f2fs: fix out-of free segments
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 is_cold_data(page))
49 return true;
50 return false;
51 }
52
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55 struct bio_vec *bvec;
56 int i;
57
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60 f2fs_show_injection_info(FAULT_IO);
61 bio->bi_error = -EIO;
62 }
63 #endif
64
65 if (f2fs_bio_encrypted(bio)) {
66 if (bio->bi_error) {
67 fscrypt_release_ctx(bio->bi_private);
68 } else {
69 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 return;
71 }
72 }
73
74 bio_for_each_segment_all(bvec, bio, i) {
75 struct page *page = bvec->bv_page;
76
77 if (!bio->bi_error) {
78 if (!PageUptodate(page))
79 SetPageUptodate(page);
80 } else {
81 ClearPageUptodate(page);
82 SetPageError(page);
83 }
84 unlock_page(page);
85 }
86 bio_put(bio);
87 }
88
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91 struct f2fs_sb_info *sbi = bio->bi_private;
92 struct bio_vec *bvec;
93 int i;
94
95 bio_for_each_segment_all(bvec, bio, i) {
96 struct page *page = bvec->bv_page;
97 enum count_type type = WB_DATA_TYPE(page);
98
99 if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 set_page_private(page, (unsigned long)NULL);
101 ClearPagePrivate(page);
102 unlock_page(page);
103 mempool_free(page, sbi->write_io_dummy);
104
105 if (unlikely(bio->bi_error))
106 f2fs_stop_checkpoint(sbi, true);
107 continue;
108 }
109
110 fscrypt_pullback_bio_page(&page, true);
111
112 if (unlikely(bio->bi_error)) {
113 mapping_set_error(page->mapping, -EIO);
114 f2fs_stop_checkpoint(sbi, true);
115 }
116 dec_page_count(sbi, type);
117 clear_cold_data(page);
118 end_page_writeback(page);
119 }
120 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121 wq_has_sleeper(&sbi->cp_wait))
122 wake_up(&sbi->cp_wait);
123
124 bio_put(bio);
125 }
126
127 /*
128 * Return true, if pre_bio's bdev is same as its target device.
129 */
130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131 block_t blk_addr, struct bio *bio)
132 {
133 struct block_device *bdev = sbi->sb->s_bdev;
134 int i;
135
136 for (i = 0; i < sbi->s_ndevs; i++) {
137 if (FDEV(i).start_blk <= blk_addr &&
138 FDEV(i).end_blk >= blk_addr) {
139 blk_addr -= FDEV(i).start_blk;
140 bdev = FDEV(i).bdev;
141 break;
142 }
143 }
144 if (bio) {
145 bio->bi_bdev = bdev;
146 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
147 }
148 return bdev;
149 }
150
151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
152 {
153 int i;
154
155 for (i = 0; i < sbi->s_ndevs; i++)
156 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
157 return i;
158 return 0;
159 }
160
161 static bool __same_bdev(struct f2fs_sb_info *sbi,
162 block_t blk_addr, struct bio *bio)
163 {
164 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
165 }
166
167 /*
168 * Low-level block read/write IO operations.
169 */
170 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
171 int npages, bool is_read)
172 {
173 struct bio *bio;
174
175 bio = f2fs_bio_alloc(npages);
176
177 f2fs_target_device(sbi, blk_addr, bio);
178 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
179 bio->bi_private = is_read ? NULL : sbi;
180
181 return bio;
182 }
183
184 static inline void __submit_bio(struct f2fs_sb_info *sbi,
185 struct bio *bio, enum page_type type)
186 {
187 if (!is_read_io(bio_op(bio))) {
188 unsigned int start;
189
190 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
191 current->plug && (type == DATA || type == NODE))
192 blk_finish_plug(current->plug);
193
194 if (type != DATA && type != NODE)
195 goto submit_io;
196
197 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
198 start %= F2FS_IO_SIZE(sbi);
199
200 if (start == 0)
201 goto submit_io;
202
203 /* fill dummy pages */
204 for (; start < F2FS_IO_SIZE(sbi); start++) {
205 struct page *page =
206 mempool_alloc(sbi->write_io_dummy,
207 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
208 f2fs_bug_on(sbi, !page);
209
210 SetPagePrivate(page);
211 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
212 lock_page(page);
213 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
214 f2fs_bug_on(sbi, 1);
215 }
216 /*
217 * In the NODE case, we lose next block address chain. So, we
218 * need to do checkpoint in f2fs_sync_file.
219 */
220 if (type == NODE)
221 set_sbi_flag(sbi, SBI_NEED_CP);
222 }
223 submit_io:
224 if (is_read_io(bio_op(bio)))
225 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
226 else
227 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
228 submit_bio(bio);
229 }
230
231 static void __submit_merged_bio(struct f2fs_bio_info *io)
232 {
233 struct f2fs_io_info *fio = &io->fio;
234
235 if (!io->bio)
236 return;
237
238 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
239
240 if (is_read_io(fio->op))
241 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
242 else
243 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
244
245 __submit_bio(io->sbi, io->bio, fio->type);
246 io->bio = NULL;
247 }
248
249 static bool __has_merged_page(struct f2fs_bio_info *io,
250 struct inode *inode, nid_t ino, pgoff_t idx)
251 {
252 struct bio_vec *bvec;
253 struct page *target;
254 int i;
255
256 if (!io->bio)
257 return false;
258
259 if (!inode && !ino)
260 return true;
261
262 bio_for_each_segment_all(bvec, io->bio, i) {
263
264 if (bvec->bv_page->mapping)
265 target = bvec->bv_page;
266 else
267 target = fscrypt_control_page(bvec->bv_page);
268
269 if (idx != target->index)
270 continue;
271
272 if (inode && inode == target->mapping->host)
273 return true;
274 if (ino && ino == ino_of_node(target))
275 return true;
276 }
277
278 return false;
279 }
280
281 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
282 nid_t ino, pgoff_t idx, enum page_type type)
283 {
284 enum page_type btype = PAGE_TYPE_OF_BIO(type);
285 struct f2fs_bio_info *io = &sbi->write_io[btype];
286 bool ret;
287
288 down_read(&io->io_rwsem);
289 ret = __has_merged_page(io, inode, ino, idx);
290 up_read(&io->io_rwsem);
291 return ret;
292 }
293
294 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
295 struct inode *inode, nid_t ino, pgoff_t idx,
296 enum page_type type, int rw)
297 {
298 enum page_type btype = PAGE_TYPE_OF_BIO(type);
299 struct f2fs_bio_info *io;
300
301 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
302
303 down_write(&io->io_rwsem);
304
305 if (!__has_merged_page(io, inode, ino, idx))
306 goto out;
307
308 /* change META to META_FLUSH in the checkpoint procedure */
309 if (type >= META_FLUSH) {
310 io->fio.type = META_FLUSH;
311 io->fio.op = REQ_OP_WRITE;
312 io->fio.op_flags = REQ_META | REQ_PRIO;
313 if (!test_opt(sbi, NOBARRIER))
314 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
315 }
316 __submit_merged_bio(io);
317 out:
318 up_write(&io->io_rwsem);
319 }
320
321 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
322 int rw)
323 {
324 __f2fs_submit_merged_bio(sbi, NULL, 0, 0, type, rw);
325 }
326
327 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
328 struct inode *inode, nid_t ino, pgoff_t idx,
329 enum page_type type, int rw)
330 {
331 if (has_merged_page(sbi, inode, ino, idx, type))
332 __f2fs_submit_merged_bio(sbi, inode, ino, idx, type, rw);
333 }
334
335 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
336 {
337 f2fs_submit_merged_bio(sbi, DATA, WRITE);
338 f2fs_submit_merged_bio(sbi, NODE, WRITE);
339 f2fs_submit_merged_bio(sbi, META, WRITE);
340 }
341
342 /*
343 * Fill the locked page with data located in the block address.
