[RAMEN9610-20751]ext4: zero out the unused memory region in the extent tree block
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/uaccess.h>
41 #include <linux/fiemap.h>
42 #include <linux/backing-dev.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50 * used by extent splitting.
51 */
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */
55 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */
56
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
70 }
71
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
74 {
75 struct ext4_extent_tail *et;
76
77 if (!ext4_has_metadata_csum(inode->i_sb))
78 return 1;
79
80 et = find_ext4_extent_tail(eh);
81 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 return 0;
83 return 1;
84 }
85
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 struct ext4_extent_header *eh)
88 {
89 struct ext4_extent_tail *et;
90
91 if (!ext4_has_metadata_csum(inode->i_sb))
92 return;
93
94 et = find_ext4_extent_tail(eh);
95 et->et_checksum = ext4_extent_block_csum(inode, eh);
96 }
97
98 static int ext4_split_extent(handle_t *handle,
99 struct inode *inode,
100 struct ext4_ext_path **ppath,
101 struct ext4_map_blocks *map,
102 int split_flag,
103 int flags);
104
105 static int ext4_split_extent_at(handle_t *handle,
106 struct inode *inode,
107 struct ext4_ext_path **ppath,
108 ext4_lblk_t split,
109 int split_flag,
110 int flags);
111
112 static int ext4_find_delayed_extent(struct inode *inode,
113 struct extent_status *newes);
114
115 static int ext4_ext_truncate_extend_restart(handle_t *handle,
116 struct inode *inode,
117 int needed)
118 {
119 int err;
120
121 if (!ext4_handle_valid(handle))
122 return 0;
123 if (handle->h_buffer_credits >= needed)
124 return 0;
125 /*
126 * If we need to extend the journal get a few extra blocks
127 * while we're at it for efficiency's sake.
128 */
129 needed += 3;
130 err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
131 if (err <= 0)
132 return err;
133 err = ext4_truncate_restart_trans(handle, inode, needed);
134 if (err == 0)
135 err = -EAGAIN;
136
137 return err;
138 }
139
140 /*
141 * could return:
142 * - EROFS
143 * - ENOMEM
144 */
145 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
146 struct ext4_ext_path *path)
147 {
148 if (path->p_bh) {
149 /* path points to block */
150 BUFFER_TRACE(path->p_bh, "get_write_access");
151 return ext4_journal_get_write_access(handle, path->p_bh);
152 }
153 /* path points to leaf/index in inode body */
154 /* we use in-core data, no need to protect them */
155 return 0;
156 }
157
158 /*
159 * could return:
160 * - EROFS
161 * - ENOMEM
162 * - EIO
163 */
164 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
165 struct inode *inode, struct ext4_ext_path *path)
166 {
167 int err;
168
169 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
170 if (path->p_bh) {
171 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
172 /* path points to block */
173 err = __ext4_handle_dirty_metadata(where, line, handle,
174 inode, path->p_bh);
175 } else {
176 /* path points to leaf/index in inode body */
177 err = ext4_mark_inode_dirty(handle, inode);
178 }
179 return err;
180 }
181
182 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
183 struct ext4_ext_path *path,
184 ext4_lblk_t block)
185 {
186 if (path) {
187 int depth = path->p_depth;
188 struct ext4_extent *ex;
189
190 /*
191 * Try to predict block placement assuming that we are
192 * filling in a file which will eventually be
193 * non-sparse --- i.e., in the case of libbfd writing
194 * an ELF object sections out-of-order but in a way
195 * the eventually results in a contiguous object or
196 * executable file, or some database extending a table
197 * space file. However, this is actually somewhat
198 * non-ideal if we are writing a sparse file such as
199 * qemu or KVM writing a raw image file that is going
200 * to stay fairly sparse, since it will end up
201 * fragmenting the file system's free space. Maybe we
202 * should have some hueristics or some way to allow
203 * userspace to pass a hint to file system,
204 * especially if the latter case turns out to be
205 * common.
206 */
207 ex = path[depth].p_ext;
208 if (ex) {
209 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
210 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
211
212 if (block > ext_block)
213 return ext_pblk + (block - ext_block);
214 else
215 return ext_pblk - (ext_block - block);
216 }
217
218 /* it looks like index is empty;
219 * try to find starting block from index itself */
220 if (path[depth].p_bh)
221 return path[depth].p_bh->b_blocknr;
222 }
223
224 /* OK. use inode's group */
225 return ext4_inode_to_goal_block(inode);
226 }
227
228 /*
229 * Allocation for a meta data block
230 */
231 static ext4_fsblk_t
232 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
233 struct ext4_ext_path *path,
234 struct ext4_extent *ex, int *err, unsigned int flags)
235 {
236 ext4_fsblk_t goal, newblock;
237
238 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
239 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
240 NULL, err);
241 return newblock;
242 }
243
244 static inline int ext4_ext_space_block(struct inode *inode, int check)
245 {
246 int size;
247
248 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
249 / sizeof(struct ext4_extent);
250 #ifdef AGGRESSIVE_TEST
251 if (!check && size > 6)
252 size = 6;
253 #endif
254 return size;
255 }
256
257 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
258 {
259 int size;
260
261 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
262 / sizeof(struct ext4_extent_idx);
263 #ifdef AGGRESSIVE_TEST
264 if (!check && size > 5)
265 size = 5;
266 #endif
267 return size;
268 }
269
270 static inline int ext4_ext_space_root(struct inode *inode, int check)
271 {
272 int size;
273
274 size = sizeof(EXT4_I(inode)->i_data);
275 size -= sizeof(struct ext4_extent_header);
276 size /= sizeof(struct ext4_extent);
277 #ifdef AGGRESSIVE_TEST
278 if (!check && size > 3)
279 size = 3;
280 #endif
281 return size;
282 }
283
284 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
285 {
286 int size;
287
288 size = sizeof(EXT4_I(inode)->i_data);
289 size -= sizeof(struct ext4_extent_header);
290 size /= sizeof(struct ext4_extent_idx);
291 #ifdef AGGRESSIVE_TEST
292 if (!check && size > 4)
293 size = 4;
294 #endif
295 return size;
296 }
297
298 static inline int
299 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
300 struct ext4_ext_path **ppath, ext4_lblk_t lblk,
301 int nofail)
302 {
303 struct ext4_ext_path *path = *ppath;
304 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
305
306 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
307 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
308 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
309 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
310 }
311
312 /*
313 * Calculate the number of metadata blocks needed
314 * to allocate @blocks
315 * Worse case is one block per extent
316 */
317 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
318 {
319 struct ext4_inode_info *ei = EXT4_I(inode);
320 int idxs;
321
322 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
323 / sizeof(struct ext4_extent_idx));
324
325 /*
326 * If the new delayed allocation block is contiguous with the
327 * previous da block, it can share index blocks with the
328 * previous block, so we only need to allocate a new index
329 * block every idxs leaf blocks. At ldxs**2 blocks, we need
330 * an additional index block, and at ldxs**3 blocks, yet
331 * another index blocks.
332 */
333 if (ei->i_da_metadata_calc_len &&
334 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
335 int num = 0;
336
337 if ((ei->i_da_metadata_calc_len % idxs) == 0)
338 num++;
339 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
340 num++;
341 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
342 num++;
343 ei->i_da_metadata_calc_len = 0;
344 } else
345 ei->i_da_metadata_calc_len++;
346 ei->i_da_metadata_calc_last_lblock++;
347 return num;
348 }
349
350 /*
351 * In the worst case we need a new set of index blocks at
352 * every level of the inode's extent tree.
353 */
354 ei->i_da_metadata_calc_len = 1;
355 ei->i_da_metadata_calc_last_lblock = lblock;
356 return ext_depth(inode) + 1;
357 }
358
359 static int
360 ext4_ext_max_entries(struct inode *inode, int depth)
361 {
362 int max;
363
364 if (depth == ext_depth(inode)) {
365 if (depth == 0)
366 max = ext4_ext_space_root(inode, 1);
367 else
368 max = ext4_ext_space_root_idx(inode, 1);
369 } else {
370 if (depth == 0)
371 max = ext4_ext_space_block(inode, 1);
372 else
373 max = ext4_ext_space_block_idx(inode, 1);
374 }
375
376 return max;
377 }
378
379 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
380 {
381 ext4_fsblk_t block = ext4_ext_pblock(ext);
382 int len = ext4_ext_get_actual_len(ext);
383 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
384
385 /*
386 * We allow neither:
387 * - zero length
388 * - overflow/wrap-around
389 */
390 if (lblock + len <= lblock)
391 return 0;
392 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
393 }
394
395 static int ext4_valid_extent_idx(struct inode *inode,
396 struct ext4_extent_idx *ext_idx)
397 {
398 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
399
400 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
401 }
402
403 static int ext4_valid_extent_entries(struct inode *inode,
404 struct ext4_extent_header *eh,
405 int depth)
406 {
407 unsigned short entries;
408 if (eh->eh_entries == 0)
409 return 1;
410
411 entries = le16_to_cpu(eh->eh_entries);
412
413 if (depth == 0) {
414 /* leaf entries */
415 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
416 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
417 ext4_fsblk_t pblock = 0;
418 ext4_lblk_t lblock = 0;
419 ext4_lblk_t prev = 0;
420 int len = 0;
421 while (entries) {
422 if (!ext4_valid_extent(inode, ext))
423 return 0;
424
425 /* Check for overlapping extents */
426 lblock = le32_to_cpu(ext->ee_block);
427 len = ext4_ext_get_actual_len(ext);
428 if ((lblock <= prev) && prev) {
429 pblock = ext4_ext_pblock(ext);
430 es->s_last_error_block = cpu_to_le64(pblock);
431 return 0;
432 }
433 ext++;
434 entries--;
435 prev = lblock + len - 1;
436 }
437 } else {
438 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
439 while (entries) {
440 if (!ext4_valid_extent_idx(inode, ext_idx))
441 return 0;
442 ext_idx++;
443 entries--;
444 }
445 }
446 return 1;
447 }
448
449 static int __ext4_ext_check(const char *function, unsigned int line,
450 struct inode *inode, struct ext4_extent_header *eh,
451 int depth, ext4_fsblk_t pblk)
452 {
453 const char *error_msg;
454 int max = 0, err = -EFSCORRUPTED;
455
456 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
457 error_msg = "invalid magic";
458 goto corrupted;
459 }
460 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
461 error_msg = "unexpected eh_depth";
462 goto corrupted;
463 }
464 if (unlikely(eh->eh_max == 0)) {
465 error_msg = "invalid eh_max";
466 goto corrupted;
467 }
468 max = ext4_ext_max_entries(inode, depth);
469 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
470 error_msg = "too large eh_max";
471 goto corrupted;
472 }
473 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
474 error_msg = "invalid eh_entries";
475 goto corrupted;
476 }
477 if (!ext4_valid_extent_entries(inode, eh, depth)) {
478 error_msg = "invalid extent entries";
479 goto corrupted;
480 }
481 if (unlikely(depth > 32)) {
482 error_msg = "too large eh_depth";
483 goto corrupted;
484 }
485 /* Verify checksum on non-root extent tree nodes */
486 if (ext_depth(inode) != depth &&
487 !ext4_extent_block_csum_verify(inode, eh)) {
488 error_msg = "extent tree corrupted";
489 err = -EFSBADCRC;
490 goto corrupted;
491 }
492 return 0;
493
494 corrupted:
495 ext4_error_inode(inode, function, line, 0,
496 "pblk %llu bad header/extent: %s - magic %x, "
497 "entries %u, max %u(%u), depth %u(%u)",
498 (unsigned long long) pblk, error_msg,
499 le16_to_cpu(eh->eh_magic),
500 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
501 max, le16_to_cpu(eh->eh_depth), depth);
502 return err;
503 }
504
505 #define ext4_ext_check(inode, eh, depth, pblk) \
506 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
507
508 int ext4_ext_check_inode(struct inode *inode)
509 {
510 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
511 }
512
513 static struct buffer_head *
514 __read_extent_tree_block(const char *function, unsigned int line,
515 struct inode *inode, ext4_fsblk_t pblk, int depth,
516 int flags)
517 {
518 struct buffer_head *bh;
519 int err;
520
521 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
522 if (unlikely(!bh))
523 return ERR_PTR(-ENOMEM);
524
525 if (!bh_uptodate_or_lock(bh)) {
526 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
527 err = bh_submit_read(bh);
528 if (err < 0)
529 goto errout;
530 }
531 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
532 return bh;
533 err = __ext4_ext_check(function, line, inode,
534 ext_block_hdr(bh), depth, pblk);
535 if (err)
536 goto errout;
537 set_buffer_verified(bh);
538 /*
539 * If this is a leaf block, cache all of its entries
540 */
541 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
542 struct ext4_extent_header *eh = ext_block_hdr(bh);
543 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
544 ext4_lblk_t prev = 0;
545 int i;
546
547 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
548 unsigned int status = EXTENT_STATUS_WRITTEN;
549 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
550 int len = ext4_ext_get_actual_len(ex);
551
552 if (prev && (prev != lblk))
553 ext4_es_cache_extent(inode, prev,
554 lblk - prev, ~0,
555 EXTENT_STATUS_HOLE);
556
557 if (ext4_ext_is_unwritten(ex))
558 status = EXTENT_STATUS_UNWRITTEN;
559 ext4_es_cache_extent(inode, lblk, len,
560 ext4_ext_pblock(ex), status);
561 prev = lblk + len;
562 }
563 }
564 return bh;
565 errout:
566 put_bh(bh);
567 return ERR_PTR(err);
568
569 }
570
571 #define read_extent_tree_block(inode, pblk, depth, flags) \
572 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
573 (depth), (flags))
574
575 /*
576 * This function is called to cache a file's extent information in the
577 * extent status tree
578 */
579 int ext4_ext_precache(struct inode *inode)
580 {
581 struct ext4_inode_info *ei = EXT4_I(inode);
582 struct ext4_ext_path *path = NULL;
583 struct buffer_head *bh;
584 int i = 0, depth, ret = 0;
585
586 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
587 return 0; /* not an extent-mapped inode */
588
589 down_read(&ei->i_data_sem);
590 depth = ext_depth(inode);
591
592 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
593 GFP_NOFS);
594 if (path == NULL) {
595 up_read(&ei->i_data_sem);
596 return -ENOMEM;
597 }
598
599 /* Don't cache anything if there are no external extent blocks */
600 if (depth == 0)
601 goto out;
602 path[0].p_hdr = ext_inode_hdr(inode);
603 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
604 if (ret)
605 goto out;
606 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
607 while (i >= 0) {
608 /*
609 * If this is a leaf block or we've reached the end of
610 * the index block, go up
611 */
612 if ((i == depth) ||
613 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
614 brelse(path[i].p_bh);
615 path[i].p_bh = NULL;
616 i--;
617 continue;
618 }
619 bh = read_extent_tree_block(inode,
620 ext4_idx_pblock(path[i].p_idx++),
621 depth - i - 1,
622 EXT4_EX_FORCE_CACHE);
623 if (IS_ERR(bh)) {
624 ret = PTR_ERR(bh);
625 break;
626 }
627 i++;
628 path[i].p_bh = bh;
629 path[i].p_hdr = ext_block_hdr(bh);
630 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
631 }
632 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
633 out:
634 up_read(&ei->i_data_sem);
635 ext4_ext_drop_refs(path);
636 kfree(path);
637 return ret;
638 }
639
640 #ifdef EXT_DEBUG
641 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
642 {
643 int k, l = path->p_depth;
644
645 ext_debug("path:");
646 for (k = 0; k <= l; k++, path++) {
647 if (path->p_idx) {
648 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
649 ext4_idx_pblock(path->p_idx));
650 } else if (path->p_ext) {
651 ext_debug(" %d:[%d]%d:%llu ",
652 le32_to_cpu(path->p_ext->ee_block),
653 ext4_ext_is_unwritten(path->p_ext),
654 ext4_ext_get_actual_len(path->p_ext),
655 ext4_ext_pblock(path->p_ext));
656 } else
657 ext_debug(" []");
658 }
659 ext_debug("\n");
660 }
661
662 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
663 {
664 int depth = ext_depth(inode);
665 struct ext4_extent_header *eh;
666 struct ext4_extent *ex;
667 int i;
668
669 if (!path)
670 return;
671
672 eh = path[depth].p_hdr;
673 ex = EXT_FIRST_EXTENT(eh);
674
675 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
676
677 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
678 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
679 ext4_ext_is_unwritten(ex),
680 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
681 }
682 ext_debug("\n");
683 }
684
685 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
686 ext4_fsblk_t newblock, int level)
687 {
688 int depth = ext_depth(inode);
689 struct ext4_extent *ex;
690
691 if (depth != level) {
692 struct ext4_extent_idx *idx;
693 idx = path[level].p_idx;
694 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
695 ext_debug("%d: move %d:%llu in new index %llu\n", level,
696 le32_to_cpu(idx->ei_block),
697 ext4_idx_pblock(idx),
698 newblock);
699 idx++;
700 }
701
702 return;
703 }
704
705 ex = path[depth].p_ext;
706 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
707 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
708 le32_to_cpu(ex->ee_block),
709 ext4_ext_pblock(ex),
710 ext4_ext_is_unwritten(ex),
711 ext4_ext_get_actual_len(ex),
712 newblock);
713 ex++;
714 }
715 }
716
717 #else
718 #define ext4_ext_show_path(inode, path)
719 #define ext4_ext_show_leaf(inode, path)
720 #define ext4_ext_show_move(inode, path, newblock, level)
721 #endif
722
723 void ext4_ext_drop_refs(struct ext4_ext_path *path)
724 {
725 int depth, i;
726
727 if (!path)
728 return;
729 depth = path->p_depth;
730 for (i = 0; i <= depth; i++, path++)
731 if (path->p_bh) {
732 brelse(path->p_bh);
733 path->p_bh = NULL;
734 }
735 }
736
737 /*
738 * ext4_ext_binsearch_idx:
739 * binary search for the closest index of the given block
740 * the header must be checked before calling this
741 */
742 static void
743 ext4_ext_binsearch_idx(struct inode *inode,
744 struct ext4_ext_path *path, ext4_lblk_t block)
745 {
746 struct ext4_extent_header *eh = path->p_hdr;
747 struct ext4_extent_idx *r, *l, *m;
748
749
750 ext_debug("binsearch for %u(idx): ", block);
751
752 l = EXT_FIRST_INDEX(eh) + 1;
753 r = EXT_LAST_INDEX(eh);
754 while (l <= r) {
755 m = l + (r - l) / 2;
756 if (block < le32_to_cpu(m->ei_block))
757 r = m - 1;
758 else
759 l = m + 1;
760 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
761 m, le32_to_cpu(m->ei_block),
762 r, le32_to_cpu(r->ei_block));
763 }
764
765 path->p_idx = l - 1;
766 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
767 ext4_idx_pblock(path->p_idx));
768
769 #ifdef CHECK_BINSEARCH
770 {
771 struct ext4_extent_idx *chix, *ix;
772 int k;
773
774 chix = ix = EXT_FIRST_INDEX(eh);
775 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
776 if (k != 0 &&
777 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
778 printk(KERN_DEBUG "k=%d, ix=0x%p, "
779 "first=0x%p\n", k,
780 ix, EXT_FIRST_INDEX(eh));
781 printk(KERN_DEBUG "%u <= %u\n",
782 le32_to_cpu(ix->ei_block),
783 le32_to_cpu(ix[-1].ei_block));
784 }
785 BUG_ON(k && le32_to_cpu(ix->ei_block)
786 <= le32_to_cpu(ix[-1].ei_block));
787 if (block < le32_to_cpu(ix->ei_block))
788 break;
789 chix = ix;
790 }
791 BUG_ON(chix != path->p_idx);
792 }
793 #endif
794
795 }
796
797 /*
798 * ext4_ext_binsearch:
799 * binary search for closest extent of the given block
800 * the header must be checked before calling this
801 */
802 static void
803 ext4_ext_binsearch(struct inode *inode,
804 struct ext4_ext_path *path, ext4_lblk_t block)
805 {
806 struct ext4_extent_header *eh = path->p_hdr;
807 struct ext4_extent *r, *l, *m;
808
809 if (eh->eh_entries == 0) {
810 /*
811 * this leaf is empty:
812 * we get such a leaf in split/add case
813 */
814 return;
815 }
816
817 ext_debug("binsearch for %u: ", block);
818
819 l = EXT_FIRST_EXTENT(eh) + 1;
820 r = EXT_LAST_EXTENT(eh);
821
822 while (l <= r) {
823 m = l + (r - l) / 2;
824 if (block < le32_to_cpu(m->ee_block))
825 r = m - 1;
826 else
827 l = m + 1;
828 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
829 m, le32_to_cpu(m->ee_block),
830 r, le32_to_cpu(r->ee_block));
831 }
832
833 path->p_ext = l - 1;
834 ext_debug(" -> %d:%llu:[%d]%d ",
835 le32_to_cpu(path->p_ext->ee_block),
836 ext4_ext_pblock(path->p_ext),
837 ext4_ext_is_unwritten(path->p_ext),
838 ext4_ext_get_actual_len(path->p_ext));
839
840 #ifdef CHECK_BINSEARCH
841 {
842 struct ext4_extent *chex, *ex;
843 int k;
844
845 chex = ex = EXT_FIRST_EXTENT(eh);
846 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
847 BUG_ON(k && le32_to_cpu(ex->ee_block)
848 <= le32_to_cpu(ex[-1].ee_block));
849 if (block < le32_to_cpu(ex->ee_block))
850 break;
851 chex = ex;
852 }
853 BUG_ON(chex != path->p_ext);
854 }
855 #endif
856
857 }
858
859 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
860 {
861 struct ext4_extent_header *eh;
862
863 eh = ext_inode_hdr(inode);
864 eh->eh_depth = 0;
865 eh->eh_entries = 0;
866 eh->eh_magic = EXT4_EXT_MAGIC;
867 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
868 ext4_mark_inode_dirty(handle, inode);
869 return 0;
870 }
871
872 struct ext4_ext_path *
873 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
874 struct ext4_ext_path **orig_path, int flags)
875 {
876 struct ext4_extent_header *eh;
877 struct buffer_head *bh;
878 struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
879 short int depth, i, ppos = 0;
880 int ret;
881
882 eh = ext_inode_hdr(inode);
883 depth = ext_depth(inode);
884 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) {
885 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d",
886 depth);
887 ret = -EFSCORRUPTED;
888 goto err;
889 }
890
891 if (path) {
892 ext4_ext_drop_refs(path);
893 if (depth > path[0].p_maxdepth) {
894 kfree(path);
895 *orig_path = path = NULL;
896 }
897 }
898 if (!path) {
899 /* account possible depth increase */
900 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
901 GFP_NOFS);
902 if (unlikely(!path))
903 return ERR_PTR(-ENOMEM);
904 path[0].p_maxdepth = depth + 1;
905 }
906 path[0].p_hdr = eh;
907 path[0].p_bh = NULL;
908
909 i = depth;
910 /* walk through the tree */
911 while (i) {
912 ext_debug("depth %d: num %d, max %d\n",
913 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
914
915 ext4_ext_binsearch_idx(inode, path + ppos, block);
916 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
917 path[ppos].p_depth = i;
918 path[ppos].p_ext = NULL;
919
920 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
921 flags);
922 if (IS_ERR(bh)) {
923 ret = PTR_ERR(bh);
924 goto err;
925 }
926
927 eh = ext_block_hdr(bh);
928 ppos++;
929 path[ppos].p_bh = bh;
930 path[ppos].p_hdr = eh;
931 }
932
933 path[ppos].p_depth = i;
934 path[ppos].p_ext = NULL;
935 path[ppos].p_idx = NULL;
936
937 /* find extent */
938 ext4_ext_binsearch(inode, path + ppos, block);
939 /* if not an empty leaf */
940 if (path[ppos].p_ext)
941 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
942
943 ext4_ext_show_path(inode, path);
944
945 return path;
946
947 err:
948 ext4_ext_drop_refs(path);
949 kfree(path);
950 if (orig_path)
951 *orig_path = NULL;
952 return ERR_PTR(ret);
953 }
954
955 /*
956 * ext4_ext_insert_index:
957 * insert new index [@logical;@ptr] into the block at @curp;
958 * check where to insert: before @curp or after @curp
959 */
960 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
961 struct ext4_ext_path *curp,
962 int logical, ext4_fsblk_t ptr)
963 {
964 struct ext4_extent_idx *ix;
965 int len, err;
966
967 err = ext4_ext_get_access(handle, inode, curp);
968 if (err)
969 return err;
970
971 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
972 EXT4_ERROR_INODE(inode,
973 "logical %d == ei_block %d!",
974 logical, le32_to_cpu(curp->p_idx->ei_block));
975 return -EFSCORRUPTED;
976 }
977
978 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
979 >= le16_to_cpu(curp->p_hdr->eh_max))) {
980 EXT4_ERROR_INODE(inode,
981 "eh_entries %d >= eh_max %d!",
982 le16_to_cpu(curp->p_hdr->eh_entries),
983 le16_to_cpu(curp->p_hdr->eh_max));
984 return -EFSCORRUPTED;
985 }
986
987 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
988 /* insert after */
989 ext_debug("insert new index %d after: %llu\n", logical, ptr);
990 ix = curp->p_idx + 1;
991 } else {
992 /* insert before */
993 ext_debug("insert new index %d before: %llu\n", logical, ptr);
994 ix = curp->p_idx;
995 }
996
997 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
998 BUG_ON(len < 0);
999 if (len > 0) {
1000 ext_debug("insert new index %d: "
1001 "move %d indices from 0x%p to 0x%p\n",
1002 logical, len, ix, ix + 1);
1003 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
1004 }
1005
1006 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
1007 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
1008 return -EFSCORRUPTED;
1009 }
1010
1011 ix->ei_block = cpu_to_le32(logical);
1012 ext4_idx_store_pblock(ix, ptr);
1013 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
1014
1015 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
1016 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
1017 return -EFSCORRUPTED;
1018 }
1019
1020 err = ext4_ext_dirty(handle, inode, curp);
1021 ext4_std_error(inode->i_sb, err);
1022
1023 return err;
1024 }
1025
1026 /*
1027 * ext4_ext_split:
1028 * inserts new subtree into the path, using free index entry
1029 * at depth @at:
1030 * - allocates all needed blocks (new leaf and all intermediate index blocks)
1031 * - makes decision where to split
1032 * - moves remaining extents and index entries (right to the split point)
1033 * into the newly allocated blocks
1034 * - initializes subtree
1035 */
1036 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1037 unsigned int flags,
1038 struct ext4_ext_path *path,
1039 struct ext4_extent *newext, int at)
1040 {
1041 struct buffer_head *bh = NULL;
1042 int depth = ext_depth(inode);
1043 struct ext4_extent_header *neh;
1044 struct ext4_extent_idx *fidx;
1045 int i = at, k, m, a;
1046 ext4_fsblk_t newblock, oldblock;
1047 __le32 border;
1048 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1049 int err = 0;
1050 size_t ext_size = 0;
1051
1052 /* make decision: where to split? */
1053 /* FIXME: now decision is simplest: at current extent */
1054
1055 /* if current leaf will be split, then we should use
1056 * border from split point */
1057 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1058 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1059 return -EFSCORRUPTED;
1060 }
1061 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1062 border = path[depth].p_ext[1].ee_block;
1063 ext_debug("leaf will be split."
