * q->prep_rq_fn return values
873 */
874 enum {
875 BLKPREP_OK, /* serve it */
876 BLKPREP_KILL, /* fatal error, kill, return -EIO */
877 BLKPREP_DEFER, /* leave on queue */
878 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */
879 };
880
881 extern unsigned long blk_max_low_pfn, blk_max_pfn;
882
883 /*
884 * standard bounce addresses:
885 *
886 * BLK_BOUNCE_HIGH : bounce all highmem pages
887 * BLK_BOUNCE_ANY : don't bounce anything
888 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
889 */
890
891 #if BITS_PER_LONG == 32
892 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
893 #else
894 #define BLK_BOUNCE_HIGH -1ULL
895 #endif
896 #define BLK_BOUNCE_ANY (-1ULL)
897 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
898
899 /*
900 * default timeout for SG_IO if none specified
901 */
902 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
903 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
904
905 struct rq_map_data {
906 struct page **pages;
907 int page_order;
908 int nr_entries;
909 unsigned long offset;
910 int null_mapped;
911 int from_user;
912 };
913
914 struct req_iterator {
915 struct bvec_iter iter;
916 struct bio *bio;
917 };
918
919 /* This should not be used directly - use rq_for_each_segment */
920 #define for_each_bio(_bio) \
921 for (; _bio; _bio = _bio->bi_next)
922 #define __rq_for_each_bio(_bio, rq) \
923 if ((rq->bio)) \
924 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
925
926 #define rq_for_each_segment(bvl, _rq, _iter) \
927 __rq_for_each_bio(_iter.bio, _rq) \
928 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
929
930 #define rq_iter_last(bvec, _iter) \
931 (_iter.bio->bi_next == NULL && \
932 bio_iter_last(bvec, _iter.iter))
933
934 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
935 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
936 #endif
937 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
938 extern void rq_flush_dcache_pages(struct request *rq);
939 #else
940 static inline void rq_flush_dcache_pages(struct request *rq)
941 {
942 }
943 #endif
944
945 #ifdef CONFIG_PRINTK
946 #define vfs_msg(sb, level, fmt, ...) \
947 __vfs_msg(sb, level, fmt, ##__VA_ARGS__)
948 #else
949 #define vfs_msg(sb, level, fmt, ...) \
950 do { \
951 no_printk(fmt, ##__VA_ARGS__); \
952 __vfs_msg(sb, "", " "); \
953 } while (0)
954 #endif
955
956 extern int blk_register_queue(struct gendisk *disk);
957 extern void blk_unregister_queue(struct gendisk *disk);
958 extern blk_qc_t generic_make_request(struct bio *bio);
959 extern void blk_rq_init(struct request_queue *q, struct request *rq);
960 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
961 extern void blk_put_request(struct request *);
962 extern void __blk_put_request(struct request_queue *, struct request *);
963 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
964 gfp_t gfp_mask);
965 extern void blk_requeue_request(struct request_queue *, struct request *);
966 extern int blk_lld_busy(struct request_queue *q);
967 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
968 struct bio_set *bs, gfp_t gfp_mask,
969 int (*bio_ctr)(struct bio *, struct bio *, void *),
970 void *data);
971 extern void blk_rq_unprep_clone(struct request *rq);
972 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
973 struct request *rq);
974 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
975 extern void blk_delay_queue(struct request_queue *, unsigned long);
976 extern void blk_queue_split(struct request_queue *, struct bio **);
977 extern void blk_recount_segments(struct request_queue *, struct bio *);
978 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
979 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
980 unsigned int, void __user *);
981 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
982 unsigned int, void __user *);
983 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
984 struct scsi_ioctl_command __user *);
985
986 extern int blk_queue_enter(struct request_queue *q, bool nowait);
987 extern void blk_queue_exit(struct request_queue *q);
988 extern void blk_start_queue(struct request_queue *q);
989 extern void blk_start_queue_async(struct request_queue *q);
990 extern void blk_stop_queue(struct request_queue *q);
991 extern void blk_sync_queue(struct request_queue *q);
992 extern void __blk_stop_queue(struct request_queue *q);
993 extern void __blk_run_queue(struct request_queue *q);