344 * A caller needs to unlock the page on failure.
345 */
346 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
347 {
348 struct bio *bio;
349 struct page *page = fio->encrypted_page ?
350 fio->encrypted_page : fio->page;
351
352 trace_f2fs_submit_page_bio(page, fio);
353 f2fs_trace_ios(fio, 0);
354
355 /* Allocate a new bio */
356 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
357
358 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
359 bio_put(bio);
360 return -EFAULT;
361 }
362 bio_set_op_attrs(bio, fio->op, fio->op_flags);
363
364 __submit_bio(fio->sbi, bio, fio->type);
365
366 if (!is_read_io(fio->op))
367 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
368 return 0;
369 }
370
371 int f2fs_submit_page_mbio(struct f2fs_io_info *fio)
372 {
373 struct f2fs_sb_info *sbi = fio->sbi;
374 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
375 struct f2fs_bio_info *io;
376 bool is_read = is_read_io(fio->op);
377 struct page *bio_page;
378 int err = 0;
379
380 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
381
382 if (fio->old_blkaddr != NEW_ADDR)
383 verify_block_addr(sbi, fio->old_blkaddr);
384 verify_block_addr(sbi, fio->new_blkaddr);
385
386 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
387
388 /* set submitted = 1 as a return value */
389 fio->submitted = 1;
390
391 if (!is_read)
392 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
393
394 down_write(&io->io_rwsem);
395
396 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
397 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
398 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
399 __submit_merged_bio(io);
400 alloc_new:
401 if (io->bio == NULL) {
402 if ((fio->type == DATA || fio->type == NODE) &&
403 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
404 err = -EAGAIN;
405 if (!is_read)
406 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
407 goto out_fail;
408 }
409 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
410 BIO_MAX_PAGES, is_read);
411 io->fio = *fio;
412 }
413
414 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
415 PAGE_SIZE) {
416 __submit_merged_bio(io);
417 goto alloc_new;
418 }
419
420 io->last_block_in_bio = fio->new_blkaddr;
421 f2fs_trace_ios(fio, 0);
422 out_fail:
423 up_write(&io->io_rwsem);
424 trace_f2fs_submit_page_mbio(fio->page, fio);
425 return err;
426 }
427
428 static void __set_data_blkaddr(struct dnode_of_data *dn)
429 {
430 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
431 __le32 *addr_array;
432
433 /* Get physical address of data block */
434 addr_array = blkaddr_in_node(rn);
435 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
436 }
437
438 /*
439 * Lock ordering for the change of data block address:
440 * ->data_page
441 * ->node_page
442 * update block addresses in the node page
443 */
444 void set_data_blkaddr(struct dnode_of_data *dn)
445 {
446 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
447 __set_data_blkaddr(dn);
448 if (set_page_dirty(dn->node_page))
449 dn->node_changed = true;
450 }
451
452 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
453 {
454 dn->data_blkaddr = blkaddr;
455 set_data_blkaddr(dn);
456 f2fs_update_extent_cache(dn);
457 }
458
459 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
460 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
461 {
462 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
463
464 if (!count)
465 return 0;
466
467 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
468 return -EPERM;
469 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
470 return -ENOSPC;
471
472 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
473 dn->ofs_in_node, count);
474
475 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
476
477 for (; count > 0; dn->ofs_in_node++) {
478 block_t blkaddr =
479 datablock_addr(dn->node_page, dn->ofs_in_node);
480 if (blkaddr == NULL_ADDR) {
481 dn->data_blkaddr = NEW_ADDR;
482 __set_data_blkaddr(dn);
483 count--;
484 }
485 }
486
487 if (set_page_dirty(dn->node_page))
488 dn->node_changed = true;
489 return 0;
490 }
491
492 /* Should keep dn->ofs_in_node unchanged */
493 int reserve_new_block(struct dnode_of_data *dn)
494 {
495 unsigned int ofs_in_node = dn->ofs_in_node;
496 int ret;
497
498 ret = reserve_new_blocks(dn, 1);
499 dn->ofs_in_node = ofs_in_node;
500 return ret;
501 }
502
503 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
504 {
505 bool need_put = dn->inode_page ? false : true;
506 int err;
507
508 err = get_dnode_of_data(dn, index, ALLOC_NODE);
509 if (err)
510 return err;
511
512 if (dn->data_blkaddr == NULL_ADDR)
513 err = reserve_new_block(dn);
514 if (err || need_put)
515 f2fs_put_dnode(dn);
516 return err;
517 }
518
519 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
520 {
521 struct extent_info ei = {0,0,0};
522 struct inode *inode = dn->inode;
523
524 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
525 dn->data_blkaddr = ei.blk + index - ei.fofs;
526 return 0;
527 }
528
529 return f2fs_reserve_block(dn, index);
530 }
531
532 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
533 int op_flags, bool for_write)
534 {
535 struct address_space *mapping = inode->i_mapping;
536 struct dnode_of_data dn;
537 struct page *page;
538 struct extent_info ei = {0,0,0};
539 int err;
540 struct f2fs_io_info fio = {
541 .sbi = F2FS_I_SB(inode),
542 .type = DATA,
543 .op = REQ_OP_READ,
544 .op_flags = op_flags,
545 .encrypted_page = NULL,
546 };
547
548 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
549 return read_mapping_page(mapping, index, NULL);
550
551 page = f2fs_grab_cache_page(mapping, index, for_write);
552 if (!page)
553 return ERR_PTR(-ENOMEM);
554
555 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
556 dn.data_blkaddr = ei.blk + index - ei.fofs;
557 goto got_it;
558 }
559
560 set_new_dnode(&dn, inode, NULL, NULL, 0);
561 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
562 if (err)
563 goto put_err;
564 f2fs_put_dnode(&dn);
565
566 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
567 err = -ENOENT;
568 goto put_err;
569 }
570 got_it:
571 if (PageUptodate(page)) {
572 unlock_page(page);
573 return page;
574 }
575
576 /*
577 * A new dentry page is allocated but not able to be written, since its
578 * new inode page couldn't be allocated due to -ENOSPC.
579 * In such the case, its blkaddr can be remained as NEW_ADDR.
580 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
581 */
582 if (dn.data_blkaddr == NEW_ADDR) {
583 zero_user_segment(page, 0, PAGE_SIZE);
584 if (!PageUptodate(page))
585 SetPageUptodate(page);
586 unlock_page(page);
587 return page;
588 }
589
590 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
591 fio.page = page;
592 err = f2fs_submit_page_bio(&fio);
593 if (err)
594 goto put_err;
595 return page;
596
597 put_err:
598 f2fs_put_page(page, 1);
599 return ERR_PTR(err);
600 }
601
602 struct page *find_data_page(struct inode *inode, pgoff_t index)
603 {
604 struct address_space *mapping = inode->i_mapping;
605 struct page *page;
606
607 page = find_get_page(mapping, index);
608 if (page && PageUptodate(page))
609 return page;
610 f2fs_put_page(page, 0);
611
612 page = get_read_data_page(inode, index, 0, false);
613 if (IS_ERR(page))
614 return page;
615
616 if (PageUptodate(page))
617 return page;
618
619 wait_on_page_locked(page);
620 if (unlikely(!PageUptodate(page))) {
621 f2fs_put_page(page, 0);
622 return ERR_PTR(-EIO);
623 }
624 return page;
625 }
626
627 /*
628 * If it tries to access a hole, return an error.
629 * Because, the callers, functions in dir.c and GC, should be able to know
630 * whether this page exists or not.
