defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 struct wb_completion *done = work->done;
180
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
189 {
190 trace_writeback_queue(wb, work);
191
192 if (work->done)
193 atomic_inc(&work->done->cnt);
194
195 spin_lock_bh(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
202
203 spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
210 *
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
216 */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
219 {
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
247
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
250
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
259 }
260 }
261
262 if (!wb)
263 wb = &bdi->wb;
264
265 /*
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
268 */
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
271 }
272
273 /**
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
276 *
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
280 */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
285 {
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
288
289 /*
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
294 */
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
298
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
303 }
304
305 spin_unlock(&wb->list_lock);
306 wb_put(wb);
307 cpu_relax();
308 spin_lock(&inode->i_lock);
309 }
310 }
311
312 /**
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
315 *
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
318 */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
321 {
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
329
330 struct rcu_head rcu_head;
331 struct work_struct work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336 down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341 up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346 struct inode_switch_wbs_context *isw =
347 container_of(work, struct inode_switch_wbs_context, work);
348 struct inode *inode = isw->inode;
349 struct backing_dev_info *bdi = inode_to_bdi(inode);
350 struct address_space *mapping = inode->i_mapping;
351 struct bdi_writeback *old_wb = inode->i_wb;
352 struct bdi_writeback *new_wb = isw->new_wb;
353 struct radix_tree_iter iter;
354 bool switched = false;
355 void **slot;
356
357 /*
358 * If @inode switches cgwb membership while sync_inodes_sb() is
359 * being issued, sync_inodes_sb() might miss it. Synchronize.
360 */
361 down_read(&bdi->wb_switch_rwsem);
362
363 /*
364 * By the time control reaches here, RCU grace period has passed
365 * since I_WB_SWITCH assertion and all wb stat update transactions
366 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367 * synchronizing against mapping->tree_lock.
368 *
369 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
370 * gives us exclusion against all wb related operations on @inode
371 * including IO list manipulations and stat updates.
372 */
373 if (old_wb < new_wb) {
374 spin_lock(&old_wb->list_lock);
375 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 } else {
377 spin_lock(&new_wb->list_lock);
378 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 }
380 spin_lock(&inode->i_lock);
381 spin_lock_irq(&mapping->tree_lock);
382
383 /*
384 * Once I_FREEING is visible under i_lock, the eviction path owns
385 * the inode and we shouldn't modify ->i_io_list.
386 */
387 if (unlikely(inode->i_state & I_FREEING))
388 goto skip_switch;
389
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 * pages actually under underwriteback.
394 */
395 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
396 PAGECACHE_TAG_DIRTY) {
397 struct page *page = radix_tree_deref_slot_protected(slot,
398 &mapping->tree_lock);
399 if (likely(page) && PageDirty(page)) {
400 dec_wb_stat(old_wb, WB_RECLAIMABLE);
401 inc_wb_stat(new_wb, WB_RECLAIMABLE);
402 }
403 }
404
405 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
406 PAGECACHE_TAG_WRITEBACK) {
407 struct page *page = radix_tree_deref_slot_protected(slot,
408 &mapping->tree_lock);
409 if (likely(page)) {
410 WARN_ON_ONCE(!PageWriteback(page));
411 dec_wb_stat(old_wb, WB_WRITEBACK);
412 inc_wb_stat(new_wb, WB_WRITEBACK);
413 }
414 }
415
416 wb_get(new_wb);
417
418 /*
419 * Transfer to @new_wb's IO list if necessary. The specific list
420 * @inode was on is ignored and the inode is put on ->b_dirty which
421 * is always correct including from ->b_dirty_time. The transfer
422 * preserves @inode->dirtied_when ordering.
423 */
424 if (!list_empty(&inode->i_io_list)) {
425 struct inode *pos;
426
427 inode_io_list_del_locked(inode, old_wb);
428 inode->i_wb = new_wb;
429 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430 if (time_after_eq(inode->dirtied_when,
431 pos->dirtied_when))
432 break;
433 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434 } else {
435 inode->i_wb = new_wb;
436 }
437
438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 inode->i_wb_frn_winner = 0;
440 inode->i_wb_frn_avg_time = 0;
441 inode->i_wb_frn_history = 0;
442 switched = true;
443 skip_switch:
444 /*
445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 */
448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450 spin_unlock_irq(&mapping->tree_lock);
451 spin_unlock(&inode->i_lock);
452 spin_unlock(&new_wb->list_lock);
453 spin_unlock(&old_wb->list_lock);
454
455 up_read(&bdi->wb_switch_rwsem);
456
457 if (switched) {
458 wb_wakeup(new_wb);
459 wb_put(old_wb);
460 }
461 wb_put(new_wb);
462
463 iput(inode);
464 kfree(isw);
465
466 atomic_dec(&isw_nr_in_flight);
467 }
468
469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471 struct inode_switch_wbs_context *isw = container_of(rcu_head,
472 struct inode_switch_wbs_context, rcu_head);
473
474 /* needs to grab bh-unsafe locks, bounce to work item */
475 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476 queue_work(isw_wq, &isw->work);
477 }
478
479 /**
480 * inode_switch_wbs - change the wb association of an inode
481 * @inode: target inode
482 * @new_wb_id: ID of the new wb
483 *
484 * Switch @inode's wb association to the wb identified by @new_wb_id. The
485 * switching is performed asynchronously and may fail silently.
486 */
487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489 struct backing_dev_info *bdi = inode_to_bdi(inode);
490 struct cgroup_subsys_state *memcg_css;
491 struct inode_switch_wbs_context *isw;
492
493 /* noop if seems to be already in progress */
494 if (inode->i_state & I_WB_SWITCH)
495 return;
496
497 /*
498 * Avoid starting new switches while sync_inodes_sb() is in
499 * progress. Otherwise, if the down_write protected issue path
500 * blocks heavily, we might end up starting a large number of
501 * switches which will block on the rwsem.
502 */
503 if (!down_read_trylock(&bdi->wb_switch_rwsem))
504 return;
505
506 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507 if (!isw)
508 goto out_unlock;
509
510 /* find and pin the new wb */
511 rcu_read_lock();
512 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513 if (memcg_css)
514 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515 rcu_read_unlock();
516 if (!isw->new_wb)
517 goto out_free;
518
519 /* while holding I_WB_SWITCH, no one else can update the association */
520 spin_lock(&inode->i_lock);
521 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
522 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523 inode_to_wb(inode) == isw->new_wb) {
524 spin_unlock(&inode->i_lock);
525 goto out_free;
526 }
527 inode->i_state |= I_WB_SWITCH;
528 __iget(inode);
529 spin_unlock(&inode->i_lock);
530
531 isw->inode = inode;
532
533 atomic_inc(&isw_nr_in_flight);
534
535 /*
536 * In addition to synchronizing among switchers, I_WB_SWITCH tells
537 * the RCU protected stat update paths to grab the mapping's
538 * tree_lock so that stat transfer can synchronize against them.
539 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
540 */
541 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
542 goto out_unlock;
543
544 out_free:
545 if (isw->new_wb)
546 wb_put(isw->new_wb);
547 kfree(isw);
548 out_unlock:
549 up_read(&bdi->wb_switch_rwsem);
550 }
551
552 /**
553 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
554 * @wbc: writeback_control of interest
555 * @inode: target inode
556 *
557 * @inode is locked and about to be written back under the control of @wbc.
558 * Record @inode's writeback context into @wbc and unlock the i_lock. On
559 * writeback completion, wbc_detach_inode() should be called. This is used
560 * to track the cgroup writeback context.
561 */
562 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
563 struct inode *inode)
564 {
565 if (!inode_cgwb_enabled(inode)) {
566 spin_unlock(&inode->i_lock);
567 return;
568 }
569
570 wbc->wb = inode_to_wb(inode);
571 wbc->inode = inode;
572
573 wbc->wb_id = wbc->wb->memcg_css->id;
574 wbc->wb_lcand_id = inode->i_wb_frn_winner;
575 wbc->wb_tcand_id = 0;
576 wbc->wb_bytes = 0;
577 wbc->wb_lcand_bytes = 0;
578 wbc->wb_tcand_bytes = 0;
579
580 wb_get(wbc->wb);
581 spin_unlock(&inode->i_lock);
582
583 /*
584 * A dying wb indicates that the memcg-blkcg mapping has changed
585 * and a new wb is already serving the memcg. Switch immediately.
586 */
587 if (unlikely(wb_dying(wbc->wb)))
588 inode_switch_wbs(inode, wbc->wb_id);
589 }
590
591 /**
592 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
593 * @wbc: writeback_control of the just finished writeback
594 *
595 * To be called after a writeback attempt of an inode finishes and undoes
596 * wbc_attach_and_unlock_inode(). Can be called under any context.