994 extern void __blk_run_queue_uncond(struct request_queue *q);
995 extern void blk_run_queue(struct request_queue *);
996 extern void blk_run_queue_async(struct request_queue *q);
997 extern int blk_rq_map_user(struct request_queue *, struct request *,
998 struct rq_map_data *, void __user *, unsigned long,
999 gfp_t);
1000 extern int blk_rq_unmap_user(struct bio *);
1001 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
1002 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
1003 struct rq_map_data *, const struct iov_iter *,
1004 gfp_t);
1005 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
1006 struct request *, int);
1007 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
1008 struct request *, int, rq_end_io_fn *);
1009
1010 int blk_status_to_errno(blk_status_t status);
1011 blk_status_t errno_to_blk_status(int errno);
1012
1013 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
1014
1015 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
1016 {
1017 return bdev->bd_disk->queue; /* this is never NULL */
1018 }
1019
1020 /*
1021 * blk_rq_pos() : the current sector
1022 * blk_rq_bytes() : bytes left in the entire request
1023 * blk_rq_cur_bytes() : bytes left in the current segment
1024 * blk_rq_err_bytes() : bytes left till the next error boundary
1025 * blk_rq_sectors() : sectors left in the entire request
1026 * blk_rq_cur_sectors() : sectors left in the current segment
1027 */
1028 static inline sector_t blk_rq_pos(const struct request *rq)
1029 {
1030 return rq->__sector;
1031 }
1032
1033 #ifdef CONFIG_CRYPTO_DISKCIPHER_DUN
1034 static inline sector_t blk_rq_dun(const struct request *rq)
1035 {
1036 return rq->__dun;
1037 }
1038 #endif
1039
1040 static inline unsigned int blk_rq_bytes(const struct request *rq)
1041 {
1042 return rq->__data_len;
1043 }
1044
1045 static inline int blk_rq_cur_bytes(const struct request *rq)
1046 {
1047 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1048 }
1049
1050 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1051
1052 static inline unsigned int blk_rq_sectors(const struct request *rq)
1053 {
1054 return blk_rq_bytes(rq) >> 9;
1055 }
1056
1057 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1058 {
1059 return blk_rq_cur_bytes(rq) >> 9;
1060 }
1061
1062 /*
1063 * Some commands like WRITE SAME have a payload or data transfer size which
1064 * is different from the size of the request. Any driver that supports such
1065 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1066 * calculate the data transfer size.
1067 */
1068 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1069 {
1070 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1071 return rq->special_vec.bv_len;
1072 return blk_rq_bytes(rq);
1073 }
1074
1075 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1076 int op)
1077 {
1078 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1079 return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1080
1081 if (unlikely(op == REQ_OP_WRITE_SAME))
1082 return q->limits.max_write_same_sectors;
1083
1084 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1085 return q->limits.max_write_zeroes_sectors;
1086
1087 return q->limits.max_sectors;
1088 }
1089
1090 /*
1091 * Return maximum size of a request at given offset. Only valid for
1092 * file system requests.
1093 */
1094 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1095 sector_t offset)
1096 {
1097 if (!q->limits.chunk_sectors)
1098 return q->limits.max_sectors;
1099
1100 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1101 (offset & (q->limits.chunk_sectors - 1))));
1102 }
1103
1104 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1105 sector_t offset)
1106 {
1107 struct request_queue *q = rq->q;
1108
1109 if (blk_rq_is_passthrough(rq))
1110 return q->limits.max_hw_sectors;
1111
1112 if (!q->limits.chunk_sectors ||
1113 req_op(rq) == REQ_OP_DISCARD ||
1114 req_op(rq) == REQ_OP_SECURE_ERASE)
1115 return blk_queue_get_max_sectors(q, req_op(rq));
1116
1117 return min(blk_max_size_offset(q, offset),
1118 blk_queue_get_max_sectors(q, req_op(rq)));
1119 }
1120
1121 static inline unsigned int blk_rq_count_bios(struct request *rq)
1122 {
1123 unsigned int nr_bios = 0;
1124 struct bio *bio;
1125
1126 __rq_for_each_bio(bio, rq)
1127 nr_bios++;
1128
1129 return nr_bios;
1130 }
1131
1132 /*
1133 * Request issue related functions.