631 */
632 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
633 bool for_write)
634 {
635 struct address_space *mapping = inode->i_mapping;
636 struct page *page;
637 repeat:
638 page = get_read_data_page(inode, index, 0, for_write);
639 if (IS_ERR(page))
640 return page;
641
642 /* wait for read completion */
643 lock_page(page);
644 if (unlikely(page->mapping != mapping)) {
645 f2fs_put_page(page, 1);
646 goto repeat;
647 }
648 if (unlikely(!PageUptodate(page))) {
649 f2fs_put_page(page, 1);
650 return ERR_PTR(-EIO);
651 }
652 return page;
653 }
654
655 /*
656 * Caller ensures that this data page is never allocated.
657 * A new zero-filled data page is allocated in the page cache.
658 *
659 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
660 * f2fs_unlock_op().
661 * Note that, ipage is set only by make_empty_dir, and if any error occur,
662 * ipage should be released by this function.
663 */
664 struct page *get_new_data_page(struct inode *inode,
665 struct page *ipage, pgoff_t index, bool new_i_size)
666 {
667 struct address_space *mapping = inode->i_mapping;
668 struct page *page;
669 struct dnode_of_data dn;
670 int err;
671
672 page = f2fs_grab_cache_page(mapping, index, true);
673 if (!page) {
674 /*
675 * before exiting, we should make sure ipage will be released
676 * if any error occur.
677 */
678 f2fs_put_page(ipage, 1);
679 return ERR_PTR(-ENOMEM);
680 }
681
682 set_new_dnode(&dn, inode, ipage, NULL, 0);
683 err = f2fs_reserve_block(&dn, index);
684 if (err) {
685 f2fs_put_page(page, 1);
686 return ERR_PTR(err);
687 }
688 if (!ipage)
689 f2fs_put_dnode(&dn);
690
691 if (PageUptodate(page))
692 goto got_it;
693
694 if (dn.data_blkaddr == NEW_ADDR) {
695 zero_user_segment(page, 0, PAGE_SIZE);
696 if (!PageUptodate(page))
697 SetPageUptodate(page);
698 } else {
699 f2fs_put_page(page, 1);
700
701 /* if ipage exists, blkaddr should be NEW_ADDR */
702 f2fs_bug_on(F2FS_I_SB(inode), ipage);
703 page = get_lock_data_page(inode, index, true);
704 if (IS_ERR(page))
705 return page;
706 }
707 got_it:
708 if (new_i_size && i_size_read(inode) <
709 ((loff_t)(index + 1) << PAGE_SHIFT))
710 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
711 return page;
712 }
713
714 static int __allocate_data_block(struct dnode_of_data *dn)
715 {
716 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
717 struct f2fs_summary sum;
718 struct node_info ni;
719 pgoff_t fofs;
720 blkcnt_t count = 1;
721
722 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
723 return -EPERM;
724
725 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
726 if (dn->data_blkaddr == NEW_ADDR)
727 goto alloc;
728
729 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
730 return -ENOSPC;
731
732 alloc:
733 get_node_info(sbi, dn->nid, &ni);
734 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
735
736 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
737 &sum, CURSEG_WARM_DATA);
738 set_data_blkaddr(dn);
739
740 /* update i_size */
741 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
742 dn->ofs_in_node;
743 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
744 f2fs_i_size_write(dn->inode,
745 ((loff_t)(fofs + 1) << PAGE_SHIFT));
746 return 0;
747 }
748
749 static inline bool __force_buffered_io(struct inode *inode, int rw)
750 {
751 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
752 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
753 F2FS_I_SB(inode)->s_ndevs);
754 }
755
756 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
757 {
758 struct inode *inode = file_inode(iocb->ki_filp);
759 struct f2fs_map_blocks map;
760 int err = 0;
761
762 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
763 return 0;
764
765 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
766 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
767 if (map.m_len > map.m_lblk)
768 map.m_len -= map.m_lblk;
769 else
770 map.m_len = 0;
771
772 map.m_next_pgofs = NULL;
773
774 if (iocb->ki_flags & IOCB_DIRECT) {
775 err = f2fs_convert_inline_inode(inode);
776 if (err)
777 return err;
778 return f2fs_map_blocks(inode, &map, 1,
779 __force_buffered_io(inode, WRITE) ?
780 F2FS_GET_BLOCK_PRE_AIO :
781 F2FS_GET_BLOCK_PRE_DIO);
782 }
783 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
784 err = f2fs_convert_inline_inode(inode);
785 if (err)
786 return err;
787 }
788 if (!f2fs_has_inline_data(inode))
789 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
790 return err;
791 }
792
793 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
794 {
795 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
796 if (lock)
797 down_read(&sbi->node_change);
798 else
799 up_read(&sbi->node_change);
800 } else {
801 if (lock)
802 f2fs_lock_op(sbi);
803 else
804 f2fs_unlock_op(sbi);
805 }
806 }
807
808 /*
809 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
810 * f2fs_map_blocks structure.
811 * If original data blocks are allocated, then give them to blockdev.
812 * Otherwise,
813 * a. preallocate requested block addresses
814 * b. do not use extent cache for better performance
815 * c. give the block addresses to blockdev
816 */
817 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
818 int create, int flag)
819 {
820 unsigned int maxblocks = map->m_len;
821 struct dnode_of_data dn;
822 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
823 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
824 pgoff_t pgofs, end_offset, end;
825 int err = 0, ofs = 1;
826 unsigned int ofs_in_node, last_ofs_in_node;
827 blkcnt_t prealloc;
828 struct extent_info ei = {0,0,0};
829 block_t blkaddr;
830
831 if (!maxblocks)
832 return 0;
833
834 map->m_len = 0;
835 map->m_flags = 0;
836
837 /* it only supports block size == page size */
838 pgofs = (pgoff_t)map->m_lblk;
839 end = pgofs + maxblocks;
840
841 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
842 map->m_pblk = ei.blk + pgofs - ei.fofs;
843 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
844 map->m_flags = F2FS_MAP_MAPPED;
845 goto out;
846 }
847
848 next_dnode:
849 if (create)
850 __do_map_lock(sbi, flag, true);
851
852 /* When reading holes, we need its node page */
853 set_new_dnode(&dn, inode, NULL, NULL, 0);
854 err = get_dnode_of_data(&dn, pgofs, mode);
855 if (err) {
856 if (flag == F2FS_GET_BLOCK_BMAP)
857 map->m_pblk = 0;
858 if (err == -ENOENT) {
859 err = 0;
860 if (map->m_next_pgofs)
861 *map->m_next_pgofs =
862 get_next_page_offset(&dn, pgofs);
863 }
864 goto unlock_out;
865 }
866
867 prealloc = 0;
868 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
869 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
870
871 next_block:
872 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
873
874 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
875 if (create) {
876 if (unlikely(f2fs_cp_error(sbi))) {
877 err = -EIO;
878 goto sync_out;
879 }