597 *
598 * As concurrent write sharing of an inode is expected to be very rare and
599 * memcg only tracks page ownership on first-use basis severely confining
600 * the usefulness of such sharing, cgroup writeback tracks ownership
601 * per-inode. While the support for concurrent write sharing of an inode
602 * is deemed unnecessary, an inode being written to by different cgroups at
603 * different points in time is a lot more common, and, more importantly,
604 * charging only by first-use can too readily lead to grossly incorrect
605 * behaviors (single foreign page can lead to gigabytes of writeback to be
606 * incorrectly attributed).
607 *
608 * To resolve this issue, cgroup writeback detects the majority dirtier of
609 * an inode and transfers the ownership to it. To avoid unnnecessary
610 * oscillation, the detection mechanism keeps track of history and gives
611 * out the switch verdict only if the foreign usage pattern is stable over
612 * a certain amount of time and/or writeback attempts.
613 *
614 * On each writeback attempt, @wbc tries to detect the majority writer
615 * using Boyer-Moore majority vote algorithm. In addition to the byte
616 * count from the majority voting, it also counts the bytes written for the
617 * current wb and the last round's winner wb (max of last round's current
618 * wb, the winner from two rounds ago, and the last round's majority
619 * candidate). Keeping track of the historical winner helps the algorithm
620 * to semi-reliably detect the most active writer even when it's not the
621 * absolute majority.
622 *
623 * Once the winner of the round is determined, whether the winner is
624 * foreign or not and how much IO time the round consumed is recorded in
625 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
626 * over a certain threshold, the switch verdict is given.
627 */
628 void wbc_detach_inode(struct writeback_control *wbc)
629 {
630 struct bdi_writeback *wb = wbc->wb;
631 struct inode *inode = wbc->inode;
632 unsigned long avg_time, max_bytes, max_time;
633 u16 history;
634 int max_id;
635
636 if (!wb)
637 return;
638
639 history = inode->i_wb_frn_history;
640 avg_time = inode->i_wb_frn_avg_time;
641
642 /* pick the winner of this round */
643 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
644 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
645 max_id = wbc->wb_id;
646 max_bytes = wbc->wb_bytes;
647 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
648 max_id = wbc->wb_lcand_id;
649 max_bytes = wbc->wb_lcand_bytes;
650 } else {
651 max_id = wbc->wb_tcand_id;
652 max_bytes = wbc->wb_tcand_bytes;
653 }
654
655 /*
656 * Calculate the amount of IO time the winner consumed and fold it
657 * into the running average kept per inode. If the consumed IO
658 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
659 * deciding whether to switch or not. This is to prevent one-off
660 * small dirtiers from skewing the verdict.
661 */
662 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
663 wb->avg_write_bandwidth);
664 if (avg_time)
665 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
666 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
667 else
668 avg_time = max_time; /* immediate catch up on first run */
669
670 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
671 int slots;
672
673 /*
674 * The switch verdict is reached if foreign wb's consume
675 * more than a certain proportion of IO time in a
676 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
677 * history mask where each bit represents one sixteenth of
678 * the period. Determine the number of slots to shift into
679 * history from @max_time.
680 */
681 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
682 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
683 history <<= slots;
684 if (wbc->wb_id != max_id)
685 history |= (1U << slots) - 1;
686
687 /*
688 * Switch if the current wb isn't the consistent winner.
689 * If there are multiple closely competing dirtiers, the
690 * inode may switch across them repeatedly over time, which
691 * is okay. The main goal is avoiding keeping an inode on
692 * the wrong wb for an extended period of time.
693 */
694 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
695 inode_switch_wbs(inode, max_id);
696 }
697
698 /*
699 * Multiple instances of this function may race to update the
700 * following fields but we don't mind occassional inaccuracies.
701 */
702 inode->i_wb_frn_winner = max_id;
703 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
704 inode->i_wb_frn_history = history;
705
706 wb_put(wbc->wb);
707 wbc->wb = NULL;
708 }
709
710 /**
711 * wbc_account_io - account IO issued during writeback
712 * @wbc: writeback_control of the writeback in progress
713 * @page: page being written out
714 * @bytes: number of bytes being written out
715 *
716 * @bytes from @page are about to written out during the writeback
717 * controlled by @wbc. Keep the book for foreign inode detection. See
718 * wbc_detach_inode().
719 */
720 void wbc_account_io(struct writeback_control *wbc, struct page *page,
721 size_t bytes)
722 {
723 int id;
724
725 /*
726 * pageout() path doesn't attach @wbc to the inode being written
727 * out. This is intentional as we don't want the function to block
728 * behind a slow cgroup. Ultimately, we want pageout() to kick off
729 * regular writeback instead of writing things out itself.
730 */
731 if (!wbc->wb)
732 return;
733
734 id = mem_cgroup_css_from_page(page)->id;
735
736 if (id == wbc->wb_id) {
737 wbc->wb_bytes += bytes;
738 return;
739 }
740
741 if (id == wbc->wb_lcand_id)
742 wbc->wb_lcand_bytes += bytes;
743
744 /* Boyer-Moore majority vote algorithm */
745 if (!wbc->wb_tcand_bytes)
746 wbc->wb_tcand_id = id;
747 if (id == wbc->wb_tcand_id)
748 wbc->wb_tcand_bytes += bytes;
749 else
750 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
751 }
752 EXPORT_SYMBOL_GPL(wbc_account_io);
753
754 /**
755 * inode_congested - test whether an inode is congested
756 * @inode: inode to test for congestion (may be NULL)
757 * @cong_bits: mask of WB_[a]sync_congested bits to test
758 *
759 * Tests whether @inode is congested. @cong_bits is the mask of congestion
760 * bits to test and the return value is the mask of set bits.
761 *
762 * If cgroup writeback is enabled for @inode, the congestion state is
763 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
764 * associated with @inode is congested; otherwise, the root wb's congestion
765 * state is used.
766 *
767 * @inode is allowed to be NULL as this function is often called on
768 * mapping->host which is NULL for the swapper space.
769 */
770 int inode_congested(struct inode *inode, int cong_bits)
771 {
772 /*
773 * Once set, ->i_wb never becomes NULL while the inode is alive.
774 * Start transaction iff ->i_wb is visible.
775 */
776 if (inode && inode_to_wb_is_valid(inode)) {
777 struct bdi_writeback *wb;
778 struct wb_lock_cookie lock_cookie = {};
779 bool congested;
780
781 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
782 congested = wb_congested(wb, cong_bits);
783 unlocked_inode_to_wb_end(inode, &lock_cookie);
784 return congested;
785 }
786
787 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
788 }
789 EXPORT_SYMBOL_GPL(inode_congested);
790
791 /**
792 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
793 * @wb: target bdi_writeback to split @nr_pages to
794 * @nr_pages: number of pages to write for the whole bdi
795 *
796 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
797 * relation to the total write bandwidth of all wb's w/ dirty inodes on
798 * @wb->bdi.
799 */
800 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
801 {
802 unsigned long this_bw = wb->avg_write_bandwidth;
803 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
804
805 if (nr_pages == LONG_MAX)
806 return LONG_MAX;
807
808 /*
809 * This may be called on clean wb's and proportional distribution
810 * may not make sense, just use the original @nr_pages in those
811 * cases. In general, we wanna err on the side of writing more.
812 */
813 if (!tot_bw || this_bw >= tot_bw)
814 return nr_pages;
815 else
816 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
817 }
818
819 /**
820 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
821 * @bdi: target backing_dev_info
822 * @base_work: wb_writeback_work to issue
823 * @skip_if_busy: skip wb's which already have writeback in progress
824 *
825 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
826 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
827 * distributed to the busy wbs according to each wb's proportion in the
828 * total active write bandwidth of @bdi.
829 */
830 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
831 struct wb_writeback_work *base_work,
832 bool skip_if_busy)
833 {
834 struct bdi_writeback *last_wb = NULL;
835 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
836 struct bdi_writeback, bdi_node);
837
838 might_sleep();
839 restart:
840 rcu_read_lock();
841 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
842 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
843 struct wb_writeback_work fallback_work;
844 struct wb_writeback_work *work;
845 long nr_pages;
846
847 if (last_wb) {
848 wb_put(last_wb);
849 last_wb = NULL;
850 }
851
852 /* SYNC_ALL writes out I_DIRTY_TIME too */
853 if (!wb_has_dirty_io(wb) &&
854 (base_work->sync_mode == WB_SYNC_NONE ||
855 list_empty(&wb->b_dirty_time)))
856 continue;
857 if (skip_if_busy && writeback_in_progress(wb))
858 continue;
859
860 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
861
862 work = kmalloc(sizeof(*work), GFP_ATOMIC);
863 if (work) {
864 *work = *base_work;
865 work->nr_pages = nr_pages;
866 work->auto_free = 1;
867 wb_queue_work(wb, work);
868 continue;
869 }
870
871 /* alloc failed, execute synchronously using on-stack fallback */
872 work = &fallback_work;
873 *work = *base_work;
874 work->nr_pages = nr_pages;
875 work->auto_free = 0;
876 work->done = &fallback_work_done;
877
878 wb_queue_work(wb, work);
879
880 /*
881 * Pin @wb so that it stays on @bdi->wb_list. This allows
882 * continuing iteration from @wb after dropping and
883 * regrabbing rcu read lock.