1134 */
1135 extern struct request *blk_peek_request(struct request_queue *q);
1136 extern void blk_start_request(struct request *rq);
1137 extern struct request *blk_fetch_request(struct request_queue *q);
1138
1139 /*
1140 * Request completion related functions.
1141 *
1142 * blk_update_request() completes given number of bytes and updates
1143 * the request without completing it.
1144 *
1145 * blk_end_request() and friends. __blk_end_request() must be called
1146 * with the request queue spinlock acquired.
1147 *
1148 * Several drivers define their own end_request and call
1149 * blk_end_request() for parts of the original function.
1150 * This prevents code duplication in drivers.
1151 */
1152 extern bool blk_update_request(struct request *rq, blk_status_t error,
1153 unsigned int nr_bytes);
1154 extern void blk_finish_request(struct request *rq, blk_status_t error);
1155 extern bool blk_end_request(struct request *rq, blk_status_t error,
1156 unsigned int nr_bytes);
1157 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1158 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1159 unsigned int nr_bytes);
1160 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1161 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1162
1163 extern void blk_complete_request(struct request *);
1164 extern void __blk_complete_request(struct request *);
1165 extern void blk_abort_request(struct request *);
1166 extern void blk_unprep_request(struct request *);
1167
1168 /*
1169 * Access functions for manipulating queue properties
1170 */
1171 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1172 spinlock_t *lock, int node_id);
1173 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1174 extern int blk_init_allocated_queue(struct request_queue *);
1175 extern void blk_cleanup_queue(struct request_queue *);
1176 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1177 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1178 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1179 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1180 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1181 extern void blk_queue_max_discard_segments(struct request_queue *,
1182 unsigned short);
1183 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1184 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1185 unsigned int max_discard_sectors);
1186 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1187 unsigned int max_write_same_sectors);
1188 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1189 unsigned int max_write_same_sectors);
1190 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1191 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1192 extern void blk_queue_alignment_offset(struct request_queue *q,
1193 unsigned int alignment);
1194 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1195 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1196 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1197 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1198 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1199 extern void blk_set_default_limits(struct queue_limits *lim);
1200 extern void blk_set_stacking_limits(struct queue_limits *lim);
1201 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1202 sector_t offset);
1203 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1204 sector_t offset);
1205 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1206 sector_t offset);
1207 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1208 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1209 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1210 extern int blk_queue_dma_drain(struct request_queue *q,
1211 dma_drain_needed_fn *dma_drain_needed,
1212 void *buf, unsigned int size);
1213 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1214 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1215 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1216 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1217 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1218 extern void blk_queue_dma_alignment(struct request_queue *, int);
1219 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1220 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1221 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1222 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1223 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1224 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1225
1226 /*
1227 * Number of physical segments as sent to the device.
1228 *
1229 * Normally this is the number of discontiguous data segments sent by the
1230 * submitter. But for data-less command like discard we might have no
1231 * actual data segments submitted, but the driver might have to add it's
1232 * own special payload. In that case we still return 1 here so that this
1233 * special payload will be mapped.
1234 */
1235 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1236 {
1237 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1238 return 1;
1239 return rq->nr_phys_segments;
1240 }
1241
1242 /*
1243 * Number of discard segments (or ranges) the driver needs to fill in.
1244 * Each discard bio merged into a request is counted as one segment.