1064 " next leaf starts at %d\n",
1065 le32_to_cpu(border));
1066 } else {
1067 border = newext->ee_block;
1068 ext_debug("leaf will be added."
1069 " next leaf starts at %d\n",
1070 le32_to_cpu(border));
1071 }
1072
1073 /*
1074 * If error occurs, then we break processing
1075 * and mark filesystem read-only. index won't
1076 * be inserted and tree will be in consistent
1077 * state. Next mount will repair buffers too.
1078 */
1079
1080 /*
1081 * Get array to track all allocated blocks.
1082 * We need this to handle errors and free blocks
1083 * upon them.
1084 */
1085 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1086 if (!ablocks)
1087 return -ENOMEM;
1088
1089 /* allocate all needed blocks */
1090 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1091 for (a = 0; a < depth - at; a++) {
1092 newblock = ext4_ext_new_meta_block(handle, inode, path,
1093 newext, &err, flags);
1094 if (newblock == 0)
1095 goto cleanup;
1096 ablocks[a] = newblock;
1097 }
1098
1099 /* initialize new leaf */
1100 newblock = ablocks[--a];
1101 if (unlikely(newblock == 0)) {
1102 EXT4_ERROR_INODE(inode, "newblock == 0!");
1103 err = -EFSCORRUPTED;
1104 goto cleanup;
1105 }
1106 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1107 if (unlikely(!bh)) {
1108 err = -ENOMEM;
1109 goto cleanup;
1110 }
1111 lock_buffer(bh);
1112
1113 err = ext4_journal_get_create_access(handle, bh);
1114 if (err)
1115 goto cleanup;
1116
1117 neh = ext_block_hdr(bh);
1118 neh->eh_entries = 0;
1119 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1120 neh->eh_magic = EXT4_EXT_MAGIC;
1121 neh->eh_depth = 0;
1122
1123 /* move remainder of path[depth] to the new leaf */
1124 if (unlikely(path[depth].p_hdr->eh_entries !=
1125 path[depth].p_hdr->eh_max)) {
1126 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1127 path[depth].p_hdr->eh_entries,
1128 path[depth].p_hdr->eh_max);
1129 err = -EFSCORRUPTED;
1130 goto cleanup;
1131 }
1132 /* start copy from next extent */
1133 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1134 ext4_ext_show_move(inode, path, newblock, depth);
1135 if (m) {
1136 struct ext4_extent *ex;
1137 ex = EXT_FIRST_EXTENT(neh);
1138 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1139 le16_add_cpu(&neh->eh_entries, m);
1140 }
1141
1142 /* zero out unused area in the extent block */
1143 ext_size = sizeof(struct ext4_extent_header) +
1144 sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries);
1145 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size);
1146 ext4_extent_block_csum_set(inode, neh);
1147 set_buffer_uptodate(bh);
1148 unlock_buffer(bh);
1149
1150 err = ext4_handle_dirty_metadata(handle, inode, bh);
1151 if (err)
1152 goto cleanup;
1153 brelse(bh);
1154 bh = NULL;
1155
1156 /* correct old leaf */
1157 if (m) {
1158 err = ext4_ext_get_access(handle, inode, path + depth);
1159 if (err)
1160 goto cleanup;
1161 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1162 err = ext4_ext_dirty(handle, inode, path + depth);
1163 if (err)
1164 goto cleanup;
1165
1166 }
1167
1168 /* create intermediate indexes */
1169 k = depth - at - 1;
1170 if (unlikely(k < 0)) {
1171 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1172 err = -EFSCORRUPTED;
1173 goto cleanup;
1174 }
1175 if (k)
1176 ext_debug("create %d intermediate indices\n", k);
1177 /* insert new index into current index block */
1178 /* current depth stored in i var */
1179 i = depth - 1;
1180 while (k--) {
1181 oldblock = newblock;
1182 newblock = ablocks[--a];
1183 bh = sb_getblk(inode->i_sb, newblock);
1184 if (unlikely(!bh)) {
1185 err = -ENOMEM;
1186 goto cleanup;
1187 }
1188 lock_buffer(bh);
1189
1190 err = ext4_journal_get_create_access(handle, bh);
1191 if (err)
1192 goto cleanup;
1193
1194 neh = ext_block_hdr(bh);
1195 neh->eh_entries = cpu_to_le16(1);
1196 neh->eh_magic = EXT4_EXT_MAGIC;
1197 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1198 neh->eh_depth = cpu_to_le16(depth - i);
1199 fidx = EXT_FIRST_INDEX(neh);
1200 fidx->ei_block = border;
1201 ext4_idx_store_pblock(fidx, oldblock);
1202
1203 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1204 i, newblock, le32_to_cpu(border), oldblock);
1205
1206 /* move remainder of path[i] to the new index block */
1207 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1208 EXT_LAST_INDEX(path[i].p_hdr))) {
1209 EXT4_ERROR_INODE(inode,
1210 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1211 le32_to_cpu(path[i].p_ext->ee_block));
1212 err = -EFSCORRUPTED;
1213 goto cleanup;
1214 }
1215 /* start copy indexes */
1216 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1217 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1218 EXT_MAX_INDEX(path[i].p_hdr));
1219 ext4_ext_show_move(inode, path, newblock, i);
1220 if (m) {
1221 memmove(++fidx, path[i].p_idx,
1222 sizeof(struct ext4_extent_idx) * m);
1223 le16_add_cpu(&neh->eh_entries, m);
1224 }
1225 /* zero out unused area in the extent block */
1226 ext_size = sizeof(struct ext4_extent_header) +
1227 (sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries));
1228 memset(bh->b_data + ext_size, 0,
1229 inode->i_sb->s_blocksize - ext_size);
1230 ext4_extent_block_csum_set(inode, neh);
1231 set_buffer_uptodate(bh);
1232 unlock_buffer(bh);
1233
1234 err = ext4_handle_dirty_metadata(handle, inode, bh);
1235 if (err)
1236 goto cleanup;
1237 brelse(bh);
1238 bh = NULL;
1239
1240 /* correct old index */
1241 if (m) {
1242 err = ext4_ext_get_access(handle, inode, path + i);
1243 if (err)
1244 goto cleanup;
1245 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1246 err = ext4_ext_dirty(handle, inode, path + i);
1247 if (err)
1248 goto cleanup;
1249 }
1250
1251 i--;
1252 }
1253
1254 /* insert new index */
1255 err = ext4_ext_insert_index(handle, inode, path + at,
1256 le32_to_cpu(border), newblock);
1257
1258 cleanup:
1259 if (bh) {
1260 if (buffer_locked(bh))
1261 unlock_buffer(bh);
1262 brelse(bh);
1263 }
1264
1265 if (err) {
1266 /* free all allocated blocks in error case */
1267 for (i = 0; i < depth; i++) {
1268 if (!ablocks[i])
1269 continue;
1270 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1271 EXT4_FREE_BLOCKS_METADATA);
1272 }
1273 }
1274 kfree(ablocks);
1275
1276 return err;
1277 }
1278
1279 /*
1280 * ext4_ext_grow_indepth:
1281 * implements tree growing procedure:
1282 * - allocates new block
1283 * - moves top-level data (index block or leaf) into the new block
1284 * - initializes new top-level, creating index that points to the
1285 * just created block
1286 */
1287 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1288 unsigned int flags)
1289 {
1290 struct ext4_extent_header *neh;
1291 struct buffer_head *bh;
1292 ext4_fsblk_t newblock, goal = 0;
1293 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1294 int err = 0;
1295 size_t ext_size = 0;
1296
1297 /* Try to prepend new index to old one */
1298 if (ext_depth(inode))
1299 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1300 if (goal > le32_to_cpu(es->s_first_data_block)) {
1301 flags |= EXT4_MB_HINT_TRY_GOAL;
1302 goal--;
1303 } else
1304 goal = ext4_inode_to_goal_block(inode);
1305 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1306 NULL, &err);
1307 if (newblock == 0)
1308 return err;
1309
1310 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1311 if (unlikely(!bh))
1312 return -ENOMEM;
1313 lock_buffer(bh);
1314
1315 err = ext4_journal_get_create_access(handle, bh);
1316 if (err) {
1317 unlock_buffer(bh);
1318 goto out;
1319 }
1320
1321 ext_size = sizeof(EXT4_I(inode)->i_data);
1322 /* move top-level index/leaf into new block */
1323 memmove(bh->b_data, EXT4_I(inode)->i_data, ext_size);
1324 /* zero out unused area in the extent block */
1325 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size);
1326
1327 /* set size of new block */
1328 neh = ext_block_hdr(bh);
1329 /* old root could have indexes or leaves
1330 * so calculate e_max right way */
1331 if (ext_depth(inode))
1332 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1333 else
1334 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1335 neh->eh_magic = EXT4_EXT_MAGIC;
1336 ext4_extent_block_csum_set(inode, neh);
1337 set_buffer_uptodate(bh);
1338 unlock_buffer(bh);
1339
1340 err = ext4_handle_dirty_metadata(handle, inode, bh);
1341 if (err)
1342 goto out;
1343
1344 /* Update top-level index: num,max,pointer */
1345 neh = ext_inode_hdr(inode);
1346 neh->eh_entries = cpu_to_le16(1);
1347 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1348 if (neh->eh_depth == 0) {
1349 /* Root extent block becomes index block */
1350 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1351 EXT_FIRST_INDEX(neh)->ei_block =
1352 EXT_FIRST_EXTENT(neh)->ee_block;
1353 }
1354 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1355 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1356 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1357 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1358
1359 le16_add_cpu(&neh->eh_depth, 1);
1360 ext4_mark_inode_dirty(handle, inode);
1361 out:
1362 brelse(bh);
1363
1364 return err;
1365 }
1366
1367 /*
1368 * ext4_ext_create_new_leaf:
1369 * finds empty index and adds new leaf.
1370 * if no free index is found, then it requests in-depth growing.
1371 */
1372 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1373 unsigned int mb_flags,
1374 unsigned int gb_flags,
1375 struct ext4_ext_path **ppath,
1376 struct ext4_extent *newext)
1377 {
1378 struct ext4_ext_path *path = *ppath;
1379 struct ext4_ext_path *curp;
1380 int depth, i, err = 0;
1381
1382 repeat:
1383 i = depth = ext_depth(inode);
1384
1385 /* walk up to the tree and look for free index entry */
1386 curp = path + depth;
1387 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1388 i--;
1389 curp--;
1390 }
1391
1392 /* we use already allocated block for index block,
1393 * so subsequent data blocks should be contiguous */
1394 if (EXT_HAS_FREE_INDEX(curp)) {
1395 /* if we found index with free entry, then use that
1396 * entry: create all needed subtree and add new leaf */
1397 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1398 if (err)
1399 goto out;
1400
1401 /* refill path */
1402 path = ext4_find_extent(inode,
1403 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1404 ppath, gb_flags);
1405 if (IS_ERR(path))
1406 err = PTR_ERR(path);
1407 } else {
1408 /* tree is full, time to grow in depth */
1409 err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1410 if (err)
1411 goto out;
1412
1413 /* refill path */
1414 path = ext4_find_extent(inode,
1415 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1416 ppath, gb_flags);
1417 if (IS_ERR(path)) {
1418 err = PTR_ERR(path);
1419 goto out;
1420 }
1421
1422 /*
1423 * only first (depth 0 -> 1) produces free space;
1424 * in all other cases we have to split the grown tree
1425 */
1426 depth = ext_depth(inode);
1427 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1428 /* now we need to split */
1429 goto repeat;
1430 }
1431 }
1432
1433 out:
1434 return err;
1435 }
1436
1437 /*
1438 * search the closest allocated block to the left for *logical
1439 * and returns it at @logical + it's physical address at @phys
1440 * if *logical is the smallest allocated block, the function
1441 * returns 0 at @phys
1442 * return value contains 0 (success) or error code
1443 */
1444 static int ext4_ext_search_left(struct inode *inode,
1445 struct ext4_ext_path *path,
1446 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1447 {
1448 struct ext4_extent_idx *ix;
1449 struct ext4_extent *ex;
1450 int depth, ee_len;
1451
1452 if (unlikely(path == NULL)) {
1453 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1454 return -EFSCORRUPTED;
1455 }
1456 depth = path->p_depth;
1457 *phys = 0;
1458
1459 if (depth == 0 && path->p_ext == NULL)
1460 return 0;
1461
1462 /* usually extent in the path covers blocks smaller
1463 * then *logical, but it can be that extent is the
1464 * first one in the file */
1465
1466 ex = path[depth].p_ext;
1467 ee_len = ext4_ext_get_actual_len(ex);
1468 if (*logical < le32_to_cpu(ex->ee_block)) {
1469 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1470 EXT4_ERROR_INODE(inode,
1471 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1472 *logical, le32_to_cpu(ex->ee_block));
1473 return -EFSCORRUPTED;
1474 }
1475 while (--depth >= 0) {
1476 ix = path[depth].p_idx;
1477 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1478 EXT4_ERROR_INODE(inode,
1479 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1480 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1481 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1482 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1483 depth);
1484 return -EFSCORRUPTED;
1485 }
1486 }
1487 return 0;
1488 }
1489
1490 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1491 EXT4_ERROR_INODE(inode,
1492 "logical %d < ee_block %d + ee_len %d!",
1493 *logical, le32_to_cpu(ex->ee_block), ee_len);
1494 return -EFSCORRUPTED;
1495 }
1496
1497 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1498 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1499 return 0;
1500 }
1501
1502 /*
1503 * search the closest allocated block to the right for *logical
1504 * and returns it at @logical + it's physical address at @phys
1505 * if *logical is the largest allocated block, the function
1506 * returns 0 at @phys
1507 * return value contains 0 (success) or error code
1508 */
1509 static int ext4_ext_search_right(struct inode *inode,
1510 struct ext4_ext_path *path,
1511 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1512 struct ext4_extent **ret_ex)
1513 {
1514 struct buffer_head *bh = NULL;
1515 struct ext4_extent_header *eh;
1516 struct ext4_extent_idx *ix;
1517 struct ext4_extent *ex;
1518 ext4_fsblk_t block;
1519 int depth; /* Note, NOT eh_depth; depth from top of tree */
1520 int ee_len;
1521
1522 if (unlikely(path == NULL)) {
1523 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1524 return -EFSCORRUPTED;
1525 }
1526 depth = path->p_depth;
1527 *phys = 0;
1528
1529 if (depth == 0 && path->p_ext == NULL)
1530 return 0;
1531
1532 /* usually extent in the path covers blocks smaller
1533 * then *logical, but it can be that extent is the
1534 * first one in the file */
1535
1536 ex = path[depth].p_ext;
1537 ee_len = ext4_ext_get_actual_len(ex);
1538 if (*logical < le32_to_cpu(ex->ee_block)) {
1539 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1540 EXT4_ERROR_INODE(inode,
1541 "first_extent(path[%d].p_hdr) != ex",
1542 depth);
1543 return -EFSCORRUPTED;
1544 }
1545 while (--depth >= 0) {
1546 ix = path[depth].p_idx;
1547 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1548 EXT4_ERROR_INODE(inode,
1549 "ix != EXT_FIRST_INDEX *logical %d!",
1550 *logical);
1551 return -EFSCORRUPTED;
1552 }
1553 }
1554 goto found_extent;
1555 }
1556
1557 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1558 EXT4_ERROR_INODE(inode,
1559 "logical %d < ee_block %d + ee_len %d!",
1560 *logical, le32_to_cpu(ex->ee_block), ee_len);
1561 return -EFSCORRUPTED;
1562 }
1563
1564 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1565 /* next allocated block in this leaf */
1566 ex++;
1567 goto found_extent;
1568 }
1569
1570 /* go up and search for index to the right */
1571 while (--depth >= 0) {
1572 ix = path[depth].p_idx;
1573 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1574 goto got_index;
1575 }
1576
1577 /* we've gone up to the root and found no index to the right */
1578 return 0;
1579
1580 got_index:
1581 /* we've found index to the right, let's
1582 * follow it and find the closest allocated
1583 * block to the right */
1584 ix++;
1585 block = ext4_idx_pblock(ix);
1586 while (++depth < path->p_depth) {
1587 /* subtract from p_depth to get proper eh_depth */
1588 bh = read_extent_tree_block(inode, block,
1589 path->p_depth - depth, 0);
1590 if (IS_ERR(bh))
1591 return PTR_ERR(bh);
1592 eh = ext_block_hdr(bh);
1593 ix = EXT_FIRST_INDEX(eh);
1594 block = ext4_idx_pblock(ix);
1595 put_bh(bh);
1596 }
1597
1598 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1599 if (IS_ERR(bh))
1600 return PTR_ERR(bh);
1601 eh = ext_block_hdr(bh);
1602 ex = EXT_FIRST_EXTENT(eh);
1603 found_extent:
1604 *logical = le32_to_cpu(ex->ee_block);
1605 *phys = ext4_ext_pblock(ex);
1606 *ret_ex = ex;
1607 if (bh)
1608 put_bh(bh);
1609 return 0;
1610 }
1611
1612 /*
1613 * ext4_ext_next_allocated_block:
1614 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1615 * NOTE: it considers block number from index entry as
1616 * allocated block. Thus, index entries have to be consistent
1617 * with leaves.
1618 */
1619 ext4_lblk_t
1620 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1621 {
1622 int depth;
1623
1624 BUG_ON(path == NULL);
1625 depth = path->p_depth;
1626
1627 if (depth == 0 && path->p_ext == NULL)
1628 return EXT_MAX_BLOCKS;
1629
1630 while (depth >= 0) {
1631 if (depth == path->p_depth) {
1632 /* leaf */
1633 if (path[depth].p_ext &&
1634 path[depth].p_ext !=
1635 EXT_LAST_EXTENT(path[depth].p_hdr))
1636 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1637 } else {
1638 /* index */
1639 if (path[depth].p_idx !=
1640 EXT_LAST_INDEX(path[depth].p_hdr))
1641 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1642 }
1643 depth--;
1644 }
1645
1646 return EXT_MAX_BLOCKS;
1647 }
1648
1649 /*
1650 * ext4_ext_next_leaf_block:
1651 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1652 */
1653 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1654 {
1655 int depth;
1656
1657 BUG_ON(path == NULL);
1658 depth = path->p_depth;
1659
1660 /* zero-tree has no leaf blocks at all */
1661 if (depth == 0)
1662 return EXT_MAX_BLOCKS;
1663
1664 /* go to index block */
1665 depth--;
1666
1667 while (depth >= 0) {
1668 if (path[depth].p_idx !=
1669 EXT_LAST_INDEX(path[depth].p_hdr))
1670 return (ext4_lblk_t)
1671 le32_to_cpu(path[depth].p_idx[1].ei_block);
1672 depth--;
1673 }
1674
1675 return EXT_MAX_BLOCKS;
1676 }
1677
1678 /*
1679 * ext4_ext_correct_indexes:
1680 * if leaf gets modified and modified extent is first in the leaf,
1681 * then we have to correct all indexes above.
1682 * TODO: do we need to correct tree in all cases?