884 */
885 wb_get(wb);
886 last_wb = wb;
887
888 rcu_read_unlock();
889 wb_wait_for_completion(bdi, &fallback_work_done);
890 goto restart;
891 }
892 rcu_read_unlock();
893
894 if (last_wb)
895 wb_put(last_wb);
896 }
897
898 /**
899 * cgroup_writeback_umount - flush inode wb switches for umount
900 *
901 * This function is called when a super_block is about to be destroyed and
902 * flushes in-flight inode wb switches. An inode wb switch goes through
903 * RCU and then workqueue, so the two need to be flushed in order to ensure
904 * that all previously scheduled switches are finished. As wb switches are
905 * rare occurrences and synchronize_rcu() can take a while, perform
906 * flushing iff wb switches are in flight.
907 */
908 void cgroup_writeback_umount(void)
909 {
910 if (atomic_read(&isw_nr_in_flight)) {
911 synchronize_rcu();
912 flush_workqueue(isw_wq);
913 }
914 }
915
916 static int __init cgroup_writeback_init(void)
917 {
918 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
919 if (!isw_wq)
920 return -ENOMEM;
921 return 0;
922 }
923 fs_initcall(cgroup_writeback_init);
924
925 #else /* CONFIG_CGROUP_WRITEBACK */
926
927 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
928 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
929
930 static struct bdi_writeback *
931 locked_inode_to_wb_and_lock_list(struct inode *inode)
932 __releases(&inode->i_lock)
933 __acquires(&wb->list_lock)
934 {
935 struct bdi_writeback *wb = inode_to_wb(inode);
936
937 spin_unlock(&inode->i_lock);
938 spin_lock(&wb->list_lock);
939 return wb;
940 }
941
942 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
943 __acquires(&wb->list_lock)
944 {
945 struct bdi_writeback *wb = inode_to_wb(inode);
946
947 spin_lock(&wb->list_lock);
948 return wb;
949 }
950
951 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
952 {
953 return nr_pages;
954 }
955
956 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
957 struct wb_writeback_work *base_work,
958 bool skip_if_busy)
959 {
960 might_sleep();
961
962 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
963 base_work->auto_free = 0;
964 wb_queue_work(&bdi->wb, base_work);
965 }
966 }
967
968 #endif /* CONFIG_CGROUP_WRITEBACK */
969
970 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
971 bool range_cyclic, enum wb_reason reason)
972 {
973 struct wb_writeback_work *work;
974
975 if (!wb_has_dirty_io(wb))
976 return;
977
978 /*
979 * This is WB_SYNC_NONE writeback, so if allocation fails just
980 * wakeup the thread for old dirty data writeback
981 */
982 work = kzalloc(sizeof(*work),
983 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
984 if (!work) {
985 trace_writeback_nowork(wb);
986 wb_wakeup(wb);
987 return;
988 }
989
990 work->sync_mode = WB_SYNC_NONE;
991 work->nr_pages = nr_pages;
992 work->range_cyclic = range_cyclic;
993 work->reason = reason;
994 work->auto_free = 1;
995
996 wb_queue_work(wb, work);
997 }
998
999 /**
1000 * wb_start_background_writeback - start background writeback
1001 * @wb: bdi_writback to write from
1002 *
1003 * Description:
1004 * This makes sure WB_SYNC_NONE background writeback happens. When
1005 * this function returns, it is only guaranteed that for given wb
1006 * some IO is happening if we are over background dirty threshold.
1007 * Caller need not hold sb s_umount semaphore.
1008 */
1009 void wb_start_background_writeback(struct bdi_writeback *wb)
1010 {
1011 /*
1012 * We just wake up the flusher thread. It will perform background
1013 * writeback as soon as there is no other work to do.
1014 */
1015 trace_writeback_wake_background(wb);
1016 wb_wakeup(wb);
1017 }
1018
1019 /*
1020 * Remove the inode from the writeback list it is on.
1021 */
1022 void inode_io_list_del(struct inode *inode)
1023 {
1024 struct bdi_writeback *wb;
1025
1026 wb = inode_to_wb_and_lock_list(inode);
1027 inode_io_list_del_locked(inode, wb);
1028 spin_unlock(&wb->list_lock);
1029 }
1030
1031 /*
1032 * mark an inode as under writeback on the sb
1033 */
1034 void sb_mark_inode_writeback(struct inode *inode)
1035 {
1036 struct super_block *sb = inode->i_sb;
1037 unsigned long flags;
1038
1039 if (list_empty(&inode->i_wb_list)) {
1040 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1041 if (list_empty(&inode->i_wb_list)) {
1042 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1043 trace_sb_mark_inode_writeback(inode);
1044 }
1045 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1046 }
1047 }
1048
1049 /*
1050 * clear an inode as under writeback on the sb
1051 */
1052 void sb_clear_inode_writeback(struct inode *inode)
1053 {
1054 struct super_block *sb = inode->i_sb;
1055 unsigned long flags;
1056
1057 if (!list_empty(&inode->i_wb_list)) {
1058 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1059 if (!list_empty(&inode->i_wb_list)) {
1060 list_del_init(&inode->i_wb_list);
1061 trace_sb_clear_inode_writeback(inode);
1062 }
1063 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1064 }
1065 }
1066
1067 /*
1068 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1069 * furthest end of its superblock's dirty-inode list.
1070 *
1071 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1072 * already the most-recently-dirtied inode on the b_dirty list. If that is
1073 * the case then the inode must have been redirtied while it was being written
1074 * out and we don't reset its dirtied_when.
1075 */
1076 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1077 {
1078 if (!list_empty(&wb->b_dirty)) {
1079 struct inode *tail;
1080
1081 tail = wb_inode(wb->b_dirty.next);
1082 if (time_before(inode->dirtied_when, tail->dirtied_when))
1083 inode->dirtied_when = jiffies;
1084 }
1085 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1086 }
1087
1088 /*
1089 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1090 */
1091 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1092 {
1093 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1094 }
1095
1096 static void inode_sync_complete(struct inode *inode)
1097 {
1098 inode->i_state &= ~I_SYNC;
1099 /* If inode is clean an unused, put it into LRU now... */
1100 inode_add_lru(inode);
1101 /* Waiters must see I_SYNC cleared before being woken up */
1102 smp_mb();
1103 wake_up_bit(&inode->i_state, __I_SYNC);
1104 }
1105
1106 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1107 {
1108 bool ret = time_after(inode->dirtied_when, t);
1109 #ifndef CONFIG_64BIT
1110 /*
1111 * For inodes being constantly redirtied, dirtied_when can get stuck.
1112 * It _appears_ to be in the future, but is actually in distant past.
1113 * This test is necessary to prevent such wrapped-around relative times
1114 * from permanently stopping the whole bdi writeback.
1115 */
1116 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1117 #endif
1118 return ret;
1119 }
1120
1121 #define EXPIRE_DIRTY_ATIME 0x0001
1122
1123 /*
1124 * Move expired (dirtied before work->older_than_this) dirty inodes from
1125 * @delaying_queue to @dispatch_queue.
1126 */
1127 static int move_expired_inodes(struct list_head *delaying_queue,
1128 struct list_head *dispatch_queue,
1129 int flags,
1130 struct wb_writeback_work *work)
1131 {
1132 unsigned long *older_than_this = NULL;
1133 unsigned long expire_time;
1134 LIST_HEAD(tmp);
1135 struct list_head *pos, *node;
1136 struct super_block *sb = NULL;
1137 struct inode *inode;
1138 int do_sb_sort = 0;
1139 int moved = 0;
1140
1141 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1142 older_than_this = work->older_than_this;
1143 else if (!work->for_sync) {
1144 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1145 older_than_this = &expire_time;
1146 }
1147 while (!list_empty(delaying_queue)) {
1148 inode = wb_inode(delaying_queue->prev);
1149 if (older_than_this &&
1150 inode_dirtied_after(inode, *older_than_this))
1151 break;
1152 list_move(&inode->i_io_list, &tmp);
1153 moved++;
1154 if (flags & EXPIRE_DIRTY_ATIME)
1155 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1156 if (sb_is_blkdev_sb(inode->i_sb))
1157 continue;
1158 if (sb && sb != inode->i_sb)
1159 do_sb_sort = 1;
1160 sb = inode->i_sb;
1161 }
1162
1163 /* just one sb in list, splice to dispatch_queue and we're done */
1164 if (!do_sb_sort) {
1165 list_splice(&tmp, dispatch_queue);
1166 goto out;
1167 }
1168
1169 /* Move inodes from one superblock together */
1170 while (!list_empty(&tmp)) {
1171 sb = wb_inode(tmp.prev)->i_sb;
1172 list_for_each_prev_safe(pos, node, &tmp) {
1173 inode = wb_inode(pos);
1174 if (inode->i_sb == sb)
1175 list_move(&inode->i_io_list, dispatch_queue);
1176 }
1177 }
1178 out:
1179 return moved;
1180 }
1181
1182 /*
1183 * Queue all expired dirty inodes for io, eldest first.
