defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 int suid_dumpable = 0;
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 BUG_ON(!fmt);
83 if (WARN_ON(!fmt->load_binary))
84 return;
85 write_lock(&binfmt_lock);
86 insert ? list_add(&fmt->lh, &formats) :
87 list_add_tail(&fmt->lh, &formats);
88 write_unlock(&binfmt_lock);
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 module_put(fmt->module);
105 }
106
107 bool path_noexec(const struct path *path)
108 {
109 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112
113 #ifdef CONFIG_USELIB
114 /*
115 * Note that a shared library must be both readable and executable due to
116 * security reasons.
117 *
118 * Also note that we take the address to load from from the file itself.
119 */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 struct linux_binfmt *fmt;
123 struct file *file;
124 struct filename *tmp = getname(library);
125 int error = PTR_ERR(tmp);
126 static const struct open_flags uselib_flags = {
127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 .acc_mode = MAY_READ | MAY_EXEC,
129 .intent = LOOKUP_OPEN,
130 .lookup_flags = LOOKUP_FOLLOW,
131 };
132
133 if (IS_ERR(tmp))
134 goto out;
135
136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 putname(tmp);
138 error = PTR_ERR(file);
139 if (IS_ERR(file))
140 goto out;
141
142 error = -EINVAL;
143 if (!S_ISREG(file_inode(file)->i_mode))
144 goto exit;
145
146 error = -EACCES;
147 if (path_noexec(&file->f_path))
148 goto exit;
149
150 fsnotify_open(file);
151
152 error = -ENOEXEC;
153
154 read_lock(&binfmt_lock);
155 list_for_each_entry(fmt, &formats, lh) {
156 if (!fmt->load_shlib)
157 continue;
158 if (!try_module_get(fmt->module))
159 continue;
160 read_unlock(&binfmt_lock);
161 error = fmt->load_shlib(file);
162 read_lock(&binfmt_lock);
163 put_binfmt(fmt);
164 if (error != -ENOEXEC)
165 break;
166 }
167 read_unlock(&binfmt_lock);
168 exit:
169 fput(file);
170 out:
171 return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174
175 #ifdef CONFIG_MMU
176 /*
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
181 */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 struct mm_struct *mm = current->mm;
185 long diff = (long)(pages - bprm->vma_pages);
186
187 if (!mm || !diff)
188 return;
189
190 bprm->vma_pages = pages;
191 add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 int write)
196 {
197 struct page *page;
198 int ret;
199 unsigned int gup_flags = FOLL_FORCE;
200
201 #ifdef CONFIG_STACK_GROWSUP
202 if (write) {
203 ret = expand_downwards(bprm->vma, pos);
204 if (ret < 0)
205 return NULL;
206 }
207 #endif
208
209 if (write)
210 gup_flags |= FOLL_WRITE;
211
212 /*
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
215 */
216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 &page, NULL, NULL);
218 if (ret <= 0)
219 return NULL;
220
221 if (write) {
222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 unsigned long ptr_size, limit;
224
225 /*
226 * Since the stack will hold pointers to the strings, we
227 * must account for them as well.
228 *
229 * The size calculation is the entire vma while each arg page is
230 * built, so each time we get here it's calculating how far it
231 * is currently (rather than each call being just the newly
232 * added size from the arg page). As a result, we need to
233 * always add the entire size of the pointers, so that on the
234 * last call to get_arg_page() we'll actually have the entire
235 * correct size.
236 */
237 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238 if (ptr_size > ULONG_MAX - size)
239 goto fail;
240 size += ptr_size;
241
242 acct_arg_size(bprm, size / PAGE_SIZE);
243
244 /*
245 * We've historically supported up to 32 pages (ARG_MAX)
246 * of argument strings even with small stacks
247 */
248 if (size <= ARG_MAX)
249 return page;
250
251 /*
252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 * (whichever is smaller) for the argv+env strings.
254 * This ensures that:
255 * - the remaining binfmt code will not run out of stack space,
256 * - the program will have a reasonable amount of stack left
257 * to work from.
258 */
259 limit = _STK_LIM / 4 * 3;
260 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
261 if (size > limit)
262 goto fail;
263 }
264
265 return page;
266
267 fail:
268 put_page(page);
269 return NULL;
270 }
271
272 static void put_arg_page(struct page *page)
273 {
274 put_page(page);
275 }
276
277 static void free_arg_pages(struct linux_binprm *bprm)
278 {
279 }
280
281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
282 struct page *page)
283 {
284 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
285 }
286
287 static int __bprm_mm_init(struct linux_binprm *bprm)
288 {
289 int err;
290 struct vm_area_struct *vma = NULL;
291 struct mm_struct *mm = bprm->mm;
292
293 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
294 if (!vma)
295 return -ENOMEM;
296
297 if (down_write_killable(&mm->mmap_sem)) {
298 err = -EINTR;
299 goto err_free;
300 }
301 vma->vm_mm = mm;
302
303 /*
304 * Place the stack at the largest stack address the architecture
305 * supports. Later, we'll move this to an appropriate place. We don't
306 * use STACK_TOP because that can depend on attributes which aren't
307 * configured yet.
308 */
309 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
310 vma->vm_end = STACK_TOP_MAX;
311 vma->vm_start = vma->vm_end - PAGE_SIZE;
312 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
313 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
314 INIT_LIST_HEAD(&vma->anon_vma_chain);
315
316 err = insert_vm_struct(mm, vma);
317 if (err)
318 goto err;
319
320 mm->stack_vm = mm->total_vm = 1;
321 arch_bprm_mm_init(mm, vma);
322 up_write(&mm->mmap_sem);
323 bprm->p = vma->vm_end - sizeof(void *);
324 return 0;
325 err:
326 up_write(&mm->mmap_sem);
327 err_free:
328 bprm->vma = NULL;
329 kmem_cache_free(vm_area_cachep, vma);
330 return err;
331 }
332
333 static bool valid_arg_len(struct linux_binprm *bprm, long len)
334 {
335 return len <= MAX_ARG_STRLEN;
336 }
337
338 #else
339
340 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
341 {
342 }
343
344 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 int write)
346 {
347 struct page *page;
348
349 page = bprm->page[pos / PAGE_SIZE];
350 if (!page && write) {
351 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
352 if (!page)
353 return NULL;
354 bprm->page[pos / PAGE_SIZE] = page;
355 }
356
357 return page;
358 }
359
360 static void put_arg_page(struct page *page)
361 {
362 }
363
364 static void free_arg_page(struct linux_binprm *bprm, int i)
365 {
366 if (bprm->page[i]) {
367 __free_page(bprm->page[i]);
368 bprm->page[i] = NULL;
369 }
370 }
371
372 static void free_arg_pages(struct linux_binprm *bprm)
373 {
374 int i;
375
376 for (i = 0; i < MAX_ARG_PAGES; i++)
377 free_arg_page(bprm, i);
378 }
379
380 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
381 struct page *page)
382 {
383 }
384
385 static int __bprm_mm_init(struct linux_binprm *bprm)
386 {
387 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
388 return 0;
389 }
390
391 static bool valid_arg_len(struct linux_binprm *bprm, long len)
392 {
393 return len <= bprm->p;
394 }
395
396 #endif /* CONFIG_MMU */
397
398 /*
399 * Create a new mm_struct and populate it with a temporary stack
400 * vm_area_struct. We don't have enough context at this point to set the stack
401 * flags, permissions, and offset, so we use temporary values. We'll update
402 * them later in setup_arg_pages().