1245 */
1246 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1247 {
1248 return max_t(unsigned short, rq->nr_phys_segments, 1);
1249 }
1250
1251 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1252 extern void blk_dump_rq_flags(struct request *, char *);
1253 extern long nr_blockdev_pages(void);
1254
1255 bool __must_check blk_get_queue(struct request_queue *);
1256 struct request_queue *blk_alloc_queue(gfp_t);
1257 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1258 extern void blk_put_queue(struct request_queue *);
1259 extern void blk_set_queue_dying(struct request_queue *);
1260
1261 /*
1262 * block layer runtime pm functions
1263 */
1264 #ifdef CONFIG_PM
1265 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1266 extern int blk_pre_runtime_suspend(struct request_queue *q);
1267 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1268 extern void blk_pre_runtime_resume(struct request_queue *q);
1269 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1270 extern void blk_set_runtime_active(struct request_queue *q);
1271 #else
1272 static inline void blk_pm_runtime_init(struct request_queue *q,
1273 struct device *dev) {}
1274 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1275 {
1276 return -ENOSYS;
1277 }
1278 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1279 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1280 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1281 static inline void blk_set_runtime_active(struct request_queue *q) {}
1282 #endif
1283
1284 /*
1285 * blk_plug permits building a queue of related requests by holding the I/O
1286 * fragments for a short period. This allows merging of sequential requests
1287 * into single larger request. As the requests are moved from a per-task list to
1288 * the device's request_queue in a batch, this results in improved scalability
1289 * as the lock contention for request_queue lock is reduced.
1290 *
1291 * It is ok not to disable preemption when adding the request to the plug list
1292 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1293 * the plug list when the task sleeps by itself. For details, please see
1294 * schedule() where blk_schedule_flush_plug() is called.
1295 */
1296 struct blk_plug {
1297 struct list_head list; /* requests */
1298 struct list_head mq_list; /* blk-mq requests */
1299 struct list_head cb_list; /* md requires an unplug callback */
1300 };
1301 #define BLK_MAX_REQUEST_COUNT 16
1302 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1303
1304 struct blk_plug_cb;
1305 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1306 struct blk_plug_cb {
1307 struct list_head list;
1308 blk_plug_cb_fn callback;
1309 void *data;
1310 };
1311 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1312 void *data, int size);
1313 extern void blk_start_plug(struct blk_plug *);
1314 extern void blk_finish_plug(struct blk_plug *);
1315 extern void blk_flush_plug_list(struct blk_plug *, bool);
1316
1317 static inline void blk_flush_plug(struct task_struct *tsk)
1318 {
1319 struct blk_plug *plug = tsk->plug;
1320
1321 if (plug)
1322 blk_flush_plug_list(plug, false);
1323 }
1324
1325 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1326 {
1327 struct blk_plug *plug = tsk->plug;
1328
1329 if (plug)
1330 blk_flush_plug_list(plug, true);
1331 }
1332
1333 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1334 {
1335 struct blk_plug *plug = tsk->plug;
1336
1337 return plug &&
1338 (!list_empty(&plug->list) ||
1339 !list_empty(&plug->mq_list) ||
1340 !list_empty(&plug->cb_list));
1341 }
1342
1343 /*
1344 * tag stuff
1345 */
1346 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1347 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1348 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1349 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1350 extern void blk_queue_free_tags(struct request_queue *);
1351 extern int blk_queue_resize_tags(struct request_queue *, int);
1352 extern void blk_queue_invalidate_tags(struct request_queue *);
1353 extern struct blk_queue_tag *blk_init_tags(int, int);
1354 extern void blk_free_tags(struct blk_queue_tag *);
1355
1356 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1357 int tag)
1358 {
1359 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1360 return NULL;
1361 return bqt->tag_index[tag];
1362 }
1363
1364 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1365 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1366 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1367
1368 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1369