1184 * Before
1185 * newly dirtied b_dirty b_io b_more_io
1186 * =============> gf edc BA
1187 * After
1188 * newly dirtied b_dirty b_io b_more_io
1189 * =============> g fBAedc
1190 * |
1191 * +--> dequeue for IO
1192 */
1193 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1194 {
1195 int moved;
1196
1197 assert_spin_locked(&wb->list_lock);
1198 list_splice_init(&wb->b_more_io, &wb->b_io);
1199 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1200 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1201 EXPIRE_DIRTY_ATIME, work);
1202 if (moved)
1203 wb_io_lists_populated(wb);
1204 trace_writeback_queue_io(wb, work, moved);
1205 }
1206
1207 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1208 {
1209 int ret;
1210
1211 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1212 trace_writeback_write_inode_start(inode, wbc);
1213 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1214 trace_writeback_write_inode(inode, wbc);
1215 return ret;
1216 }
1217 return 0;
1218 }
1219
1220 /*
1221 * Wait for writeback on an inode to complete. Called with i_lock held.
1222 * Caller must make sure inode cannot go away when we drop i_lock.
1223 */
1224 static void __inode_wait_for_writeback(struct inode *inode)
1225 __releases(inode->i_lock)
1226 __acquires(inode->i_lock)
1227 {
1228 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1229 wait_queue_head_t *wqh;
1230
1231 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1232 while (inode->i_state & I_SYNC) {
1233 spin_unlock(&inode->i_lock);
1234 __wait_on_bit(wqh, &wq, bit_wait,
1235 TASK_UNINTERRUPTIBLE);
1236 spin_lock(&inode->i_lock);
1237 }
1238 }
1239
1240 /*
1241 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1242 */
1243 void inode_wait_for_writeback(struct inode *inode)
1244 {
1245 spin_lock(&inode->i_lock);
1246 __inode_wait_for_writeback(inode);
1247 spin_unlock(&inode->i_lock);
1248 }
1249
1250 /*
1251 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1252 * held and drops it. It is aimed for callers not holding any inode reference
1253 * so once i_lock is dropped, inode can go away.
1254 */
1255 static void inode_sleep_on_writeback(struct inode *inode)
1256 __releases(inode->i_lock)
1257 {
1258 DEFINE_WAIT(wait);
1259 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1260 int sleep;
1261
1262 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1263 sleep = inode->i_state & I_SYNC;
1264 spin_unlock(&inode->i_lock);
1265 if (sleep)
1266 schedule();
1267 finish_wait(wqh, &wait);
1268 }
1269
1270 /*
1271 * Find proper writeback list for the inode depending on its current state and
1272 * possibly also change of its state while we were doing writeback. Here we
1273 * handle things such as livelock prevention or fairness of writeback among
1274 * inodes. This function can be called only by flusher thread - noone else
1275 * processes all inodes in writeback lists and requeueing inodes behind flusher
1276 * thread's back can have unexpected consequences.
1277 */
1278 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1279 struct writeback_control *wbc)
1280 {
1281 if (inode->i_state & I_FREEING)
1282 return;
1283
1284 /*
1285 * Sync livelock prevention. Each inode is tagged and synced in one
1286 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1287 * the dirty time to prevent enqueue and sync it again.
1288 */
1289 if ((inode->i_state & I_DIRTY) &&
1290 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1291 inode->dirtied_when = jiffies;
1292
1293 if (wbc->pages_skipped) {
1294 /*
1295 * writeback is not making progress due to locked
1296 * buffers. Skip this inode for now.
1297 */
1298 redirty_tail(inode, wb);
1299 return;
1300 }
1301
1302 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1303 /*
1304 * We didn't write back all the pages. nfs_writepages()
1305 * sometimes bales out without doing anything.
1306 */
1307 if (wbc->nr_to_write <= 0) {
1308 /* Slice used up. Queue for next turn. */
1309 requeue_io(inode, wb);
1310 } else {
1311 /*
1312 * Writeback blocked by something other than
1313 * congestion. Delay the inode for some time to
1314 * avoid spinning on the CPU (100% iowait)
1315 * retrying writeback of the dirty page/inode
1316 * that cannot be performed immediately.
1317 */
1318 redirty_tail(inode, wb);
1319 }
1320 } else if (inode->i_state & I_DIRTY) {
1321 /*
1322 * Filesystems can dirty the inode during writeback operations,
1323 * such as delayed allocation during submission or metadata
1324 * updates after data IO completion.
1325 */
1326 redirty_tail(inode, wb);
1327 } else if (inode->i_state & I_DIRTY_TIME) {
1328 inode->dirtied_when = jiffies;
1329 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1330 } else {
1331 /* The inode is clean. Remove from writeback lists. */
1332 inode_io_list_del_locked(inode, wb);
1333 }
1334 }
1335
1336 /*
1337 * Write out an inode and its dirty pages. Do not update the writeback list
1338 * linkage. That is left to the caller. The caller is also responsible for
1339 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1340 */
1341 static int
1342 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1343 {
1344 struct address_space *mapping = inode->i_mapping;
1345 long nr_to_write = wbc->nr_to_write;
1346 unsigned dirty;
1347 int ret;
1348
1349 WARN_ON(!(inode->i_state & I_SYNC));
1350
1351 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1352
1353 ret = do_writepages(mapping, wbc);
1354
1355 /*
1356 * Make sure to wait on the data before writing out the metadata.
1357 * This is important for filesystems that modify metadata on data
1358 * I/O completion. We don't do it for sync(2) writeback because it has a
1359 * separate, external IO completion path and ->sync_fs for guaranteeing
1360 * inode metadata is written back correctly.
1361 */
1362 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1363 int err = filemap_fdatawait(mapping);
1364 if (ret == 0)
1365 ret = err;
1366 }
1367
1368 /*
1369 * Some filesystems may redirty the inode during the writeback
1370 * due to delalloc, clear dirty metadata flags right before
1371 * write_inode()
1372 */
1373 spin_lock(&inode->i_lock);
1374
1375 dirty = inode->i_state & I_DIRTY;
1376 if (inode->i_state & I_DIRTY_TIME) {
1377 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1378 wbc->sync_mode == WB_SYNC_ALL ||
1379 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1380 unlikely(time_after(jiffies,
1381 (inode->dirtied_time_when +
1382 dirtytime_expire_interval * HZ)))) {
1383 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1384 trace_writeback_lazytime(inode);
1385 }
1386 } else
1387 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1388 inode->i_state &= ~dirty;
1389
1390 /*
1391 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1392 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1393 * either they see the I_DIRTY bits cleared or we see the dirtied
1394 * inode.
1395 *
1396 * I_DIRTY_PAGES is always cleared together above even if @mapping
1397 * still has dirty pages. The flag is reinstated after smp_mb() if
1398 * necessary. This guarantees that either __mark_inode_dirty()
1399 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1400 */
1401 smp_mb();
1402
1403 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1404 inode->i_state |= I_DIRTY_PAGES;
1405
1406 spin_unlock(&inode->i_lock);
1407
1408 if (dirty & I_DIRTY_TIME)
1409 mark_inode_dirty_sync(inode);
1410 /* Don't write the inode if only I_DIRTY_PAGES was set */
1411 if (dirty & ~I_DIRTY_PAGES) {
1412 int err = write_inode(inode, wbc);
1413 if (ret == 0)
1414 ret = err;
1415 }
1416 trace_writeback_single_inode(inode, wbc, nr_to_write);
1417 return ret;
1418 }
1419
1420 /*
1421 * Write out an inode's dirty pages. Either the caller has an active reference
1422 * on the inode or the inode has I_WILL_FREE set.
1423 *
1424 * This function is designed to be called for writing back one inode which
1425 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1426 * and does more profound writeback list handling in writeback_sb_inodes().
1427 */
1428 static int writeback_single_inode(struct inode *inode,
1429 struct writeback_control *wbc)
1430 {
1431 struct bdi_writeback *wb;
1432 int ret = 0;
1433
1434 spin_lock(&inode->i_lock);
1435 if (!atomic_read(&inode->i_count))
1436 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1437 else
1438 WARN_ON(inode->i_state & I_WILL_FREE);
1439
1440 if (inode->i_state & I_SYNC) {
1441 if (wbc->sync_mode != WB_SYNC_ALL)
1442 goto out;
1443 /*
1444 * It's a data-integrity sync. We must wait. Since callers hold
1445 * inode reference or inode has I_WILL_FREE set, it cannot go
1446 * away under us.