1683 */
1684 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1685 struct ext4_ext_path *path)
1686 {
1687 struct ext4_extent_header *eh;
1688 int depth = ext_depth(inode);
1689 struct ext4_extent *ex;
1690 __le32 border;
1691 int k, err = 0;
1692
1693 eh = path[depth].p_hdr;
1694 ex = path[depth].p_ext;
1695
1696 if (unlikely(ex == NULL || eh == NULL)) {
1697 EXT4_ERROR_INODE(inode,
1698 "ex %p == NULL or eh %p == NULL", ex, eh);
1699 return -EFSCORRUPTED;
1700 }
1701
1702 if (depth == 0) {
1703 /* there is no tree at all */
1704 return 0;
1705 }
1706
1707 if (ex != EXT_FIRST_EXTENT(eh)) {
1708 /* we correct tree if first leaf got modified only */
1709 return 0;
1710 }
1711
1712 /*
1713 * TODO: we need correction if border is smaller than current one
1714 */
1715 k = depth - 1;
1716 border = path[depth].p_ext->ee_block;
1717 err = ext4_ext_get_access(handle, inode, path + k);
1718 if (err)
1719 return err;
1720 path[k].p_idx->ei_block = border;
1721 err = ext4_ext_dirty(handle, inode, path + k);
1722 if (err)
1723 return err;
1724
1725 while (k--) {
1726 /* change all left-side indexes */
1727 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1728 break;
1729 err = ext4_ext_get_access(handle, inode, path + k);
1730 if (err)
1731 break;
1732 path[k].p_idx->ei_block = border;
1733 err = ext4_ext_dirty(handle, inode, path + k);
1734 if (err)
1735 break;
1736 }
1737
1738 return err;
1739 }
1740
1741 int
1742 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1743 struct ext4_extent *ex2)
1744 {
1745 unsigned short ext1_ee_len, ext2_ee_len;
1746
1747 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1748 return 0;
1749
1750 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1751 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1752
1753 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1754 le32_to_cpu(ex2->ee_block))
1755 return 0;
1756
1757 /*
1758 * To allow future support for preallocated extents to be added
1759 * as an RO_COMPAT feature, refuse to merge to extents if
1760 * this can result in the top bit of ee_len being set.
1761 */
1762 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1763 return 0;
1764 /*
1765 * The check for IO to unwritten extent is somewhat racy as we
1766 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1767 * dropping i_data_sem. But reserved blocks should save us in that
1768 * case.
1769 */
1770 if (ext4_ext_is_unwritten(ex1) &&
1771 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1772 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1773 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1774 return 0;
1775 #ifdef AGGRESSIVE_TEST
1776 if (ext1_ee_len >= 4)
1777 return 0;
1778 #endif
1779
1780 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1781 return 1;
1782 return 0;
1783 }
1784
1785 /*
1786 * This function tries to merge the "ex" extent to the next extent in the tree.
1787 * It always tries to merge towards right. If you want to merge towards
1788 * left, pass "ex - 1" as argument instead of "ex".
1789 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1790 * 1 if they got merged.
1791 */
1792 static int ext4_ext_try_to_merge_right(struct inode *inode,
1793 struct ext4_ext_path *path,
1794 struct ext4_extent *ex)
1795 {
1796 struct ext4_extent_header *eh;
1797 unsigned int depth, len;
1798 int merge_done = 0, unwritten;
1799
1800 depth = ext_depth(inode);
1801 BUG_ON(path[depth].p_hdr == NULL);
1802 eh = path[depth].p_hdr;
1803
1804 while (ex < EXT_LAST_EXTENT(eh)) {
1805 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1806 break;
1807 /* merge with next extent! */
1808 unwritten = ext4_ext_is_unwritten(ex);
1809 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1810 + ext4_ext_get_actual_len(ex + 1));
1811 if (unwritten)
1812 ext4_ext_mark_unwritten(ex);
1813
1814 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1815 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1816 * sizeof(struct ext4_extent);
1817 memmove(ex + 1, ex + 2, len);
1818 }
1819 le16_add_cpu(&eh->eh_entries, -1);
1820 merge_done = 1;
1821 WARN_ON(eh->eh_entries == 0);
1822 if (!eh->eh_entries)
1823 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1824 }
1825
1826 return merge_done;
1827 }
1828
1829 /*
1830 * This function does a very simple check to see if we can collapse
1831 * an extent tree with a single extent tree leaf block into the inode.
1832 */
1833 static void ext4_ext_try_to_merge_up(handle_t *handle,
1834 struct inode *inode,
1835 struct ext4_ext_path *path)
1836 {
1837 size_t s;
1838 unsigned max_root = ext4_ext_space_root(inode, 0);
1839 ext4_fsblk_t blk;
1840
1841 if ((path[0].p_depth != 1) ||
1842 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1843 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1844 return;
1845
1846 /*
1847 * We need to modify the block allocation bitmap and the block
1848 * group descriptor to release the extent tree block. If we
1849 * can't get the journal credits, give up.
1850 */
1851 if (ext4_journal_extend(handle, 2))
1852 return;
1853
1854 /*
1855 * Copy the extent data up to the inode
1856 */
1857 blk = ext4_idx_pblock(path[0].p_idx);
1858 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1859 sizeof(struct ext4_extent_idx);
1860 s += sizeof(struct ext4_extent_header);
1861
1862 path[1].p_maxdepth = path[0].p_maxdepth;
1863 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1864 path[0].p_depth = 0;
1865 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1866 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1867 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1868
1869 brelse(path[1].p_bh);
1870 ext4_free_blocks(handle, inode, NULL, blk, 1,
1871 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1872 }
1873
1874 /*
1875 * This function tries to merge the @ex extent to neighbours in the tree.
1876 * return 1 if merge left else 0.
1877 */
1878 static void ext4_ext_try_to_merge(handle_t *handle,
1879 struct inode *inode,
1880 struct ext4_ext_path *path,
1881 struct ext4_extent *ex) {
1882 struct ext4_extent_header *eh;
1883 unsigned int depth;
1884 int merge_done = 0;
1885
1886 depth = ext_depth(inode);
1887 BUG_ON(path[depth].p_hdr == NULL);
1888 eh = path[depth].p_hdr;
1889
1890 if (ex > EXT_FIRST_EXTENT(eh))
1891 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1892
1893 if (!merge_done)
1894 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1895
1896 ext4_ext_try_to_merge_up(handle, inode, path);
1897 }
1898
1899 /*
1900 * check if a portion of the "newext" extent overlaps with an
1901 * existing extent.
1902 *
1903 * If there is an overlap discovered, it updates the length of the newext
1904 * such that there will be no overlap, and then returns 1.
1905 * If there is no overlap found, it returns 0.
1906 */
1907 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1908 struct inode *inode,
1909 struct ext4_extent *newext,
1910 struct ext4_ext_path *path)
1911 {
1912 ext4_lblk_t b1, b2;
1913 unsigned int depth, len1;
1914 unsigned int ret = 0;
1915
1916 b1 = le32_to_cpu(newext->ee_block);
1917 len1 = ext4_ext_get_actual_len(newext);
1918 depth = ext_depth(inode);
1919 if (!path[depth].p_ext)
1920 goto out;
1921 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1922
1923 /*
1924 * get the next allocated block if the extent in the path
1925 * is before the requested block(s)
1926 */
1927 if (b2 < b1) {
1928 b2 = ext4_ext_next_allocated_block(path);
1929 if (b2 == EXT_MAX_BLOCKS)
1930 goto out;
1931 b2 = EXT4_LBLK_CMASK(sbi, b2);
1932 }
1933
1934 /* check for wrap through zero on extent logical start block*/
1935 if (b1 + len1 < b1) {
1936 len1 = EXT_MAX_BLOCKS - b1;
1937 newext->ee_len = cpu_to_le16(len1);
1938 ret = 1;
1939 }
1940
1941 /* check for overlap */
1942 if (b1 + len1 > b2) {
1943 newext->ee_len = cpu_to_le16(b2 - b1);
1944 ret = 1;
1945 }
1946 out:
1947 return ret;
1948 }
1949
1950 /*
1951 * ext4_ext_insert_extent:
1952 * tries to merge requsted extent into the existing extent or
1953 * inserts requested extent as new one into the tree,
1954 * creating new leaf in the no-space case.
1955 */
1956 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1957 struct ext4_ext_path **ppath,
1958 struct ext4_extent *newext, int gb_flags)
1959 {
1960 struct ext4_ext_path *path = *ppath;
1961 struct ext4_extent_header *eh;
1962 struct ext4_extent *ex, *fex;
1963 struct ext4_extent *nearex; /* nearest extent */
1964 struct ext4_ext_path *npath = NULL;
1965 int depth, len, err;
1966 ext4_lblk_t next;
1967 int mb_flags = 0, unwritten;
1968
1969 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1970 mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1971 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1972 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1973 return -EFSCORRUPTED;
1974 }
1975 depth = ext_depth(inode);
1976 ex = path[depth].p_ext;
1977 eh = path[depth].p_hdr;
1978 if (unlikely(path[depth].p_hdr == NULL)) {
1979 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1980 return -EFSCORRUPTED;
1981 }
1982
1983 /* try to insert block into found extent and return */
1984 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1985
1986 /*
1987 * Try to see whether we should rather test the extent on
1988 * right from ex, or from the left of ex. This is because
1989 * ext4_find_extent() can return either extent on the
1990 * left, or on the right from the searched position. This
1991 * will make merging more effective.
1992 */
1993 if (ex < EXT_LAST_EXTENT(eh) &&
1994 (le32_to_cpu(ex->ee_block) +
1995 ext4_ext_get_actual_len(ex) <
1996 le32_to_cpu(newext->ee_block))) {
1997 ex += 1;
1998 goto prepend;
1999 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
2000 (le32_to_cpu(newext->ee_block) +
2001 ext4_ext_get_actual_len(newext) <
2002 le32_to_cpu(ex->ee_block)))
2003 ex -= 1;
2004
2005 /* Try to append newex to the ex */
2006 if (ext4_can_extents_be_merged(inode, ex, newext)) {
2007 ext_debug("append [%d]%d block to %u:[%d]%d"
2008 "(from %llu)\n",
2009 ext4_ext_is_unwritten(newext),
2010 ext4_ext_get_actual_len(newext),
2011 le32_to_cpu(ex->ee_block),
2012 ext4_ext_is_unwritten(ex),
2013 ext4_ext_get_actual_len(ex),
2014 ext4_ext_pblock(ex));
2015 err = ext4_ext_get_access(handle, inode,
2016 path + depth);
2017 if (err)
2018 return err;
2019 unwritten = ext4_ext_is_unwritten(ex);
2020 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2021 + ext4_ext_get_actual_len(newext));
2022 if (unwritten)
2023 ext4_ext_mark_unwritten(ex);
2024 eh = path[depth].p_hdr;
2025 nearex = ex;
2026 goto merge;
2027 }
2028
2029 prepend:
2030 /* Try to prepend newex to the ex */
2031 if (ext4_can_extents_be_merged(inode, newext, ex)) {
2032 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2033 "(from %llu)\n",
2034 le32_to_cpu(newext->ee_block),
2035 ext4_ext_is_unwritten(newext),
2036 ext4_ext_get_actual_len(newext),
2037 le32_to_cpu(ex->ee_block),
2038 ext4_ext_is_unwritten(ex),
2039 ext4_ext_get_actual_len(ex),
2040 ext4_ext_pblock(ex));
2041 err = ext4_ext_get_access(handle, inode,
2042 path + depth);
2043 if (err)
2044 return err;
2045
2046 unwritten = ext4_ext_is_unwritten(ex);
2047 ex->ee_block = newext->ee_block;
2048 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2049 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2050 + ext4_ext_get_actual_len(newext));
2051 if (unwritten)
2052 ext4_ext_mark_unwritten(ex);
2053 eh = path[depth].p_hdr;
2054 nearex = ex;
2055 goto merge;
2056 }
2057 }
2058
2059 depth = ext_depth(inode);
2060 eh = path[depth].p_hdr;
2061 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2062 goto has_space;
2063
2064 /* probably next leaf has space for us? */
2065 fex = EXT_LAST_EXTENT(eh);
2066 next = EXT_MAX_BLOCKS;
2067 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2068 next = ext4_ext_next_leaf_block(path);
2069 if (next != EXT_MAX_BLOCKS) {
2070 ext_debug("next leaf block - %u\n", next);
2071 BUG_ON(npath != NULL);
2072 npath = ext4_find_extent(inode, next, NULL, 0);
2073 if (IS_ERR(npath))
2074 return PTR_ERR(npath);
2075 BUG_ON(npath->p_depth != path->p_depth);
2076 eh = npath[depth].p_hdr;
2077 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2078 ext_debug("next leaf isn't full(%d)\n",
2079 le16_to_cpu(eh->eh_entries));
2080 path = npath;
2081 goto has_space;
2082 }
2083 ext_debug("next leaf has no free space(%d,%d)\n",
2084 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2085 }
2086
2087 /*
2088 * There is no free space in the found leaf.
2089 * We're gonna add a new leaf in the tree.
2090 */
2091 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2092 mb_flags |= EXT4_MB_USE_RESERVED;
2093 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2094 ppath, newext);
2095 if (err)
2096 goto cleanup;
2097 depth = ext_depth(inode);
2098 eh = path[depth].p_hdr;
2099
2100 has_space:
2101 nearex = path[depth].p_ext;
2102
2103 err = ext4_ext_get_access(handle, inode, path + depth);
2104 if (err)
2105 goto cleanup;
2106
2107 if (!nearex) {
2108 /* there is no extent in this leaf, create first one */
2109 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2110 le32_to_cpu(newext->ee_block),
2111 ext4_ext_pblock(newext),
2112 ext4_ext_is_unwritten(newext),
2113 ext4_ext_get_actual_len(newext));
2114 nearex = EXT_FIRST_EXTENT(eh);
2115 } else {
2116 if (le32_to_cpu(newext->ee_block)
2117 > le32_to_cpu(nearex->ee_block)) {
2118 /* Insert after */
2119 ext_debug("insert %u:%llu:[%d]%d before: "
2120 "nearest %p\n",
2121 le32_to_cpu(newext->ee_block),
2122 ext4_ext_pblock(newext),
2123 ext4_ext_is_unwritten(newext),
2124 ext4_ext_get_actual_len(newext),
2125 nearex);
2126 nearex++;
2127 } else {
2128 /* Insert before */
2129 BUG_ON(newext->ee_block == nearex->ee_block);
2130 ext_debug("insert %u:%llu:[%d]%d after: "
2131 "nearest %p\n",
2132 le32_to_cpu(newext->ee_block),
2133 ext4_ext_pblock(newext),
2134 ext4_ext_is_unwritten(newext),
2135 ext4_ext_get_actual_len(newext),
2136 nearex);
2137 }
2138 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2139 if (len > 0) {
2140 ext_debug("insert %u:%llu:[%d]%d: "
2141 "move %d extents from 0x%p to 0x%p\n",
2142 le32_to_cpu(newext->ee_block),
2143 ext4_ext_pblock(newext),
2144 ext4_ext_is_unwritten(newext),
2145 ext4_ext_get_actual_len(newext),
2146 len, nearex, nearex + 1);
2147 memmove(nearex + 1, nearex,
2148 len * sizeof(struct ext4_extent));
2149 }
2150 }
2151
2152 le16_add_cpu(&eh->eh_entries, 1);
2153 path[depth].p_ext = nearex;
2154 nearex->ee_block = newext->ee_block;
2155 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2156 nearex->ee_len = newext->ee_len;
2157
2158 merge:
2159 /* try to merge extents */
2160 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2161 ext4_ext_try_to_merge(handle, inode, path, nearex);
2162
2163
2164 /* time to correct all indexes above */
2165 err = ext4_ext_correct_indexes(handle, inode, path);
2166 if (err)
2167 goto cleanup;
2168
2169 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2170
2171 cleanup:
2172 ext4_ext_drop_refs(npath);
2173 kfree(npath);
2174 return err;
2175 }
2176
2177 static int ext4_fill_fiemap_extents(struct inode *inode,
2178 ext4_lblk_t block, ext4_lblk_t num,
2179 struct fiemap_extent_info *fieinfo)
2180 {
2181 struct ext4_ext_path *path = NULL;
2182 struct ext4_extent *ex;
2183 struct extent_status es;
2184 ext4_lblk_t next, next_del, start = 0, end = 0;
2185 ext4_lblk_t last = block + num;
2186 int exists, depth = 0, err = 0;
2187 unsigned int flags = 0;
2188 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2189
2190 while (block < last && block != EXT_MAX_BLOCKS) {
2191 num = last - block;
2192 /* find extent for this block */
2193 down_read(&EXT4_I(inode)->i_data_sem);
2194
2195 path = ext4_find_extent(inode, block, &path, 0);
2196 if (IS_ERR(path)) {
2197 up_read(&EXT4_I(inode)->i_data_sem);
2198 err = PTR_ERR(path);
2199 path = NULL;
2200 break;
2201 }
2202
2203 depth = ext_depth(inode);
2204 if (unlikely(path[depth].p_hdr == NULL)) {
2205 up_read(&EXT4_I(inode)->i_data_sem);
2206 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2207 err = -EFSCORRUPTED;
2208 break;
2209 }
2210 ex = path[depth].p_ext;
2211 next = ext4_ext_next_allocated_block(path);
2212
2213 flags = 0;
2214 exists = 0;
2215 if (!ex) {
2216 /* there is no extent yet, so try to allocate
2217 * all requested space */
2218 start = block;
2219 end = block + num;
2220 } else if (le32_to_cpu(ex->ee_block) > block) {
2221 /* need to allocate space before found extent */
2222 start = block;
2223 end = le32_to_cpu(ex->ee_block);
2224 if (block + num < end)
2225 end = block + num;
2226 } else if (block >= le32_to_cpu(ex->ee_block)
2227 + ext4_ext_get_actual_len(ex)) {
2228 /* need to allocate space after found extent */
2229 start = block;
2230 end = block + num;
2231 if (end >= next)
2232 end = next;
2233 } else if (block >= le32_to_cpu(ex->ee_block)) {
2234 /*
2235 * some part of requested space is covered
2236 * by found extent
2237 */
2238 start = block;
2239 end = le32_to_cpu(ex->ee_block)
2240 + ext4_ext_get_actual_len(ex);
2241 if (block + num < end)
2242 end = block + num;
2243 exists = 1;
2244 } else {
2245 BUG();
2246 }
2247 BUG_ON(end <= start);
2248
2249 if (!exists) {
2250 es.es_lblk = start;
2251 es.es_len = end - start;
2252 es.es_pblk = 0;
2253 } else {
2254 es.es_lblk = le32_to_cpu(ex->ee_block);
2255 es.es_len = ext4_ext_get_actual_len(ex);
2256 es.es_pblk = ext4_ext_pblock(ex);
2257 if (ext4_ext_is_unwritten(ex))
2258 flags |= FIEMAP_EXTENT_UNWRITTEN;
2259 }
2260
2261 /*
2262 * Find delayed extent and update es accordingly. We call
2263 * it even in !exists case to find out whether es is the
2264 * last existing extent or not.
2265 */
2266 next_del = ext4_find_delayed_extent(inode, &es);
2267 if (!exists && next_del) {
2268 exists = 1;
2269 flags |= (FIEMAP_EXTENT_DELALLOC |
2270 FIEMAP_EXTENT_UNKNOWN);
2271 }
2272 up_read(&EXT4_I(inode)->i_data_sem);
2273
2274 if (unlikely(es.es_len == 0)) {
2275 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2276 err = -EFSCORRUPTED;
2277 break;
2278 }
2279
2280 /*
2281 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2282 * we need to check next == EXT_MAX_BLOCKS because it is
2283 * possible that an extent is with unwritten and delayed
2284 * status due to when an extent is delayed allocated and
2285 * is allocated by fallocate status tree will track both of
2286 * them in a extent.
2287 *
2288 * So we could return a unwritten and delayed extent, and
2289 * its block is equal to 'next'.
2290 */
2291 if (next == next_del && next == EXT_MAX_BLOCKS) {
2292 flags |= FIEMAP_EXTENT_LAST;
2293 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2294 next != EXT_MAX_BLOCKS)) {
2295 EXT4_ERROR_INODE(inode,
2296 "next extent == %u, next "
2297 "delalloc extent = %u",
2298 next, next_del);
2299 err = -EFSCORRUPTED;
2300 break;
2301 }
2302 }
2303
2304 if (exists) {
2305 err = fiemap_fill_next_extent(fieinfo,
2306 (__u64)es.es_lblk << blksize_bits,
2307 (__u64)es.es_pblk << blksize_bits,
2308 (__u64)es.es_len << blksize_bits,
2309 flags);
2310 if (err < 0)
2311 break;
2312 if (err == 1) {
2313 err = 0;
2314 break;
2315 }
2316 }
2317
2318 block = es.es_lblk + es.es_len;
2319 }
2320
2321 ext4_ext_drop_refs(path);
2322 kfree(path);
2323 return err;
2324 }
2325
2326 /*
2327 * ext4_ext_determine_hole - determine hole around given block
2328 * @inode: inode we lookup in
2329 * @path: path in extent tree to @lblk
2330 * @lblk: pointer to logical block around which we want to determine hole
2331 *
2332 * Determine hole length (and start if easily possible) around given logical
2333 * block. We don't try too hard to find the beginning of the hole but @path
2334 * actually points to extent before @lblk, we provide it.
2335 *
2336 * The function returns the length of a hole starting at @lblk. We update @lblk
2337 * to the beginning of the hole if we managed to find it.
2338 */
2339 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2340 struct ext4_ext_path *path,
2341 ext4_lblk_t *lblk)
2342 {
2343 int depth = ext_depth(inode);
2344 struct ext4_extent *ex;
2345 ext4_lblk_t len;
2346
2347 ex = path[depth].p_ext;
2348 if (ex == NULL) {
2349 /* there is no extent yet, so gap is [0;-] */
2350 *lblk = 0;
2351 len = EXT_MAX_BLOCKS;
2352 } else if (*lblk < le32_to_cpu(ex->ee_block)) {
2353 len = le32_to_cpu(ex->ee_block) - *lblk;
2354 } else if (*lblk >= le32_to_cpu(ex->ee_block)
2355 + ext4_ext_get_actual_len(ex)) {
2356 ext4_lblk_t next;
2357
2358 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2359 next = ext4_ext_next_allocated_block(path);
2360 BUG_ON(next == *lblk);
2361 len = next - *lblk;
2362 } else {
2363 BUG();
2364 }
2365 return len;
2366 }
2367
2368 /*
2369 * ext4_ext_put_gap_in_cache:
2370 * calculate boundaries of the gap that the requested block fits into
2371 * and cache this gap
2372 */
2373 static void
2374 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2375 ext4_lblk_t hole_len)
2376 {
2377 struct extent_status es;
2378
2379 ext4_es_find_delayed_extent_range(inode, hole_start,
2380 hole_start + hole_len - 1, &es);
2381 if (es.es_len) {
2382 /* There's delayed extent containing lblock? */
2383 if (es.es_lblk <= hole_start)
2384 return;
2385 hole_len = min(es.es_lblk - hole_start, hole_len);
2386 }
2387 ext_debug(" -> %u:%u\n", hole_start, hole_len);
2388 ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2389 EXTENT_STATUS_HOLE);
2390 }
2391
2392 /*
2393 * ext4_ext_rm_idx:
2394 * removes index from the index block.