403 */
404 static int bprm_mm_init(struct linux_binprm *bprm)
405 {
406 int err;
407 struct mm_struct *mm = NULL;
408
409 bprm->mm = mm = mm_alloc();
410 err = -ENOMEM;
411 if (!mm)
412 goto err;
413
414 err = __bprm_mm_init(bprm);
415 if (err)
416 goto err;
417
418 return 0;
419
420 err:
421 if (mm) {
422 bprm->mm = NULL;
423 mmdrop(mm);
424 }
425
426 return err;
427 }
428
429 struct user_arg_ptr {
430 #ifdef CONFIG_COMPAT
431 bool is_compat;
432 #endif
433 union {
434 const char __user *const __user *native;
435 #ifdef CONFIG_COMPAT
436 const compat_uptr_t __user *compat;
437 #endif
438 } ptr;
439 };
440
441 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
442 {
443 const char __user *native;
444
445 #ifdef CONFIG_COMPAT
446 if (unlikely(argv.is_compat)) {
447 compat_uptr_t compat;
448
449 if (get_user(compat, argv.ptr.compat + nr))
450 return ERR_PTR(-EFAULT);
451
452 return compat_ptr(compat);
453 }
454 #endif
455
456 if (get_user(native, argv.ptr.native + nr))
457 return ERR_PTR(-EFAULT);
458
459 return native;
460 }
461
462 /*
463 * count() counts the number of strings in array ARGV.
464 */
465 static int count(struct user_arg_ptr argv, int max)
466 {
467 int i = 0;
468
469 if (argv.ptr.native != NULL) {
470 for (;;) {
471 const char __user *p = get_user_arg_ptr(argv, i);
472
473 if (!p)
474 break;
475
476 if (IS_ERR(p))
477 return -EFAULT;
478
479 if (i >= max)
480 return -E2BIG;
481 ++i;
482
483 if (fatal_signal_pending(current))
484 return -ERESTARTNOHAND;
485 cond_resched();
486 }
487 }
488 return i;
489 }
490
491 /*
492 * 'copy_strings()' copies argument/environment strings from the old
493 * processes's memory to the new process's stack. The call to get_user_pages()
494 * ensures the destination page is created and not swapped out.
495 */
496 static int copy_strings(int argc, struct user_arg_ptr argv,
497 struct linux_binprm *bprm)
498 {
499 struct page *kmapped_page = NULL;
500 char *kaddr = NULL;
501 unsigned long kpos = 0;
502 int ret;
503
504 while (argc-- > 0) {
505 const char __user *str;
506 int len;
507 unsigned long pos;
508
509 ret = -EFAULT;
510 str = get_user_arg_ptr(argv, argc);
511 if (IS_ERR(str))
512 goto out;
513
514 len = strnlen_user(str, MAX_ARG_STRLEN);
515 if (!len)
516 goto out;
517
518 ret = -E2BIG;
519 if (!valid_arg_len(bprm, len))
520 goto out;
521
522 /* We're going to work our way backwords. */
523 pos = bprm->p;
524 str += len;
525 bprm->p -= len;
526
527 while (len > 0) {
528 int offset, bytes_to_copy;
529
530 if (fatal_signal_pending(current)) {
531 ret = -ERESTARTNOHAND;
532 goto out;
533 }
534 cond_resched();
535
536 offset = pos % PAGE_SIZE;
537 if (offset == 0)
538 offset = PAGE_SIZE;
539
540 bytes_to_copy = offset;
541 if (bytes_to_copy > len)
542 bytes_to_copy = len;
543
544 offset -= bytes_to_copy;
545 pos -= bytes_to_copy;
546 str -= bytes_to_copy;
547 len -= bytes_to_copy;
548
549 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
550 struct page *page;
551
552 page = get_arg_page(bprm, pos, 1);
553 if (!page) {
554 ret = -E2BIG;
555 goto out;
556 }
557
558 if (kmapped_page) {
559 flush_kernel_dcache_page(kmapped_page);
560 kunmap(kmapped_page);
561 put_arg_page(kmapped_page);
562 }
563 kmapped_page = page;
564 kaddr = kmap(kmapped_page);
565 kpos = pos & PAGE_MASK;
566 flush_arg_page(bprm, kpos, kmapped_page);
567 }
568 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
569 ret = -EFAULT;
570 goto out;
571 }
572 }
573 }
574 ret = 0;
575 out:
576 if (kmapped_page) {
577 flush_kernel_dcache_page(kmapped_page);
578 kunmap(kmapped_page);
579 put_arg_page(kmapped_page);
580 }
581 return ret;
582 }
583
584 /*
585 * Like copy_strings, but get argv and its values from kernel memory.
586 */
587 int copy_strings_kernel(int argc, const char *const *__argv,
588 struct linux_binprm *bprm)
589 {
590 int r;
591 mm_segment_t oldfs = get_fs();
592 struct user_arg_ptr argv = {
593 .ptr.native = (const char __user *const __user *)__argv,
594 };
595
596 set_fs(KERNEL_DS);
597 r = copy_strings(argc, argv, bprm);
598 set_fs(oldfs);
599
600 return r;
601 }
602 EXPORT_SYMBOL(copy_strings_kernel);
603
604 #ifdef CONFIG_MMU
605
606 /*
607 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
608 * the binfmt code determines where the new stack should reside, we shift it to
609 * its final location. The process proceeds as follows:
610 *
611 * 1) Use shift to calculate the new vma endpoints.
612 * 2) Extend vma to cover both the old and new ranges. This ensures the
613 * arguments passed to subsequent functions are consistent.
614 * 3) Move vma's page tables to the new range.
615 * 4) Free up any cleared pgd range.
616 * 5) Shrink the vma to cover only the new range.
617 */
618 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
619 {
620 struct mm_struct *mm = vma->vm_mm;
621 unsigned long old_start = vma->vm_start;
622 unsigned long old_end = vma->vm_end;
623 unsigned long length = old_end - old_start;
624 unsigned long new_start = old_start - shift;
625 unsigned long new_end = old_end - shift;
626 struct mmu_gather tlb;
627
628 BUG_ON(new_start > new_end);
629
630 /*
631 * ensure there are no vmas between where we want to go
632 * and where we are
633 */
634 if (vma != find_vma(mm, new_start))
635 return -EFAULT;
636
637 /*
638 * cover the whole range: [new_start, old_end)
639 */
640 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
641 return -ENOMEM;
642
643 /*
644 * move the page tables downwards, on failure we rely on
645 * process cleanup to remove whatever mess we made.