1447 */
1448 __inode_wait_for_writeback(inode);
1449 }
1450 WARN_ON(inode->i_state & I_SYNC);
1451 /*
1452 * Skip inode if it is clean and we have no outstanding writeback in
1453 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1454 * function since flusher thread may be doing for example sync in
1455 * parallel and if we move the inode, it could get skipped. So here we
1456 * make sure inode is on some writeback list and leave it there unless
1457 * we have completely cleaned the inode.
1458 */
1459 if (!(inode->i_state & I_DIRTY_ALL) &&
1460 (wbc->sync_mode != WB_SYNC_ALL ||
1461 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1462 goto out;
1463 inode->i_state |= I_SYNC;
1464 wbc_attach_and_unlock_inode(wbc, inode);
1465
1466 ret = __writeback_single_inode(inode, wbc);
1467
1468 wbc_detach_inode(wbc);
1469
1470 wb = inode_to_wb_and_lock_list(inode);
1471 spin_lock(&inode->i_lock);
1472 /*
1473 * If inode is clean, remove it from writeback lists. Otherwise don't
1474 * touch it. See comment above for explanation.
1475 */
1476 if (!(inode->i_state & I_DIRTY_ALL))
1477 inode_io_list_del_locked(inode, wb);
1478 spin_unlock(&wb->list_lock);
1479 inode_sync_complete(inode);
1480 out:
1481 spin_unlock(&inode->i_lock);
1482 return ret;
1483 }
1484
1485 static long writeback_chunk_size(struct bdi_writeback *wb,
1486 struct wb_writeback_work *work)
1487 {
1488 long pages;
1489
1490 /*
1491 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1492 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1493 * here avoids calling into writeback_inodes_wb() more than once.
1494 *
1495 * The intended call sequence for WB_SYNC_ALL writeback is:
1496 *
1497 * wb_writeback()
1498 * writeback_sb_inodes() <== called only once
1499 * write_cache_pages() <== called once for each inode
1500 * (quickly) tag currently dirty pages
1501 * (maybe slowly) sync all tagged pages
1502 */
1503 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1504 pages = LONG_MAX;
1505 else {
1506 pages = min(wb->avg_write_bandwidth / 2,
1507 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1508 pages = min(pages, work->nr_pages);
1509 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1510 MIN_WRITEBACK_PAGES);
1511 }
1512
1513 return pages;
1514 }
1515
1516 /*
1517 * Write a portion of b_io inodes which belong to @sb.
1518 *
1519 * Return the number of pages and/or inodes written.
1520 *
1521 * NOTE! This is called with wb->list_lock held, and will
1522 * unlock and relock that for each inode it ends up doing
1523 * IO for.
1524 */
1525 static long writeback_sb_inodes(struct super_block *sb,
1526 struct bdi_writeback *wb,
1527 struct wb_writeback_work *work)
1528 {
1529 struct writeback_control wbc = {
1530 .sync_mode = work->sync_mode,
1531 .tagged_writepages = work->tagged_writepages,
1532 .for_kupdate = work->for_kupdate,
1533 .for_background = work->for_background,
1534 .for_sync = work->for_sync,
1535 .range_cyclic = work->range_cyclic,
1536 .range_start = 0,
1537 .range_end = LLONG_MAX,
1538 };
1539 unsigned long start_time = jiffies;
1540 long write_chunk;
1541 long wrote = 0; /* count both pages and inodes */
1542
1543 while (!list_empty(&wb->b_io)) {
1544 struct inode *inode = wb_inode(wb->b_io.prev);
1545 struct bdi_writeback *tmp_wb;
1546
1547 if (inode->i_sb != sb) {
1548 if (work->sb) {
1549 /*
1550 * We only want to write back data for this
1551 * superblock, move all inodes not belonging
1552 * to it back onto the dirty list.
1553 */
1554 redirty_tail(inode, wb);
1555 continue;
1556 }
1557
1558 /*
1559 * The inode belongs to a different superblock.
1560 * Bounce back to the caller to unpin this and
1561 * pin the next superblock.
1562 */
1563 break;
1564 }
1565
1566 /*
1567 * Don't bother with new inodes or inodes being freed, first
1568 * kind does not need periodic writeout yet, and for the latter
1569 * kind writeout is handled by the freer.
1570 */
1571 spin_lock(&inode->i_lock);
1572 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1573 spin_unlock(&inode->i_lock);
1574 redirty_tail(inode, wb);
1575 continue;
1576 }
1577 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1578 /*
1579 * If this inode is locked for writeback and we are not
1580 * doing writeback-for-data-integrity, move it to
1581 * b_more_io so that writeback can proceed with the
1582 * other inodes on s_io.
1583 *
1584 * We'll have another go at writing back this inode
1585 * when we completed a full scan of b_io.
1586 */
1587 spin_unlock(&inode->i_lock);
1588 requeue_io(inode, wb);
1589 trace_writeback_sb_inodes_requeue(inode);
1590 continue;
1591 }
1592 spin_unlock(&wb->list_lock);
1593
1594 /*
1595 * We already requeued the inode if it had I_SYNC set and we
1596 * are doing WB_SYNC_NONE writeback. So this catches only the
1597 * WB_SYNC_ALL case.
1598 */
1599 if (inode->i_state & I_SYNC) {
1600 /* Wait for I_SYNC. This function drops i_lock... */
1601 inode_sleep_on_writeback(inode);
1602 /* Inode may be gone, start again */
1603 spin_lock(&wb->list_lock);
1604 continue;
1605 }
1606 inode->i_state |= I_SYNC;
1607 wbc_attach_and_unlock_inode(&wbc, inode);
1608
1609 write_chunk = writeback_chunk_size(wb, work);
1610 wbc.nr_to_write = write_chunk;
1611 wbc.pages_skipped = 0;
1612
1613 /*
1614 * We use I_SYNC to pin the inode in memory. While it is set
1615 * evict_inode() will wait so the inode cannot be freed.
1616 */
1617 __writeback_single_inode(inode, &wbc);
1618
1619 wbc_detach_inode(&wbc);
1620 work->nr_pages -= write_chunk - wbc.nr_to_write;
1621 wrote += write_chunk - wbc.nr_to_write;
1622
1623 if (need_resched()) {
1624 /*
1625 * We're trying to balance between building up a nice
1626 * long list of IOs to improve our merge rate, and
1627 * getting those IOs out quickly for anyone throttling
1628 * in balance_dirty_pages(). cond_resched() doesn't
1629 * unplug, so get our IOs out the door before we
1630 * give up the CPU.
1631 */
1632 blk_flush_plug(current);
1633 cond_resched();
1634 }
1635
1636 /*
1637 * Requeue @inode if still dirty. Be careful as @inode may
1638 * have been switched to another wb in the meantime.
1639 */
1640 tmp_wb = inode_to_wb_and_lock_list(inode);
1641 spin_lock(&inode->i_lock);
1642 if (!(inode->i_state & I_DIRTY_ALL))
1643 wrote++;
1644 requeue_inode(inode, tmp_wb, &wbc);
1645 inode_sync_complete(inode);
1646 spin_unlock(&inode->i_lock);
1647
1648 if (unlikely(tmp_wb != wb)) {
1649 spin_unlock(&tmp_wb->list_lock);
1650 spin_lock(&wb->list_lock);
1651 }
1652
1653 /*
1654 * bail out to wb_writeback() often enough to check
1655 * background threshold and other termination conditions.
1656 */
1657 if (wrote) {
1658 if (time_is_before_jiffies(start_time + HZ / 10UL))
1659 break;
1660 if (work->nr_pages <= 0)
1661 break;
1662 }
1663 }
1664 return wrote;
1665 }
1666
1667 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1668 struct wb_writeback_work *work)
1669 {
1670 unsigned long start_time = jiffies;
1671 long wrote = 0;
1672
1673 while (!list_empty(&wb->b_io)) {
1674 struct inode *inode = wb_inode(wb->b_io.prev);
1675 struct super_block *sb = inode->i_sb;
1676
1677 if (!trylock_super(sb)) {
1678 /*
1679 * trylock_super() may fail consistently due to
1680 * s_umount being grabbed by someone else. Don't use
1681 * requeue_io() to avoid busy retrying the inode/sb.