1370 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1371 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1372 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1373 sector_t nr_sects, gfp_t gfp_mask, int flags,
1374 struct bio **biop);
1375
1376 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1377 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1378
1379 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1380 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1381 unsigned flags);
1382 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1383 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1384
1385 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1386 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1387 {
1388 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1389 nr_blocks << (sb->s_blocksize_bits - 9),
1390 gfp_mask, flags);
1391 }
1392 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1393 sector_t nr_blocks, gfp_t gfp_mask)
1394 {
1395 return blkdev_issue_zeroout(sb->s_bdev,
1396 block << (sb->s_blocksize_bits - 9),
1397 nr_blocks << (sb->s_blocksize_bits - 9),
1398 gfp_mask, 0);
1399 }
1400
1401 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1402
1403 enum blk_default_limits {
1404 BLK_MAX_SEGMENTS = 128,
1405 BLK_SAFE_MAX_SECTORS = 255,
1406 BLK_DEF_MAX_SECTORS = 2560,
1407 BLK_MAX_SEGMENT_SIZE = 65536,
1408 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1409 };
1410
1411 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1412
1413 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1414 {
1415 return q->limits.seg_boundary_mask;
1416 }
1417
1418 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1419 {
1420 return q->limits.virt_boundary_mask;
1421 }
1422
1423 static inline unsigned int queue_max_sectors(struct request_queue *q)
1424 {
1425 return q->limits.max_sectors;
1426 }
1427
1428 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1429 {
1430 return q->limits.max_hw_sectors;
1431 }
1432
1433 static inline unsigned short queue_max_segments(struct request_queue *q)
1434 {
1435 return q->limits.max_segments;
1436 }
1437
1438 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1439 {
1440 return q->limits.max_discard_segments;
1441 }
1442
1443 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1444 {
1445 return q->limits.max_segment_size;
1446 }
1447
1448 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1449 {
1450 int retval = 512;
1451
1452 if (q && q->limits.logical_block_size)
1453 retval = q->limits.logical_block_size;
1454
1455 return retval;
1456 }
1457
1458 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1459 {
1460 return queue_logical_block_size(bdev_get_queue(bdev));
1461 }
1462
1463 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1464 {
1465 return q->limits.physical_block_size;
1466 }
1467
1468 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1469 {
1470 return queue_physical_block_size(bdev_get_queue(bdev));
1471 }
1472
1473 static inline unsigned int queue_io_min(struct request_queue *q)
1474 {
1475 return q->limits.io_min;
1476 }
1477
1478 static inline int bdev_io_min(struct block_device *bdev)
1479 {
1480 return queue_io_min(bdev_get_queue(bdev));
1481 }
1482
1483 static inline unsigned int queue_io_opt(struct request_queue *q)
1484 {
1485 return q->limits.io_opt;
1486 }
1487
1488 static inline int bdev_io_opt(struct block_device *bdev)
1489 {
1490 return queue_io_opt(bdev_get_queue(bdev));
1491 }
1492
1493 static inline int queue_alignment_offset(struct request_queue *q)
1494 {
1495 if (q->limits.misaligned)
1496 return -1;
1497
1498 return q->limits.alignment_offset;
1499 }
1500
1501 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1502 {
1503 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1504 unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1505
1506 return (granularity + lim->alignment_offset - alignment) % granularity;
1507 }
1508
1509 static inline int bdev_alignment_offset(struct block_device *bdev)
1510 {
1511 struct request_queue *q = bdev_get_queue(bdev);
1512
1513 if (q->limits.misaligned)
1514 return -1;
1515
1516 if (bdev != bdev->bd_contains)
1517 return bdev->bd_part->alignment_offset;
1518
1519 return q->limits.alignment_offset;
1520 }
1521
1522 static inline int queue_discard_alignment(struct request_queue *q)
1523 {
1524 if (q->limits.discard_misaligned)
1525 return -1;
1526
1527 return q->limits.discard_alignment;
1528 }
1529
1530 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1531 {
1532 unsigned int alignment, granularity, offset;
1533
1534 if (!lim->max_discard_sectors)
1535 return 0;
1536
1537 /* Why are these in bytes, not sectors? */