646 */
647 if (length != move_page_tables(vma, old_start,
648 vma, new_start, length, false))
649 return -ENOMEM;
650
651 lru_add_drain();
652 tlb_gather_mmu(&tlb, mm, old_start, old_end);
653 if (new_end > old_start) {
654 /*
655 * when the old and new regions overlap clear from new_end.
656 */
657 free_pgd_range(&tlb, new_end, old_end, new_end,
658 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
659 } else {
660 /*
661 * otherwise, clean from old_start; this is done to not touch
662 * the address space in [new_end, old_start) some architectures
663 * have constraints on va-space that make this illegal (IA64) -
664 * for the others its just a little faster.
665 */
666 free_pgd_range(&tlb, old_start, old_end, new_end,
667 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
668 }
669 tlb_finish_mmu(&tlb, old_start, old_end);
670
671 /*
672 * Shrink the vma to just the new range. Always succeeds.
673 */
674 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
675
676 return 0;
677 }
678
679 /*
680 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
681 * the stack is optionally relocated, and some extra space is added.
682 */
683 int setup_arg_pages(struct linux_binprm *bprm,
684 unsigned long stack_top,
685 int executable_stack)
686 {
687 unsigned long ret;
688 unsigned long stack_shift;
689 struct mm_struct *mm = current->mm;
690 struct vm_area_struct *vma = bprm->vma;
691 struct vm_area_struct *prev = NULL;
692 unsigned long vm_flags;
693 unsigned long stack_base;
694 unsigned long stack_size;
695 unsigned long stack_expand;
696 unsigned long rlim_stack;
697
698 #ifdef CONFIG_STACK_GROWSUP
699 /* Limit stack size */
700 stack_base = rlimit_max(RLIMIT_STACK);
701 if (stack_base > STACK_SIZE_MAX)
702 stack_base = STACK_SIZE_MAX;
703
704 /* Add space for stack randomization. */
705 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
706
707 /* Make sure we didn't let the argument array grow too large. */
708 if (vma->vm_end - vma->vm_start > stack_base)
709 return -ENOMEM;
710
711 stack_base = PAGE_ALIGN(stack_top - stack_base);
712
713 stack_shift = vma->vm_start - stack_base;
714 mm->arg_start = bprm->p - stack_shift;
715 bprm->p = vma->vm_end - stack_shift;
716 #else
717 stack_top = arch_align_stack(stack_top);
718 stack_top = PAGE_ALIGN(stack_top);
719
720 if (unlikely(stack_top < mmap_min_addr) ||
721 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
722 return -ENOMEM;
723
724 stack_shift = vma->vm_end - stack_top;
725
726 bprm->p -= stack_shift;
727 mm->arg_start = bprm->p;
728 #endif
729
730 if (bprm->loader)
731 bprm->loader -= stack_shift;
732 bprm->exec -= stack_shift;
733
734 if (down_write_killable(&mm->mmap_sem))
735 return -EINTR;
736
737 vm_flags = VM_STACK_FLAGS;
738
739 /*
740 * Adjust stack execute permissions; explicitly enable for
741 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
742 * (arch default) otherwise.
743 */
744 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
745 vm_flags |= VM_EXEC;
746 else if (executable_stack == EXSTACK_DISABLE_X)
747 vm_flags &= ~VM_EXEC;
748 vm_flags |= mm->def_flags;
749 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
750
751 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
752 vm_flags);
753 if (ret)
754 goto out_unlock;
755 BUG_ON(prev != vma);
756
757 /* Move stack pages down in memory. */
758 if (stack_shift) {
759 ret = shift_arg_pages(vma, stack_shift);
760 if (ret)
761 goto out_unlock;
762 }
763
764 /* mprotect_fixup is overkill to remove the temporary stack flags */
765 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
766
767 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
768 stack_size = vma->vm_end - vma->vm_start;
769 /*
770 * Align this down to a page boundary as expand_stack
771 * will align it up.
772 */
773 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
774 #ifdef CONFIG_STACK_GROWSUP
775 if (stack_size + stack_expand > rlim_stack)
776 stack_base = vma->vm_start + rlim_stack;
777 else
778 stack_base = vma->vm_end + stack_expand;
779 #else
780 if (stack_size + stack_expand > rlim_stack)
781 stack_base = vma->vm_end - rlim_stack;
782 else
783 stack_base = vma->vm_start - stack_expand;
784 #endif
785 current->mm->start_stack = bprm->p;
786 ret = expand_stack(vma, stack_base);
787 if (ret)
788 ret = -EFAULT;
789
790 out_unlock:
791 up_write(&mm->mmap_sem);
792 return ret;
793 }
794 EXPORT_SYMBOL(setup_arg_pages);
795
796 #else
797
798 /*
799 * Transfer the program arguments and environment from the holding pages
800 * onto the stack. The provided stack pointer is adjusted accordingly.