1682 */
1683 redirty_tail(inode, wb);
1684 continue;
1685 }
1686 wrote += writeback_sb_inodes(sb, wb, work);
1687 up_read(&sb->s_umount);
1688
1689 /* refer to the same tests at the end of writeback_sb_inodes */
1690 if (wrote) {
1691 if (time_is_before_jiffies(start_time + HZ / 10UL))
1692 break;
1693 if (work->nr_pages <= 0)
1694 break;
1695 }
1696 }
1697 /* Leave any unwritten inodes on b_io */
1698 return wrote;
1699 }
1700
1701 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1702 enum wb_reason reason)
1703 {
1704 struct wb_writeback_work work = {
1705 .nr_pages = nr_pages,
1706 .sync_mode = WB_SYNC_NONE,
1707 .range_cyclic = 1,
1708 .reason = reason,
1709 };
1710 struct blk_plug plug;
1711
1712 blk_start_plug(&plug);
1713 spin_lock(&wb->list_lock);
1714 if (list_empty(&wb->b_io))
1715 queue_io(wb, &work);
1716 __writeback_inodes_wb(wb, &work);
1717 spin_unlock(&wb->list_lock);
1718 blk_finish_plug(&plug);
1719
1720 return nr_pages - work.nr_pages;
1721 }
1722
1723 /*
1724 * Explicit flushing or periodic writeback of "old" data.
1725 *
1726 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1727 * dirtying-time in the inode's address_space. So this periodic writeback code
1728 * just walks the superblock inode list, writing back any inodes which are
1729 * older than a specific point in time.
1730 *
1731 * Try to run once per dirty_writeback_interval. But if a writeback event
1732 * takes longer than a dirty_writeback_interval interval, then leave a
1733 * one-second gap.
1734 *
1735 * older_than_this takes precedence over nr_to_write. So we'll only write back
1736 * all dirty pages if they are all attached to "old" mappings.
1737 */
1738 static long wb_writeback(struct bdi_writeback *wb,
1739 struct wb_writeback_work *work)
1740 {
1741 unsigned long wb_start = jiffies;
1742 long nr_pages = work->nr_pages;
1743 unsigned long oldest_jif;
1744 struct inode *inode;
1745 long progress;
1746 struct blk_plug plug;
1747
1748 oldest_jif = jiffies;
1749 work->older_than_this = &oldest_jif;
1750
1751 blk_start_plug(&plug);
1752 spin_lock(&wb->list_lock);
1753 for (;;) {
1754 /*
1755 * Stop writeback when nr_pages has been consumed
1756 */
1757 if (work->nr_pages <= 0)
1758 break;
1759
1760 /*
1761 * Background writeout and kupdate-style writeback may
1762 * run forever. Stop them if there is other work to do
1763 * so that e.g. sync can proceed. They'll be restarted
1764 * after the other works are all done.
1765 */
1766 if ((work->for_background || work->for_kupdate) &&
1767 !list_empty(&wb->work_list))
1768 break;
1769
1770 /*
1771 * For background writeout, stop when we are below the
1772 * background dirty threshold
1773 */
1774 if (work->for_background && !wb_over_bg_thresh(wb))
1775 break;
1776
1777 /*
1778 * Kupdate and background works are special and we want to
1779 * include all inodes that need writing. Livelock avoidance is
1780 * handled by these works yielding to any other work so we are
1781 * safe.
1782 */
1783 if (work->for_kupdate) {
1784 oldest_jif = jiffies -
1785 msecs_to_jiffies(dirty_expire_interval * 10);
1786 } else if (work->for_background)
1787 oldest_jif = jiffies;
1788
1789 trace_writeback_start(wb, work);
1790 if (list_empty(&wb->b_io))
1791 queue_io(wb, work);
1792 if (work->sb)
1793 progress = writeback_sb_inodes(work->sb, wb, work);
1794 else
1795 progress = __writeback_inodes_wb(wb, work);
1796 trace_writeback_written(wb, work);
1797
1798 wb_update_bandwidth(wb, wb_start);
1799
1800 /*
1801 * Did we write something? Try for more
1802 *
1803 * Dirty inodes are moved to b_io for writeback in batches.
1804 * The completion of the current batch does not necessarily
1805 * mean the overall work is done. So we keep looping as long
1806 * as made some progress on cleaning pages or inodes.
1807 */
1808 if (progress)
1809 continue;
1810 /*
1811 * No more inodes for IO, bail
1812 */
1813 if (list_empty(&wb->b_more_io))
1814 break;
1815 /*
1816 * Nothing written. Wait for some inode to
1817 * become available for writeback. Otherwise
1818 * we'll just busyloop.
1819 */
1820 trace_writeback_wait(wb, work);
1821 inode = wb_inode(wb->b_more_io.prev);
1822 spin_lock(&inode->i_lock);
1823 spin_unlock(&wb->list_lock);
1824 /* This function drops i_lock... */
1825 inode_sleep_on_writeback(inode);
1826 spin_lock(&wb->list_lock);
1827 }
1828 spin_unlock(&wb->list_lock);
1829 blk_finish_plug(&plug);
1830
1831 return nr_pages - work->nr_pages;
1832 }
1833
1834 /*
1835 * Return the next wb_writeback_work struct that hasn't been processed yet.
1836 */
1837 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1838 {
1839 struct wb_writeback_work *work = NULL;
1840
1841 spin_lock_bh(&wb->work_lock);
1842 if (!list_empty(&wb->work_list)) {
1843 work = list_entry(wb->work_list.next,
1844 struct wb_writeback_work, list);
1845 list_del_init(&work->list);
1846 }
1847 spin_unlock_bh(&wb->work_lock);
1848 return work;
1849 }
1850
1851 /*
1852 * Add in the number of potentially dirty inodes, because each inode
1853 * write can dirty pagecache in the underlying blockdev.
1854 */
1855 static unsigned long get_nr_dirty_pages(void)
1856 {
1857 return global_node_page_state(NR_FILE_DIRTY) +
1858 global_node_page_state(NR_UNSTABLE_NFS) +
1859 get_nr_dirty_inodes();
1860 }
1861
1862 static long wb_check_background_flush(struct bdi_writeback *wb)
1863 {
1864 if (wb_over_bg_thresh(wb)) {
1865
1866 struct wb_writeback_work work = {
1867 .nr_pages = LONG_MAX,
1868 .sync_mode = WB_SYNC_NONE,
1869 .for_background = 1,
1870 .range_cyclic = 1,
1871 .reason = WB_REASON_BACKGROUND,
1872 };
1873
1874 return wb_writeback(wb, &work);
1875 }
1876
1877 return 0;
1878 }
1879
1880 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1881 {
1882 unsigned long expired;
1883 long nr_pages;
1884
1885 /*
1886 * When set to zero, disable periodic writeback
1887 */
1888 if (!dirty_writeback_interval)
1889 return 0;
1890
1891 expired = wb->last_old_flush +
1892 msecs_to_jiffies(dirty_writeback_interval * 10);
1893 if (time_before(jiffies, expired))
1894 return 0;
1895
1896 wb->last_old_flush = jiffies;
1897 nr_pages = get_nr_dirty_pages();
1898
1899 if (nr_pages) {
1900 struct wb_writeback_work work = {
1901 .nr_pages = nr_pages,
1902 .sync_mode = WB_SYNC_NONE,
1903 .for_kupdate = 1,
1904 .range_cyclic = 1,
1905 .reason = WB_REASON_PERIODIC,
1906 };
1907
1908 return wb_writeback(wb, &work);
1909 }
1910
1911 return 0;
1912 }
1913
1914 /*
1915 * Retrieve work items and do the writeback they describe
1916 */
1917 static long wb_do_writeback(struct bdi_writeback *wb)
1918 {
1919 struct wb_writeback_work *work;
1920 long wrote = 0;
1921
1922 set_bit(WB_writeback_running, &wb->state);
1923 while ((work = get_next_work_item(wb)) != NULL) {
1924 trace_writeback_exec(wb, work);
1925 wrote += wb_writeback(wb, work);
1926 finish_writeback_work(wb, work);
1927 }
1928
1929 /*
1930 * Check for periodic writeback, kupdated() style
1931 */
1932 wrote += wb_check_old_data_flush(wb);
1933 wrote += wb_check_background_flush(wb);
1934 clear_bit(WB_writeback_running, &wb->state);
1935
1936 return wrote;
1937 }
1938
1939 /*
1940 * Handle writeback of dirty data for the device backed by this bdi. Also
1941 * reschedules periodically and does kupdated style flushing.
1942 */
1943 void wb_workfn(struct work_struct *work)
1944 {
1945 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1946 struct bdi_writeback, dwork);
1947 long pages_written;
1948
1949 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1950 current->flags |= PF_SWAPWRITE;
1951
1952 if (likely(!current_is_workqueue_rescuer() ||
1953 !test_bit(WB_registered, &wb->state))) {
1954 /*
1955 * The normal path. Keep writing back @wb until its
1956 * work_list is empty. Note that this path is also taken
1957 * if @wb is shutting down even when we're running off the
1958 * rescuer as work_list needs to be drained.