880 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
881 if (blkaddr == NULL_ADDR) {
882 prealloc++;
883 last_ofs_in_node = dn.ofs_in_node;
884 }
885 } else {
886 err = __allocate_data_block(&dn);
887 if (!err)
888 set_inode_flag(inode, FI_APPEND_WRITE);
889 }
890 if (err)
891 goto sync_out;
892 map->m_flags |= F2FS_MAP_NEW;
893 blkaddr = dn.data_blkaddr;
894 } else {
895 if (flag == F2FS_GET_BLOCK_BMAP) {
896 map->m_pblk = 0;
897 goto sync_out;
898 }
899 if (flag == F2FS_GET_BLOCK_FIEMAP &&
900 blkaddr == NULL_ADDR) {
901 if (map->m_next_pgofs)
902 *map->m_next_pgofs = pgofs + 1;
903 }
904 if (flag != F2FS_GET_BLOCK_FIEMAP ||
905 blkaddr != NEW_ADDR)
906 goto sync_out;
907 }
908 }
909
910 if (flag == F2FS_GET_BLOCK_PRE_AIO)
911 goto skip;
912
913 if (map->m_len == 0) {
914 /* preallocated unwritten block should be mapped for fiemap. */
915 if (blkaddr == NEW_ADDR)
916 map->m_flags |= F2FS_MAP_UNWRITTEN;
917 map->m_flags |= F2FS_MAP_MAPPED;
918
919 map->m_pblk = blkaddr;
920 map->m_len = 1;
921 } else if ((map->m_pblk != NEW_ADDR &&
922 blkaddr == (map->m_pblk + ofs)) ||
923 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
924 flag == F2FS_GET_BLOCK_PRE_DIO) {
925 ofs++;
926 map->m_len++;
927 } else {
928 goto sync_out;
929 }
930
931 skip:
932 dn.ofs_in_node++;
933 pgofs++;
934
935 /* preallocate blocks in batch for one dnode page */
936 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
937 (pgofs == end || dn.ofs_in_node == end_offset)) {
938
939 dn.ofs_in_node = ofs_in_node;
940 err = reserve_new_blocks(&dn, prealloc);
941 if (err)
942 goto sync_out;
943
944 map->m_len += dn.ofs_in_node - ofs_in_node;
945 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
946 err = -ENOSPC;
947 goto sync_out;
948 }
949 dn.ofs_in_node = end_offset;
950 }
951
952 if (pgofs >= end)
953 goto sync_out;
954 else if (dn.ofs_in_node < end_offset)
955 goto next_block;
956
957 f2fs_put_dnode(&dn);
958
959 if (create) {
960 __do_map_lock(sbi, flag, false);
961 f2fs_balance_fs(sbi, dn.node_changed);
962 }
963 goto next_dnode;
964
965 sync_out:
966 f2fs_put_dnode(&dn);
967 unlock_out:
968 if (create) {
969 __do_map_lock(sbi, flag, false);
970 f2fs_balance_fs(sbi, dn.node_changed);
971 }
972 out:
973 trace_f2fs_map_blocks(inode, map, err);
974 return err;
975 }
976
977 static int __get_data_block(struct inode *inode, sector_t iblock,
978 struct buffer_head *bh, int create, int flag,
979 pgoff_t *next_pgofs)
980 {
981 struct f2fs_map_blocks map;
982 int err;
983
984 map.m_lblk = iblock;
985 map.m_len = bh->b_size >> inode->i_blkbits;
986 map.m_next_pgofs = next_pgofs;
987
988 err = f2fs_map_blocks(inode, &map, create, flag);
989 if (!err) {
990 map_bh(bh, inode->i_sb, map.m_pblk);
991 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
992 bh->b_size = (u64)map.m_len << inode->i_blkbits;
993 }
994 return err;
995 }
996
997 static int get_data_block(struct inode *inode, sector_t iblock,
998 struct buffer_head *bh_result, int create, int flag,
999 pgoff_t *next_pgofs)
1000 {
1001 return __get_data_block(inode, iblock, bh_result, create,
1002 flag, next_pgofs);
1003 }
1004
1005 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1006 struct buffer_head *bh_result, int create)
1007 {
1008 return __get_data_block(inode, iblock, bh_result, create,
1009 F2FS_GET_BLOCK_DIO, NULL);
1010 }
1011
1012 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1013 struct buffer_head *bh_result, int create)
1014 {
1015 /* Block number less than F2FS MAX BLOCKS */
1016 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1017 return -EFBIG;
1018
1019 return __get_data_block(inode, iblock, bh_result, create,
1020 F2FS_GET_BLOCK_BMAP, NULL);
1021 }
1022
1023 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1024 {
1025 return (offset >> inode->i_blkbits);
1026 }
1027
1028 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1029 {
1030 return (blk << inode->i_blkbits);
1031 }
1032
1033 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1034 u64 start, u64 len)
1035 {
1036 struct buffer_head map_bh;
1037 sector_t start_blk, last_blk;
1038 pgoff_t next_pgofs;
1039 u64 logical = 0, phys = 0, size = 0;
1040 u32 flags = 0;
1041 int ret = 0;
1042
1043 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1044 if (ret)
1045 return ret;
1046
1047 if (f2fs_has_inline_data(inode)) {
1048 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1049 if (ret != -EAGAIN)
1050 return ret;
1051 }
1052
1053 inode_lock(inode);
1054
1055 if (logical_to_blk(inode, len) == 0)
1056 len = blk_to_logical(inode, 1);
1057
1058 start_blk = logical_to_blk(inode, start);
1059 last_blk = logical_to_blk(inode, start + len - 1);
1060
1061 next:
1062 memset(&map_bh, 0, sizeof(struct buffer_head));
1063 map_bh.b_size = len;
1064
1065 ret = get_data_block(inode, start_blk, &map_bh, 0,
1066 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1067 if (ret)
1068 goto out;
1069
1070 /* HOLE */
1071 if (!buffer_mapped(&map_bh)) {
1072 start_blk = next_pgofs;
1073
1074 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1075 F2FS_I_SB(inode)->max_file_blocks))
1076 goto prep_next;
1077
1078 flags |= FIEMAP_EXTENT_LAST;
1079 }
1080
1081 if (size) {
1082 if (f2fs_encrypted_inode(inode))
1083 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1084
1085 ret = fiemap_fill_next_extent(fieinfo, logical,
1086 phys, size, flags);
1087 }
1088
1089 if (start_blk > last_blk || ret)
1090 goto out;
1091
1092 logical = blk_to_logical(inode, start_blk);
1093 phys = blk_to_logical(inode, map_bh.b_blocknr);
1094 size = map_bh.b_size;
1095 flags = 0;
1096 if (buffer_unwritten(&map_bh))
1097 flags = FIEMAP_EXTENT_UNWRITTEN;
1098
1099 start_blk += logical_to_blk(inode, size);
1100
1101 prep_next:
1102 cond_resched();
1103 if (fatal_signal_pending(current))
1104 ret = -EINTR;
1105 else
1106 goto next;
1107 out:
1108 if (ret == 1)
1109 ret = 0;
1110
1111 inode_unlock(inode);
1112 return ret;
1113 }
1114
1115 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1116 unsigned nr_pages)
1117 {
1118 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1119 struct fscrypt_ctx *ctx = NULL;
1120 struct bio *bio;
1121
1122 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1123 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1124 if (IS_ERR(ctx))
1125 return ERR_CAST(ctx);
1126
1127 /* wait the page to be moved by cleaning */
1128 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1129 }
1130
1131 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1132 if (!bio) {
1133 if (ctx)
1134 fscrypt_release_ctx(ctx);
1135 return ERR_PTR(-ENOMEM);
1136 }
1137 f2fs_target_device(sbi, blkaddr, bio);
1138 bio->bi_end_io = f2fs_read_end_io;
1139 bio->bi_private = ctx;
1140
1141 return bio;
1142 }
1143
1144 /*
1145 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1146 * Major change was from block_size == page_size in f2fs by default.