801 */
802 int transfer_args_to_stack(struct linux_binprm *bprm,
803 unsigned long *sp_location)
804 {
805 unsigned long index, stop, sp;
806 int ret = 0;
807
808 stop = bprm->p >> PAGE_SHIFT;
809 sp = *sp_location;
810
811 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
812 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
813 char *src = kmap(bprm->page[index]) + offset;
814 sp -= PAGE_SIZE - offset;
815 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
816 ret = -EFAULT;
817 kunmap(bprm->page[index]);
818 if (ret)
819 goto out;
820 }
821
822 *sp_location = sp;
823
824 out:
825 return ret;
826 }
827 EXPORT_SYMBOL(transfer_args_to_stack);
828
829 #endif /* CONFIG_MMU */
830
831 static struct file *do_open_execat(int fd, struct filename *name, int flags)
832 {
833 struct file *file;
834 int err;
835 struct open_flags open_exec_flags = {
836 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
837 .acc_mode = MAY_EXEC,
838 .intent = LOOKUP_OPEN,
839 .lookup_flags = LOOKUP_FOLLOW,
840 };
841
842 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
843 return ERR_PTR(-EINVAL);
844 if (flags & AT_SYMLINK_NOFOLLOW)
845 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
846 if (flags & AT_EMPTY_PATH)
847 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
848
849 file = do_filp_open(fd, name, &open_exec_flags);
850 if (IS_ERR(file))
851 goto out;
852
853 err = -EACCES;
854 if (!S_ISREG(file_inode(file)->i_mode))
855 goto exit;
856
857 if (path_noexec(&file->f_path))
858 goto exit;
859
860 err = deny_write_access(file);
861 if (err)
862 goto exit;
863
864 if (name->name[0] != '\0')
865 fsnotify_open(file);
866
867 out:
868 return file;
869
870 exit:
871 fput(file);
872 return ERR_PTR(err);
873 }
874
875 struct file *open_exec(const char *name)
876 {
877 struct filename *filename = getname_kernel(name);
878 struct file *f = ERR_CAST(filename);
879
880 if (!IS_ERR(filename)) {
881 f = do_open_execat(AT_FDCWD, filename, 0);
882 putname(filename);
883 }
884 return f;
885 }
886 EXPORT_SYMBOL(open_exec);
887
888 int kernel_read_file(struct file *file, void **buf, loff_t *size,
889 loff_t max_size, enum kernel_read_file_id id)
890 {
891 loff_t i_size, pos;
892 ssize_t bytes = 0;
893 int ret;
894
895 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
896 return -EINVAL;
897
898 ret = security_kernel_read_file(file, id);
899 if (ret)
900 return ret;
901
902 ret = deny_write_access(file);
903 if (ret)
904 return ret;
905
906 i_size = i_size_read(file_inode(file));
907 if (max_size > 0 && i_size > max_size) {
908 ret = -EFBIG;
909 goto out;
910 }
911 if (i_size <= 0) {
912 ret = -EINVAL;
913 goto out;
914 }
915
916 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
917 *buf = vmalloc(i_size);
918 if (!*buf) {
919 ret = -ENOMEM;
920 goto out;
921 }
922
923 pos = 0;
924 while (pos < i_size) {
925 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
926 if (bytes < 0) {
927 ret = bytes;
928 goto out_free;
929 }
930
931 if (bytes == 0)
932 break;
933 }
934
935 if (pos != i_size) {
936 ret = -EIO;
937 goto out_free;
938 }
939
940 ret = security_kernel_post_read_file(file, *buf, i_size, id);
941 if (!ret)
942 *size = pos;
943
944 out_free:
945 if (ret < 0) {
946 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
947 vfree(*buf);
948 *buf = NULL;
949 }
950 }
951
952 out:
953 allow_write_access(file);
954 return ret;
955 }
956 EXPORT_SYMBOL_GPL(kernel_read_file);
957
958 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
959 loff_t max_size, enum kernel_read_file_id id)
960 {
961 struct file *file;
962 int ret;
963
964 if (!path || !*path)
965 return -EINVAL;
966
967 file = filp_open(path, O_RDONLY, 0);
968 if (IS_ERR(file))
969 return PTR_ERR(file);
970
971 ret = kernel_read_file(file, buf, size, max_size, id);
972 fput(file);
973 return ret;
974 }
975 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
976
977 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
978 enum kernel_read_file_id id)
979 {
980 struct fd f = fdget(fd);
981 int ret = -EBADF;
982
983 if (!f.file)
984 goto out;
985
986 ret = kernel_read_file(f.file, buf, size, max_size, id);
987 out:
988 fdput(f);
989 return ret;
990 }
991 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
992
993 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
994 {
995 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
996 if (res > 0)
997 flush_icache_range(addr, addr + len);
998 return res;
999 }
1000 EXPORT_SYMBOL(read_code);
1001
1002 static int exec_mmap(struct mm_struct *mm)
1003 {
1004 struct task_struct *tsk;
1005 struct mm_struct *old_mm, *active_mm;
1006
1007 /* Notify parent that we're no longer interested in the old VM */
1008 tsk = current;
1009 old_mm = current->mm;
1010 mm_release(tsk, old_mm);
1011
1012 if (old_mm) {
1013 sync_mm_rss(old_mm);
1014 /*
1015 * Make sure that if there is a core dump in progress
1016 * for the old mm, we get out and die instead of going
1017 * through with the exec. We must hold mmap_sem around
1018 * checking core_state and changing tsk->mm.
1019 */
1020 down_read(&old_mm->mmap_sem);
1021 if (unlikely(old_mm->core_state)) {
1022 up_read(&old_mm->mmap_sem);
1023 return -EINTR;
1024 }
1025 }
1026 task_lock(tsk);
1027 active_mm = tsk->active_mm;
1028 tsk->mm = mm;
1029 tsk->active_mm = mm;
1030 activate_mm(active_mm, mm);
1031 tsk->mm->vmacache_seqnum = 0;
1032 vmacache_flush(tsk);
1033 task_unlock(tsk);
1034 if (old_mm) {
1035 up_read(&old_mm->mmap_sem);
1036 BUG_ON(active_mm != old_mm);
1037 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1038 mm_update_next_owner(old_mm);
1039 mmput(old_mm);
1040 return 0;
1041 }
1042 mmdrop(active_mm);
1043 return 0;
1044 }
1045
1046 /*
1047 * This function makes sure the current process has its own signal table,
1048 * so that flush_signal_handlers can later reset the handlers without
1049 * disturbing other processes. (Other processes might share the signal
1050 * table via the CLONE_SIGHAND option to clone().)
1051 */
1052 static int de_thread(struct task_struct *tsk)
1053 {
1054 struct signal_struct *sig = tsk->signal;
1055 struct sighand_struct *oldsighand = tsk->sighand;
1056 spinlock_t *lock = &oldsighand->siglock;
1057
1058 if (thread_group_empty(tsk))
1059 goto no_thread_group;
1060
1061 /*
1062 * Kill all other threads in the thread group.
1063 */
1064 spin_lock_irq(lock);
1065 if (signal_group_exit(sig)) {
1066 /*
1067 * Another group action in progress, just
1068 * return so that the signal is processed.
1069 */
1070 spin_unlock_irq(lock);
1071 return -EAGAIN;
1072 }
1073
1074 sig->group_exit_task = tsk;
1075 sig->notify_count = zap_other_threads(tsk);
1076 if (!thread_group_leader(tsk))
1077 sig->notify_count--;
1078
1079 while (sig->notify_count) {
1080 __set_current_state(TASK_KILLABLE);
1081 spin_unlock_irq(lock);
1082 schedule();
1083 if (unlikely(__fatal_signal_pending(tsk)))
1084 goto killed;
1085 spin_lock_irq(lock);
1086 }
1087 spin_unlock_irq(lock);
1088
1089 /*
1090 * At this point all other threads have exited, all we have to
1091 * do is to wait for the thread group leader to become inactive,
1092 * and to assume its PID:
1093 */
1094 if (!thread_group_leader(tsk)) {
1095 struct task_struct *leader = tsk->group_leader;
1096
1097 for (;;) {
1098 cgroup_threadgroup_change_begin(tsk);
1099 write_lock_irq(&tasklist_lock);
1100 /*
1101 * Do this under tasklist_lock to ensure that
1102 * exit_notify() can't miss ->group_exit_task
1103 */
1104 sig->notify_count = -1;
1105 if (likely(leader->exit_state))
1106 break;
1107 __set_current_state(TASK_KILLABLE);
1108 write_unlock_irq(&tasklist_lock);
1109 cgroup_threadgroup_change_end(tsk);
1110 schedule();
1111 if (unlikely(__fatal_signal_pending(tsk)))
1112 goto killed;
1113 }
1114
1115 /*
1116 * The only record we have of the real-time age of a
1117 * process, regardless of execs it's done, is start_time.