1959 */
1960 do {
1961 pages_written = wb_do_writeback(wb);
1962 trace_writeback_pages_written(pages_written);
1963 } while (!list_empty(&wb->work_list));
1964 } else {
1965 /*
1966 * bdi_wq can't get enough workers and we're running off
1967 * the emergency worker. Don't hog it. Hopefully, 1024 is
1968 * enough for efficient IO.
1969 */
1970 pages_written = writeback_inodes_wb(wb, 1024,
1971 WB_REASON_FORKER_THREAD);
1972 trace_writeback_pages_written(pages_written);
1973 }
1974
1975 if (!list_empty(&wb->work_list))
1976 wb_wakeup(wb);
1977 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1978 wb_wakeup_delayed(wb);
1979
1980 current->flags &= ~PF_SWAPWRITE;
1981 }
1982
1983 /*
1984 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1985 * the whole world.
1986 */
1987 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1988 {
1989 struct backing_dev_info *bdi;
1990
1991 /*
1992 * If we are expecting writeback progress we must submit plugged IO.
1993 */
1994 if (blk_needs_flush_plug(current))
1995 blk_schedule_flush_plug(current);
1996
1997 if (!nr_pages)
1998 nr_pages = get_nr_dirty_pages();
1999
2000 rcu_read_lock();
2001 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2002 struct bdi_writeback *wb;
2003
2004 if (!bdi_has_dirty_io(bdi))
2005 continue;
2006
2007 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2008 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
2009 false, reason);
2010 }
2011 rcu_read_unlock();
2012 }
2013
2014 /*
2015 * Wake up bdi's periodically to make sure dirtytime inodes gets
2016 * written back periodically. We deliberately do *not* check the
2017 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2018 * kernel to be constantly waking up once there are any dirtytime
2019 * inodes on the system. So instead we define a separate delayed work
2020 * function which gets called much more rarely. (By default, only
2021 * once every 12 hours.)
2022 *
2023 * If there is any other write activity going on in the file system,
2024 * this function won't be necessary. But if the only thing that has
2025 * happened on the file system is a dirtytime inode caused by an atime
2026 * update, we need this infrastructure below to make sure that inode
2027 * eventually gets pushed out to disk.
2028 */
2029 static void wakeup_dirtytime_writeback(struct work_struct *w);
2030 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2031
2032 static void wakeup_dirtytime_writeback(struct work_struct *w)
2033 {
2034 struct backing_dev_info *bdi;
2035
2036 rcu_read_lock();
2037 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2038 struct bdi_writeback *wb;
2039
2040 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2041 if (!list_empty(&wb->b_dirty_time))
2042 wb_wakeup(wb);
2043 }
2044 rcu_read_unlock();
2045 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2046 }
2047
2048 static int __init start_dirtytime_writeback(void)
2049 {
2050 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2051 return 0;
2052 }
2053 __initcall(start_dirtytime_writeback);
2054
2055 int dirtytime_interval_handler(struct ctl_table *table, int write,
2056 void __user *buffer, size_t *lenp, loff_t *ppos)
2057 {
2058 int ret;
2059
2060 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2061 if (ret == 0 && write)
2062 mod_delayed_work(system_wq, &dirtytime_work, 0);
2063 return ret;
2064 }
2065
2066 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2067 {
2068 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2069 struct dentry *dentry;
2070 const char *name = "?";
2071
2072 dentry = d_find_alias(inode);
2073 if (dentry) {
2074 spin_lock(&dentry->d_lock);
2075 name = (const char *) dentry->d_name.name;
2076 }
2077 printk(KERN_DEBUG
2078 "%s(%d): dirtied inode %lu (%s) on %s\n",
2079 current->comm, task_pid_nr(current), inode->i_ino,
2080 name, inode->i_sb->s_id);
2081 if (dentry) {
2082 spin_unlock(&dentry->d_lock);
2083 dput(dentry);
2084 }
2085 }
2086 }
2087
2088 /**
2089 * __mark_inode_dirty - internal function
2090 *
2091 * @inode: inode to mark
2092 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2093 *
2094 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2095 * mark_inode_dirty_sync.
2096 *
2097 * Put the inode on the super block's dirty list.
2098 *
2099 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2100 * dirty list only if it is hashed or if it refers to a blockdev.
2101 * If it was not hashed, it will never be added to the dirty list
2102 * even if it is later hashed, as it will have been marked dirty already.
2103 *
2104 * In short, make sure you hash any inodes _before_ you start marking
2105 * them dirty.
2106 *
2107 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2108 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2109 * the kernel-internal blockdev inode represents the dirtying time of the
2110 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2111 * page->mapping->host, so the page-dirtying time is recorded in the internal
2112 * blockdev inode.
2113 */
2114 void __mark_inode_dirty(struct inode *inode, int flags)
2115 {
2116 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2117 struct super_block *sb = inode->i_sb;
2118 int dirtytime;
2119
2120 trace_writeback_mark_inode_dirty(inode, flags);
2121
2122 /*
2123 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2124 * dirty the inode itself
2125 */
2126 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2127 trace_writeback_dirty_inode_start(inode, flags);
2128
2129 if (sb->s_op->dirty_inode)
2130 sb->s_op->dirty_inode(inode, flags);
2131
2132 trace_writeback_dirty_inode(inode, flags);
2133 }
2134 if (flags & I_DIRTY_INODE)
2135 flags &= ~I_DIRTY_TIME;
2136 dirtytime = flags & I_DIRTY_TIME;
2137
2138 /*
2139 * Paired with smp_mb() in __writeback_single_inode() for the
2140 * following lockless i_state test. See there for details.
2141 */
2142 smp_mb();
2143
2144 if (((inode->i_state & flags) == flags) ||
2145 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2146 return;
2147
2148 if (unlikely(block_dump > 1))
2149 block_dump___mark_inode_dirty(inode);
2150
2151 spin_lock(&inode->i_lock);
2152 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2153 goto out_unlock_inode;
2154 if ((inode->i_state & flags) != flags) {
2155 const int was_dirty = inode->i_state & I_DIRTY;
2156
2157 inode_attach_wb(inode, NULL);
2158
2159 if (flags & I_DIRTY_INODE)
2160 inode->i_state &= ~I_DIRTY_TIME;
2161 inode->i_state |= flags;
2162
2163 /*
2164 * If the inode is being synced, just update its dirty state.
2165 * The unlocker will place the inode on the appropriate
2166 * superblock list, based upon its state.
2167 */
2168 if (inode->i_state & I_SYNC)
2169 goto out_unlock_inode;
2170
2171 /*
2172 * Only add valid (hashed) inodes to the superblock's
2173 * dirty list. Add blockdev inodes as well.
2174 */
2175 if (!S_ISBLK(inode->i_mode)) {
2176 if (inode_unhashed(inode))
2177 goto out_unlock_inode;
2178 }
2179 if (inode->i_state & I_FREEING)
2180 goto out_unlock_inode;
2181
2182 /*
2183 * If the inode was already on b_dirty/b_io/b_more_io, don't
2184 * reposition it (that would break b_dirty time-ordering).
2185 */
2186 if (!was_dirty) {
2187 struct bdi_writeback *wb;
2188 struct list_head *dirty_list;
2189 bool wakeup_bdi = false;
2190
2191 wb = locked_inode_to_wb_and_lock_list(inode);
2192
2193 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2194 !test_bit(WB_registered, &wb->state),
2195 "bdi-%s not registered\n", wb->bdi->name);
2196
2197 inode->dirtied_when = jiffies;
2198 if (dirtytime)
2199 inode->dirtied_time_when = jiffies;
2200
2201 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2202 dirty_list = &wb->b_dirty;
2203 else
2204 dirty_list = &wb->b_dirty_time;
2205
2206 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2207 dirty_list);
2208
2209 spin_unlock(&wb->list_lock);
2210 trace_writeback_dirty_inode_enqueue(inode);
2211
2212 /*
2213 * If this is the first dirty inode for this bdi,
2214 * we have to wake-up the corresponding bdi thread
2215 * to make sure background write-back happens
2216 * later.
2217 */
2218 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2219 wb_wakeup_delayed(wb);
2220 return;
2221 }
2222 }
2223 out_unlock_inode:
2224 spin_unlock(&inode->i_lock);
2225
2226 #undef I_DIRTY_INODE
2227 }
2228 EXPORT_SYMBOL(__mark_inode_dirty);
2229
2230 /*
2231 * The @s_sync_lock is used to serialise concurrent sync operations
2232 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2233 * Concurrent callers will block on the s_sync_lock rather than doing contending
2234 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2235 * has been issued up to the time this function is enter is guaranteed to be
2236 * completed by the time we have gained the lock and waited for all IO that is
2237 * in progress regardless of the order callers are granted the lock.