1147 */
1148 static int f2fs_mpage_readpages(struct address_space *mapping,
1149 struct list_head *pages, struct page *page,
1150 unsigned nr_pages)
1151 {
1152 struct bio *bio = NULL;
1153 unsigned page_idx;
1154 sector_t last_block_in_bio = 0;
1155 struct inode *inode = mapping->host;
1156 const unsigned blkbits = inode->i_blkbits;
1157 const unsigned blocksize = 1 << blkbits;
1158 sector_t block_in_file;
1159 sector_t last_block;
1160 sector_t last_block_in_file;
1161 sector_t block_nr;
1162 struct f2fs_map_blocks map;
1163
1164 map.m_pblk = 0;
1165 map.m_lblk = 0;
1166 map.m_len = 0;
1167 map.m_flags = 0;
1168 map.m_next_pgofs = NULL;
1169
1170 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1171
1172 if (pages) {
1173 page = list_last_entry(pages, struct page, lru);
1174
1175 prefetchw(&page->flags);
1176 list_del(&page->lru);
1177 if (add_to_page_cache_lru(page, mapping,
1178 page->index,
1179 readahead_gfp_mask(mapping)))
1180 goto next_page;
1181 }
1182
1183 block_in_file = (sector_t)page->index;
1184 last_block = block_in_file + nr_pages;
1185 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1186 blkbits;
1187 if (last_block > last_block_in_file)
1188 last_block = last_block_in_file;
1189
1190 /*
1191 * Map blocks using the previous result first.
1192 */
1193 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1194 block_in_file > map.m_lblk &&
1195 block_in_file < (map.m_lblk + map.m_len))
1196 goto got_it;
1197
1198 /*
1199 * Then do more f2fs_map_blocks() calls until we are
1200 * done with this page.
1201 */
1202 map.m_flags = 0;
1203
1204 if (block_in_file < last_block) {
1205 map.m_lblk = block_in_file;
1206 map.m_len = last_block - block_in_file;
1207
1208 if (f2fs_map_blocks(inode, &map, 0,
1209 F2FS_GET_BLOCK_READ))
1210 goto set_error_page;
1211 }
1212 got_it:
1213 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1214 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1215 SetPageMappedToDisk(page);
1216
1217 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1218 SetPageUptodate(page);
1219 goto confused;
1220 }
1221 } else {
1222 zero_user_segment(page, 0, PAGE_SIZE);
1223 if (!PageUptodate(page))
1224 SetPageUptodate(page);
1225 unlock_page(page);
1226 goto next_page;
1227 }
1228
1229 /*
1230 * This page will go to BIO. Do we need to send this
1231 * BIO off first?
1232 */
1233 if (bio && (last_block_in_bio != block_nr - 1 ||
1234 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1235 submit_and_realloc:
1236 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1237 bio = NULL;
1238 }
1239 if (bio == NULL) {
1240 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1241 if (IS_ERR(bio)) {
1242 bio = NULL;
1243 goto set_error_page;
1244 }
1245 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1246 }
1247
1248 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1249 goto submit_and_realloc;
1250
1251 last_block_in_bio = block_nr;
1252 goto next_page;
1253 set_error_page:
1254 SetPageError(page);
1255 zero_user_segment(page, 0, PAGE_SIZE);
1256 unlock_page(page);
1257 goto next_page;
1258 confused:
1259 if (bio) {
1260 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1261 bio = NULL;
1262 }
1263 unlock_page(page);
1264 next_page:
1265 if (pages)
1266 put_page(page);
1267 }
1268 BUG_ON(pages && !list_empty(pages));
1269 if (bio)
1270 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1271 return 0;
1272 }
1273
1274 static int f2fs_read_data_page(struct file *file, struct page *page)
1275 {
1276 struct inode *inode = page->mapping->host;
1277 int ret = -EAGAIN;
1278
1279 trace_f2fs_readpage(page, DATA);
1280
1281 /* If the file has inline data, try to read it directly */
1282 if (f2fs_has_inline_data(inode))
1283 ret = f2fs_read_inline_data(inode, page);
1284 if (ret == -EAGAIN)
1285 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1286 return ret;
1287 }
1288
1289 static int f2fs_read_data_pages(struct file *file,
1290 struct address_space *mapping,
1291 struct list_head *pages, unsigned nr_pages)
1292 {
1293 struct inode *inode = file->f_mapping->host;
1294 struct page *page = list_last_entry(pages, struct page, lru);
1295
1296 trace_f2fs_readpages(inode, page, nr_pages);
1297
1298 /* If the file has inline data, skip readpages */
1299 if (f2fs_has_inline_data(inode))
1300 return 0;
1301
1302 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1303 }
1304
1305 int do_write_data_page(struct f2fs_io_info *fio)
1306 {
1307 struct page *page = fio->page;
1308 struct inode *inode = page->mapping->host;
1309 struct dnode_of_data dn;
1310 int err = 0;
1311
1312 set_new_dnode(&dn, inode, NULL, NULL, 0);
1313 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1314 if (err)
1315 return err;
1316
1317 fio->old_blkaddr = dn.data_blkaddr;
1318
1319 /* This page is already truncated */
1320 if (fio->old_blkaddr == NULL_ADDR) {
1321 ClearPageUptodate(page);
1322 goto out_writepage;
1323 }
1324
1325 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1326 gfp_t gfp_flags = GFP_NOFS;
1327
1328 /* wait for GCed encrypted page writeback */
1329 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1330 fio->old_blkaddr);
1331 retry_encrypt:
1332 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1333 PAGE_SIZE, 0,
1334 fio->page->index,
1335 gfp_flags);
1336 if (IS_ERR(fio->encrypted_page)) {
1337 err = PTR_ERR(fio->encrypted_page);
1338 if (err == -ENOMEM) {
1339 /* flush pending ios and wait for a while */
1340 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1341 congestion_wait(BLK_RW_ASYNC, HZ/50);
1342 gfp_flags |= __GFP_NOFAIL;
1343 err = 0;
1344 goto retry_encrypt;
1345 }
1346 goto out_writepage;
1347 }
1348 }
1349
1350 set_page_writeback(page);
1351
1352 /*
1353 * If current allocation needs SSR,
1354 * it had better in-place writes for updated data.
1355 */
1356 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1357 !is_cold_data(page) &&
1358 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1359 need_inplace_update(inode, fio))) {
1360 f2fs_unlock_op(F2FS_I_SB(inode));
1361 fio->cp_rwsem_locked = false;
1362 err = rewrite_data_page(fio);
1363 set_inode_flag(inode, FI_UPDATE_WRITE);
1364 trace_f2fs_do_write_data_page(page, IPU);
1365 } else {
1366 write_data_page(&dn, fio);
1367 trace_f2fs_do_write_data_page(page, OPU);
1368 set_inode_flag(inode, FI_APPEND_WRITE);
1369 if (page->index == 0)
1370 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1371 }
1372 out_writepage:
1373 f2fs_put_dnode(&dn);
1374 return err;
1375 }
1376
1377 static int __write_data_page(struct page *page, bool *submitted,
1378 struct writeback_control *wbc)
1379 {
1380 struct inode *inode = page->mapping->host;
1381 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1382 loff_t i_size = i_size_read(inode);
1383 const pgoff_t end_index = ((unsigned long long) i_size)
1384 >> PAGE_SHIFT;
1385 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1386 unsigned offset = 0;
1387 bool need_balance_fs = false;
1388 int err = 0;
1389 struct f2fs_io_info fio = {
1390 .sbi = sbi,
1391 .type = DATA,
1392 .op = REQ_OP_WRITE,
1393 .op_flags = wbc_to_write_flags(wbc),
1394 .page = page,
1395 .encrypted_page = NULL,
1396 .submitted = false,
1397 .cp_rwsem_locked = true,
1398 };
1399
1400 trace_f2fs_writepage(page, DATA);
1401
1402 if (page->index < end_index)
1403 goto write;
1404
1405 /*
1406 * If the offset is out-of-range of file size,
1407 * this page does not have to be written to disk.