1118 * All the past CPU time is accumulated in signal_struct
1119 * from sister threads now dead. But in this non-leader
1120 * exec, nothing survives from the original leader thread,
1121 * whose birth marks the true age of this process now.
1122 * When we take on its identity by switching to its PID, we
1123 * also take its birthdate (always earlier than our own).
1124 */
1125 tsk->start_time = leader->start_time;
1126 tsk->real_start_time = leader->real_start_time;
1127
1128 BUG_ON(!same_thread_group(leader, tsk));
1129 BUG_ON(has_group_leader_pid(tsk));
1130 /*
1131 * An exec() starts a new thread group with the
1132 * TGID of the previous thread group. Rehash the
1133 * two threads with a switched PID, and release
1134 * the former thread group leader:
1135 */
1136
1137 /* Become a process group leader with the old leader's pid.
1138 * The old leader becomes a thread of the this thread group.
1139 * Note: The old leader also uses this pid until release_task
1140 * is called. Odd but simple and correct.
1141 */
1142 tsk->pid = leader->pid;
1143 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1144 transfer_pid(leader, tsk, PIDTYPE_PGID);
1145 transfer_pid(leader, tsk, PIDTYPE_SID);
1146
1147 list_replace_rcu(&leader->tasks, &tsk->tasks);
1148 list_replace_init(&leader->sibling, &tsk->sibling);
1149
1150 tsk->group_leader = tsk;
1151 leader->group_leader = tsk;
1152
1153 tsk->exit_signal = SIGCHLD;
1154 leader->exit_signal = -1;
1155
1156 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1157 leader->exit_state = EXIT_DEAD;
1158
1159 /*
1160 * We are going to release_task()->ptrace_unlink() silently,
1161 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1162 * the tracer wont't block again waiting for this thread.
1163 */
1164 if (unlikely(leader->ptrace))
1165 __wake_up_parent(leader, leader->parent);
1166 write_unlock_irq(&tasklist_lock);
1167 cgroup_threadgroup_change_end(tsk);
1168
1169 release_task(leader);
1170 }
1171
1172 sig->group_exit_task = NULL;
1173 sig->notify_count = 0;
1174
1175 no_thread_group:
1176 /* we have changed execution domain */
1177 tsk->exit_signal = SIGCHLD;
1178
1179 #ifdef CONFIG_POSIX_TIMERS
1180 exit_itimers(sig);
1181 flush_itimer_signals();
1182 #endif
1183
1184 if (atomic_read(&oldsighand->count) != 1) {
1185 struct sighand_struct *newsighand;
1186 /*
1187 * This ->sighand is shared with the CLONE_SIGHAND
1188 * but not CLONE_THREAD task, switch to the new one.
1189 */
1190 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1191 if (!newsighand)
1192 return -ENOMEM;
1193
1194 atomic_set(&newsighand->count, 1);
1195 memcpy(newsighand->action, oldsighand->action,
1196 sizeof(newsighand->action));
1197
1198 write_lock_irq(&tasklist_lock);
1199 spin_lock(&oldsighand->siglock);
1200 rcu_assign_pointer(tsk->sighand, newsighand);
1201 spin_unlock(&oldsighand->siglock);
1202 write_unlock_irq(&tasklist_lock);
1203
1204 __cleanup_sighand(oldsighand);
1205 }
1206
1207 BUG_ON(!thread_group_leader(tsk));
1208 return 0;
1209
1210 killed:
1211 /* protects against exit_notify() and __exit_signal() */
1212 read_lock(&tasklist_lock);
1213 sig->group_exit_task = NULL;
1214 sig->notify_count = 0;
1215 read_unlock(&tasklist_lock);
1216 return -EAGAIN;
1217 }
1218
1219 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1220 {
1221 task_lock(tsk);
1222 strncpy(buf, tsk->comm, buf_size);
1223 task_unlock(tsk);
1224 return buf;
1225 }
1226 EXPORT_SYMBOL_GPL(__get_task_comm);
1227
1228 /*
1229 * These functions flushes out all traces of the currently running executable
1230 * so that a new one can be started
1231 */
1232
1233 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1234 {
1235 task_lock(tsk);
1236 trace_task_rename(tsk, buf);
1237 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1238 task_unlock(tsk);
1239 perf_event_comm(tsk, exec);
1240 }
1241
1242 /*
1243 * Calling this is the point of no return. None of the failures will be
1244 * seen by userspace since either the process is already taking a fatal
1245 * signal (via de_thread() or coredump), or will have SEGV raised
1246 * (after exec_mmap()) by search_binary_handlers (see below).
1247 */
1248 int flush_old_exec(struct linux_binprm * bprm)
1249 {
1250 int retval;
1251
1252 /*
1253 * Make sure we have a private signal table and that
1254 * we are unassociated from the previous thread group.
1255 */
1256 retval = de_thread(current);
1257 if (retval)
1258 goto out;
1259
1260 /*
1261 * Must be called _before_ exec_mmap() as bprm->mm is
1262 * not visibile until then. This also enables the update
1263 * to be lockless.
1264 */
1265 set_mm_exe_file(bprm->mm, bprm->file);
1266
1267 /*
1268 * Release all of the old mmap stuff
1269 */
1270 acct_arg_size(bprm, 0);
1271 retval = exec_mmap(bprm->mm);
1272 if (retval)
1273 goto out;
1274
1275 /*
1276 * After clearing bprm->mm (to mark that current is using the
1277 * prepared mm now), we have nothing left of the original
1278 * process. If anything from here on returns an error, the check
1279 * in search_binary_handler() will SEGV current.
1280 */
1281 bprm->mm = NULL;
1282
1283 set_fs(USER_DS);
1284 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1285 PF_NOFREEZE | PF_NO_SETAFFINITY);
1286 flush_thread();
1287 current->personality &= ~bprm->per_clear;
1288
1289 /*
1290 * We have to apply CLOEXEC before we change whether the process is
1291 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1292 * trying to access the should-be-closed file descriptors of a process
1293 * undergoing exec(2).