1538 alignment = lim->discard_alignment >> 9;
1539 granularity = lim->discard_granularity >> 9;
1540 if (!granularity)
1541 return 0;
1542
1543 /* Offset of the partition start in 'granularity' sectors */
1544 offset = sector_div(sector, granularity);
1545
1546 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1547 offset = (granularity + alignment - offset) % granularity;
1548
1549 /* Turn it back into bytes, gaah */
1550 return offset << 9;
1551 }
1552
1553 static inline int bdev_discard_alignment(struct block_device *bdev)
1554 {
1555 struct request_queue *q = bdev_get_queue(bdev);
1556
1557 if (bdev != bdev->bd_contains)
1558 return bdev->bd_part->discard_alignment;
1559
1560 return q->limits.discard_alignment;
1561 }
1562
1563 static inline unsigned int bdev_write_same(struct block_device *bdev)
1564 {
1565 struct request_queue *q = bdev_get_queue(bdev);
1566
1567 if (q)
1568 return q->limits.max_write_same_sectors;
1569
1570 return 0;
1571 }
1572
1573 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1574 {
1575 struct request_queue *q = bdev_get_queue(bdev);
1576
1577 if (q)
1578 return q->limits.max_write_zeroes_sectors;
1579
1580 return 0;
1581 }
1582
1583 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1584 {
1585 struct request_queue *q = bdev_get_queue(bdev);
1586
1587 if (q)
1588 return blk_queue_zoned_model(q);
1589
1590 return BLK_ZONED_NONE;
1591 }
1592
1593 static inline bool bdev_is_zoned(struct block_device *bdev)
1594 {
1595 struct request_queue *q = bdev_get_queue(bdev);
1596
1597 if (q)
1598 return blk_queue_is_zoned(q);
1599
1600 return false;
1601 }
1602
1603 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1604 {
1605 struct request_queue *q = bdev_get_queue(bdev);
1606
1607 if (q)
1608 return blk_queue_zone_sectors(q);
1609
1610 return 0;
1611 }
1612
1613 static inline int queue_dma_alignment(struct request_queue *q)
1614 {
1615 return q ? q->dma_alignment : 511;
1616 }
1617
1618 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1619 unsigned int len)
1620 {
1621 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1622 return !(addr & alignment) && !(len & alignment);
1623 }
1624
1625 /* assumes size > 256 */
1626 static inline unsigned int blksize_bits(unsigned int size)
1627 {
1628 unsigned int bits = 8;
1629 do {
1630 bits++;
1631 size >>= 1;
1632 } while (size > 256);
1633 return bits;
1634 }
1635
1636 static inline unsigned int block_size(struct block_device *bdev)
1637 {
1638 return bdev->bd_block_size;
1639 }
1640
1641 static inline bool queue_flush_queueable(struct request_queue *q)
1642 {
1643 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1644 }
1645
1646 typedef struct {struct page *v;} Sector;
1647
1648 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1649
1650 static inline void put_dev_sector(Sector p)
1651 {
1652 put_page(p.v);
1653 }
1654
1655 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1656 struct bio_vec *bprv, unsigned int offset)
1657 {
1658 return offset ||
1659 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1660 }
1661
1662 /*
1663 * Check if adding a bio_vec after bprv with offset would create a gap in
1664 * the SG list. Most drivers don't care about this, but some do.
1665 */
1666 static inline bool bvec_gap_to_prev(struct request_queue *q,
1667 struct bio_vec *bprv, unsigned int offset)
1668 {
1669 if (!queue_virt_boundary(q))
1670 return false;
1671 return __bvec_gap_to_prev(q, bprv, offset);
1672 }
1673
1674 /*
1675 * Check if the two bvecs from two bios can be merged to one segment.
1676 * If yes, no need to check gap between the two bios since the 1st bio
1677 * and the 1st bvec in the 2nd bio can be handled in one segment.
1678 */
1679 static inline bool bios_segs_mergeable(struct request_queue *q,
1680 struct bio *prev, struct bio_vec *prev_last_bv,
1681 struct bio_vec *next_first_bv)
1682 {
1683 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1684 return false;
1685 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1686 return false;
1687 if (prev->bi_seg_back_size + next_first_bv->bv_len >
1688 queue_max_segment_size(q))
1689 return false;
1690 return true;
1691 }
1692
1693 static inline bool bio_will_gap(struct request_queue *q,
1694 struct request *prev_rq,
1695 struct bio *prev,
1696 struct bio *next)
1697 {
1698 if (bio_has_data(prev) && queue_virt_boundary(q)) {
1699 struct bio_vec pb, nb;
1700
1701 /*
1702 * don't merge if the 1st bio starts with non-zero
1703 * offset, otherwise it is quite difficult to respect
1704 * sg gap limit. We work hard to merge a huge number of small
1705 * single bios in case of mkfs.