1408 */
1409 offset = i_size & (PAGE_SIZE - 1);
1410 if ((page->index >= end_index + 1) || !offset)
1411 goto out;
1412
1413 zero_user_segment(page, offset, PAGE_SIZE);
1414 write:
1415 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1416 goto redirty_out;
1417 if (f2fs_is_drop_cache(inode))
1418 goto out;
1419 /* we should not write 0'th page having journal header */
1420 if (f2fs_is_volatile_file(inode) && (!page->index ||
1421 (!wbc->for_reclaim &&
1422 available_free_memory(sbi, BASE_CHECK))))
1423 goto redirty_out;
1424
1425 /* we should bypass data pages to proceed the kworkder jobs */
1426 if (unlikely(f2fs_cp_error(sbi))) {
1427 mapping_set_error(page->mapping, -EIO);
1428 goto out;
1429 }
1430
1431 /* Dentry blocks are controlled by checkpoint */
1432 if (S_ISDIR(inode->i_mode)) {
1433 err = do_write_data_page(&fio);
1434 goto done;
1435 }
1436
1437 if (!wbc->for_reclaim)
1438 need_balance_fs = true;
1439 else if (has_not_enough_free_secs(sbi, 0, 0))
1440 goto redirty_out;
1441 else
1442 set_inode_flag(inode, FI_HOT_DATA);
1443
1444 err = -EAGAIN;
1445 if (f2fs_has_inline_data(inode)) {
1446 err = f2fs_write_inline_data(inode, page);
1447 if (!err)
1448 goto out;
1449 }
1450 f2fs_lock_op(sbi);
1451 if (err == -EAGAIN)
1452 err = do_write_data_page(&fio);
1453 if (F2FS_I(inode)->last_disk_size < psize)
1454 F2FS_I(inode)->last_disk_size = psize;
1455 if (fio.cp_rwsem_locked)
1456 f2fs_unlock_op(sbi);
1457 done:
1458 if (err && err != -ENOENT)
1459 goto redirty_out;
1460
1461 out:
1462 inode_dec_dirty_pages(inode);
1463 if (err)
1464 ClearPageUptodate(page);
1465
1466 if (wbc->for_reclaim) {
1467 f2fs_submit_merged_bio_cond(sbi, inode, 0, page->index,
1468 DATA, WRITE);
1469 clear_inode_flag(inode, FI_HOT_DATA);
1470 remove_dirty_inode(inode);
1471 submitted = NULL;
1472 }
1473
1474 unlock_page(page);
1475 if (!S_ISDIR(inode->i_mode))
1476 f2fs_balance_fs(sbi, need_balance_fs);
1477
1478 if (unlikely(f2fs_cp_error(sbi))) {
1479 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1480 submitted = NULL;
1481 }
1482
1483 if (submitted)
1484 *submitted = fio.submitted;
1485
1486 return 0;
1487
1488 redirty_out:
1489 redirty_page_for_writepage(wbc, page);
1490 if (!err)
1491 return AOP_WRITEPAGE_ACTIVATE;
1492 unlock_page(page);
1493 return err;
1494 }
1495
1496 static int f2fs_write_data_page(struct page *page,
1497 struct writeback_control *wbc)
1498 {
1499 return __write_data_page(page, NULL, wbc);
1500 }
1501
1502 /*
1503 * This function was copied from write_cche_pages from mm/page-writeback.c.
1504 * The major change is making write step of cold data page separately from
1505 * warm/hot data page.
1506 */
1507 static int f2fs_write_cache_pages(struct address_space *mapping,
1508 struct writeback_control *wbc)
1509 {
1510 int ret = 0;
1511 int done = 0;
1512 struct pagevec pvec;
1513 int nr_pages;
1514 pgoff_t uninitialized_var(writeback_index);
1515 pgoff_t index;
1516 pgoff_t end; /* Inclusive */
1517 pgoff_t done_index;
1518 pgoff_t last_idx = ULONG_MAX;
1519 int cycled;
1520 int range_whole = 0;
1521 int tag;
1522
1523 pagevec_init(&pvec, 0);
1524
1525 if (get_dirty_pages(mapping->host) <=
1526 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1527 set_inode_flag(mapping->host, FI_HOT_DATA);
1528 else
1529 clear_inode_flag(mapping->host, FI_HOT_DATA);
1530
1531 if (wbc->range_cyclic) {
1532 writeback_index = mapping->writeback_index; /* prev offset */
1533 index = writeback_index;
1534 if (index == 0)
1535 cycled = 1;
1536 else
1537 cycled = 0;
1538 end = -1;
1539 } else {
1540 index = wbc->range_start >> PAGE_SHIFT;
1541 end = wbc->range_end >> PAGE_SHIFT;
1542 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1543 range_whole = 1;
1544 cycled = 1; /* ignore range_cyclic tests */
1545 }
1546 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1547 tag = PAGECACHE_TAG_TOWRITE;
1548 else
1549 tag = PAGECACHE_TAG_DIRTY;
1550 retry:
1551 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1552 tag_pages_for_writeback(mapping, index, end);
1553 done_index = index;
1554 while (!done && (index <= end)) {
1555 int i;
1556
1557 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1558 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1559 if (nr_pages == 0)
1560 break;
1561
1562 for (i = 0; i < nr_pages; i++) {
1563 struct page *page = pvec.pages[i];
1564 bool submitted = false;
1565
1566 if (page->index > end) {
1567 done = 1;
1568 break;
1569 }
1570
1571 done_index = page->index;
1572
1573 lock_page(page);
1574
1575 if (unlikely(page->mapping != mapping)) {
1576 continue_unlock:
1577 unlock_page(page);
1578 continue;
1579 }
1580
1581 if (!PageDirty(page)) {
1582 /* someone wrote it for us */
1583 goto continue_unlock;
1584 }
1585
1586 if (PageWriteback(page)) {
1587 if (wbc->sync_mode != WB_SYNC_NONE)
1588 f2fs_wait_on_page_writeback(page,
1589 DATA, true);
1590 else
1591 goto continue_unlock;
1592 }
1593
1594 BUG_ON(PageWriteback(page));
1595 if (!clear_page_dirty_for_io(page))
1596 goto continue_unlock;
1597
1598 ret = __write_data_page(page, &submitted, wbc);
1599 if (unlikely(ret)) {
1600 /*
1601 * keep nr_to_write, since vfs uses this to
1602 * get # of written pages.
1603 */
1604 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1605 unlock_page(page);
1606 ret = 0;
1607 continue;
1608 }
1609 done_index = page->index + 1;
1610 done = 1;
1611 break;
1612 } else if (submitted) {
1613 last_idx = page->index;
1614 }
1615
1616 /* give a priority to WB_SYNC threads */
1617 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1618 --wbc->nr_to_write <= 0) &&
1619 wbc->sync_mode == WB_SYNC_NONE) {
1620 done = 1;
1621 break;
1622 }
1623 }
1624 pagevec_release(&pvec);
1625 cond_resched();
1626 }
1627
1628 if (!cycled && !done) {
1629 cycled = 1;
1630 index = 0;
1631 end = writeback_index - 1;
1632 goto retry;
1633 }
1634 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1635 mapping->writeback_index = done_index;
1636
1637 if (last_idx != ULONG_MAX)
1638 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1639 0, last_idx, DATA, WRITE);
1640
1641 return ret;
1642 }
1643
1644 static int f2fs_write_data_pages(struct address_space *mapping,
1645 struct writeback_control *wbc)
1646 {
1647 struct inode *inode = mapping->host;
1648 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1649 struct blk_plug plug;
1650 int ret;
1651
1652 /* deal with chardevs and other special file */
1653 if (!mapping->a_ops->writepage)
1654 return 0;
1655
1656 /* skip writing if there is no dirty page in this inode */
1657 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1658 return 0;
1659
1660 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1661 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1662 available_free_memory(sbi, DIRTY_DENTS))
1663 goto skip_write;
1664
1665 /* skip writing during file defragment */
1666 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1667 goto skip_write;
1668
1669 /* during POR, we don't need to trigger writepage at all. */
1670 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1671 goto skip_write;
1672
1673 trace_f2fs_writepages(mapping->host, wbc, DATA);
1674
1675 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
1676 if (wbc->sync_mode == WB_SYNC_ALL)
1677 atomic_inc(&sbi->wb_sync_req);
1678 else if (atomic_read(&sbi->wb_sync_req))
1679 goto skip_write;
1680
1681 blk_start_plug(&plug);
1682 ret = f2fs_write_cache_pages(mapping, wbc);
1683 blk_finish_plug(&plug);
1684
1685 if (wbc->sync_mode == WB_SYNC_ALL)
1686 atomic_dec(&sbi->wb_sync_req);
1687 /*
1688 * if some pages were truncated, we cannot guarantee its mapping->host
1689 * to detect pending bios.