1294 */
1295 do_close_on_exec(current->files);
1296 return 0;
1297
1298 out:
1299 return retval;
1300 }
1301 EXPORT_SYMBOL(flush_old_exec);
1302
1303 void would_dump(struct linux_binprm *bprm, struct file *file)
1304 {
1305 struct inode *inode = file_inode(file);
1306 if (inode_permission2(file->f_path.mnt, inode, MAY_READ) < 0) {
1307 struct user_namespace *old, *user_ns;
1308 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1309
1310 /* Ensure mm->user_ns contains the executable */
1311 user_ns = old = bprm->mm->user_ns;
1312 while ((user_ns != &init_user_ns) &&
1313 !privileged_wrt_inode_uidgid(user_ns, inode))
1314 user_ns = user_ns->parent;
1315
1316 if (old != user_ns) {
1317 bprm->mm->user_ns = get_user_ns(user_ns);
1318 put_user_ns(old);
1319 }
1320 }
1321 }
1322 EXPORT_SYMBOL(would_dump);
1323
1324 void setup_new_exec(struct linux_binprm * bprm)
1325 {
1326 /*
1327 * Once here, prepare_binrpm() will not be called any more, so
1328 * the final state of setuid/setgid/fscaps can be merged into the
1329 * secureexec flag.
1330 */
1331 bprm->secureexec |= bprm->cap_elevated;
1332
1333 if (bprm->secureexec) {
1334 /* Make sure parent cannot signal privileged process. */
1335 current->pdeath_signal = 0;
1336
1337 /*
1338 * For secureexec, reset the stack limit to sane default to
1339 * avoid bad behavior from the prior rlimits. This has to
1340 * happen before arch_pick_mmap_layout(), which examines
1341 * RLIMIT_STACK, but after the point of no return to avoid
1342 * needing to clean up the change on failure.
1343 */
1344 if (current->signal->rlim[RLIMIT_STACK].rlim_cur > _STK_LIM)
1345 current->signal->rlim[RLIMIT_STACK].rlim_cur = _STK_LIM;
1346 }
1347
1348 arch_pick_mmap_layout(current->mm);
1349
1350 current->sas_ss_sp = current->sas_ss_size = 0;
1351
1352 /*
1353 * Figure out dumpability. Note that this checking only of current
1354 * is wrong, but userspace depends on it. This should be testing
1355 * bprm->secureexec instead.
1356 */
1357 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1358 !(uid_eq(current_euid(), current_uid()) &&
1359 gid_eq(current_egid(), current_gid())))
1360 set_dumpable(current->mm, suid_dumpable);
1361 else
1362 set_dumpable(current->mm, SUID_DUMP_USER);
1363
1364 arch_setup_new_exec();
1365 perf_event_exec();
1366 __set_task_comm(current, kbasename(bprm->filename), true);
1367
1368 /* Set the new mm task size. We have to do that late because it may
1369 * depend on TIF_32BIT which is only updated in flush_thread() on
1370 * some architectures like powerpc
1371 */
1372 current->mm->task_size = TASK_SIZE;
1373
1374 /* An exec changes our domain. We are no longer part of the thread
1375 group */
1376 current->self_exec_id++;
1377 flush_signal_handlers(current, 0);
1378 }
1379 EXPORT_SYMBOL(setup_new_exec);
1380
1381 /*
1382 * Prepare credentials and lock ->cred_guard_mutex.
1383 * install_exec_creds() commits the new creds and drops the lock.
1384 * Or, if exec fails before, free_bprm() should release ->cred and
1385 * and unlock.
1386 */
1387 int prepare_bprm_creds(struct linux_binprm *bprm)
1388 {
1389 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1390 return -ERESTARTNOINTR;
1391
1392 bprm->cred = prepare_exec_creds();
1393 if (likely(bprm->cred))
1394 return 0;
1395
1396 mutex_unlock(&current->signal->cred_guard_mutex);
1397 return -ENOMEM;
1398 }
1399
1400 static void free_bprm(struct linux_binprm *bprm)
1401 {
1402 free_arg_pages(bprm);
1403 if (bprm->cred) {
1404 mutex_unlock(&current->signal->cred_guard_mutex);
1405 abort_creds(bprm->cred);
1406 }
1407 if (bprm->file) {
1408 allow_write_access(bprm->file);
1409 fput(bprm->file);
1410 }
1411 /* If a binfmt changed the interp, free it. */
1412 if (bprm->interp != bprm->filename)
1413 kfree(bprm->interp);
1414 kfree(bprm);
1415 }
1416
1417 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1418 {
1419 /* If a binfmt changed the interp, free it first. */
1420 if (bprm->interp != bprm->filename)
1421 kfree(bprm->interp);
1422 bprm->interp = kstrdup(interp, GFP_KERNEL);
1423 if (!bprm->interp)
1424 return -ENOMEM;
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(bprm_change_interp);
1428
1429 /*
1430 * install the new credentials for this executable
1431 */
1432 void install_exec_creds(struct linux_binprm *bprm)
1433 {
1434 security_bprm_committing_creds(bprm);
1435
1436 commit_creds(bprm->cred);
1437 bprm->cred = NULL;
1438
1439 /*
1440 * Disable monitoring for regular users
1441 * when executing setuid binaries. Must
1442 * wait until new credentials are committed
1443 * by commit_creds() above
1444 */
1445 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1446 perf_event_exit_task(current);
1447 /*
1448 * cred_guard_mutex must be held at least to this point to prevent
1449 * ptrace_attach() from altering our determination of the task's
1450 * credentials; any time after this it may be unlocked.
1451 */
1452 security_bprm_committed_creds(bprm);
1453 mutex_unlock(&current->signal->cred_guard_mutex);
1454 }
1455 EXPORT_SYMBOL(install_exec_creds);
1456
1457 /*
1458 * determine how safe it is to execute the proposed program
1459 * - the caller must hold ->cred_guard_mutex to protect against
1460 * PTRACE_ATTACH or seccomp thread-sync
1461 */
1462 static void check_unsafe_exec(struct linux_binprm *bprm)
1463 {
1464 struct task_struct *p = current, *t;
1465 unsigned n_fs;
1466
1467 if (p->ptrace)
1468 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1469
1470 /*
1471 * This isn't strictly necessary, but it makes it harder for LSMs to
1472 * mess up.
1473 */
1474 if (task_no_new_privs(current))
1475 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1476
1477 t = p;
1478 n_fs = 1;
1479 spin_lock(&p->fs->lock);
1480 rcu_read_lock();
1481 while_each_thread(p, t) {
1482 if (t->fs == p->fs)
1483 n_fs++;
1484 }
1485 rcu_read_unlock();
1486
1487 if (p->fs->users > n_fs)
1488 bprm->unsafe |= LSM_UNSAFE_SHARE;
1489 else
1490 p->fs->in_exec = 1;
1491 spin_unlock(&p->fs->lock);
1492 }
1493
1494 static void bprm_fill_uid(struct linux_binprm *bprm)
1495 {
1496 struct inode *inode;
1497 unsigned int mode;
1498 kuid_t uid;
1499 kgid_t gid;
1500
1501 /*
1502 * Since this can be called multiple times (via prepare_binprm),
1503 * we must clear any previous work done when setting set[ug]id
1504 * bits from any earlier bprm->file uses (for example when run
1505 * first for a setuid script then again for its interpreter).