1706 */
1707 if (prev_rq)
1708 bio_get_first_bvec(prev_rq->bio, &pb);
1709 else
1710 bio_get_first_bvec(prev, &pb);
1711 if (pb.bv_offset)
1712 return true;
1713
1714 /*
1715 * We don't need to worry about the situation that the
1716 * merged segment ends in unaligned virt boundary:
1717 *
1718 * - if 'pb' ends aligned, the merged segment ends aligned
1719 * - if 'pb' ends unaligned, the next bio must include
1720 * one single bvec of 'nb', otherwise the 'nb' can't
1721 * merge with 'pb'
1722 */
1723 bio_get_last_bvec(prev, &pb);
1724 bio_get_first_bvec(next, &nb);
1725
1726 if (!bios_segs_mergeable(q, prev, &pb, &nb))
1727 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1728 }
1729
1730 return false;
1731 }
1732
1733 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1734 {
1735 return bio_will_gap(req->q, req, req->biotail, bio);
1736 }
1737
1738 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1739 {
1740 return bio_will_gap(req->q, NULL, bio, req->bio);
1741 }
1742
1743 int kblockd_schedule_work(struct work_struct *work);
1744 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1745 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1746 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1747 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1748
1749 #ifdef CONFIG_BLK_CGROUP
1750 /*
1751 * This should not be using sched_clock(). A real patch is in progress
1752 * to fix this up, until that is in place we need to disable preemption
1753 * around sched_clock() in this function and set_io_start_time_ns().
1754 */
1755 static inline void set_start_time_ns(struct request *req)
1756 {
1757 preempt_disable();
1758 req->start_time_ns = sched_clock();
1759 preempt_enable();
1760 }
1761
1762 static inline void set_io_start_time_ns(struct request *req)
1763 {
1764 preempt_disable();
1765 req->io_start_time_ns = sched_clock();
1766 preempt_enable();
1767 }
1768
1769 static inline uint64_t rq_start_time_ns(struct request *req)
1770 {
1771 return req->start_time_ns;
1772 }
1773
1774 static inline uint64_t rq_io_start_time_ns(struct request *req)
1775 {
1776 return req->io_start_time_ns;
1777 }
1778 #else
1779 static inline void set_start_time_ns(struct request *req) {}
1780 static inline void set_io_start_time_ns(struct request *req) {}
1781 static inline uint64_t rq_start_time_ns(struct request *req)
1782 {
1783 return 0;
1784 }
1785 static inline uint64_t rq_io_start_time_ns(struct request *req)
1786 {
1787 return 0;
1788 }
1789 #endif
1790
1791 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1792 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1793 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1794 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1795
1796 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1797
1798 enum blk_integrity_flags {
1799 BLK_INTEGRITY_VERIFY = 1 << 0,
1800 BLK_INTEGRITY_GENERATE = 1 << 1,
1801 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1802 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1803 };
1804
1805 struct blk_integrity_iter {
1806 void *prot_buf;
1807 void *data_buf;
1808 sector_t seed;
1809 unsigned int data_size;
1810 unsigned short interval;
1811 const char *disk_name;
1812 };
1813
1814 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1815
1816 struct blk_integrity_profile {
1817 integrity_processing_fn *generate_fn;
1818 integrity_processing_fn *verify_fn;
1819 const char *name;
1820 };
1821
1822 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1823 extern void blk_integrity_unregister(struct gendisk *);
1824 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1825 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1826 struct scatterlist *);
1827 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1828 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1829 struct request *);
1830 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1831 struct bio *);
1832
1833 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1834 {
1835 struct blk_integrity *bi = &disk->queue->integrity;
1836
1837 if (!bi->profile)
1838 return NULL;
1839
1840 return bi;
1841 }
1842
1843 static inline
1844 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1845 {
1846 return blk_get_integrity(bdev->bd_disk);
1847 }
1848
1849 static inline bool blk_integrity_rq(struct request *rq)
1850 {
1851 return rq->cmd_flags & REQ_INTEGRITY;
1852 }
1853
1854 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1855 unsigned int segs)
1856 {
1857 q->limits.max_integrity_segments = segs;
1858 }
1859
1860 static inline unsigned short