1690 */
1691
1692 remove_dirty_inode(inode);
1693 return ret;
1694
1695 skip_write:
1696 wbc->pages_skipped += get_dirty_pages(inode);
1697 trace_f2fs_writepages(mapping->host, wbc, DATA);
1698 return 0;
1699 }
1700
1701 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1702 {
1703 struct inode *inode = mapping->host;
1704 loff_t i_size = i_size_read(inode);
1705
1706 if (to > i_size) {
1707 truncate_pagecache(inode, i_size);
1708 truncate_blocks(inode, i_size, true);
1709 }
1710 }
1711
1712 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1713 struct page *page, loff_t pos, unsigned len,
1714 block_t *blk_addr, bool *node_changed)
1715 {
1716 struct inode *inode = page->mapping->host;
1717 pgoff_t index = page->index;
1718 struct dnode_of_data dn;
1719 struct page *ipage;
1720 bool locked = false;
1721 struct extent_info ei = {0,0,0};
1722 int err = 0;
1723
1724 /*
1725 * we already allocated all the blocks, so we don't need to get
1726 * the block addresses when there is no need to fill the page.
1727 */
1728 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1729 !is_inode_flag_set(inode, FI_NO_PREALLOC))
1730 return 0;
1731
1732 if (f2fs_has_inline_data(inode) ||
1733 (pos & PAGE_MASK) >= i_size_read(inode)) {
1734 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
1735 locked = true;
1736 }
1737 restart:
1738 /* check inline_data */
1739 ipage = get_node_page(sbi, inode->i_ino);
1740 if (IS_ERR(ipage)) {
1741 err = PTR_ERR(ipage);
1742 goto unlock_out;
1743 }
1744
1745 set_new_dnode(&dn, inode, ipage, ipage, 0);
1746
1747 if (f2fs_has_inline_data(inode)) {
1748 if (pos + len <= MAX_INLINE_DATA) {
1749 read_inline_data(page, ipage);
1750 set_inode_flag(inode, FI_DATA_EXIST);
1751 if (inode->i_nlink)
1752 set_inline_node(ipage);
1753 } else {
1754 err = f2fs_convert_inline_page(&dn, page);
1755 if (err)
1756 goto out;
1757 if (dn.data_blkaddr == NULL_ADDR)
1758 err = f2fs_get_block(&dn, index);
1759 }
1760 } else if (locked) {
1761 err = f2fs_get_block(&dn, index);
1762 } else {
1763 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1764 dn.data_blkaddr = ei.blk + index - ei.fofs;
1765 } else {
1766 /* hole case */
1767 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1768 if (err || dn.data_blkaddr == NULL_ADDR) {
1769 f2fs_put_dnode(&dn);
1770 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
1771 true);
1772 locked = true;
1773 goto restart;
1774 }
1775 }
1776 }
1777
1778 /* convert_inline_page can make node_changed */
1779 *blk_addr = dn.data_blkaddr;
1780 *node_changed = dn.node_changed;
1781 out:
1782 f2fs_put_dnode(&dn);
1783 unlock_out:
1784 if (locked)
1785 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
1786 return err;
1787 }
1788
1789 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1790 loff_t pos, unsigned len, unsigned flags,
1791 struct page **pagep, void **fsdata)
1792 {
1793 struct inode *inode = mapping->host;
1794 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1795 struct page *page = NULL;
1796 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1797 bool need_balance = false;
1798 block_t blkaddr = NULL_ADDR;
1799 int err = 0;
1800
1801 trace_f2fs_write_begin(inode, pos, len, flags);
1802
1803 /*
1804 * We should check this at this moment to avoid deadlock on inode page
1805 * and #0 page. The locking rule for inline_data conversion should be:
1806 * lock_page(page #0) -> lock_page(inode_page)
1807 */
1808 if (index != 0) {
1809 err = f2fs_convert_inline_inode(inode);
1810 if (err)
1811 goto fail;
1812 }
1813 repeat:
1814 /*
1815 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1816 * wait_for_stable_page. Will wait that below with our IO control.
1817 */
1818 page = pagecache_get_page(mapping, index,
1819 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1820 if (!page) {
1821 err = -ENOMEM;
1822 goto fail;
1823 }
1824
1825 *pagep = page;
1826
1827 err = prepare_write_begin(sbi, page, pos, len,
1828 &blkaddr, &need_balance);
1829 if (err)
1830 goto fail;
1831
1832 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1833 unlock_page(page);
1834 f2fs_balance_fs(sbi, true);
1835 lock_page(page);
1836 if (page->mapping != mapping) {
1837 /* The page got truncated from under us */
1838 f2fs_put_page(page, 1);
1839 goto repeat;
1840 }
1841 }
1842
1843 f2fs_wait_on_page_writeback(page, DATA, false);
1844
1845 /* wait for GCed encrypted page writeback */
1846 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1847 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1848
1849 if (len == PAGE_SIZE || PageUptodate(page))
1850 return 0;
1851
1852 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1853 zero_user_segment(page, len, PAGE_SIZE);
1854 return 0;
1855 }
1856
1857 if (blkaddr == NEW_ADDR) {
1858 zero_user_segment(page, 0, PAGE_SIZE);
1859 SetPageUptodate(page);
1860 } else {
1861 struct bio *bio;
1862
1863 bio = f2fs_grab_bio(inode, blkaddr, 1);
1864 if (IS_ERR(bio)) {
1865 err = PTR_ERR(bio);
1866 goto fail;
1867 }
1868 bio->bi_opf = REQ_OP_READ;
1869 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1870 bio_put(bio);
1871 err = -EFAULT;
1872 goto fail;
1873 }
1874
1875 __submit_bio(sbi, bio, DATA);
1876
1877 lock_page(page);
1878 if (unlikely(page->mapping != mapping)) {
1879 f2fs_put_page(page, 1);
1880 goto repeat;
1881 }
1882 if (unlikely(!PageUptodate(page))) {
1883 err = -EIO;
1884 goto fail;
1885 }
1886 }
1887 return 0;
1888
1889 fail:
1890 f2fs_put_page(page, 1);
1891 f2fs_write_failed(mapping, pos + len);
1892 return err;
1893 }
1894
1895 static int f2fs_write_end(struct file *file,
1896 struct address_space *mapping,
1897 loff_t pos, unsigned len, unsigned copied,
1898 struct page *page, void *fsdata)
1899 {
1900 struct inode *inode = page->mapping->host;
1901
1902 trace_f2fs_write_end(inode, pos, len, copied);
1903
1904 /*
1905 * This should be come from len == PAGE_SIZE, and we expect copied
1906 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1907 * let generic_perform_write() try to copy data again through copied=0.