1506 */
1507 bprm->cred->euid = current_euid();
1508 bprm->cred->egid = current_egid();
1509
1510 if (!mnt_may_suid(bprm->file->f_path.mnt))
1511 return;
1512
1513 if (task_no_new_privs(current))
1514 return;
1515
1516 inode = bprm->file->f_path.dentry->d_inode;
1517 mode = READ_ONCE(inode->i_mode);
1518 if (!(mode & (S_ISUID|S_ISGID)))
1519 return;
1520
1521 /* Be careful if suid/sgid is set */
1522 inode_lock(inode);
1523
1524 /* reload atomically mode/uid/gid now that lock held */
1525 mode = inode->i_mode;
1526 uid = inode->i_uid;
1527 gid = inode->i_gid;
1528 inode_unlock(inode);
1529
1530 /* We ignore suid/sgid if there are no mappings for them in the ns */
1531 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1532 !kgid_has_mapping(bprm->cred->user_ns, gid))
1533 return;
1534
1535 if (mode & S_ISUID) {
1536 bprm->per_clear |= PER_CLEAR_ON_SETID;
1537 bprm->cred->euid = uid;
1538 }
1539
1540 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1541 bprm->per_clear |= PER_CLEAR_ON_SETID;
1542 bprm->cred->egid = gid;
1543 }
1544 }
1545
1546 /*
1547 * Fill the binprm structure from the inode.
1548 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1549 *
1550 * This may be called multiple times for binary chains (scripts for example).
1551 */
1552 int prepare_binprm(struct linux_binprm *bprm)
1553 {
1554 int retval;
1555 loff_t pos = 0;
1556
1557 bprm_fill_uid(bprm);
1558
1559 /* fill in binprm security blob */
1560 retval = security_bprm_set_creds(bprm);
1561 if (retval)
1562 return retval;
1563 bprm->called_set_creds = 1;
1564
1565 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1566 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1567 }
1568
1569 EXPORT_SYMBOL(prepare_binprm);
1570
1571 /*
1572 * Arguments are '\0' separated strings found at the location bprm->p
1573 * points to; chop off the first by relocating brpm->p to right after
1574 * the first '\0' encountered.
1575 */
1576 int remove_arg_zero(struct linux_binprm *bprm)
1577 {
1578 int ret = 0;
1579 unsigned long offset;
1580 char *kaddr;
1581 struct page *page;
1582
1583 if (!bprm->argc)
1584 return 0;
1585
1586 do {
1587 offset = bprm->p & ~PAGE_MASK;
1588 page = get_arg_page(bprm, bprm->p, 0);
1589 if (!page) {
1590 ret = -EFAULT;
1591 goto out;
1592 }
1593 kaddr = kmap_atomic(page);
1594
1595 for (; offset < PAGE_SIZE && kaddr[offset];
1596 offset++, bprm->p++)
1597 ;
1598
1599 kunmap_atomic(kaddr);
1600 put_arg_page(page);
1601 } while (offset == PAGE_SIZE);
1602
1603 bprm->p++;
1604 bprm->argc--;
1605 ret = 0;
1606
1607 out:
1608 return ret;
1609 }
1610 EXPORT_SYMBOL(remove_arg_zero);
1611
1612 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1613 /*
1614 * cycle the list of binary formats handler, until one recognizes the image
1615 */
1616 int search_binary_handler(struct linux_binprm *bprm)
1617 {
1618 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1619 struct linux_binfmt *fmt;
1620 int retval;
1621
1622 /* This allows 4 levels of binfmt rewrites before failing hard. */
1623 if (bprm->recursion_depth > 5)
1624 return -ELOOP;
1625
1626 retval = security_bprm_check(bprm);
1627 if (retval)
1628 return retval;
1629
1630 retval = -ENOENT;
1631 retry:
1632 read_lock(&binfmt_lock);
1633 list_for_each_entry(fmt, &formats, lh) {
1634 if (!try_module_get(fmt->module))
1635 continue;
1636 read_unlock(&binfmt_lock);
1637 bprm->recursion_depth++;
1638 retval = fmt->load_binary(bprm);
1639 read_lock(&binfmt_lock);
1640 put_binfmt(fmt);
1641 bprm->recursion_depth--;
1642 if (retval < 0 && !bprm->mm) {
1643 /* we got to flush_old_exec() and failed after it */
1644 read_unlock(&binfmt_lock);
1645 force_sigsegv(SIGSEGV, current);
1646 return retval;
1647 }
1648 if (retval != -ENOEXEC || !bprm->file) {
1649 read_unlock(&binfmt_lock);
1650 return retval;
1651 }
1652 }
1653 read_unlock(&binfmt_lock);
1654
1655 if (need_retry) {
1656 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1657 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1658 return retval;
1659 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1660 return retval;
1661 need_retry = false;
1662 goto retry;
1663 }
1664
1665 return retval;
1666 }
1667 EXPORT_SYMBOL(search_binary_handler);
1668
1669 static int exec_binprm(struct linux_binprm *bprm)
1670 {
1671 pid_t old_pid, old_vpid;
1672 int ret;
1673
1674 /* Need to fetch pid before load_binary changes it */
1675 old_pid = current->pid;
1676 rcu_read_lock();
1677 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1678 rcu_read_unlock();
1679
1680 ret = search_binary_handler(bprm);
1681 if (ret >= 0) {
1682 audit_bprm(bprm);
1683 trace_sched_process_exec(current, old_pid, bprm);
1684 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1685 proc_exec_connector(current);
1686 }
1687
1688 return ret;
1689 }
1690
1691 /*
1692 * sys_execve() executes a new program.
1693 */
1694 static int do_execveat_common(int fd, struct filename *filename,
1695 struct user_arg_ptr argv,
1696 struct user_arg_ptr envp,
1697 int flags)
1698 {
1699 char *pathbuf = NULL;
1700 struct linux_binprm *bprm;
1701 struct file *file;
1702 struct files_struct *displaced;
1703 int retval;
1704
1705 if (IS_ERR(filename))
1706 return PTR_ERR(filename);
1707
1708 /*
1709 * We move the actual failure in case of RLIMIT_NPROC excess from
1710 * set*uid() to execve() because too many poorly written programs
1711 * don't check setuid() return code. Here we additionally recheck
1712 * whether NPROC limit is still exceeded.