2395 */
2396 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2397 struct ext4_ext_path *path, int depth)
2398 {
2399 int err;
2400 ext4_fsblk_t leaf;
2401
2402 /* free index block */
2403 depth--;
2404 path = path + depth;
2405 leaf = ext4_idx_pblock(path->p_idx);
2406 if (unlikely(path->p_hdr->eh_entries == 0)) {
2407 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2408 return -EFSCORRUPTED;
2409 }
2410 err = ext4_ext_get_access(handle, inode, path);
2411 if (err)
2412 return err;
2413
2414 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2415 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2416 len *= sizeof(struct ext4_extent_idx);
2417 memmove(path->p_idx, path->p_idx + 1, len);
2418 }
2419
2420 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2421 err = ext4_ext_dirty(handle, inode, path);
2422 if (err)
2423 return err;
2424 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2425 trace_ext4_ext_rm_idx(inode, leaf);
2426
2427 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2428 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2429
2430 while (--depth >= 0) {
2431 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2432 break;
2433 path--;
2434 err = ext4_ext_get_access(handle, inode, path);
2435 if (err)
2436 break;
2437 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2438 err = ext4_ext_dirty(handle, inode, path);
2439 if (err)
2440 break;
2441 }
2442 return err;
2443 }
2444
2445 /*
2446 * ext4_ext_calc_credits_for_single_extent:
2447 * This routine returns max. credits that needed to insert an extent
2448 * to the extent tree.
2449 * When pass the actual path, the caller should calculate credits
2450 * under i_data_sem.
2451 */
2452 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2453 struct ext4_ext_path *path)
2454 {
2455 if (path) {
2456 int depth = ext_depth(inode);
2457 int ret = 0;
2458
2459 /* probably there is space in leaf? */
2460 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2461 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2462
2463 /*
2464 * There are some space in the leaf tree, no
2465 * need to account for leaf block credit
2466 *
2467 * bitmaps and block group descriptor blocks
2468 * and other metadata blocks still need to be
2469 * accounted.
2470 */
2471 /* 1 bitmap, 1 block group descriptor */
2472 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2473 return ret;
2474 }
2475 }
2476
2477 return ext4_chunk_trans_blocks(inode, nrblocks);
2478 }
2479
2480 /*
2481 * How many index/leaf blocks need to change/allocate to add @extents extents?
2482 *
2483 * If we add a single extent, then in the worse case, each tree level
2484 * index/leaf need to be changed in case of the tree split.
2485 *
2486 * If more extents are inserted, they could cause the whole tree split more
2487 * than once, but this is really rare.
2488 */
2489 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2490 {
2491 int index;
2492 int depth;
2493
2494 /* If we are converting the inline data, only one is needed here. */
2495 if (ext4_has_inline_data(inode))
2496 return 1;
2497
2498 depth = ext_depth(inode);
2499
2500 if (extents <= 1)
2501 index = depth * 2;
2502 else
2503 index = depth * 3;
2504
2505 return index;
2506 }
2507
2508 static inline int get_default_free_blocks_flags(struct inode *inode)
2509 {
2510 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
2511 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
2512 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2513 else if (ext4_should_journal_data(inode))
2514 return EXT4_FREE_BLOCKS_FORGET;
2515 return 0;
2516 }
2517
2518 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2519 struct ext4_extent *ex,
2520 long long *partial_cluster,
2521 ext4_lblk_t from, ext4_lblk_t to)
2522 {
2523 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2524 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2525 ext4_fsblk_t pblk;
2526 int flags = get_default_free_blocks_flags(inode);
2527
2528 /*
2529 * For bigalloc file systems, we never free a partial cluster
2530 * at the beginning of the extent. Instead, we make a note
2531 * that we tried freeing the cluster, and check to see if we
2532 * need to free it on a subsequent call to ext4_remove_blocks,
2533 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2534 */
2535 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2536
2537 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2538 /*
2539 * If we have a partial cluster, and it's different from the
2540 * cluster of the last block, we need to explicitly free the
2541 * partial cluster here.
2542 */
2543 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2544 if (*partial_cluster > 0 &&
2545 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2546 ext4_free_blocks(handle, inode, NULL,
2547 EXT4_C2B(sbi, *partial_cluster),
2548 sbi->s_cluster_ratio, flags);
2549 *partial_cluster = 0;
2550 }
2551
2552 #ifdef EXTENTS_STATS
2553 {
2554 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2555 spin_lock(&sbi->s_ext_stats_lock);
2556 sbi->s_ext_blocks += ee_len;
2557 sbi->s_ext_extents++;
2558 if (ee_len < sbi->s_ext_min)
2559 sbi->s_ext_min = ee_len;
2560 if (ee_len > sbi->s_ext_max)
2561 sbi->s_ext_max = ee_len;
2562 if (ext_depth(inode) > sbi->s_depth_max)
2563 sbi->s_depth_max = ext_depth(inode);
2564 spin_unlock(&sbi->s_ext_stats_lock);
2565 }
2566 #endif
2567 if (from >= le32_to_cpu(ex->ee_block)
2568 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2569 /* tail removal */
2570 ext4_lblk_t num;
2571 long long first_cluster;
2572
2573 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2574 pblk = ext4_ext_pblock(ex) + ee_len - num;
2575 /*
2576 * Usually we want to free partial cluster at the end of the
2577 * extent, except for the situation when the cluster is still
2578 * used by any other extent (partial_cluster is negative).
2579 */
2580 if (*partial_cluster < 0 &&
2581 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2582 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2583
2584 ext_debug("free last %u blocks starting %llu partial %lld\n",
2585 num, pblk, *partial_cluster);
2586 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2587 /*
2588 * If the block range to be freed didn't start at the
2589 * beginning of a cluster, and we removed the entire
2590 * extent and the cluster is not used by any other extent,
2591 * save the partial cluster here, since we might need to
2592 * delete if we determine that the truncate or punch hole
2593 * operation has removed all of the blocks in the cluster.
2594 * If that cluster is used by another extent, preserve its
2595 * negative value so it isn't freed later on.
2596 *
2597 * If the whole extent wasn't freed, we've reached the
2598 * start of the truncated/punched region and have finished
2599 * removing blocks. If there's a partial cluster here it's
2600 * shared with the remainder of the extent and is no longer
2601 * a candidate for removal.
2602 */
2603 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2604 first_cluster = (long long) EXT4_B2C(sbi, pblk);
2605 if (first_cluster != -*partial_cluster)
2606 *partial_cluster = first_cluster;
2607 } else {
2608 *partial_cluster = 0;
2609 }
2610 } else
2611 ext4_error(sbi->s_sb, "strange request: removal(2) "
2612 "%u-%u from %u:%u",
2613 from, to, le32_to_cpu(ex->ee_block), ee_len);
2614 return 0;
2615 }
2616
2617
2618 /*
2619 * ext4_ext_rm_leaf() Removes the extents associated with the
2620 * blocks appearing between "start" and "end". Both "start"
2621 * and "end" must appear in the same extent or EIO is returned.
2622 *
2623 * @handle: The journal handle
2624 * @inode: The files inode
2625 * @path: The path to the leaf
2626 * @partial_cluster: The cluster which we'll have to free if all extents
2627 * has been released from it. However, if this value is
2628 * negative, it's a cluster just to the right of the
2629 * punched region and it must not be freed.
2630 * @start: The first block to remove
2631 * @end: The last block to remove
2632 */
2633 static int
2634 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2635 struct ext4_ext_path *path,
2636 long long *partial_cluster,
2637 ext4_lblk_t start, ext4_lblk_t end)
2638 {
2639 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2640 int err = 0, correct_index = 0;
2641 int depth = ext_depth(inode), credits;
2642 struct ext4_extent_header *eh;
2643 ext4_lblk_t a, b;
2644 unsigned num;
2645 ext4_lblk_t ex_ee_block;
2646 unsigned short ex_ee_len;
2647 unsigned unwritten = 0;
2648 struct ext4_extent *ex;
2649 ext4_fsblk_t pblk;
2650
2651 /* the header must be checked already in ext4_ext_remove_space() */
2652 ext_debug("truncate since %u in leaf to %u\n", start, end);
2653 if (!path[depth].p_hdr)
2654 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2655 eh = path[depth].p_hdr;
2656 if (unlikely(path[depth].p_hdr == NULL)) {
2657 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2658 return -EFSCORRUPTED;
2659 }
2660 /* find where to start removing */
2661 ex = path[depth].p_ext;
2662 if (!ex)
2663 ex = EXT_LAST_EXTENT(eh);
2664
2665 ex_ee_block = le32_to_cpu(ex->ee_block);
2666 ex_ee_len = ext4_ext_get_actual_len(ex);
2667
2668 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2669
2670 while (ex >= EXT_FIRST_EXTENT(eh) &&
2671 ex_ee_block + ex_ee_len > start) {
2672
2673 if (ext4_ext_is_unwritten(ex))
2674 unwritten = 1;
2675 else
2676 unwritten = 0;
2677
2678 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2679 unwritten, ex_ee_len);
2680 path[depth].p_ext = ex;
2681
2682 a = ex_ee_block > start ? ex_ee_block : start;
2683 b = ex_ee_block+ex_ee_len - 1 < end ?
2684 ex_ee_block+ex_ee_len - 1 : end;
2685
2686 ext_debug(" border %u:%u\n", a, b);
2687
2688 /* If this extent is beyond the end of the hole, skip it */
2689 if (end < ex_ee_block) {
2690 /*
2691 * We're going to skip this extent and move to another,
2692 * so note that its first cluster is in use to avoid
2693 * freeing it when removing blocks. Eventually, the
2694 * right edge of the truncated/punched region will
2695 * be just to the left.
2696 */
2697 if (sbi->s_cluster_ratio > 1) {
2698 pblk = ext4_ext_pblock(ex);
2699 *partial_cluster =
2700 -(long long) EXT4_B2C(sbi, pblk);
2701 }
2702 ex--;
2703 ex_ee_block = le32_to_cpu(ex->ee_block);
2704 ex_ee_len = ext4_ext_get_actual_len(ex);
2705 continue;
2706 } else if (b != ex_ee_block + ex_ee_len - 1) {
2707 EXT4_ERROR_INODE(inode,
2708 "can not handle truncate %u:%u "
2709 "on extent %u:%u",
2710 start, end, ex_ee_block,
2711 ex_ee_block + ex_ee_len - 1);
2712 err = -EFSCORRUPTED;
2713 goto out;
2714 } else if (a != ex_ee_block) {
2715 /* remove tail of the extent */
2716 num = a - ex_ee_block;
2717 } else {
2718 /* remove whole extent: excellent! */
2719 num = 0;
2720 }
2721 /*
2722 * 3 for leaf, sb, and inode plus 2 (bmap and group
2723 * descriptor) for each block group; assume two block
2724 * groups plus ex_ee_len/blocks_per_block_group for
2725 * the worst case
2726 */
2727 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2728 if (ex == EXT_FIRST_EXTENT(eh)) {
2729 correct_index = 1;
2730 credits += (ext_depth(inode)) + 1;
2731 }
2732 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2733
2734 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2735 if (err)
2736 goto out;
2737
2738 err = ext4_ext_get_access(handle, inode, path + depth);
2739 if (err)
2740 goto out;
2741
2742 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2743 a, b);
2744 if (err)
2745 goto out;
2746
2747 if (num == 0)
2748 /* this extent is removed; mark slot entirely unused */
2749 ext4_ext_store_pblock(ex, 0);
2750
2751 ex->ee_len = cpu_to_le16(num);
2752 /*
2753 * Do not mark unwritten if all the blocks in the
2754 * extent have been removed.
2755 */
2756 if (unwritten && num)
2757 ext4_ext_mark_unwritten(ex);
2758 /*
2759 * If the extent was completely released,
2760 * we need to remove it from the leaf
2761 */
2762 if (num == 0) {
2763 if (end != EXT_MAX_BLOCKS - 1) {
2764 /*
2765 * For hole punching, we need to scoot all the
2766 * extents up when an extent is removed so that
2767 * we dont have blank extents in the middle
2768 */
2769 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2770 sizeof(struct ext4_extent));
2771
2772 /* Now get rid of the one at the end */
2773 memset(EXT_LAST_EXTENT(eh), 0,
2774 sizeof(struct ext4_extent));
2775 }
2776 le16_add_cpu(&eh->eh_entries, -1);
2777 }
2778
2779 err = ext4_ext_dirty(handle, inode, path + depth);
2780 if (err)
2781 goto out;
2782
2783 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2784 ext4_ext_pblock(ex));
2785 ex--;
2786 ex_ee_block = le32_to_cpu(ex->ee_block);
2787 ex_ee_len = ext4_ext_get_actual_len(ex);
2788 }
2789
2790 if (correct_index && eh->eh_entries)
2791 err = ext4_ext_correct_indexes(handle, inode, path);
2792
2793 /*
2794 * If there's a partial cluster and at least one extent remains in
2795 * the leaf, free the partial cluster if it isn't shared with the
2796 * current extent. If it is shared with the current extent
2797 * we zero partial_cluster because we've reached the start of the
2798 * truncated/punched region and we're done removing blocks.
2799 */
2800 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2801 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2802 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2803 ext4_free_blocks(handle, inode, NULL,
2804 EXT4_C2B(sbi, *partial_cluster),
2805 sbi->s_cluster_ratio,
2806 get_default_free_blocks_flags(inode));
2807 }
2808 *partial_cluster = 0;
2809 }
2810
2811 /* if this leaf is free, then we should
2812 * remove it from index block above */
2813 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2814 err = ext4_ext_rm_idx(handle, inode, path, depth);
2815
2816 out:
2817 return err;
2818 }
2819
2820 /*
2821 * ext4_ext_more_to_rm:
2822 * returns 1 if current index has to be freed (even partial)
2823 */
2824 static int
2825 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2826 {
2827 BUG_ON(path->p_idx == NULL);
2828
2829 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2830 return 0;
2831
2832 /*
2833 * if truncate on deeper level happened, it wasn't partial,
2834 * so we have to consider current index for truncation
2835 */
2836 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2837 return 0;
2838 return 1;
2839 }
2840
2841 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2842 ext4_lblk_t end)
2843 {
2844 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2845 int depth = ext_depth(inode);
2846 struct ext4_ext_path *path = NULL;
2847 long long partial_cluster = 0;
2848 handle_t *handle;
2849 int i = 0, err = 0;
2850
2851 ext_debug("truncate since %u to %u\n", start, end);
2852
2853 /* probably first extent we're gonna free will be last in block */
2854 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2855 if (IS_ERR(handle))
2856 return PTR_ERR(handle);
2857
2858 again:
2859 trace_ext4_ext_remove_space(inode, start, end, depth);
2860
2861 /*
2862 * Check if we are removing extents inside the extent tree. If that
2863 * is the case, we are going to punch a hole inside the extent tree
2864 * so we have to check whether we need to split the extent covering
2865 * the last block to remove so we can easily remove the part of it
2866 * in ext4_ext_rm_leaf().
2867 */
2868 if (end < EXT_MAX_BLOCKS - 1) {
2869 struct ext4_extent *ex;
2870 ext4_lblk_t ee_block, ex_end, lblk;
2871 ext4_fsblk_t pblk;
2872
2873 /* find extent for or closest extent to this block */
2874 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2875 if (IS_ERR(path)) {
2876 ext4_journal_stop(handle);
2877 return PTR_ERR(path);
2878 }
2879 depth = ext_depth(inode);
2880 /* Leaf not may not exist only if inode has no blocks at all */
2881 ex = path[depth].p_ext;
2882 if (!ex) {
2883 if (depth) {
2884 EXT4_ERROR_INODE(inode,
2885 "path[%d].p_hdr == NULL",
2886 depth);
2887 err = -EFSCORRUPTED;
2888 }
2889 goto out;
2890 }
2891
2892 ee_block = le32_to_cpu(ex->ee_block);
2893 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2894
2895 /*
2896 * See if the last block is inside the extent, if so split
2897 * the extent at 'end' block so we can easily remove the
2898 * tail of the first part of the split extent in
2899 * ext4_ext_rm_leaf().
2900 */
2901 if (end >= ee_block && end < ex_end) {
2902
2903 /*
2904 * If we're going to split the extent, note that
2905 * the cluster containing the block after 'end' is
2906 * in use to avoid freeing it when removing blocks.
2907 */
2908 if (sbi->s_cluster_ratio > 1) {
2909 pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2910 partial_cluster =
2911 -(long long) EXT4_B2C(sbi, pblk);
2912 }
2913
2914 /*
2915 * Split the extent in two so that 'end' is the last
2916 * block in the first new extent. Also we should not
2917 * fail removing space due to ENOSPC so try to use
2918 * reserved block if that happens.
2919 */
2920 err = ext4_force_split_extent_at(handle, inode, &path,
2921 end + 1, 1);
2922 if (err < 0)
2923 goto out;
2924
2925 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2926 /*
2927 * If there's an extent to the right its first cluster
2928 * contains the immediate right boundary of the
2929 * truncated/punched region. Set partial_cluster to
2930 * its negative value so it won't be freed if shared
2931 * with the current extent. The end < ee_block case
2932 * is handled in ext4_ext_rm_leaf().
2933 */
2934 lblk = ex_end + 1;
2935 err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2936 &ex);
2937 if (err)
2938 goto out;
2939 if (pblk)
2940 partial_cluster =
2941 -(long long) EXT4_B2C(sbi, pblk);
2942 }
2943 }
2944 /*
2945 * We start scanning from right side, freeing all the blocks
2946 * after i_size and walking into the tree depth-wise.
2947 */
2948 depth = ext_depth(inode);
2949 if (path) {
2950 int k = i = depth;
2951 while (--k > 0)
2952 path[k].p_block =
2953 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2954 } else {
2955 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2956 GFP_NOFS);
2957 if (path == NULL) {
2958 ext4_journal_stop(handle);
2959 return -ENOMEM;
2960 }
2961 path[0].p_maxdepth = path[0].p_depth = depth;
2962 path[0].p_hdr = ext_inode_hdr(inode);
2963 i = 0;
2964
2965 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2966 err = -EFSCORRUPTED;
2967 goto out;
2968 }
2969 }
2970 err = 0;
2971
2972 while (i >= 0 && err == 0) {
2973 if (i == depth) {
2974 /* this is leaf block */
2975 err = ext4_ext_rm_leaf(handle, inode, path,
2976 &partial_cluster, start,
2977 end);
2978 /* root level has p_bh == NULL, brelse() eats this */
2979 brelse(path[i].p_bh);
2980 path[i].p_bh = NULL;
2981 i--;
2982 continue;
2983 }
2984
2985 /* this is index block */
2986 if (!path[i].p_hdr) {
2987 ext_debug("initialize header\n");
2988 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2989 }
2990
2991 if (!path[i].p_idx) {
2992 /* this level hasn't been touched yet */
2993 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2994 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2995 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2996 path[i].p_hdr,
2997 le16_to_cpu(path[i].p_hdr->eh_entries));
2998 } else {
2999 /* we were already here, see at next index */
3000 path[i].p_idx--;
3001 }
3002
3003 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
3004 i, EXT_FIRST_INDEX(path[i].p_hdr),
3005 path[i].p_idx);
3006 if (ext4_ext_more_to_rm(path + i)) {
3007 struct buffer_head *bh;
3008 /* go to the next level */
3009 ext_debug("move to level %d (block %llu)\n",
3010 i + 1, ext4_idx_pblock(path[i].p_idx));
3011 memset(path + i + 1, 0, sizeof(*path));
3012 bh = read_extent_tree_block(inode,
3013 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
3014 EXT4_EX_NOCACHE);
3015 if (IS_ERR(bh)) {
3016 /* should we reset i_size? */
3017 err = PTR_ERR(bh);
3018 break;
3019 }
3020 /* Yield here to deal with large extent trees.
3021 * Should be a no-op if we did IO above. */
3022 cond_resched();
3023 if (WARN_ON(i + 1 > depth)) {
3024 err = -EFSCORRUPTED;
3025 break;
3026 }
3027 path[i + 1].p_bh = bh;
3028
3029 /* save actual number of indexes since this
3030 * number is changed at the next iteration */
3031 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3032 i++;
3033 } else {
3034 /* we finished processing this index, go up */
3035 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3036 /* index is empty, remove it;
3037 * handle must be already prepared by the
3038 * truncatei_leaf() */
3039 err = ext4_ext_rm_idx(handle, inode, path, i);
3040 }
3041 /* root level has p_bh == NULL, brelse() eats this */
3042 brelse(path[i].p_bh);
3043 path[i].p_bh = NULL;
3044 i--;
3045 ext_debug("return to level %d\n", i);
3046 }
3047 }
3048
3049 trace_ext4_ext_remove_space_done(inode, start, end, depth,
3050 partial_cluster, path->p_hdr->eh_entries);
3051
3052 /*
3053 * If we still have something in the partial cluster and we have removed
3054 * even the first extent, then we should free the blocks in the partial
3055 * cluster as well. (This code will only run when there are no leaves
3056 * to the immediate left of the truncated/punched region.)
3057 */
3058 if (partial_cluster > 0 && err == 0) {
3059 /* don't zero partial_cluster since it's not used afterwards */
3060 ext4_free_blocks(handle, inode, NULL,
3061 EXT4_C2B(sbi, partial_cluster),
3062 sbi->s_cluster_ratio,
3063 get_default_free_blocks_flags(inode));
3064 }
3065
3066 /* TODO: flexible tree reduction should be here */
3067 if (path->p_hdr->eh_entries == 0) {
3068 /*
3069 * truncate to zero freed all the tree,
3070 * so we need to correct eh_depth
3071 */
3072 err = ext4_ext_get_access(handle, inode, path);
3073 if (err == 0) {
3074 ext_inode_hdr(inode)->eh_depth = 0;
3075 ext_inode_hdr(inode)->eh_max =
3076 cpu_to_le16(ext4_ext_space_root(inode, 0));
3077 err = ext4_ext_dirty(handle, inode, path);
3078 }
3079 }
3080 out:
3081 ext4_ext_drop_refs(path);
3082 kfree(path);
3083 path = NULL;
3084 if (err == -EAGAIN)
3085 goto again;
3086 ext4_journal_stop(handle);
3087
3088 return err;
3089 }
3090
3091 /*
3092 * called at mount time
3093 */
3094 void ext4_ext_init(struct super_block *sb)
3095 {
3096 /*
3097 * possible initialization would be here
3098 */
3099
3100 if (ext4_has_feature_extents(sb)) {
3101 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3102 printk(KERN_INFO "EXT4-fs: file extents enabled"
3103 #ifdef AGGRESSIVE_TEST
3104 ", aggressive tests"
3105 #endif
3106 #ifdef CHECK_BINSEARCH
3107 ", check binsearch"
3108 #endif
3109 #ifdef EXTENTS_STATS
3110 ", stats"
3111 #endif
3112 "\n");
3113 #endif
3114 #ifdef EXTENTS_STATS
3115 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3116 EXT4_SB(sb)->s_ext_min = 1 << 30;
3117 EXT4_SB(sb)->s_ext_max = 0;
3118 #endif
3119 }
3120 }
3121
3122 /*
3123 * called at umount time
3124 */
3125 void ext4_ext_release(struct super_block *sb)
3126 {
3127 if (!ext4_has_feature_extents(sb))
3128 return;
3129
3130 #ifdef EXTENTS_STATS
3131 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3132 struct ext4_sb_info *sbi = EXT4_SB(sb);
3133 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3134 sbi->s_ext_blocks, sbi->s_ext_extents,
3135 sbi->s_ext_blocks / sbi->s_ext_extents);
3136 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3137 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3138 }
3139 #endif
3140 }
3141
3142 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3143 {
3144 ext4_lblk_t ee_block;
3145 ext4_fsblk_t ee_pblock;
3146 unsigned int ee_len;
3147
3148 ee_block = le32_to_cpu(ex->ee_block);
3149 ee_len = ext4_ext_get_actual_len(ex);
3150 ee_pblock = ext4_ext_pblock(ex);
3151
3152 if (ee_len == 0)
3153 return 0;
3154
3155 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3156 EXTENT_STATUS_WRITTEN);
3157 }
3158
3159 /* FIXME!! we need to try to merge to left or right after zero-out */
3160 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3161 {
3162 ext4_fsblk_t ee_pblock;
3163 unsigned int ee_len;
3164
3165 ee_len = ext4_ext_get_actual_len(ex);
3166 ee_pblock = ext4_ext_pblock(ex);
3167 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3168 ee_len);
3169 }
3170
3171 /*
3172 * ext4_split_extent_at() splits an extent at given block.