2238 */
2239 static void wait_sb_inodes(struct super_block *sb)
2240 {
2241 LIST_HEAD(sync_list);
2242
2243 /*
2244 * We need to be protected against the filesystem going from
2245 * r/o to r/w or vice versa.
2246 */
2247 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2248
2249 mutex_lock(&sb->s_sync_lock);
2250
2251 /*
2252 * Splice the writeback list onto a temporary list to avoid waiting on
2253 * inodes that have started writeback after this point.
2254 *
2255 * Use rcu_read_lock() to keep the inodes around until we have a
2256 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2257 * the local list because inodes can be dropped from either by writeback
2258 * completion.
2259 */
2260 rcu_read_lock();
2261 spin_lock_irq(&sb->s_inode_wblist_lock);
2262 list_splice_init(&sb->s_inodes_wb, &sync_list);
2263
2264 /*
2265 * Data integrity sync. Must wait for all pages under writeback, because
2266 * there may have been pages dirtied before our sync call, but which had
2267 * writeout started before we write it out. In which case, the inode
2268 * may not be on the dirty list, but we still have to wait for that
2269 * writeout.
2270 */
2271 while (!list_empty(&sync_list)) {
2272 struct inode *inode = list_first_entry(&sync_list, struct inode,
2273 i_wb_list);
2274 struct address_space *mapping = inode->i_mapping;
2275
2276 /*
2277 * Move each inode back to the wb list before we drop the lock
2278 * to preserve consistency between i_wb_list and the mapping
2279 * writeback tag. Writeback completion is responsible to remove
2280 * the inode from either list once the writeback tag is cleared.
2281 */
2282 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2283
2284 /*
2285 * The mapping can appear untagged while still on-list since we
2286 * do not have the mapping lock. Skip it here, wb completion
2287 * will remove it.
2288 */
2289 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2290 continue;
2291
2292 spin_unlock_irq(&sb->s_inode_wblist_lock);
2293
2294 spin_lock(&inode->i_lock);
2295 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2296 spin_unlock(&inode->i_lock);
2297
2298 spin_lock_irq(&sb->s_inode_wblist_lock);
2299 continue;
2300 }
2301 __iget(inode);
2302 spin_unlock(&inode->i_lock);
2303 rcu_read_unlock();
2304
2305 /*
2306 * We keep the error status of individual mapping so that
2307 * applications can catch the writeback error using fsync(2).
2308 * See filemap_fdatawait_keep_errors() for details.
2309 */
2310 filemap_fdatawait_keep_errors(mapping);
2311
2312 cond_resched();
2313
2314 iput(inode);
2315
2316 rcu_read_lock();
2317 spin_lock_irq(&sb->s_inode_wblist_lock);
2318 }
2319 spin_unlock_irq(&sb->s_inode_wblist_lock);
2320 rcu_read_unlock();
2321 mutex_unlock(&sb->s_sync_lock);
2322 }
2323
2324 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2325 enum wb_reason reason, bool skip_if_busy)
2326 {
2327 DEFINE_WB_COMPLETION_ONSTACK(done);
2328 struct wb_writeback_work work = {
2329 .sb = sb,
2330 .sync_mode = WB_SYNC_NONE,
2331 .tagged_writepages = 1,
2332 .done = &done,
2333 .nr_pages = nr,
2334 .reason = reason,
2335 };
2336 struct backing_dev_info *bdi = sb->s_bdi;
2337
2338 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2339 return;
2340 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2341
2342 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2343 wb_wait_for_completion(bdi, &done);
2344 }
2345
2346 /**
2347 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2348 * @sb: the superblock
2349 * @nr: the number of pages to write
2350 * @reason: reason why some writeback work initiated
2351 *
2352 * Start writeback on some inodes on this super_block. No guarantees are made
2353 * on how many (if any) will be written, and this function does not wait
2354 * for IO completion of submitted IO.
2355 */
2356 void writeback_inodes_sb_nr(struct super_block *sb,
2357 unsigned long nr,
2358 enum wb_reason reason)
2359 {
2360 __writeback_inodes_sb_nr(sb, nr, reason, false);
2361 }
2362 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2363
2364 /**
2365 * writeback_inodes_sb - writeback dirty inodes from given super_block
2366 * @sb: the superblock
2367 * @reason: reason why some writeback work was initiated
2368 *
2369 * Start writeback on some inodes on this super_block. No guarantees are made
2370 * on how many (if any) will be written, and this function does not wait
2371 * for IO completion of submitted IO.
2372 */
2373 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2374 {
2375 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2376 }
2377 EXPORT_SYMBOL(writeback_inodes_sb);
2378
2379 /**
2380 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2381 * @sb: the superblock
2382 * @nr: the number of pages to write
2383 * @reason: the reason of writeback
2384 *
2385 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2386 * Returns 1 if writeback was started, 0 if not.
2387 */
2388 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2389 enum wb_reason reason)
2390 {
2391 if (!down_read_trylock(&sb->s_umount))
2392 return false;
2393
2394 __writeback_inodes_sb_nr(sb, nr, reason, true);
2395 up_read(&sb->s_umount);
2396 return true;
2397 }
2398 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2399
2400 /**
2401 * try_to_writeback_inodes_sb - try to start writeback if none underway
2402 * @sb: the superblock
2403 * @reason: reason why some writeback work was initiated
2404 *
2405 * Implement by try_to_writeback_inodes_sb_nr()
2406 * Returns 1 if writeback was started, 0 if not.
2407 */
2408 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2409 {
2410 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2411 }
2412 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2413
2414 /**
2415 * sync_inodes_sb - sync sb inode pages
2416 * @sb: the superblock
2417 *
2418 * This function writes and waits on any dirty inode belonging to this
2419 * super_block.
2420 */
2421 void sync_inodes_sb(struct super_block *sb)
2422 {
2423 DEFINE_WB_COMPLETION_ONSTACK(done);
2424 struct wb_writeback_work work = {
2425 .sb = sb,
2426 .sync_mode = WB_SYNC_ALL,
2427 .nr_pages = LONG_MAX,
2428 .range_cyclic = 0,
2429 .done = &done,
2430 .reason = WB_REASON_SYNC,
2431 .for_sync = 1,
2432 };
2433 struct backing_dev_info *bdi = sb->s_bdi;
2434
2435 /*
2436 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2437 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2438 * bdi_has_dirty() need to be written out too.
2439 */
2440 if (bdi == &noop_backing_dev_info)
2441 return;
2442 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2443
2444 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2445 bdi_down_write_wb_switch_rwsem(bdi);
2446 bdi_split_work_to_wbs(bdi, &work, false);
2447 wb_wait_for_completion(bdi, &done);
2448 bdi_up_write_wb_switch_rwsem(bdi);
2449
2450 wait_sb_inodes(sb);
2451 }
2452 EXPORT_SYMBOL(sync_inodes_sb);
2453
2454 /**
2455 * write_inode_now - write an inode to disk
2456 * @inode: inode to write to disk
2457 * @sync: whether the write should be synchronous or not
2458 *
2459 * This function commits an inode to disk immediately if it is dirty. This is
2460 * primarily needed by knfsd.
2461 *
2462 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2463 */
2464 int write_inode_now(struct inode *inode, int sync)
2465 {
2466 struct writeback_control wbc = {
2467 .nr_to_write = LONG_MAX,
2468 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2469 .range_start = 0,
2470 .range_end = LLONG_MAX,
2471 };
2472
2473 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2474 wbc.nr_to_write = 0;
2475
2476 might_sleep();
2477 return writeback_single_inode(inode, &wbc);
2478 }
2479 EXPORT_SYMBOL(write_inode_now);
2480
2481 /**
2482 * sync_inode - write an inode and its pages to disk.
2483 * @inode: the inode to sync
2484 * @wbc: controls the writeback mode
2485 *
2486 * sync_inode() will write an inode and its pages to disk. It will also
2487 * correctly update the inode on its superblock's dirty inode lists and will
2488 * update inode->i_state.
2489 *
2490 * The caller must have a ref on the inode.
2491 */
2492 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2493 {
2494 return writeback_single_inode(inode, wbc);
2495 }
2496 EXPORT_SYMBOL(sync_inode);
2497
2498 /**
2499 * sync_inode_metadata - write an inode to disk
2500 * @inode: the inode to sync
2501 * @wait: wait for I/O to complete.
2502 *
2503 * Write an inode to disk and adjust its dirty state after completion.
2504 *
2505 * Note: only writes the actual inode, no associated data or other metadata.
2506 */
2507 int sync_inode_metadata(struct inode *inode, int wait)
2508 {
2509 struct writeback_control wbc = {
2510 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2511 .nr_to_write = 0, /* metadata-only */
2512 };
2513
2514 return sync_inode(inode, &wbc);
2515 }
2516 EXPORT_SYMBOL(sync_inode_metadata);