1713 */
1714 if ((current->flags & PF_NPROC_EXCEEDED) &&
1715 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1716 retval = -EAGAIN;
1717 goto out_ret;
1718 }
1719
1720 /* We're below the limit (still or again), so we don't want to make
1721 * further execve() calls fail. */
1722 current->flags &= ~PF_NPROC_EXCEEDED;
1723
1724 retval = unshare_files(&displaced);
1725 if (retval)
1726 goto out_ret;
1727
1728 retval = -ENOMEM;
1729 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1730 if (!bprm)
1731 goto out_files;
1732
1733 retval = prepare_bprm_creds(bprm);
1734 if (retval)
1735 goto out_free;
1736
1737 check_unsafe_exec(bprm);
1738 current->in_execve = 1;
1739
1740 file = do_open_execat(fd, filename, flags);
1741 retval = PTR_ERR(file);
1742 if (IS_ERR(file))
1743 goto out_unmark;
1744
1745 sched_exec();
1746
1747 bprm->file = file;
1748 if (fd == AT_FDCWD || filename->name[0] == '/') {
1749 bprm->filename = filename->name;
1750 } else {
1751 if (filename->name[0] == '\0')
1752 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1753 else
1754 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1755 fd, filename->name);
1756 if (!pathbuf) {
1757 retval = -ENOMEM;
1758 goto out_unmark;
1759 }
1760 /*
1761 * Record that a name derived from an O_CLOEXEC fd will be
1762 * inaccessible after exec. Relies on having exclusive access to
1763 * current->files (due to unshare_files above).
1764 */
1765 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1766 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1767 bprm->filename = pathbuf;
1768 }
1769 bprm->interp = bprm->filename;
1770
1771 retval = bprm_mm_init(bprm);
1772 if (retval)
1773 goto out_unmark;
1774
1775 bprm->argc = count(argv, MAX_ARG_STRINGS);
1776 if ((retval = bprm->argc) < 0)
1777 goto out;
1778
1779 bprm->envc = count(envp, MAX_ARG_STRINGS);
1780 if ((retval = bprm->envc) < 0)
1781 goto out;
1782
1783 retval = prepare_binprm(bprm);
1784 if (retval < 0)
1785 goto out;
1786
1787 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1788 if (retval < 0)
1789 goto out;
1790
1791 bprm->exec = bprm->p;
1792 retval = copy_strings(bprm->envc, envp, bprm);
1793 if (retval < 0)
1794 goto out;
1795
1796 retval = copy_strings(bprm->argc, argv, bprm);
1797 if (retval < 0)
1798 goto out;
1799
1800 would_dump(bprm, bprm->file);
1801
1802 retval = exec_binprm(bprm);
1803 if (retval < 0)
1804 goto out;
1805
1806 /* execve succeeded */
1807 current->fs->in_exec = 0;
1808 current->in_execve = 0;
1809 membarrier_execve(current);
1810 acct_update_integrals(current);
1811 task_numa_free(current);
1812 free_bprm(bprm);
1813 kfree(pathbuf);
1814 putname(filename);
1815 if (displaced)
1816 put_files_struct(displaced);
1817 return retval;
1818
1819 out:
1820 if (bprm->mm) {
1821 acct_arg_size(bprm, 0);
1822 mmput(bprm->mm);
1823 }
1824
1825 out_unmark:
1826 current->fs->in_exec = 0;
1827 current->in_execve = 0;
1828
1829 out_free:
1830 free_bprm(bprm);
1831 kfree(pathbuf);
1832
1833 out_files:
1834 if (displaced)
1835 reset_files_struct(displaced);
1836 out_ret:
1837 putname(filename);
1838 return retval;
1839 }
1840
1841 int do_execve(struct filename *filename,
1842 const char __user *const __user *__argv,
1843 const char __user *const __user *__envp)
1844 {
1845 struct user_arg_ptr argv = { .ptr.native = __argv };
1846 struct user_arg_ptr envp = { .ptr.native = __envp };
1847 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1848 }
1849
1850 int do_execveat(int fd, struct filename *filename,
1851 const char __user *const __user *__argv,
1852 const char __user *const __user *__envp,
1853 int flags)
1854 {
1855 struct user_arg_ptr argv = { .ptr.native = __argv };
1856 struct user_arg_ptr envp = { .ptr.native = __envp };
1857
1858 return do_execveat_common(fd, filename, argv, envp, flags);
1859 }
1860
1861 #ifdef CONFIG_COMPAT
1862 static int compat_do_execve(struct filename *filename,
1863 const compat_uptr_t __user *__argv,
1864 const compat_uptr_t __user *__envp)
1865 {
1866 struct user_arg_ptr argv = {
1867 .is_compat = true,
1868 .ptr.compat = __argv,
1869 };
1870 struct user_arg_ptr envp = {
1871 .is_compat = true,
1872 .ptr.compat = __envp,
1873 };
1874 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1875 }
1876
1877 static int compat_do_execveat(int fd, struct filename *filename,
1878 const compat_uptr_t __user *__argv,
1879 const compat_uptr_t __user *__envp,
1880 int flags)
1881 {
1882 struct user_arg_ptr argv = {
1883 .is_compat = true,
1884 .ptr.compat = __argv,
1885 };
1886 struct user_arg_ptr envp = {
1887 .is_compat = true,
1888 .ptr.compat = __envp,
1889 };
1890 return do_execveat_common(fd, filename, argv, envp, flags);
1891 }
1892 #endif
1893
1894 void set_binfmt(struct linux_binfmt *new)
1895 {
1896 struct mm_struct *mm = current->mm;
1897
1898 if (mm->binfmt)
1899 module_put(mm->binfmt->module);
1900
1901 mm->binfmt = new;
1902 if (new)
1903 __module_get(new->module);
1904 }
1905 EXPORT_SYMBOL(set_binfmt);
1906
1907 /*
1908 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1909 */
1910 void set_dumpable(struct mm_struct *mm, int value)
1911 {
1912 unsigned long old, new;
1913
1914 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1915 return;
1916
1917 do {
1918 old = ACCESS_ONCE(mm->flags);
1919 new = (old & ~MMF_DUMPABLE_MASK) | value;
1920 } while (cmpxchg(&mm->flags, old, new) != old);
1921 }
1922
1923 SYSCALL_DEFINE3(execve,
1924 const char __user *, filename,
1925 const char __user *const __user *, argv,
1926 const char __user *const __user *, envp)
1927 {
1928 return do_execve(getname(filename), argv, envp);
1929 }
1930
1931 SYSCALL_DEFINE5(execveat,
1932 int, fd, const char __user *, filename,
1933 const char __user *const __user *, argv,
1934 const char __user *const __user *, envp,
1935 int, flags)
1936 {
1937 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1938
1939 return do_execveat(fd,
1940 getname_flags(filename, lookup_flags, NULL),
1941 argv, envp, flags);
1942 }
1943
1944 #ifdef CONFIG_COMPAT
1945 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1946 const compat_uptr_t __user *, argv,
1947 const compat_uptr_t __user *, envp)
1948 {
1949 return compat_do_execve(getname(filename), argv, envp);
1950 }
1951
1952 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1953 const char __user *, filename,
1954 const compat_uptr_t __user *, argv,
1955 const compat_uptr_t __user *, envp,
1956 int, flags)
1957 {
1958 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1959
1960 return compat_do_execveat(fd,
1961 getname_flags(filename, lookup_flags, NULL),
1962 argv, envp, flags);
1963 }
1964 #endif