3173 *
3174 * @handle: the journal handle
3175 * @inode: the file inode
3176 * @path: the path to the extent
3177 * @split: the logical block where the extent is splitted.
3178 * @split_flags: indicates if the extent could be zeroout if split fails, and
3179 * the states(init or unwritten) of new extents.
3180 * @flags: flags used to insert new extent to extent tree.
3181 *
3182 *
3183 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3184 * of which are deterimined by split_flag.
3185 *
3186 * There are two cases:
3187 * a> the extent are splitted into two extent.
3188 * b> split is not needed, and just mark the extent.
3189 *
3190 * return 0 on success.
3191 */
3192 static int ext4_split_extent_at(handle_t *handle,
3193 struct inode *inode,
3194 struct ext4_ext_path **ppath,
3195 ext4_lblk_t split,
3196 int split_flag,
3197 int flags)
3198 {
3199 struct ext4_ext_path *path = *ppath;
3200 ext4_fsblk_t newblock;
3201 ext4_lblk_t ee_block;
3202 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3203 struct ext4_extent *ex2 = NULL;
3204 unsigned int ee_len, depth;
3205 int err = 0;
3206
3207 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3208 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3209
3210 ext_debug("ext4_split_extents_at: inode %lu, logical"
3211 "block %llu\n", inode->i_ino, (unsigned long long)split);
3212
3213 ext4_ext_show_leaf(inode, path);
3214
3215 depth = ext_depth(inode);
3216 ex = path[depth].p_ext;
3217 ee_block = le32_to_cpu(ex->ee_block);
3218 ee_len = ext4_ext_get_actual_len(ex);
3219 newblock = split - ee_block + ext4_ext_pblock(ex);
3220
3221 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3222 BUG_ON(!ext4_ext_is_unwritten(ex) &&
3223 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3224 EXT4_EXT_MARK_UNWRIT1 |
3225 EXT4_EXT_MARK_UNWRIT2));
3226
3227 err = ext4_ext_get_access(handle, inode, path + depth);
3228 if (err)
3229 goto out;
3230
3231 if (split == ee_block) {
3232 /*
3233 * case b: block @split is the block that the extent begins with
3234 * then we just change the state of the extent, and splitting
3235 * is not needed.
3236 */
3237 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3238 ext4_ext_mark_unwritten(ex);
3239 else
3240 ext4_ext_mark_initialized(ex);
3241
3242 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3243 ext4_ext_try_to_merge(handle, inode, path, ex);
3244
3245 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3246 goto out;
3247 }
3248
3249 /* case a */
3250 memcpy(&orig_ex, ex, sizeof(orig_ex));
3251 ex->ee_len = cpu_to_le16(split - ee_block);
3252 if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3253 ext4_ext_mark_unwritten(ex);
3254
3255 /*
3256 * path may lead to new leaf, not to original leaf any more
3257 * after ext4_ext_insert_extent() returns,
3258 */
3259 err = ext4_ext_dirty(handle, inode, path + depth);
3260 if (err)
3261 goto fix_extent_len;
3262
3263 ex2 = &newex;
3264 ex2->ee_block = cpu_to_le32(split);
3265 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3266 ext4_ext_store_pblock(ex2, newblock);
3267 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3268 ext4_ext_mark_unwritten(ex2);
3269
3270 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3271 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3272 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3273 if (split_flag & EXT4_EXT_DATA_VALID1) {
3274 err = ext4_ext_zeroout(inode, ex2);
3275 zero_ex.ee_block = ex2->ee_block;
3276 zero_ex.ee_len = cpu_to_le16(
3277 ext4_ext_get_actual_len(ex2));
3278 ext4_ext_store_pblock(&zero_ex,
3279 ext4_ext_pblock(ex2));
3280 } else {
3281 err = ext4_ext_zeroout(inode, ex);
3282 zero_ex.ee_block = ex->ee_block;
3283 zero_ex.ee_len = cpu_to_le16(
3284 ext4_ext_get_actual_len(ex));
3285 ext4_ext_store_pblock(&zero_ex,
3286 ext4_ext_pblock(ex));
3287 }
3288 } else {
3289 err = ext4_ext_zeroout(inode, &orig_ex);
3290 zero_ex.ee_block = orig_ex.ee_block;
3291 zero_ex.ee_len = cpu_to_le16(
3292 ext4_ext_get_actual_len(&orig_ex));
3293 ext4_ext_store_pblock(&zero_ex,
3294 ext4_ext_pblock(&orig_ex));
3295 }
3296
3297 if (err)
3298 goto fix_extent_len;
3299 /* update the extent length and mark as initialized */
3300 ex->ee_len = cpu_to_le16(ee_len);
3301 ext4_ext_try_to_merge(handle, inode, path, ex);
3302 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3303 if (err)
3304 goto fix_extent_len;
3305
3306 /* update extent status tree */
3307 err = ext4_zeroout_es(inode, &zero_ex);
3308
3309 goto out;
3310 } else if (err)
3311 goto fix_extent_len;
3312
3313 out:
3314 ext4_ext_show_leaf(inode, path);
3315 return err;
3316
3317 fix_extent_len:
3318 ex->ee_len = orig_ex.ee_len;
3319 ext4_ext_dirty(handle, inode, path + path->p_depth);
3320 return err;
3321 }
3322
3323 /*
3324 * ext4_split_extents() splits an extent and mark extent which is covered
3325 * by @map as split_flags indicates
3326 *
3327 * It may result in splitting the extent into multiple extents (up to three)
3328 * There are three possibilities:
3329 * a> There is no split required
3330 * b> Splits in two extents: Split is happening at either end of the extent
3331 * c> Splits in three extents: Somone is splitting in middle of the extent
3332 *
3333 */
3334 static int ext4_split_extent(handle_t *handle,
3335 struct inode *inode,
3336 struct ext4_ext_path **ppath,
3337 struct ext4_map_blocks *map,
3338 int split_flag,
3339 int flags)
3340 {
3341 struct ext4_ext_path *path = *ppath;
3342 ext4_lblk_t ee_block;
3343 struct ext4_extent *ex;
3344 unsigned int ee_len, depth;
3345 int err = 0;
3346 int unwritten;
3347 int split_flag1, flags1;
3348 int allocated = map->m_len;
3349
3350 depth = ext_depth(inode);
3351 ex = path[depth].p_ext;
3352 ee_block = le32_to_cpu(ex->ee_block);
3353 ee_len = ext4_ext_get_actual_len(ex);
3354 unwritten = ext4_ext_is_unwritten(ex);
3355
3356 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3357 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3358 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3359 if (unwritten)
3360 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3361 EXT4_EXT_MARK_UNWRIT2;
3362 if (split_flag & EXT4_EXT_DATA_VALID2)
3363 split_flag1 |= EXT4_EXT_DATA_VALID1;
3364 err = ext4_split_extent_at(handle, inode, ppath,
3365 map->m_lblk + map->m_len, split_flag1, flags1);
3366 if (err)
3367 goto out;
3368 } else {
3369 allocated = ee_len - (map->m_lblk - ee_block);
3370 }
3371 /*
3372 * Update path is required because previous ext4_split_extent_at() may
3373 * result in split of original leaf or extent zeroout.
3374 */
3375 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3376 if (IS_ERR(path))
3377 return PTR_ERR(path);
3378 depth = ext_depth(inode);
3379 ex = path[depth].p_ext;
3380 if (!ex) {
3381 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3382 (unsigned long) map->m_lblk);
3383 return -EFSCORRUPTED;
3384 }
3385 unwritten = ext4_ext_is_unwritten(ex);
3386 split_flag1 = 0;
3387
3388 if (map->m_lblk >= ee_block) {
3389 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3390 if (unwritten) {
3391 split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3392 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3393 EXT4_EXT_MARK_UNWRIT2);
3394 }
3395 err = ext4_split_extent_at(handle, inode, ppath,
3396 map->m_lblk, split_flag1, flags);
3397 if (err)
3398 goto out;
3399 }
3400
3401 ext4_ext_show_leaf(inode, path);
3402 out:
3403 return err ? err : allocated;
3404 }
3405
3406 /*
3407 * This function is called by ext4_ext_map_blocks() if someone tries to write
3408 * to an unwritten extent. It may result in splitting the unwritten
3409 * extent into multiple extents (up to three - one initialized and two
3410 * unwritten).
3411 * There are three possibilities:
3412 * a> There is no split required: Entire extent should be initialized
3413 * b> Splits in two extents: Write is happening at either end of the extent
3414 * c> Splits in three extents: Somone is writing in middle of the extent
3415 *
3416 * Pre-conditions:
3417 * - The extent pointed to by 'path' is unwritten.
3418 * - The extent pointed to by 'path' contains a superset
3419 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3420 *
3421 * Post-conditions on success:
3422 * - the returned value is the number of blocks beyond map->l_lblk
3423 * that are allocated and initialized.
3424 * It is guaranteed to be >= map->m_len.
3425 */
3426 static int ext4_ext_convert_to_initialized(handle_t *handle,
3427 struct inode *inode,
3428 struct ext4_map_blocks *map,
3429 struct ext4_ext_path **ppath,
3430 int flags)
3431 {
3432 struct ext4_ext_path *path = *ppath;
3433 struct ext4_sb_info *sbi;
3434 struct ext4_extent_header *eh;
3435 struct ext4_map_blocks split_map;
3436 struct ext4_extent zero_ex1, zero_ex2;
3437 struct ext4_extent *ex, *abut_ex;
3438 ext4_lblk_t ee_block, eof_block;
3439 unsigned int ee_len, depth, map_len = map->m_len;
3440 int allocated = 0, max_zeroout = 0;
3441 int err = 0;
3442 int split_flag = EXT4_EXT_DATA_VALID2;
3443
3444 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3445 "block %llu, max_blocks %u\n", inode->i_ino,
3446 (unsigned long long)map->m_lblk, map_len);
3447
3448 sbi = EXT4_SB(inode->i_sb);
3449 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3450 inode->i_sb->s_blocksize_bits;
3451 if (eof_block < map->m_lblk + map_len)
3452 eof_block = map->m_lblk + map_len;
3453
3454 depth = ext_depth(inode);
3455 eh = path[depth].p_hdr;
3456 ex = path[depth].p_ext;
3457 ee_block = le32_to_cpu(ex->ee_block);
3458 ee_len = ext4_ext_get_actual_len(ex);
3459 zero_ex1.ee_len = 0;
3460 zero_ex2.ee_len = 0;
3461
3462 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3463
3464 /* Pre-conditions */
3465 BUG_ON(!ext4_ext_is_unwritten(ex));
3466 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3467
3468 /*
3469 * Attempt to transfer newly initialized blocks from the currently
3470 * unwritten extent to its neighbor. This is much cheaper
3471 * than an insertion followed by a merge as those involve costly
3472 * memmove() calls. Transferring to the left is the common case in
3473 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3474 * followed by append writes.
3475 *
3476 * Limitations of the current logic:
3477 * - L1: we do not deal with writes covering the whole extent.
3478 * This would require removing the extent if the transfer
3479 * is possible.
3480 * - L2: we only attempt to merge with an extent stored in the
3481 * same extent tree node.
3482 */
3483 if ((map->m_lblk == ee_block) &&
3484 /* See if we can merge left */
3485 (map_len < ee_len) && /*L1*/
3486 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3487 ext4_lblk_t prev_lblk;
3488 ext4_fsblk_t prev_pblk, ee_pblk;
3489 unsigned int prev_len;
3490
3491 abut_ex = ex - 1;
3492 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3493 prev_len = ext4_ext_get_actual_len(abut_ex);
3494 prev_pblk = ext4_ext_pblock(abut_ex);
3495 ee_pblk = ext4_ext_pblock(ex);
3496
3497 /*
3498 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3499 * upon those conditions:
3500 * - C1: abut_ex is initialized,
3501 * - C2: abut_ex is logically abutting ex,
3502 * - C3: abut_ex is physically abutting ex,
3503 * - C4: abut_ex can receive the additional blocks without
3504 * overflowing the (initialized) length limit.
3505 */
3506 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3507 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3508 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3509 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3510 err = ext4_ext_get_access(handle, inode, path + depth);
3511 if (err)
3512 goto out;
3513
3514 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3515 map, ex, abut_ex);
3516
3517 /* Shift the start of ex by 'map_len' blocks */
3518 ex->ee_block = cpu_to_le32(ee_block + map_len);
3519 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3520 ex->ee_len = cpu_to_le16(ee_len - map_len);
3521 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3522
3523 /* Extend abut_ex by 'map_len' blocks */
3524 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3525
3526 /* Result: number of initialized blocks past m_lblk */
3527 allocated = map_len;
3528 }
3529 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3530 (map_len < ee_len) && /*L1*/
3531 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3532 /* See if we can merge right */
3533 ext4_lblk_t next_lblk;
3534 ext4_fsblk_t next_pblk, ee_pblk;
3535 unsigned int next_len;
3536
3537 abut_ex = ex + 1;
3538 next_lblk = le32_to_cpu(abut_ex->ee_block);
3539 next_len = ext4_ext_get_actual_len(abut_ex);
3540 next_pblk = ext4_ext_pblock(abut_ex);
3541 ee_pblk = ext4_ext_pblock(ex);
3542
3543 /*
3544 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3545 * upon those conditions:
3546 * - C1: abut_ex is initialized,
3547 * - C2: abut_ex is logically abutting ex,
3548 * - C3: abut_ex is physically abutting ex,
3549 * - C4: abut_ex can receive the additional blocks without
3550 * overflowing the (initialized) length limit.
3551 */
3552 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3553 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3554 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3555 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3556 err = ext4_ext_get_access(handle, inode, path + depth);
3557 if (err)
3558 goto out;
3559
3560 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3561 map, ex, abut_ex);
3562
3563 /* Shift the start of abut_ex by 'map_len' blocks */
3564 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3565 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3566 ex->ee_len = cpu_to_le16(ee_len - map_len);
3567 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3568
3569 /* Extend abut_ex by 'map_len' blocks */
3570 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3571
3572 /* Result: number of initialized blocks past m_lblk */
3573 allocated = map_len;
3574 }
3575 }
3576 if (allocated) {
3577 /* Mark the block containing both extents as dirty */
3578 ext4_ext_dirty(handle, inode, path + depth);
3579
3580 /* Update path to point to the right extent */
3581 path[depth].p_ext = abut_ex;
3582 goto out;
3583 } else
3584 allocated = ee_len - (map->m_lblk - ee_block);
3585
3586 WARN_ON(map->m_lblk < ee_block);
3587 /*
3588 * It is safe to convert extent to initialized via explicit
3589 * zeroout only if extent is fully inside i_size or new_size.
3590 */
3591 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3592
3593 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3594 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3595 (inode->i_sb->s_blocksize_bits - 10);
3596
3597 if (ext4_encrypted_inode(inode))
3598 max_zeroout = 0;
3599
3600 /*
3601 * five cases:
3602 * 1. split the extent into three extents.
3603 * 2. split the extent into two extents, zeroout the head of the first
3604 * extent.
3605 * 3. split the extent into two extents, zeroout the tail of the second
3606 * extent.
3607 * 4. split the extent into two extents with out zeroout.
3608 * 5. no splitting needed, just possibly zeroout the head and / or the
3609 * tail of the extent.
3610 */
3611 split_map.m_lblk = map->m_lblk;
3612 split_map.m_len = map->m_len;
3613
3614 if (max_zeroout && (allocated > split_map.m_len)) {
3615 if (allocated <= max_zeroout) {
3616 /* case 3 or 5 */
3617 zero_ex1.ee_block =
3618 cpu_to_le32(split_map.m_lblk +
3619 split_map.m_len);
3620 zero_ex1.ee_len =
3621 cpu_to_le16(allocated - split_map.m_len);
3622 ext4_ext_store_pblock(&zero_ex1,
3623 ext4_ext_pblock(ex) + split_map.m_lblk +
3624 split_map.m_len - ee_block);
3625 err = ext4_ext_zeroout(inode, &zero_ex1);
3626 if (err)
3627 goto out;
3628 split_map.m_len = allocated;
3629 }
3630 if (split_map.m_lblk - ee_block + split_map.m_len <
3631 max_zeroout) {
3632 /* case 2 or 5 */
3633 if (split_map.m_lblk != ee_block) {
3634 zero_ex2.ee_block = ex->ee_block;
3635 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk -
3636 ee_block);
3637 ext4_ext_store_pblock(&zero_ex2,
3638 ext4_ext_pblock(ex));
3639 err = ext4_ext_zeroout(inode, &zero_ex2);
3640 if (err)
3641 goto out;
3642 }
3643
3644 split_map.m_len += split_map.m_lblk - ee_block;
3645 split_map.m_lblk = ee_block;
3646 allocated = map->m_len;
3647 }
3648 }
3649
3650 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3651 flags);
3652 if (err > 0)
3653 err = 0;
3654 out:
3655 /* If we have gotten a failure, don't zero out status tree */
3656 if (!err) {
3657 err = ext4_zeroout_es(inode, &zero_ex1);
3658 if (!err)
3659 err = ext4_zeroout_es(inode, &zero_ex2);
3660 }
3661 return err ? err : allocated;
3662 }
3663
3664 /*
3665 * This function is called by ext4_ext_map_blocks() from
3666 * ext4_get_blocks_dio_write() when DIO to write
3667 * to an unwritten extent.
3668 *
3669 * Writing to an unwritten extent may result in splitting the unwritten
3670 * extent into multiple initialized/unwritten extents (up to three)
3671 * There are three possibilities:
3672 * a> There is no split required: Entire extent should be unwritten
3673 * b> Splits in two extents: Write is happening at either end of the extent
3674 * c> Splits in three extents: Somone is writing in middle of the extent
3675 *
3676 * This works the same way in the case of initialized -> unwritten conversion.
3677 *
3678 * One of more index blocks maybe needed if the extent tree grow after
3679 * the unwritten extent split. To prevent ENOSPC occur at the IO
3680 * complete, we need to split the unwritten extent before DIO submit
3681 * the IO. The unwritten extent called at this time will be split
3682 * into three unwritten extent(at most). After IO complete, the part
3683 * being filled will be convert to initialized by the end_io callback function
3684 * via ext4_convert_unwritten_extents().
3685 *
3686 * Returns the size of unwritten extent to be written on success.
3687 */
3688 static int ext4_split_convert_extents(handle_t *handle,
3689 struct inode *inode,
3690 struct ext4_map_blocks *map,
3691 struct ext4_ext_path **ppath,
3692 int flags)
3693 {
3694 struct ext4_ext_path *path = *ppath;
3695 ext4_lblk_t eof_block;
3696 ext4_lblk_t ee_block;
3697 struct ext4_extent *ex;
3698 unsigned int ee_len;
3699 int split_flag = 0, depth;
3700
3701 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3702 __func__, inode->i_ino,
3703 (unsigned long long)map->m_lblk, map->m_len);
3704
3705 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3706 inode->i_sb->s_blocksize_bits;
3707 if (eof_block < map->m_lblk + map->m_len)
3708 eof_block = map->m_lblk + map->m_len;
3709 /*
3710 * It is safe to convert extent to initialized via explicit
3711 * zeroout only if extent is fully insde i_size or new_size.
3712 */
3713 depth = ext_depth(inode);
3714 ex = path[depth].p_ext;
3715 ee_block = le32_to_cpu(ex->ee_block);
3716 ee_len = ext4_ext_get_actual_len(ex);
3717
3718 /* Convert to unwritten */
3719 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3720 split_flag |= EXT4_EXT_DATA_VALID1;
3721 /* Convert to initialized */
3722 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3723 split_flag |= ee_block + ee_len <= eof_block ?
3724 EXT4_EXT_MAY_ZEROOUT : 0;
3725 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3726 }
3727 flags |= EXT4_GET_BLOCKS_PRE_IO;
3728 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3729 }
3730
3731 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3732 struct inode *inode,
3733 struct ext4_map_blocks *map,
3734 struct ext4_ext_path **ppath)
3735 {
3736 struct ext4_ext_path *path = *ppath;
3737 struct ext4_extent *ex;
3738 ext4_lblk_t ee_block;
3739 unsigned int ee_len;
3740 int depth;
3741 int err = 0;
3742
3743 depth = ext_depth(inode);
3744 ex = path[depth].p_ext;
3745 ee_block = le32_to_cpu(ex->ee_block);
3746 ee_len = ext4_ext_get_actual_len(ex);
3747
3748 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3749 "block %llu, max_blocks %u\n", inode->i_ino,
3750 (unsigned long long)ee_block, ee_len);
3751
3752 /* If extent is larger than requested it is a clear sign that we still
3753 * have some extent state machine issues left. So extent_split is still
3754 * required.
3755 * TODO: Once all related issues will be fixed this situation should be
3756 * illegal.
3757 */
3758 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3759 #ifdef EXT4_DEBUG
3760 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3761 " len %u; IO logical block %llu, len %u",
3762 inode->i_ino, (unsigned long long)ee_block, ee_len,
3763 (unsigned long long)map->m_lblk, map->m_len);
3764 #endif
3765 err = ext4_split_convert_extents(handle, inode, map, ppath,
3766 EXT4_GET_BLOCKS_CONVERT);
3767 if (err < 0)
3768 return err;
3769 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3770 if (IS_ERR(path))
3771 return PTR_ERR(path);
3772 depth = ext_depth(inode);
3773 ex = path[depth].p_ext;
3774 }
3775
3776 err = ext4_ext_get_access(handle, inode, path + depth);
3777 if (err)
3778 goto out;
3779 /* first mark the extent as initialized */
3780 ext4_ext_mark_initialized(ex);
3781
3782 /* note: ext4_ext_correct_indexes() isn't needed here because
3783 * borders are not changed
3784 */
3785 ext4_ext_try_to_merge(handle, inode, path, ex);
3786
3787 /* Mark modified extent as dirty */
3788 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3789 out:
3790 ext4_ext_show_leaf(inode, path);
3791 return err;
3792 }
3793
3794 /*
3795 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3796 */
3797 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3798 ext4_lblk_t lblk,
3799 struct ext4_ext_path *path,
3800 unsigned int len)
3801 {
3802 int i, depth;
3803 struct ext4_extent_header *eh;
3804 struct ext4_extent *last_ex;
3805
3806 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3807 return 0;
3808
3809 depth = ext_depth(inode);
3810 eh = path[depth].p_hdr;
3811
3812 /*
3813 * We're going to remove EOFBLOCKS_FL entirely in future so we
3814 * do not care for this case anymore. Simply remove the flag
3815 * if there are no extents.