1908 */
1909 if (!PageUptodate(page)) {
1910 if (unlikely(copied != len))
1911 copied = 0;
1912 else
1913 SetPageUptodate(page);
1914 }
1915 if (!copied)
1916 goto unlock_out;
1917
1918 set_page_dirty(page);
1919
1920 if (pos + copied > i_size_read(inode))
1921 f2fs_i_size_write(inode, pos + copied);
1922 unlock_out:
1923 f2fs_put_page(page, 1);
1924 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1925 return copied;
1926 }
1927
1928 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1929 loff_t offset)
1930 {
1931 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1932
1933 if (offset & blocksize_mask)
1934 return -EINVAL;
1935
1936 if (iov_iter_alignment(iter) & blocksize_mask)
1937 return -EINVAL;
1938
1939 return 0;
1940 }
1941
1942 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1943 {
1944 struct address_space *mapping = iocb->ki_filp->f_mapping;
1945 struct inode *inode = mapping->host;
1946 size_t count = iov_iter_count(iter);
1947 loff_t offset = iocb->ki_pos;
1948 int rw = iov_iter_rw(iter);
1949 int err;
1950
1951 err = check_direct_IO(inode, iter, offset);
1952 if (err)
1953 return err;
1954
1955 if (__force_buffered_io(inode, rw))
1956 return 0;
1957
1958 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1959
1960 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1961 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1962 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1963
1964 if (rw == WRITE) {
1965 if (err > 0)
1966 set_inode_flag(inode, FI_UPDATE_WRITE);
1967 else if (err < 0)
1968 f2fs_write_failed(mapping, offset + count);
1969 }
1970
1971 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1972
1973 return err;
1974 }
1975
1976 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1977 unsigned int length)
1978 {
1979 struct inode *inode = page->mapping->host;
1980 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1981
1982 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1983 (offset % PAGE_SIZE || length != PAGE_SIZE))
1984 return;
1985
1986 if (PageDirty(page)) {
1987 if (inode->i_ino == F2FS_META_INO(sbi)) {
1988 dec_page_count(sbi, F2FS_DIRTY_META);
1989 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1990 dec_page_count(sbi, F2FS_DIRTY_NODES);
1991 } else {
1992 inode_dec_dirty_pages(inode);
1993 remove_dirty_inode(inode);
1994 }
1995 }
1996
1997 /* This is atomic written page, keep Private */
1998 if (IS_ATOMIC_WRITTEN_PAGE(page))
1999 return drop_inmem_page(inode, page);
2000
2001 set_page_private(page, 0);
2002 ClearPagePrivate(page);
2003 }
2004
2005 int f2fs_release_page(struct page *page, gfp_t wait)
2006 {
2007 /* If this is dirty page, keep PagePrivate */
2008 if (PageDirty(page))
2009 return 0;
2010
2011 /* This is atomic written page, keep Private */
2012 if (IS_ATOMIC_WRITTEN_PAGE(page))
2013 return 0;
2014
2015 set_page_private(page, 0);
2016 ClearPagePrivate(page);
2017 return 1;
2018 }
2019
2020 /*
2021 * This was copied from __set_page_dirty_buffers which gives higher performance
2022 * in very high speed storages. (e.g., pmem)
2023 */
2024 void f2fs_set_page_dirty_nobuffers(struct page *page)
2025 {
2026 struct address_space *mapping = page->mapping;
2027 unsigned long flags;
2028
2029 if (unlikely(!mapping))
2030 return;
2031
2032 spin_lock(&mapping->private_lock);
2033 lock_page_memcg(page);
2034 SetPageDirty(page);
2035 spin_unlock(&mapping->private_lock);
2036
2037 spin_lock_irqsave(&mapping->tree_lock, flags);
2038 WARN_ON_ONCE(!PageUptodate(page));
2039 account_page_dirtied(page, mapping);
2040 radix_tree_tag_set(&mapping->page_tree,
2041 page_index(page), PAGECACHE_TAG_DIRTY);
2042 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2043 unlock_page_memcg(page);
2044
2045 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2046 return;
2047 }
2048
2049 static int f2fs_set_data_page_dirty(struct page *page)
2050 {
2051 struct address_space *mapping = page->mapping;
2052 struct inode *inode = mapping->host;
2053
2054 trace_f2fs_set_page_dirty(page, DATA);
2055
2056 if (!PageUptodate(page))
2057 SetPageUptodate(page);
2058
2059 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2060 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2061 register_inmem_page(inode, page);
2062 return 1;
2063 }
2064 /*
2065 * Previously, this page has been registered, we just
2066 * return here.
2067 */
2068 return 0;
2069 }
2070
2071 if (!PageDirty(page)) {
2072 f2fs_set_page_dirty_nobuffers(page);
2073 update_dirty_page(inode, page);
2074 return 1;
2075 }
2076 return 0;
2077 }
2078
2079 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2080 {
2081 struct inode *inode = mapping->host;
2082
2083 if (f2fs_has_inline_data(inode))
2084 return 0;
2085
2086 /* make sure allocating whole blocks */
2087 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2088 filemap_write_and_wait(mapping);
2089
2090 return generic_block_bmap(mapping, block, get_data_block_bmap);
2091 }
2092
2093 #ifdef CONFIG_MIGRATION
2094 #include <linux/migrate.h>
2095
2096 int f2fs_migrate_page(struct address_space *mapping,
2097 struct page *newpage, struct page *page, enum migrate_mode mode)
2098 {
2099 int rc, extra_count;
2100 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2101 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2102
2103 BUG_ON(PageWriteback(page));
2104
2105 /* migrating an atomic written page is safe with the inmem_lock hold */
2106 if (atomic_written && !mutex_trylock(&fi->inmem_lock))
2107 return -EAGAIN;
2108
2109 /*
2110 * A reference is expected if PagePrivate set when move mapping,
2111 * however F2FS breaks this for maintaining dirty page counts when
2112 * truncating pages. So here adjusting the 'extra_count' make it work.
2113 */
2114 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2115 rc = migrate_page_move_mapping(mapping, newpage,
2116 page, NULL, mode, extra_count);
2117 if (rc != MIGRATEPAGE_SUCCESS) {
2118 if (atomic_written)
2119 mutex_unlock(&fi->inmem_lock);
2120 return rc;
2121 }
2122
2123 if (atomic_written) {
2124 struct inmem_pages *cur;
2125 list_for_each_entry(cur, &fi->inmem_pages, list)
2126 if (cur->page == page) {
2127 cur->page = newpage;
2128 break;
2129 }
2130 mutex_unlock(&fi->inmem_lock);
2131 put_page(page);
2132 get_page(newpage);
2133 }
2134
2135 if (PagePrivate(page))
2136 SetPagePrivate(newpage);
2137 set_page_private(newpage, page_private(page));
2138
2139 migrate_page_copy(newpage, page);
2140
2141 return MIGRATEPAGE_SUCCESS;
2142 }
2143 #endif
2144
2145 const struct address_space_operations f2fs_dblock_aops = {
2146 .readpage = f2fs_read_data_page,
2147 .readpages = f2fs_read_data_pages,
2148 .writepage = f2fs_write_data_page,
2149 .writepages = f2fs_write_data_pages,
2150 .write_begin = f2fs_write_begin,
2151 .write_end = f2fs_write_end,
2152 .set_page_dirty = f2fs_set_data_page_dirty,
2153 .invalidatepage = f2fs_invalidate_page,
2154 .releasepage = f2fs_release_page,
2155 .direct_IO = f2fs_direct_IO,
2156 .bmap = f2fs_bmap,
2157 #ifdef CONFIG_MIGRATION
2158 .migratepage = f2fs_migrate_page,
2159 #endif
2160 };