1861 queue_max_integrity_segments(struct request_queue *q)
1862 {
1863 return q->limits.max_integrity_segments;
1864 }
1865
1866 static inline bool integrity_req_gap_back_merge(struct request *req,
1867 struct bio *next)
1868 {
1869 struct bio_integrity_payload *bip = bio_integrity(req->bio);
1870 struct bio_integrity_payload *bip_next = bio_integrity(next);
1871
1872 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1873 bip_next->bip_vec[0].bv_offset);
1874 }
1875
1876 static inline bool integrity_req_gap_front_merge(struct request *req,
1877 struct bio *bio)
1878 {
1879 struct bio_integrity_payload *bip = bio_integrity(bio);
1880 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1881
1882 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1883 bip_next->bip_vec[0].bv_offset);
1884 }
1885
1886 #else /* CONFIG_BLK_DEV_INTEGRITY */
1887
1888 struct bio;
1889 struct block_device;
1890 struct gendisk;
1891 struct blk_integrity;
1892
1893 static inline int blk_integrity_rq(struct request *rq)
1894 {
1895 return 0;
1896 }
1897 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1898 struct bio *b)
1899 {
1900 return 0;
1901 }
1902 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1903 struct bio *b,
1904 struct scatterlist *s)
1905 {
1906 return 0;
1907 }
1908 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1909 {
1910 return NULL;
1911 }
1912 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1913 {
1914 return NULL;
1915 }
1916 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1917 {
1918 return 0;
1919 }
1920 static inline void blk_integrity_register(struct gendisk *d,
1921 struct blk_integrity *b)
1922 {
1923 }
1924 static inline void blk_integrity_unregister(struct gendisk *d)
1925 {
1926 }
1927 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1928 unsigned int segs)
1929 {
1930 }
1931 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1932 {
1933 return 0;
1934 }
1935 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1936 struct request *r1,
1937 struct request *r2)
1938 {
1939 return true;
1940 }
1941 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1942 struct request *r,
1943 struct bio *b)
1944 {
1945 return true;
1946 }
1947
1948 static inline bool integrity_req_gap_back_merge(struct request *req,
1949 struct bio *next)
1950 {
1951 return false;
1952 }
1953 static inline bool integrity_req_gap_front_merge(struct request *req,
1954 struct bio *bio)
1955 {
1956 return false;
1957 }
1958
1959 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1960
1961 struct block_device_operations {
1962 int (*open) (struct block_device *, fmode_t);
1963 void (*release) (struct gendisk *, fmode_t);
1964 int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1965 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1966 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1967 unsigned int (*check_events) (struct gendisk *disk,
1968 unsigned int clearing);
1969 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1970 int (*media_changed) (struct gendisk *);
1971 void (*unlock_native_capacity) (struct gendisk *);
1972 int (*revalidate_disk) (struct gendisk *);
1973 int (*getgeo)(struct block_device *, struct hd_geometry *);
1974 /* this callback is with swap_lock and sometimes page table lock held */
1975 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1976 struct module *owner;
1977 const struct pr_ops *pr_ops;
1978 };
1979
1980 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1981 unsigned long);
1982 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1983 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1984 struct writeback_control *);
1985 #else /* CONFIG_BLOCK */
1986
1987 struct block_device;
1988
1989 /*
1990 * stubs for when the block layer is configured out
1991 */
1992 #define buffer_heads_over_limit 0
1993
1994 static inline long nr_blockdev_pages(void)
1995 {
1996 return 0;
1997 }
1998
1999 struct blk_plug {
2000 };
2001
2002 static inline void blk_start_plug(struct blk_plug *plug)
2003 {
2004 }
2005
2006 static inline void blk_finish_plug(struct blk_plug *plug)
2007 {
2008 }
2009
2010 static inline void blk_flush_plug(struct task_struct *task)
2011 {
2012 }
2013
2014 static inline void blk_schedule_flush_plug(struct task_struct *task)
2015 {
2016 }
2017
2018
2019 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
2020 {
2021 return false;
2022 }
2023
2024 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2025 sector_t *error_sector)
2026 {
2027 return 0;
2028 }
2029
2030 #endif /* CONFIG_BLOCK */
2031
2032 #endif