3816 */
3817 if (unlikely(!eh->eh_entries))
3818 goto out;
3819 last_ex = EXT_LAST_EXTENT(eh);
3820 /*
3821 * We should clear the EOFBLOCKS_FL flag if we are writing the
3822 * last block in the last extent in the file. We test this by
3823 * first checking to see if the caller to
3824 * ext4_ext_get_blocks() was interested in the last block (or
3825 * a block beyond the last block) in the current extent. If
3826 * this turns out to be false, we can bail out from this
3827 * function immediately.
3828 */
3829 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3830 ext4_ext_get_actual_len(last_ex))
3831 return 0;
3832 /*
3833 * If the caller does appear to be planning to write at or
3834 * beyond the end of the current extent, we then test to see
3835 * if the current extent is the last extent in the file, by
3836 * checking to make sure it was reached via the rightmost node
3837 * at each level of the tree.
3838 */
3839 for (i = depth-1; i >= 0; i--)
3840 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3841 return 0;
3842 out:
3843 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3844 return ext4_mark_inode_dirty(handle, inode);
3845 }
3846
3847 /**
3848 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3849 *
3850 * Return 1 if there is a delalloc block in the range, otherwise 0.
3851 */
3852 int ext4_find_delalloc_range(struct inode *inode,
3853 ext4_lblk_t lblk_start,
3854 ext4_lblk_t lblk_end)
3855 {
3856 struct extent_status es;
3857
3858 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3859 if (es.es_len == 0)
3860 return 0; /* there is no delay extent in this tree */
3861 else if (es.es_lblk <= lblk_start &&
3862 lblk_start < es.es_lblk + es.es_len)
3863 return 1;
3864 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3865 return 1;
3866 else
3867 return 0;
3868 }
3869
3870 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3871 {
3872 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3873 ext4_lblk_t lblk_start, lblk_end;
3874 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3875 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3876
3877 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3878 }
3879
3880 /**
3881 * Determines how many complete clusters (out of those specified by the 'map')
3882 * are under delalloc and were reserved quota for.
3883 * This function is called when we are writing out the blocks that were
3884 * originally written with their allocation delayed, but then the space was
3885 * allocated using fallocate() before the delayed allocation could be resolved.
3886 * The cases to look for are:
3887 * ('=' indicated delayed allocated blocks
3888 * '-' indicates non-delayed allocated blocks)
3889 * (a) partial clusters towards beginning and/or end outside of allocated range
3890 * are not delalloc'ed.
3891 * Ex:
3892 * |----c---=|====c====|====c====|===-c----|
3893 * |++++++ allocated ++++++|
3894 * ==> 4 complete clusters in above example
3895 *
3896 * (b) partial cluster (outside of allocated range) towards either end is
3897 * marked for delayed allocation. In this case, we will exclude that
3898 * cluster.
3899 * Ex:
3900 * |----====c========|========c========|
3901 * |++++++ allocated ++++++|
3902 * ==> 1 complete clusters in above example
3903 *
3904 * Ex:
3905 * |================c================|
3906 * |++++++ allocated ++++++|
3907 * ==> 0 complete clusters in above example
3908 *
3909 * The ext4_da_update_reserve_space will be called only if we
3910 * determine here that there were some "entire" clusters that span
3911 * this 'allocated' range.
3912 * In the non-bigalloc case, this function will just end up returning num_blks
3913 * without ever calling ext4_find_delalloc_range.
3914 */
3915 static unsigned int
3916 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3917 unsigned int num_blks)
3918 {
3919 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3920 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3921 ext4_lblk_t lblk_from, lblk_to, c_offset;
3922 unsigned int allocated_clusters = 0;
3923
3924 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3925 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3926
3927 /* max possible clusters for this allocation */
3928 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3929
3930 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3931
3932 /* Check towards left side */
3933 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3934 if (c_offset) {
3935 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3936 lblk_to = lblk_from + c_offset - 1;
3937
3938 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3939 allocated_clusters--;
3940 }
3941
3942 /* Now check towards right. */
3943 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3944 if (allocated_clusters && c_offset) {
3945 lblk_from = lblk_start + num_blks;
3946 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3947
3948 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3949 allocated_clusters--;
3950 }
3951
3952 return allocated_clusters;
3953 }
3954
3955 static int
3956 convert_initialized_extent(handle_t *handle, struct inode *inode,
3957 struct ext4_map_blocks *map,
3958 struct ext4_ext_path **ppath,
3959 unsigned int allocated)
3960 {
3961 struct ext4_ext_path *path = *ppath;
3962 struct ext4_extent *ex;
3963 ext4_lblk_t ee_block;
3964 unsigned int ee_len;
3965 int depth;
3966 int err = 0;
3967
3968 /*
3969 * Make sure that the extent is no bigger than we support with
3970 * unwritten extent
3971 */
3972 if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3973 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3974
3975 depth = ext_depth(inode);
3976 ex = path[depth].p_ext;
3977 ee_block = le32_to_cpu(ex->ee_block);
3978 ee_len = ext4_ext_get_actual_len(ex);
3979
3980 ext_debug("%s: inode %lu, logical"
3981 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3982 (unsigned long long)ee_block, ee_len);
3983
3984 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3985 err = ext4_split_convert_extents(handle, inode, map, ppath,
3986 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3987 if (err < 0)
3988 return err;
3989 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3990 if (IS_ERR(path))
3991 return PTR_ERR(path);
3992 depth = ext_depth(inode);
3993 ex = path[depth].p_ext;
3994 if (!ex) {
3995 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3996 (unsigned long) map->m_lblk);
3997 return -EFSCORRUPTED;
3998 }
3999 }
4000
4001 err = ext4_ext_get_access(handle, inode, path + depth);
4002 if (err)
4003 return err;
4004 /* first mark the extent as unwritten */
4005 ext4_ext_mark_unwritten(ex);
4006
4007 /* note: ext4_ext_correct_indexes() isn't needed here because
4008 * borders are not changed
4009 */
4010 ext4_ext_try_to_merge(handle, inode, path, ex);
4011
4012 /* Mark modified extent as dirty */
4013 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
4014 if (err)
4015 return err;
4016 ext4_ext_show_leaf(inode, path);
4017
4018 ext4_update_inode_fsync_trans(handle, inode, 1);
4019 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
4020 if (err)
4021 return err;
4022 map->m_flags |= EXT4_MAP_UNWRITTEN;
4023 if (allocated > map->m_len)
4024 allocated = map->m_len;
4025 map->m_len = allocated;
4026 return allocated;
4027 }
4028
4029 static int
4030 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4031 struct ext4_map_blocks *map,
4032 struct ext4_ext_path **ppath, int flags,
4033 unsigned int allocated, ext4_fsblk_t newblock)
4034 {
4035 struct ext4_ext_path *path = *ppath;
4036 int ret = 0;
4037 int err = 0;
4038
4039 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4040 "block %llu, max_blocks %u, flags %x, allocated %u\n",
4041 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4042 flags, allocated);
4043 ext4_ext_show_leaf(inode, path);
4044
4045 /*
4046 * When writing into unwritten space, we should not fail to
4047 * allocate metadata blocks for the new extent block if needed.
4048 */
4049 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4050
4051 trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4052 allocated, newblock);
4053
4054 /* get_block() before submit the IO, split the extent */
4055 if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4056 ret = ext4_split_convert_extents(handle, inode, map, ppath,
4057 flags | EXT4_GET_BLOCKS_CONVERT);
4058 if (ret <= 0)
4059 goto out;
4060 map->m_flags |= EXT4_MAP_UNWRITTEN;
4061 goto out;
4062 }
4063 /* IO end_io complete, convert the filled extent to written */
4064 if (flags & EXT4_GET_BLOCKS_CONVERT) {
4065 if (flags & EXT4_GET_BLOCKS_ZERO) {
4066 if (allocated > map->m_len)
4067 allocated = map->m_len;
4068 err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4069 allocated);
4070 if (err < 0)
4071 goto out2;
4072 }
4073 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4074 ppath);
4075 if (ret >= 0) {
4076 ext4_update_inode_fsync_trans(handle, inode, 1);
4077 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4078 path, map->m_len);
4079 } else
4080 err = ret;
4081 map->m_flags |= EXT4_MAP_MAPPED;
4082 map->m_pblk = newblock;
4083 if (allocated > map->m_len)
4084 allocated = map->m_len;
4085 map->m_len = allocated;
4086 goto out2;
4087 }
4088 /* buffered IO case */
4089 /*
4090 * repeat fallocate creation request
4091 * we already have an unwritten extent
4092 */
4093 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4094 map->m_flags |= EXT4_MAP_UNWRITTEN;
4095 goto map_out;
4096 }
4097
4098 /* buffered READ or buffered write_begin() lookup */
4099 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4100 /*
4101 * We have blocks reserved already. We
4102 * return allocated blocks so that delalloc
4103 * won't do block reservation for us. But
4104 * the buffer head will be unmapped so that
4105 * a read from the block returns 0s.
4106 */
4107 map->m_flags |= EXT4_MAP_UNWRITTEN;
4108 goto out1;
4109 }
4110
4111 /* buffered write, writepage time, convert*/
4112 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4113 if (ret >= 0)
4114 ext4_update_inode_fsync_trans(handle, inode, 1);
4115 out:
4116 if (ret <= 0) {
4117 err = ret;
4118 goto out2;
4119 } else
4120 allocated = ret;
4121 map->m_flags |= EXT4_MAP_NEW;
4122 /*
4123 * if we allocated more blocks than requested
4124 * we need to make sure we unmap the extra block
4125 * allocated. The actual needed block will get
4126 * unmapped later when we find the buffer_head marked
4127 * new.
4128 */
4129 if (allocated > map->m_len) {
4130 clean_bdev_aliases(inode->i_sb->s_bdev, newblock + map->m_len,
4131 allocated - map->m_len);
4132 allocated = map->m_len;
4133 }
4134 map->m_len = allocated;
4135
4136 /*
4137 * If we have done fallocate with the offset that is already
4138 * delayed allocated, we would have block reservation
4139 * and quota reservation done in the delayed write path.
4140 * But fallocate would have already updated quota and block
4141 * count for this offset. So cancel these reservation
4142 */
4143 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4144 unsigned int reserved_clusters;
4145 reserved_clusters = get_reserved_cluster_alloc(inode,
4146 map->m_lblk, map->m_len);
4147 if (reserved_clusters)
4148 ext4_da_update_reserve_space(inode,
4149 reserved_clusters,
4150 0);
4151 }
4152
4153 map_out:
4154 map->m_flags |= EXT4_MAP_MAPPED;
4155 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4156 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4157 map->m_len);
4158 if (err < 0)
4159 goto out2;
4160 }
4161 out1:
4162 if (allocated > map->m_len)
4163 allocated = map->m_len;
4164 ext4_ext_show_leaf(inode, path);
4165 map->m_pblk = newblock;
4166 map->m_len = allocated;
4167 out2:
4168 return err ? err : allocated;
4169 }
4170
4171 /*
4172 * get_implied_cluster_alloc - check to see if the requested
4173 * allocation (in the map structure) overlaps with a cluster already
4174 * allocated in an extent.
4175 * @sb The filesystem superblock structure
4176 * @map The requested lblk->pblk mapping
4177 * @ex The extent structure which might contain an implied
4178 * cluster allocation
4179 *
4180 * This function is called by ext4_ext_map_blocks() after we failed to
4181 * find blocks that were already in the inode's extent tree. Hence,
4182 * we know that the beginning of the requested region cannot overlap
4183 * the extent from the inode's extent tree. There are three cases we
4184 * want to catch. The first is this case:
4185 *
4186 * |--- cluster # N--|
4187 * |--- extent ---| |---- requested region ---|
4188 * |==========|
4189 *
4190 * The second case that we need to test for is this one:
4191 *
4192 * |--------- cluster # N ----------------|
4193 * |--- requested region --| |------- extent ----|
4194 * |=======================|
4195 *
4196 * The third case is when the requested region lies between two extents
4197 * within the same cluster:
4198 * |------------- cluster # N-------------|
4199 * |----- ex -----| |---- ex_right ----|
4200 * |------ requested region ------|
4201 * |================|
4202 *
4203 * In each of the above cases, we need to set the map->m_pblk and
4204 * map->m_len so it corresponds to the return the extent labelled as
4205 * "|====|" from cluster #N, since it is already in use for data in
4206 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4207 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4208 * as a new "allocated" block region. Otherwise, we will return 0 and
4209 * ext4_ext_map_blocks() will then allocate one or more new clusters
4210 * by calling ext4_mb_new_blocks().
4211 */
4212 static int get_implied_cluster_alloc(struct super_block *sb,
4213 struct ext4_map_blocks *map,
4214 struct ext4_extent *ex,
4215 struct ext4_ext_path *path)
4216 {
4217 struct ext4_sb_info *sbi = EXT4_SB(sb);
4218 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4219 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4220 ext4_lblk_t rr_cluster_start;
4221 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4222 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4223 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4224
4225 /* The extent passed in that we are trying to match */
4226 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4227 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4228
4229 /* The requested region passed into ext4_map_blocks() */
4230 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4231
4232 if ((rr_cluster_start == ex_cluster_end) ||
4233 (rr_cluster_start == ex_cluster_start)) {
4234 if (rr_cluster_start == ex_cluster_end)
4235 ee_start += ee_len - 1;
4236 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4237 map->m_len = min(map->m_len,
4238 (unsigned) sbi->s_cluster_ratio - c_offset);
4239 /*
4240 * Check for and handle this case:
4241 *
4242 * |--------- cluster # N-------------|
4243 * |------- extent ----|
4244 * |--- requested region ---|
4245 * |===========|
4246 */
4247
4248 if (map->m_lblk < ee_block)
4249 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4250
4251 /*
4252 * Check for the case where there is already another allocated
4253 * block to the right of 'ex' but before the end of the cluster.
4254 *
4255 * |------------- cluster # N-------------|
4256 * |----- ex -----| |---- ex_right ----|
4257 * |------ requested region ------|
4258 * |================|
4259 */
4260 if (map->m_lblk > ee_block) {
4261 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4262 map->m_len = min(map->m_len, next - map->m_lblk);
4263 }
4264
4265 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4266 return 1;
4267 }
4268
4269 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4270 return 0;
4271 }
4272
4273
4274 /*
4275 * Block allocation/map/preallocation routine for extents based files
4276 *
4277 *
4278 * Need to be called with
4279 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4280 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4281 *
4282 * return > 0, number of of blocks already mapped/allocated
4283 * if create == 0 and these are pre-allocated blocks
4284 * buffer head is unmapped
4285 * otherwise blocks are mapped
4286 *
4287 * return = 0, if plain look up failed (blocks have not been allocated)
4288 * buffer head is unmapped
4289 *
4290 * return < 0, error case.
4291 */
4292 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4293 struct ext4_map_blocks *map, int flags)
4294 {
4295 struct ext4_ext_path *path = NULL;
4296 struct ext4_extent newex, *ex, *ex2;
4297 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4298 ext4_fsblk_t newblock = 0;
4299 int free_on_err = 0, err = 0, depth, ret;
4300 unsigned int allocated = 0, offset = 0;
4301 unsigned int allocated_clusters = 0;
4302 struct ext4_allocation_request ar;
4303 ext4_lblk_t cluster_offset;
4304 bool map_from_cluster = false;
4305
4306 ext_debug("blocks %u/%u requested for inode %lu\n",
4307 map->m_lblk, map->m_len, inode->i_ino);
4308 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4309
4310 /* find extent for this block */
4311 path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4312 if (IS_ERR(path)) {
4313 err = PTR_ERR(path);
4314 path = NULL;
4315 goto out2;
4316 }
4317
4318 depth = ext_depth(inode);
4319
4320 /*
4321 * consistent leaf must not be empty;
4322 * this situation is possible, though, _during_ tree modification;
4323 * this is why assert can't be put in ext4_find_extent()
4324 */
4325 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4326 EXT4_ERROR_INODE(inode, "bad extent address "
4327 "lblock: %lu, depth: %d pblock %lld",
4328 (unsigned long) map->m_lblk, depth,
4329 path[depth].p_block);
4330 err = -EFSCORRUPTED;
4331 goto out2;
4332 }
4333
4334 ex = path[depth].p_ext;
4335 if (ex) {
4336 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4337 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4338 unsigned short ee_len;
4339
4340
4341 /*
4342 * unwritten extents are treated as holes, except that
4343 * we split out initialized portions during a write.
4344 */
4345 ee_len = ext4_ext_get_actual_len(ex);
4346
4347 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4348
4349 /* if found extent covers block, simply return it */
4350 if (in_range(map->m_lblk, ee_block, ee_len)) {
4351 newblock = map->m_lblk - ee_block + ee_start;
4352 /* number of remaining blocks in the extent */
4353 allocated = ee_len - (map->m_lblk - ee_block);
4354 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4355 ee_block, ee_len, newblock);
4356
4357 /*
4358 * If the extent is initialized check whether the
4359 * caller wants to convert it to unwritten.
4360 */
4361 if ((!ext4_ext_is_unwritten(ex)) &&
4362 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4363 allocated = convert_initialized_extent(
4364 handle, inode, map, &path,
4365 allocated);
4366 goto out2;
4367 } else if (!ext4_ext_is_unwritten(ex))
4368 goto out;
4369
4370 ret = ext4_ext_handle_unwritten_extents(
4371 handle, inode, map, &path, flags,
4372 allocated, newblock);
4373 if (ret < 0)
4374 err = ret;
4375 else
4376 allocated = ret;
4377 goto out2;
4378 }
4379 }
4380
4381 /*
4382 * requested block isn't allocated yet;
4383 * we couldn't try to create block if create flag is zero
4384 */
4385 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4386 ext4_lblk_t hole_start, hole_len;
4387
4388 hole_start = map->m_lblk;
4389 hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4390 /*
4391 * put just found gap into cache to speed up
4392 * subsequent requests
4393 */
4394 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4395
4396 /* Update hole_len to reflect hole size after map->m_lblk */
4397 if (hole_start != map->m_lblk)
4398 hole_len -= map->m_lblk - hole_start;
4399 map->m_pblk = 0;
4400 map->m_len = min_t(unsigned int, map->m_len, hole_len);
4401
4402 goto out2;
4403 }
4404
4405 /*
4406 * Okay, we need to do block allocation.
4407 */
4408 newex.ee_block = cpu_to_le32(map->m_lblk);
4409 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4410
4411 /*
4412 * If we are doing bigalloc, check to see if the extent returned
4413 * by ext4_find_extent() implies a cluster we can use.
4414 */
4415 if (cluster_offset && ex &&
4416 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4417 ar.len = allocated = map->m_len;
4418 newblock = map->m_pblk;
4419 map_from_cluster = true;
4420 goto got_allocated_blocks;
4421 }
4422
4423 /* find neighbour allocated blocks */
4424 ar.lleft = map->m_lblk;
4425 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4426 if (err)
4427 goto out2;
4428 ar.lright = map->m_lblk;
4429 ex2 = NULL;
4430 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4431 if (err)
4432 goto out2;
4433
4434 /* Check if the extent after searching to the right implies a
4435 * cluster we can use. */
4436 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4437 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4438 ar.len = allocated = map->m_len;
4439 newblock = map->m_pblk;
4440 map_from_cluster = true;
4441 goto got_allocated_blocks;
4442 }
4443
4444 /*
4445 * See if request is beyond maximum number of blocks we can have in
4446 * a single extent. For an initialized extent this limit is
4447 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4448 * EXT_UNWRITTEN_MAX_LEN.
4449 */
4450 if (map->m_len > EXT_INIT_MAX_LEN &&
4451 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4452 map->m_len = EXT_INIT_MAX_LEN;
4453 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4454 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4455 map->m_len = EXT_UNWRITTEN_MAX_LEN;
4456
4457 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4458 newex.ee_len = cpu_to_le16(map->m_len);
4459 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4460 if (err)
4461 allocated = ext4_ext_get_actual_len(&newex);
4462 else
4463 allocated = map->m_len;
4464
4465 /* allocate new block */
4466 ar.inode = inode;
4467 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4468 ar.logical = map->m_lblk;
4469 /*
4470 * We calculate the offset from the beginning of the cluster
4471 * for the logical block number, since when we allocate a
4472 * physical cluster, the physical block should start at the
4473 * same offset from the beginning of the cluster. This is
4474 * needed so that future calls to get_implied_cluster_alloc()
4475 * work correctly.
4476 */
4477 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4478 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4479 ar.goal -= offset;
4480 ar.logical -= offset;
4481 if (S_ISREG(inode->i_mode))
4482 ar.flags = EXT4_MB_HINT_DATA;
4483 else
4484 /* disable in-core preallocation for non-regular files */
4485 ar.flags = 0;
4486 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4487 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4488 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4489 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4490 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4491 ar.flags |= EXT4_MB_USE_RESERVED;
4492 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4493 if (!newblock)
4494 goto out2;
4495 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4496 ar.goal, newblock, allocated);
4497 free_on_err = 1;
4498 allocated_clusters = ar.len;
4499 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4500 if (ar.len > allocated)
4501 ar.len = allocated;
4502
4503 got_allocated_blocks:
4504 /* try to insert new extent into found leaf and return */
4505 ext4_ext_store_pblock(&newex, newblock + offset);
4506 newex.ee_len = cpu_to_le16(ar.len);
4507 /* Mark unwritten */
4508 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4509 ext4_ext_mark_unwritten(&newex);
4510 map->m_flags |= EXT4_MAP_UNWRITTEN;
4511 }
4512
4513 err = 0;
4514 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4515 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4516 path, ar.len);
4517 if (!err)
4518 err = ext4_ext_insert_extent(handle, inode, &path,
4519 &newex, flags);
4520
4521 if (err && free_on_err) {
4522 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4523 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4524 /* free data blocks we just allocated */
4525 /* not a good idea to call discard here directly,
4526 * but otherwise we'd need to call it every free() */
4527 ext4_discard_preallocations(inode);
4528 ext4_free_blocks(handle, inode, NULL, newblock,
4529 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4530 goto out2;
4531 }
4532
4533 /* previous routine could use block we allocated */
4534 newblock = ext4_ext_pblock(&newex);
4535 allocated = ext4_ext_get_actual_len(&newex);
4536 if (allocated > map->m_len)
4537 allocated = map->m_len;
4538 map->m_flags |= EXT4_MAP_NEW;
4539
4540 /*
4541 * Update reserved blocks/metadata blocks after successful
4542 * block allocation which had been deferred till now.
4543 */
4544 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4545 unsigned int reserved_clusters;
4546 /*
4547 * Check how many clusters we had reserved this allocated range
4548 */
4549 reserved_clusters = get_reserved_cluster_alloc(inode,
4550 map->m_lblk, allocated);
4551 if (!map_from_cluster) {
4552 BUG_ON(allocated_clusters < reserved_clusters);
4553 if (reserved_clusters < allocated_clusters) {
4554 struct ext4_inode_info *ei = EXT4_I(inode);
4555 int reservation = allocated_clusters -
4556 reserved_clusters;
4557 /*
4558 * It seems we claimed few clusters outside of
4559 * the range of this allocation. We should give
4560 * it back to the reservation pool. This can
4561 * happen in the following case:
4562 *
4563 * * Suppose s_cluster_ratio is 4 (i.e., each
4564 * cluster has 4 blocks. Thus, the clusters
4565 * are [0-3],[4-7],[8-11]...
4566 * * First comes delayed allocation write for
4567 * logical blocks 10 & 11. Since there were no
4568 * previous delayed allocated blocks in the
4569 * range [8-11], we would reserve 1 cluster
4570 * for this write.
4571 * * Next comes write for logical blocks 3 to 8.
4572 * In this case, we will reserve 2 clusters
4573 * (for [0-3] and [4-7]; and not for [8-11] as
4574 * that range has a delayed allocated blocks.
4575 * Thus total reserved clusters now becomes 3.
4576 * * Now, during the delayed allocation writeout
4577 * time, we will first write blocks [3-8] and
4578 * allocate 3 clusters for writing these
4579 * blocks. Also, we would claim all these
4580 * three clusters above.
4581 * * Now when we come here to writeout the
4582 * blocks [10-11], we would expect to claim
4583 * the reservation of 1 cluster we had made
4584 * (and we would claim it since there are no
4585 * more delayed allocated blocks in the range
4586 * [8-11]. But our reserved cluster count had
4587 * already gone to 0.
4588 *
4589 * Thus, at the step 4 above when we determine
4590 * that there are still some unwritten delayed
4591 * allocated blocks outside of our current
4592 * block range, we should increment the
4593 * reserved clusters count so that when the
4594 * remaining blocks finally gets written, we
4595 * could claim them.
4596 */
4597 dquot_reserve_block(inode,
4598 EXT4_C2B(sbi, reservation));
4599 spin_lock(&ei->i_block_reservation_lock);
4600 ei->i_reserved_data_blocks += reservation;
4601 spin_unlock(&ei->i_block_reservation_lock);
4602 }
4603 /*
4604 * We will claim quota for all newly allocated blocks.
4605 * We're updating the reserved space *after* the
4606 * correction above so we do not accidentally free
4607 * all the metadata reservation because we might
4608 * actually need it later on.
4609 */
4610 ext4_da_update_reserve_space(inode, allocated_clusters,
4611 1);
4612 }
4613 }
4614
4615 /*
4616 * Cache the extent and update transaction to commit on fdatasync only
4617 * when it is _not_ an unwritten extent.
4618 */
4619 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4620 ext4_update_inode_fsync_trans(handle, inode, 1);
4621 else
4622 ext4_update_inode_fsync_trans(handle, inode, 0);
4623 out:
4624 if (allocated > map->m_len)
4625 allocated = map->m_len;
4626 ext4_ext_show_leaf(inode, path);
4627 map->m_flags |= EXT4_MAP_MAPPED;
4628 map->m_pblk = newblock;
4629 map->m_len = allocated;
4630 out2:
4631 ext4_ext_drop_refs(path);
4632 kfree(path);
4633
4634 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4635 err ? err : allocated);
4636 return err ? err : allocated;
4637 }
4638
4639 int ext4_ext_truncate(handle_t *handle, struct inode *inode)
4640 {
4641 struct super_block *sb = inode->i_sb;
4642 ext4_lblk_t last_block;
4643 int err = 0;
4644
4645 /*
4646 * TODO: optimization is possible here.
4647 * Probably we need not scan at all,
4648 * because page truncation is enough.
4649 */
4650
4651 /* we have to know where to truncate from in crash case */
4652 EXT4_I(inode)->i_disksize = inode->i_size;
4653 err = ext4_mark_inode_dirty(handle, inode);
4654 if (err)
4655 return err;
4656
4657 last_block = (inode->i_size + sb->s_blocksize - 1)
4658 >> EXT4_BLOCK_SIZE_BITS(sb);
4659 retry:
4660 err = ext4_es_remove_extent(inode, last_block,
4661 EXT_MAX_BLOCKS - last_block);
4662 if (err == -ENOMEM) {
4663 cond_resched();
4664 congestion_wait(BLK_RW_ASYNC, HZ/50);
4665 goto retry;
4666 }
4667 if (err)
4668 return err;
4669 return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4670 }
4671
4672 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4673 ext4_lblk_t len, loff_t new_size,
4674 int flags)
4675 {
4676 struct inode *inode = file_inode(file);
4677 handle_t *handle;
4678 int ret = 0;
4679 int ret2 = 0;
4680 int retries = 0;
4681 int depth = 0;
4682 struct ext4_map_blocks map;
4683 unsigned int credits;
4684 loff_t epos;
4685
4686 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4687 map.m_lblk = offset;
4688 map.m_len = len;
4689 /*
4690 * Don't normalize the request if it can fit in one extent so
4691 * that it doesn't get unnecessarily split into multiple
4692 * extents.
4693 */
4694 if (len <= EXT_UNWRITTEN_MAX_LEN)
4695 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4696
4697 /*
4698 * credits to insert 1 extent into extent tree
4699 */
4700 credits = ext4_chunk_trans_blocks(inode, len);
4701 depth = ext_depth(inode);
4702
4703 retry:
4704 while (ret >= 0 && len) {
4705 /*
4706 * Recalculate credits when extent tree depth changes.
4707 */
4708 if (depth != ext_depth(inode)) {
4709 credits = ext4_chunk_trans_blocks(inode, len);
4710 depth = ext_depth(inode);
4711 }
4712
4713 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4714 credits);
4715 if (IS_ERR(handle)) {
4716 ret = PTR_ERR(handle);
4717 break;
4718 }
4719 ret = ext4_map_blocks(handle, inode, &map, flags);
4720 if (ret <= 0) {
4721 ext4_debug("inode #%lu: block %u: len %u: "
4722 "ext4_ext_map_blocks returned %d",
4723 inode->i_ino, map.m_lblk,
4724 map.m_len, ret);
4725 ext4_mark_inode_dirty(handle, inode);
4726 ret2 = ext4_journal_stop(handle);
4727 break;
4728 }
4729 map.m_lblk += ret;
4730 map.m_len = len = len - ret;
4731 epos = (loff_t)map.m_lblk << inode->i_blkbits;
4732 inode->i_ctime = current_time(inode);
4733 if (new_size) {
4734 if (epos > new_size)
4735 epos = new_size;
4736 if (ext4_update_inode_size(inode, epos) & 0x1)
4737 inode->i_mtime = inode->i_ctime;
4738 } else {
4739 if (epos > inode->i_size)
4740 ext4_set_inode_flag(inode,
4741 EXT4_INODE_EOFBLOCKS);
4742 }
4743 ext4_mark_inode_dirty(handle, inode);
4744 ext4_update_inode_fsync_trans(handle, inode, 1);
4745 ret2 = ext4_journal_stop(handle);
4746 if (ret2)
4747 break;
4748 }
4749 if (ret == -ENOSPC &&
4750 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4751 ret = 0;
4752 goto retry;
4753 }
4754
4755 return ret > 0 ? ret2 : ret;
4756 }
4757
4758 static long ext4_zero_range(struct file *file, loff_t offset,
4759 loff_t len, int mode)
4760 {
4761 struct inode *inode = file_inode(file);
4762 handle_t *handle = NULL;
4763 unsigned int max_blocks;
4764 loff_t new_size = 0;
4765 int ret = 0;
4766 int flags;
4767 int credits;
4768 int partial_begin, partial_end;
4769 loff_t start, end;
4770 ext4_lblk_t lblk;
4771 unsigned int blkbits = inode->i_blkbits;
4772
4773 trace_ext4_zero_range(inode, offset, len, mode);
4774
4775 if (!S_ISREG(inode->i_mode))
4776 return -EINVAL;
4777
4778 /* Call ext4_force_commit to flush all data in case of data=journal. */
4779 if (ext4_should_journal_data(inode)) {
4780 ret = ext4_force_commit(inode->i_sb);
4781 if (ret)
4782 return ret;
4783 }
4784
4785 /*
4786 * Round up offset. This is not fallocate, we neet to zero out
4787 * blocks, so convert interior block aligned part of the range to
4788 * unwritten and possibly manually zero out unaligned parts of the
4789 * range.
4790 */
4791 start = round_up(offset, 1 << blkbits);
4792 end = round_down((offset + len), 1 << blkbits);
4793
4794 if (start < offset || end > offset + len)
4795 return -EINVAL;
4796 partial_begin = offset & ((1 << blkbits) - 1);
4797 partial_end = (offset + len) & ((1 << blkbits) - 1);
4798
4799 lblk = start >> blkbits;
4800 max_blocks = (end >> blkbits);
4801 if (max_blocks < lblk)
4802 max_blocks = 0;
4803 else
4804 max_blocks -= lblk;
4805
4806 inode_lock(inode);
4807
4808 /*
4809 * Indirect files do not support unwritten extnets
4810 */
4811 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4812 ret = -EOPNOTSUPP;
4813 goto out_mutex;
4814 }
4815
4816 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4817 (offset + len > i_size_read(inode) ||
4818 offset + len > EXT4_I(inode)->i_disksize)) {
4819 new_size = offset + len;
4820 ret = inode_newsize_ok(inode, new_size);
4821 if (ret)
4822 goto out_mutex;
4823 }
4824
4825 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4826 if (mode & FALLOC_FL_KEEP_SIZE)
4827 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4828
4829 /* Wait all existing dio workers, newcomers will block on i_mutex */
4830 ext4_inode_block_unlocked_dio(inode);
4831 inode_dio_wait(inode);
4832
4833 /* Preallocate the range including the unaligned edges */
4834 if (partial_begin || partial_end) {
4835 ret = ext4_alloc_file_blocks(file,
4836 round_down(offset, 1 << blkbits) >> blkbits,
4837 (round_up((offset + len), 1 << blkbits) -
4838 round_down(offset, 1 << blkbits)) >> blkbits,
4839 new_size, flags);
4840 if (ret)
4841 goto out_dio;
4842
4843 }
4844
4845 /* Zero range excluding the unaligned edges */
4846 if (max_blocks > 0) {
4847 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4848 EXT4_EX_NOCACHE);
4849
4850 /*
4851 * Prevent page faults from reinstantiating pages we have
4852 * released from page cache.
4853 */
4854 down_write(&EXT4_I(inode)->i_mmap_sem);
4855 ret = ext4_update_disksize_before_punch(inode, offset, len);
4856 if (ret) {
4857 up_write(&EXT4_I(inode)->i_mmap_sem);
4858 goto out_dio;
4859 }
4860 /* Now release the pages and zero block aligned part of pages */
4861 truncate_pagecache_range(inode, start, end - 1);
4862 inode->i_mtime = inode->i_ctime = current_time(inode);
4863
4864 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4865 flags);
4866 up_write(&EXT4_I(inode)->i_mmap_sem);
4867 if (ret)
4868 goto out_dio;
4869 }
4870 if (!partial_begin && !partial_end)
4871 goto out_dio;
4872
4873 /*
4874 * In worst case we have to writeout two nonadjacent unwritten
4875 * blocks and update the inode
4876 */
4877 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4878 if (ext4_should_journal_data(inode))
4879 credits += 2;
4880 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4881 if (IS_ERR(handle)) {
4882 ret = PTR_ERR(handle);
4883 ext4_std_error(inode->i_sb, ret);
4884 goto out_dio;
4885 }
4886
4887 inode->i_mtime = inode->i_ctime = current_time(inode);
4888 if (new_size) {
4889 ext4_update_inode_size(inode, new_size);
4890 } else {
4891 /*
4892 * Mark that we allocate beyond EOF so the subsequent truncate
4893 * can proceed even if the new size is the same as i_size.
4894 */
4895 if ((offset + len) > i_size_read(inode))
4896 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4897 }
4898 ext4_mark_inode_dirty(handle, inode);
4899
4900 /* Zero out partial block at the edges of the range */
4901 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4902 if (ret >= 0)
4903 ext4_update_inode_fsync_trans(handle, inode, 1);
4904
4905 if (file->f_flags & O_SYNC)
4906 ext4_handle_sync(handle);
4907
4908 ext4_journal_stop(handle);
4909 out_dio:
4910 ext4_inode_resume_unlocked_dio(inode);
4911 out_mutex:
4912 inode_unlock(inode);
4913 return ret;
4914 }
4915
4916 /*
4917 * preallocate space for a file. This implements ext4's fallocate file
4918 * operation, which gets called from sys_fallocate system call.
4919 * For block-mapped files, posix_fallocate should fall back to the method
4920 * of writing zeroes to the required new blocks (the same behavior which is
4921 * expected for file systems which do not support fallocate() system call).
4922 */
4923 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4924 {
4925 struct inode *inode = file_inode(file);
4926 loff_t new_size = 0;
4927 unsigned int max_blocks;
4928 int ret = 0;
4929 int flags;
4930 ext4_lblk_t lblk;
4931 unsigned int blkbits = inode->i_blkbits;
4932
4933 /*
4934 * Encrypted inodes can't handle collapse range or insert
4935 * range since we would need to re-encrypt blocks with a
4936 * different IV or XTS tweak (which are based on the logical
4937 * block number).
4938 *
4939 * XXX It's not clear why zero range isn't working, but we'll
4940 * leave it disabled for encrypted inodes for now. This is a
4941 * bug we should fix....
4942 */
4943 if (ext4_encrypted_inode(inode) &&
4944 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4945 FALLOC_FL_ZERO_RANGE)))
4946 return -EOPNOTSUPP;
4947
4948 /* Return error if mode is not supported */
4949 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4950 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4951 FALLOC_FL_INSERT_RANGE))
4952 return -EOPNOTSUPP;
4953
4954 if (mode & FALLOC_FL_PUNCH_HOLE)
4955 return ext4_punch_hole(inode, offset, len);
4956
4957 ret = ext4_convert_inline_data(inode);
4958 if (ret)
4959 return ret;
4960
4961 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4962 return ext4_collapse_range(inode, offset, len);
4963
4964 if (mode & FALLOC_FL_INSERT_RANGE)
4965 return ext4_insert_range(inode, offset, len);
4966
4967 if (mode & FALLOC_FL_ZERO_RANGE)
4968 return ext4_zero_range(file, offset, len, mode);
4969
4970 trace_ext4_fallocate_enter(inode, offset, len, mode);
4971 lblk = offset >> blkbits;
4972
4973 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4974 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4975 if (mode & FALLOC_FL_KEEP_SIZE)
4976 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4977
4978 inode_lock(inode);
4979
4980 /*
4981 * We only support preallocation for extent-based files only
4982 */
4983 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4984 ret = -EOPNOTSUPP;
4985 goto out;
4986 }
4987
4988 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4989 (offset + len > i_size_read(inode) ||
4990 offset + len > EXT4_I(inode)->i_disksize)) {
4991 new_size = offset + len;
4992 ret = inode_newsize_ok(inode, new_size);
4993 if (ret)
4994 goto out;
4995 }
4996
4997 /* Wait all existing dio workers, newcomers will block on i_mutex */
4998 ext4_inode_block_unlocked_dio(inode);
4999 inode_dio_wait(inode);
5000
5001 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags);
5002 ext4_inode_resume_unlocked_dio(inode);
5003 if (ret)
5004 goto out;
5005
5006 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
5007 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5008 EXT4_I(inode)->i_sync_tid);
5009 }
5010 out:
5011 inode_unlock(inode);
5012 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
5013 return ret;
5014 }
5015
5016 /*
5017 * This function convert a range of blocks to written extents
5018 * The caller of this function will pass the start offset and the size.
5019 * all unwritten extents within this range will be converted to
5020 * written extents.
5021 *
5022 * This function is called from the direct IO end io call back
5023 * function, to convert the fallocated extents after IO is completed.
5024 * Returns 0 on success.
5025 */
5026 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
5027 loff_t offset, ssize_t len)
5028 {
5029 unsigned int max_blocks;
5030 int ret = 0;
5031 int ret2 = 0;
5032 struct ext4_map_blocks map;
5033 unsigned int credits, blkbits = inode->i_blkbits;
5034
5035 map.m_lblk = offset >> blkbits;
5036 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
5037
5038 /*
5039 * This is somewhat ugly but the idea is clear: When transaction is
5040 * reserved, everything goes into it. Otherwise we rather start several
5041 * smaller transactions for conversion of each extent separately.
5042 */
5043 if (handle) {
5044 handle = ext4_journal_start_reserved(handle,
5045 EXT4_HT_EXT_CONVERT);
5046 if (IS_ERR(handle))
5047 return PTR_ERR(handle);
5048 credits = 0;
5049 } else {
5050 /*
5051 * credits to insert 1 extent into extent tree
5052 */
5053 credits = ext4_chunk_trans_blocks(inode, max_blocks);
5054 }
5055 while (ret >= 0 && ret < max_blocks) {
5056 map.m_lblk += ret;
5057 map.m_len = (max_blocks -= ret);
5058 if (credits) {
5059 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5060 credits);
5061 if (IS_ERR(handle)) {
5062 ret = PTR_ERR(handle);
5063 break;
5064 }
5065 }
5066 ret = ext4_map_blocks(handle, inode, &map,
5067 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5068 if (ret <= 0)
5069 ext4_warning(inode->i_sb,
5070 "inode #%lu: block %u: len %u: "
5071 "ext4_ext_map_blocks returned %d",
5072 inode->i_ino, map.m_lblk,
5073 map.m_len, ret);
5074 ext4_mark_inode_dirty(handle, inode);
5075 if (credits)
5076 ret2 = ext4_journal_stop(handle);
5077 if (ret <= 0 || ret2)
5078 break;
5079 }
5080 if (!credits)
5081 ret2 = ext4_journal_stop(handle);
5082 return ret > 0 ? ret2 : ret;
5083 }
5084
5085 /*
5086 * If newes is not existing extent (newes->ec_pblk equals zero) find
5087 * delayed extent at start of newes and update newes accordingly and
5088 * return start of the next delayed extent.
5089 *
5090 * If newes is existing extent (newes->ec_pblk is not equal zero)
5091 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5092 * extent found. Leave newes unmodified.
5093 */
5094 static int ext4_find_delayed_extent(struct inode *inode,
5095 struct extent_status *newes)
5096 {
5097 struct extent_status es;
5098 ext4_lblk_t block, next_del;
5099
5100 if (newes->es_pblk == 0) {
5101 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5102 newes->es_lblk + newes->es_len - 1, &es);
5103
5104 /*
5105 * No extent in extent-tree contains block @newes->es_pblk,
5106 * then the block may stay in 1)a hole or 2)delayed-extent.
5107 */
5108 if (es.es_len == 0)
5109 /* A hole found. */
5110 return 0;
5111
5112 if (es.es_lblk > newes->es_lblk) {
5113 /* A hole found. */
5114 newes->es_len = min(es.es_lblk - newes->es_lblk,
5115 newes->es_len);
5116 return 0;
5117 }
5118
5119 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5120 }
5121
5122 block = newes->es_lblk + newes->es_len;
5123 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5124 if (es.es_len == 0)
5125 next_del = EXT_MAX_BLOCKS;
5126 else
5127 next_del = es.es_lblk;
5128
5129 return next_del;
5130 }
5131 /* fiemap flags we can handle specified here */
5132 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5133
5134 static int ext4_xattr_fiemap(struct inode *inode,
5135 struct fiemap_extent_info *fieinfo)
5136 {
5137 __u64 physical = 0;
5138 __u64 length;
5139 __u32 flags = FIEMAP_EXTENT_LAST;
5140 int blockbits = inode->i_sb->s_blocksize_bits;
5141 int error = 0;
5142
5143 /* in-inode? */
5144 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5145 struct ext4_iloc iloc;
5146 int offset; /* offset of xattr in inode */
5147
5148 error = ext4_get_inode_loc(inode, &iloc);
5149 if (error)
5150 return error;
5151 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5152 offset = EXT4_GOOD_OLD_INODE_SIZE +
5153 EXT4_I(inode)->i_extra_isize;
5154 physical += offset;
5155 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5156 flags |= FIEMAP_EXTENT_DATA_INLINE;
5157 brelse(iloc.bh);
5158 } else { /* external block */
5159 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5160 length = inode->i_sb->s_blocksize;
5161 }
5162
5163 if (physical)
5164 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5165 length, flags);
5166 return (error < 0 ? error : 0);
5167 }
5168
5169 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5170 __u64 start, __u64 len)
5171 {
5172 ext4_lblk_t start_blk;
5173 int error = 0;
5174
5175 if (ext4_has_inline_data(inode)) {
5176 int has_inline = 1;
5177
5178 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5179 start, len);
5180
5181 if (has_inline)
5182 return error;
5183 }
5184
5185 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5186 error = ext4_ext_precache(inode);
5187 if (error)
5188 return error;
5189 }
5190
5191 /* fallback to generic here if not in extents fmt */
5192 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5193 return generic_block_fiemap(inode, fieinfo, start, len,
5194 ext4_get_block);
5195
5196 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5197 return -EBADR;
5198
5199 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5200 error = ext4_xattr_fiemap(inode, fieinfo);
5201 } else {
5202 ext4_lblk_t len_blks;
5203 __u64 last_blk;
5204
5205 start_blk = start >> inode->i_sb->s_blocksize_bits;
5206 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5207 if (last_blk >= EXT_MAX_BLOCKS)
5208 last_blk = EXT_MAX_BLOCKS-1;
5209 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5210
5211 /*
5212 * Walk the extent tree gathering extent information
5213 * and pushing extents back to the user.
5214 */
5215 error = ext4_fill_fiemap_extents(inode, start_blk,
5216 len_blks, fieinfo);
5217 }
5218 return error;
5219 }
5220
5221 /*
5222 * ext4_access_path:
5223 * Function to access the path buffer for marking it dirty.
5224 * It also checks if there are sufficient credits left in the journal handle
5225 * to update path.
5226 */
5227 static int
5228 ext4_access_path(handle_t *handle, struct inode *inode,
5229 struct ext4_ext_path *path)
5230 {
5231 int credits, err;
5232
5233 if (!ext4_handle_valid(handle))
5234 return 0;
5235
5236 /*
5237 * Check if need to extend journal credits
5238 * 3 for leaf, sb, and inode plus 2 (bmap and group
5239 * descriptor) for each block group; assume two block
5240 * groups
5241 */
5242 if (handle->h_buffer_credits < 7) {
5243 credits = ext4_writepage_trans_blocks(inode);
5244 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5245 /* EAGAIN is success */
5246 if (err && err != -EAGAIN)
5247 return err;
5248 }
5249
5250 err = ext4_ext_get_access(handle, inode, path);
5251 return err;
5252 }
5253
5254 /*
5255 * ext4_ext_shift_path_extents:
5256 * Shift the extents of a path structure lying between path[depth].p_ext
5257 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5258 * if it is right shift or left shift operation.
5259 */
5260 static int
5261 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5262 struct inode *inode, handle_t *handle,
5263 enum SHIFT_DIRECTION SHIFT)
5264 {
5265 int depth, err = 0;
5266 struct ext4_extent *ex_start, *ex_last;
5267 bool update = 0;
5268 depth = path->p_depth;
5269
5270 while (depth >= 0) {
5271 if (depth == path->p_depth) {
5272 ex_start = path[depth].p_ext;
5273 if (!ex_start)
5274 return -EFSCORRUPTED;
5275
5276 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5277
5278 err = ext4_access_path(handle, inode, path + depth);
5279 if (err)
5280 goto out;
5281
5282 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5283 update = 1;
5284
5285 while (ex_start <= ex_last) {
5286 if (SHIFT == SHIFT_LEFT) {
5287 le32_add_cpu(&ex_start->ee_block,
5288 -shift);
5289 /* Try to merge to the left. */
5290 if ((ex_start >
5291 EXT_FIRST_EXTENT(path[depth].p_hdr))
5292 &&
5293 ext4_ext_try_to_merge_right(inode,
5294 path, ex_start - 1))
5295 ex_last--;
5296 else
5297 ex_start++;
5298 } else {
5299 le32_add_cpu(&ex_last->ee_block, shift);
5300 ext4_ext_try_to_merge_right(inode, path,
5301 ex_last);
5302 ex_last--;
5303 }
5304 }
5305 err = ext4_ext_dirty(handle, inode, path + depth);
5306 if (err)
5307 goto out;
5308
5309 if (--depth < 0 || !update)
5310 break;
5311 }
5312
5313 /* Update index too */
5314 err = ext4_access_path(handle, inode, path + depth);
5315 if (err)
5316 goto out;
5317
5318 if (SHIFT == SHIFT_LEFT)
5319 le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5320 else
5321 le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5322 err = ext4_ext_dirty(handle, inode, path + depth);
5323 if (err)
5324 goto out;
5325
5326 /* we are done if current index is not a starting index */
5327 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5328 break;
5329
5330 depth--;
5331 }
5332
5333 out:
5334 return err;
5335 }
5336
5337 /*
5338 * ext4_ext_shift_extents:
5339 * All the extents which lies in the range from @start to the last allocated
5340 * block for the @inode are shifted either towards left or right (depending
5341 * upon @SHIFT) by @shift blocks.
5342 * On success, 0 is returned, error otherwise.
5343 */
5344 static int
5345 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5346 ext4_lblk_t start, ext4_lblk_t shift,
5347 enum SHIFT_DIRECTION SHIFT)
5348 {
5349 struct ext4_ext_path *path;
5350 int ret = 0, depth;
5351 struct ext4_extent *extent;
5352 ext4_lblk_t stop, *iterator, ex_start, ex_end;
5353
5354 /* Let path point to the last extent */
5355 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5356 EXT4_EX_NOCACHE);
5357 if (IS_ERR(path))
5358 return PTR_ERR(path);
5359
5360 depth = path->p_depth;
5361 extent = path[depth].p_ext;
5362 if (!extent)
5363 goto out;
5364
5365 stop = le32_to_cpu(extent->ee_block);
5366
5367 /*
5368 * For left shifts, make sure the hole on the left is big enough to
5369 * accommodate the shift. For right shifts, make sure the last extent
5370 * won't be shifted beyond EXT_MAX_BLOCKS.
5371 */
5372 if (SHIFT == SHIFT_LEFT) {
5373 path = ext4_find_extent(inode, start - 1, &path,
5374 EXT4_EX_NOCACHE);
5375 if (IS_ERR(path))
5376 return PTR_ERR(path);
5377 depth = path->p_depth;
5378 extent = path[depth].p_ext;
5379 if (extent) {
5380 ex_start = le32_to_cpu(extent->ee_block);
5381 ex_end = le32_to_cpu(extent->ee_block) +
5382 ext4_ext_get_actual_len(extent);
5383 } else {
5384 ex_start = 0;
5385 ex_end = 0;
5386 }
5387
5388 if ((start == ex_start && shift > ex_start) ||
5389 (shift > start - ex_end)) {
5390 ret = -EINVAL;
5391 goto out;
5392 }
5393 } else {
5394 if (shift > EXT_MAX_BLOCKS -
5395 (stop + ext4_ext_get_actual_len(extent))) {
5396 ret = -EINVAL;
5397 goto out;
5398 }
5399 }
5400
5401 /*
5402 * In case of left shift, iterator points to start and it is increased
5403 * till we reach stop. In case of right shift, iterator points to stop
5404 * and it is decreased till we reach start.
5405 */
5406 if (SHIFT == SHIFT_LEFT)
5407 iterator = &start;
5408 else
5409 iterator = &stop;
5410
5411 /*
5412 * Its safe to start updating extents. Start and stop are unsigned, so
5413 * in case of right shift if extent with 0 block is reached, iterator
5414 * becomes NULL to indicate the end of the loop.
5415 */
5416 while (iterator && start <= stop) {
5417 path = ext4_find_extent(inode, *iterator, &path,
5418 EXT4_EX_NOCACHE);
5419 if (IS_ERR(path))
5420 return PTR_ERR(path);
5421 depth = path->p_depth;
5422 extent = path[depth].p_ext;
5423 if (!extent) {
5424 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5425 (unsigned long) *iterator);
5426 return -EFSCORRUPTED;
5427 }
5428 if (SHIFT == SHIFT_LEFT && *iterator >
5429 le32_to_cpu(extent->ee_block)) {
5430 /* Hole, move to the next extent */
5431 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5432 path[depth].p_ext++;
5433 } else {
5434 *iterator = ext4_ext_next_allocated_block(path);
5435 continue;
5436 }
5437 }
5438
5439 if (SHIFT == SHIFT_LEFT) {
5440 extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5441 *iterator = le32_to_cpu(extent->ee_block) +
5442 ext4_ext_get_actual_len(extent);
5443 } else {
5444 extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5445 if (le32_to_cpu(extent->ee_block) > 0)
5446 *iterator = le32_to_cpu(extent->ee_block) - 1;
5447 else
5448 /* Beginning is reached, end of the loop */
5449 iterator = NULL;
5450 /* Update path extent in case we need to stop */
5451 while (le32_to_cpu(extent->ee_block) < start)
5452 extent++;
5453 path[depth].p_ext = extent;
5454 }
5455 ret = ext4_ext_shift_path_extents(path, shift, inode,
5456 handle, SHIFT);
5457 if (ret)
5458 break;
5459 }
5460 out:
5461 ext4_ext_drop_refs(path);
5462 kfree(path);
5463 return ret;
5464 }
5465
5466 /*
5467 * ext4_collapse_range:
5468 * This implements the fallocate's collapse range functionality for ext4
5469 * Returns: 0 and non-zero on error.
5470 */
5471 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5472 {
5473 struct super_block *sb = inode->i_sb;
5474 ext4_lblk_t punch_start, punch_stop;
5475 handle_t *handle;
5476 unsigned int credits;
5477 loff_t new_size, ioffset;
5478 int ret;
5479
5480 /*
5481 * We need to test this early because xfstests assumes that a
5482 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5483 * system does not support collapse range.
5484 */
5485 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5486 return -EOPNOTSUPP;
5487
5488 /* Collapse range works only on fs block size aligned offsets. */
5489 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5490 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5491 return -EINVAL;
5492
5493 if (!S_ISREG(inode->i_mode))
5494 return -EINVAL;
5495
5496 trace_ext4_collapse_range(inode, offset, len);
5497
5498 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5499 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5500
5501 /* Call ext4_force_commit to flush all data in case of data=journal. */
5502 if (ext4_should_journal_data(inode)) {
5503 ret = ext4_force_commit(inode->i_sb);
5504 if (ret)
5505 return ret;
5506 }
5507
5508 inode_lock(inode);
5509 /*
5510 * There is no need to overlap collapse range with EOF, in which case
5511 * it is effectively a truncate operation
5512 */
5513 if (offset + len >= i_size_read(inode)) {
5514 ret = -EINVAL;
5515 goto out_mutex;
5516 }
5517
5518 /* Currently just for extent based files */
5519 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5520 ret = -EOPNOTSUPP;
5521 goto out_mutex;
5522 }
5523
5524 /* Wait for existing dio to complete */
5525 ext4_inode_block_unlocked_dio(inode);
5526 inode_dio_wait(inode);
5527
5528 /*
5529 * Prevent page faults from reinstantiating pages we have released from
5530 * page cache.
5531 */
5532 down_write(&EXT4_I(inode)->i_mmap_sem);
5533 /*
5534 * Need to round down offset to be aligned with page size boundary
5535 * for page size > block size.
5536 */
5537 ioffset = round_down(offset, PAGE_SIZE);
5538 /*
5539 * Write tail of the last page before removed range since it will get
5540 * removed from the page cache below.
5541 */
5542 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5543 if (ret)
5544 goto out_mmap;
5545 /*
5546 * Write data that will be shifted to preserve them when discarding
5547 * page cache below. We are also protected from pages becoming dirty
5548 * by i_mmap_sem.
5549 */
5550 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5551 LLONG_MAX);
5552 if (ret)
5553 goto out_mmap;
5554 truncate_pagecache(inode, ioffset);
5555
5556 credits = ext4_writepage_trans_blocks(inode);
5557 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5558 if (IS_ERR(handle)) {
5559 ret = PTR_ERR(handle);
5560 goto out_mmap;
5561 }
5562
5563 down_write(&EXT4_I(inode)->i_data_sem);
5564 ext4_discard_preallocations(inode);
5565
5566 ret = ext4_es_remove_extent(inode, punch_start,
5567 EXT_MAX_BLOCKS - punch_start);
5568 if (ret) {
5569 up_write(&EXT4_I(inode)->i_data_sem);
5570 goto out_stop;
5571 }
5572
5573 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5574 if (ret) {
5575 up_write(&EXT4_I(inode)->i_data_sem);
5576 goto out_stop;
5577 }
5578 ext4_discard_preallocations(inode);
5579
5580 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5581 punch_stop - punch_start, SHIFT_LEFT);
5582 if (ret) {
5583 up_write(&EXT4_I(inode)->i_data_sem);
5584 goto out_stop;
5585 }
5586
5587 new_size = i_size_read(inode) - len;
5588 i_size_write(inode, new_size);
5589 EXT4_I(inode)->i_disksize = new_size;
5590
5591 up_write(&EXT4_I(inode)->i_data_sem);
5592 if (IS_SYNC(inode))
5593 ext4_handle_sync(handle);
5594 inode->i_mtime = inode->i_ctime = current_time(inode);
5595 ext4_mark_inode_dirty(handle, inode);
5596 ext4_update_inode_fsync_trans(handle, inode, 1);
5597
5598 out_stop:
5599 ext4_journal_stop(handle);
5600 out_mmap:
5601 up_write(&EXT4_I(inode)->i_mmap_sem);
5602 ext4_inode_resume_unlocked_dio(inode);
5603 out_mutex:
5604 inode_unlock(inode);
5605 return ret;
5606 }
5607
5608 /*
5609 * ext4_insert_range:
5610 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5611 * The data blocks starting from @offset to the EOF are shifted by @len
5612 * towards right to create a hole in the @inode. Inode size is increased
5613 * by len bytes.
5614 * Returns 0 on success, error otherwise.
5615 */
5616 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5617 {
5618 struct super_block *sb = inode->i_sb;
5619 handle_t *handle;
5620 struct ext4_ext_path *path;
5621 struct ext4_extent *extent;
5622 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5623 unsigned int credits, ee_len;
5624 int ret = 0, depth, split_flag = 0;
5625 loff_t ioffset;
5626
5627 /*
5628 * We need to test this early because xfstests assumes that an
5629 * insert range of (0, 1) will return EOPNOTSUPP if the file
5630 * system does not support insert range.
5631 */
5632 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5633 return -EOPNOTSUPP;
5634
5635 /* Insert range works only on fs block size aligned offsets. */
5636 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5637 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5638 return -EINVAL;
5639
5640 if (!S_ISREG(inode->i_mode))
5641 return -EOPNOTSUPP;
5642
5643 trace_ext4_insert_range(inode, offset, len);
5644
5645 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5646 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5647
5648 /* Call ext4_force_commit to flush all data in case of data=journal */
5649 if (ext4_should_journal_data(inode)) {
5650 ret = ext4_force_commit(inode->i_sb);
5651 if (ret)
5652 return ret;
5653 }
5654
5655 inode_lock(inode);
5656 /* Currently just for extent based files */
5657 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5658 ret = -EOPNOTSUPP;
5659 goto out_mutex;
5660 }
5661
5662 /* Check for wrap through zero */
5663 if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5664 ret = -EFBIG;
5665 goto out_mutex;
5666 }
5667
5668 /* Offset should be less than i_size */
5669 if (offset >= i_size_read(inode)) {
5670 ret = -EINVAL;
5671 goto out_mutex;
5672 }
5673
5674 /* Wait for existing dio to complete */
5675 ext4_inode_block_unlocked_dio(inode);
5676 inode_dio_wait(inode);
5677
5678 /*
5679 * Prevent page faults from reinstantiating pages we have released from
5680 * page cache.
5681 */
5682 down_write(&EXT4_I(inode)->i_mmap_sem);
5683 /*
5684 * Need to round down to align start offset to page size boundary
5685 * for page size > block size.
5686 */
5687 ioffset = round_down(offset, PAGE_SIZE);
5688 /* Write out all dirty pages */
5689 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5690 LLONG_MAX);
5691 if (ret)
5692 goto out_mmap;
5693 truncate_pagecache(inode, ioffset);
5694
5695 credits = ext4_writepage_trans_blocks(inode);
5696 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5697 if (IS_ERR(handle)) {
5698 ret = PTR_ERR(handle);
5699 goto out_mmap;
5700 }
5701
5702 /* Expand file to avoid data loss if there is error while shifting */
5703 inode->i_size += len;
5704 EXT4_I(inode)->i_disksize += len;
5705 inode->i_mtime = inode->i_ctime = current_time(inode);
5706 ret = ext4_mark_inode_dirty(handle, inode);
5707 if (ret)
5708 goto out_stop;
5709
5710 down_write(&EXT4_I(inode)->i_data_sem);
5711 ext4_discard_preallocations(inode);
5712
5713 path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5714 if (IS_ERR(path)) {
5715 up_write(&EXT4_I(inode)->i_data_sem);
5716 goto out_stop;
5717 }
5718
5719 depth = ext_depth(inode);
5720 extent = path[depth].p_ext;
5721 if (extent) {
5722 ee_start_lblk = le32_to_cpu(extent->ee_block);
5723 ee_len = ext4_ext_get_actual_len(extent);
5724
5725 /*
5726 * If offset_lblk is not the starting block of extent, split
5727 * the extent @offset_lblk
5728 */
5729 if ((offset_lblk > ee_start_lblk) &&
5730 (offset_lblk < (ee_start_lblk + ee_len))) {
5731 if (ext4_ext_is_unwritten(extent))
5732 split_flag = EXT4_EXT_MARK_UNWRIT1 |
5733 EXT4_EXT_MARK_UNWRIT2;
5734 ret = ext4_split_extent_at(handle, inode, &path,
5735 offset_lblk, split_flag,
5736 EXT4_EX_NOCACHE |
5737 EXT4_GET_BLOCKS_PRE_IO |
5738 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5739 }
5740
5741 ext4_ext_drop_refs(path);
5742 kfree(path);
5743 if (ret < 0) {
5744 up_write(&EXT4_I(inode)->i_data_sem);
5745 goto out_stop;
5746 }
5747 } else {
5748 ext4_ext_drop_refs(path);
5749 kfree(path);
5750 }
5751
5752 ret = ext4_es_remove_extent(inode, offset_lblk,
5753 EXT_MAX_BLOCKS - offset_lblk);
5754 if (ret) {
5755 up_write(&EXT4_I(inode)->i_data_sem);
5756 goto out_stop;
5757 }
5758
5759 /*
5760 * if offset_lblk lies in a hole which is at start of file, use
5761 * ee_start_lblk to shift extents
5762 */
5763 ret = ext4_ext_shift_extents(inode, handle,
5764 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5765 len_lblk, SHIFT_RIGHT);
5766
5767 up_write(&EXT4_I(inode)->i_data_sem);
5768 if (IS_SYNC(inode))
5769 ext4_handle_sync(handle);
5770 if (ret >= 0)
5771 ext4_update_inode_fsync_trans(handle, inode, 1);
5772
5773 out_stop:
5774 ext4_journal_stop(handle);
5775 out_mmap:
5776 up_write(&EXT4_I(inode)->i_mmap_sem);
5777 ext4_inode_resume_unlocked_dio(inode);
5778 out_mutex:
5779 inode_unlock(inode);
5780 return ret;
5781 }
5782
5783 /**
5784 * ext4_swap_extents - Swap extents between two inodes
5785 *
5786 * @inode1: First inode
5787 * @inode2: Second inode
5788 * @lblk1: Start block for first inode
5789 * @lblk2: Start block for second inode
5790 * @count: Number of blocks to swap
5791 * @mark_unwritten: Mark second inode's extents as unwritten after swap
5792 * @erp: Pointer to save error value
5793 *
5794 * This helper routine does exactly what is promise "swap extents". All other
5795 * stuff such as page-cache locking consistency, bh mapping consistency or
5796 * extent's data copying must be performed by caller.
5797 * Locking:
5798 * i_mutex is held for both inodes
5799 * i_data_sem is locked for write for both inodes
5800 * Assumptions:
5801 * All pages from requested range are locked for both inodes
5802 */
5803 int
5804 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5805 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5806 ext4_lblk_t count, int unwritten, int *erp)
5807 {
5808 struct ext4_ext_path *path1 = NULL;
5809 struct ext4_ext_path *path2 = NULL;
5810 int replaced_count = 0;
5811
5812 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5813 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5814 BUG_ON(!inode_is_locked(inode1));
5815 BUG_ON(!inode_is_locked(inode2));
5816
5817 *erp = ext4_es_remove_extent(inode1, lblk1, count);
5818 if (unlikely(*erp))
5819 return 0;
5820 *erp = ext4_es_remove_extent(inode2, lblk2, count);
5821 if (unlikely(*erp))
5822 return 0;
5823
5824 while (count) {
5825 struct ext4_extent *ex1, *ex2, tmp_ex;
5826 ext4_lblk_t e1_blk, e2_blk;
5827 int e1_len, e2_len, len;
5828 int split = 0;
5829
5830 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5831 if (IS_ERR(path1)) {
5832 *erp = PTR_ERR(path1);
5833 path1 = NULL;
5834 finish:
5835 count = 0;
5836 goto repeat;
5837 }
5838 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5839 if (IS_ERR(path2)) {
5840 *erp = PTR_ERR(path2);
5841 path2 = NULL;
5842 goto finish;
5843 }
5844 ex1 = path1[path1->p_depth].p_ext;
5845 ex2 = path2[path2->p_depth].p_ext;
5846 /* Do we have somthing to swap ? */
5847 if (unlikely(!ex2 || !ex1))
5848 goto finish;
5849
5850 e1_blk = le32_to_cpu(ex1->ee_block);
5851 e2_blk = le32_to_cpu(ex2->ee_block);
5852 e1_len = ext4_ext_get_actual_len(ex1);
5853 e2_len = ext4_ext_get_actual_len(ex2);
5854
5855 /* Hole handling */
5856 if (!in_range(lblk1, e1_blk, e1_len) ||
5857 !in_range(lblk2, e2_blk, e2_len)) {
5858 ext4_lblk_t next1, next2;
5859
5860 /* if hole after extent, then go to next extent */
5861 next1 = ext4_ext_next_allocated_block(path1);
5862 next2 = ext4_ext_next_allocated_block(path2);
5863 /* If hole before extent, then shift to that extent */
5864 if (e1_blk > lblk1)
5865 next1 = e1_blk;
5866 if (e2_blk > lblk2)
5867 next2 = e2_blk;
5868 /* Do we have something to swap */
5869 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5870 goto finish;
5871 /* Move to the rightest boundary */
5872 len = next1 - lblk1;
5873 if (len < next2 - lblk2)
5874 len = next2 - lblk2;
5875 if (len > count)
5876 len = count;
5877 lblk1 += len;
5878 lblk2 += len;
5879 count -= len;
5880 goto repeat;
5881 }
5882
5883 /* Prepare left boundary */
5884 if (e1_blk < lblk1) {
5885 split = 1;
5886 *erp = ext4_force_split_extent_at(handle, inode1,
5887 &path1, lblk1, 0);
5888 if (unlikely(*erp))
5889 goto finish;
5890 }
5891 if (e2_blk < lblk2) {
5892 split = 1;
5893 *erp = ext4_force_split_extent_at(handle, inode2,
5894 &path2, lblk2, 0);
5895 if (unlikely(*erp))
5896 goto finish;
5897 }
5898 /* ext4_split_extent_at() may result in leaf extent split,
5899 * path must to be revalidated. */
5900 if (split)
5901 goto repeat;
5902
5903 /* Prepare right boundary */
5904 len = count;
5905 if (len > e1_blk + e1_len - lblk1)
5906 len = e1_blk + e1_len - lblk1;
5907 if (len > e2_blk + e2_len - lblk2)
5908 len = e2_blk + e2_len - lblk2;
5909
5910 if (len != e1_len) {
5911 split = 1;
5912 *erp = ext4_force_split_extent_at(handle, inode1,
5913 &path1, lblk1 + len, 0);
5914 if (unlikely(*erp))
5915 goto finish;
5916 }
5917 if (len != e2_len) {
5918 split = 1;
5919 *erp = ext4_force_split_extent_at(handle, inode2,
5920 &path2, lblk2 + len, 0);
5921 if (*erp)
5922 goto finish;
5923 }
5924 /* ext4_split_extent_at() may result in leaf extent split,
5925 * path must to be revalidated. */
5926 if (split)
5927 goto repeat;
5928
5929 BUG_ON(e2_len != e1_len);
5930 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5931 if (unlikely(*erp))
5932 goto finish;
5933 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5934 if (unlikely(*erp))
5935 goto finish;
5936
5937 /* Both extents are fully inside boundaries. Swap it now */
5938 tmp_ex = *ex1;
5939 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5940 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5941 ex1->ee_len = cpu_to_le16(e2_len);
5942 ex2->ee_len = cpu_to_le16(e1_len);
5943 if (unwritten)
5944 ext4_ext_mark_unwritten(ex2);
5945 if (ext4_ext_is_unwritten(&tmp_ex))
5946 ext4_ext_mark_unwritten(ex1);
5947
5948 ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5949 ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5950 *erp = ext4_ext_dirty(handle, inode2, path2 +
5951 path2->p_depth);
5952 if (unlikely(*erp))
5953 goto finish;
5954 *erp = ext4_ext_dirty(handle, inode1, path1 +
5955 path1->p_depth);
5956 /*
5957 * Looks scarry ah..? second inode already points to new blocks,
5958 * and it was successfully dirtied. But luckily error may happen
5959 * only due to journal error, so full transaction will be
5960 * aborted anyway.
5961 */
5962 if (unlikely(*erp))
5963 goto finish;
5964 lblk1 += len;
5965 lblk2 += len;
5966 replaced_count += len;
5967 count -= len;
5968
5969 repeat:
5970 ext4_ext_drop_refs(path1);
5971 kfree(path1);
5972 ext4_ext_drop_refs(path2);
5973 kfree(path2);
5974 path1 = path2 = NULL;
5975 }
5976 return replaced_count;
5977 }