[9610] usbpd change abnormal detection threshold/time
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 #include <linux/fscrypt.h>
41
42 /*
43 * How many user pages to map in one call to get_user_pages(). This determines
44 * the size of a structure in the slab cache
45 */
46 #define DIO_PAGES 64
47
48 /*
49 * Flags for dio_complete()
50 */
51 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
52 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
53
54 /*
55 * This code generally works in units of "dio_blocks". A dio_block is
56 * somewhere between the hard sector size and the filesystem block size. it
57 * is determined on a per-invocation basis. When talking to the filesystem
58 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
59 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
60 * to bio_block quantities by shifting left by blkfactor.
61 *
62 * If blkfactor is zero then the user's request was aligned to the filesystem's
63 * blocksize.
64 */
65
66 /* dio_state only used in the submission path */
67
68 struct dio_submit {
69 struct bio *bio; /* bio under assembly */
70 unsigned blkbits; /* doesn't change */
71 unsigned blkfactor; /* When we're using an alignment which
72 is finer than the filesystem's soft
73 blocksize, this specifies how much
74 finer. blkfactor=2 means 1/4-block
75 alignment. Does not change */
76 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
77 been performed at the start of a
78 write */
79 int pages_in_io; /* approximate total IO pages */
80 sector_t block_in_file; /* Current offset into the underlying
81 file in dio_block units. */
82 unsigned blocks_available; /* At block_in_file. changes */
83 int reap_counter; /* rate limit reaping */
84 sector_t final_block_in_request;/* doesn't change */
85 int boundary; /* prev block is at a boundary */
86 get_block_t *get_block; /* block mapping function */
87 dio_submit_t *submit_io; /* IO submition function */
88
89 loff_t logical_offset_in_bio; /* current first logical block in bio */
90 sector_t final_block_in_bio; /* current final block in bio + 1 */
91 sector_t next_block_for_io; /* next block to be put under IO,
92 in dio_blocks units */
93
94 /*
95 * Deferred addition of a page to the dio. These variables are
96 * private to dio_send_cur_page(), submit_page_section() and
97 * dio_bio_add_page().
98 */
99 struct page *cur_page; /* The page */
100 unsigned cur_page_offset; /* Offset into it, in bytes */
101 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
102 sector_t cur_page_block; /* Where it starts */
103 loff_t cur_page_fs_offset; /* Offset in file */
104
105 struct iov_iter *iter;
106 /*
107 * Page queue. These variables belong to dio_refill_pages() and
108 * dio_get_page().
109 */
110 unsigned head; /* next page to process */
111 unsigned tail; /* last valid page + 1 */
112 size_t from, to;
113 };
114
115 /* dio_state communicated between submission path and end_io */
116 struct dio {
117 int flags; /* doesn't change */
118 int op;
119 int op_flags;
120 blk_qc_t bio_cookie;
121 struct gendisk *bio_disk;
122 struct inode *inode;
123 loff_t i_size; /* i_size when submitted */
124 dio_iodone_t *end_io; /* IO completion function */
125
126 void *private; /* copy from map_bh.b_private */
127
128 /* BIO completion state */
129 spinlock_t bio_lock; /* protects BIO fields below */
130 int page_errors; /* errno from get_user_pages() */
131 int is_async; /* is IO async ? */
132 bool defer_completion; /* defer AIO completion to workqueue? */
133 bool should_dirty; /* if pages should be dirtied */
134 int io_error; /* IO error in completion path */
135 unsigned long refcount; /* direct_io_worker() and bios */
136 struct bio *bio_list; /* singly linked via bi_private */
137 struct task_struct *waiter; /* waiting task (NULL if none) */
138
139 /* AIO related stuff */
140 struct kiocb *iocb; /* kiocb */
141 ssize_t result; /* IO result */
142
143 /*
144 * pages[] (and any fields placed after it) are not zeroed out at
145 * allocation time. Don't add new fields after pages[] unless you
146 * wish that they not be zeroed.
147 */
148 union {
149 struct page *pages[DIO_PAGES]; /* page buffer */
150 struct work_struct complete_work;/* deferred AIO completion */
151 };
152 } ____cacheline_aligned_in_smp;
153
154 static struct kmem_cache *dio_cache __read_mostly;
155
156 /*
157 * How many pages are in the queue?
158 */
159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161 return sdio->tail - sdio->head;
162 }
163
164 /*
165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
166 */
167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169 ssize_t ret;
170
171 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
172 &sdio->from);
173
174 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
175 struct page *page = ZERO_PAGE(0);
176 /*
177 * A memory fault, but the filesystem has some outstanding
178 * mapped blocks. We need to use those blocks up to avoid
179 * leaking stale data in the file.
180 */
181 if (dio->page_errors == 0)
182 dio->page_errors = ret;
183 get_page(page);
184 dio->pages[0] = page;
185 sdio->head = 0;
186 sdio->tail = 1;
187 sdio->from = 0;
188 sdio->to = PAGE_SIZE;
189 return 0;
190 }
191
192 if (ret >= 0) {
193 iov_iter_advance(sdio->iter, ret);
194 ret += sdio->from;
195 sdio->head = 0;
196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
198 return 0;
199 }
200 return ret;
201 }
202
203 /*
204 * Get another userspace page. Returns an ERR_PTR on error. Pages are
205 * buffered inside the dio so that we can call get_user_pages() against a
206 * decent number of pages, less frequently. To provide nicer use of the
207 * L1 cache.
208 */
209 static inline struct page *dio_get_page(struct dio *dio,
210 struct dio_submit *sdio)
211 {
212 if (dio_pages_present(sdio) == 0) {
213 int ret;
214
215 ret = dio_refill_pages(dio, sdio);
216 if (ret)
217 return ERR_PTR(ret);
218 BUG_ON(dio_pages_present(sdio) == 0);
219 }
220 return dio->pages[sdio->head];
221 }
222
223 /**
224 * dio_complete() - called when all DIO BIO I/O has been completed
225 * @offset: the byte offset in the file of the completed operation
226 *
227 * This drops i_dio_count, lets interested parties know that a DIO operation
228 * has completed, and calculates the resulting return code for the operation.
229 *
230 * It lets the filesystem know if it registered an interest earlier via
231 * get_block. Pass the private field of the map buffer_head so that
232 * filesystems can use it to hold additional state between get_block calls and
233 * dio_complete.
234 */
235 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
236 {
237 loff_t offset = dio->iocb->ki_pos;
238 ssize_t transferred = 0;
239 int err;
240
241 /*
242 * AIO submission can race with bio completion to get here while
243 * expecting to have the last io completed by bio completion.
244 * In that case -EIOCBQUEUED is in fact not an error we want
245 * to preserve through this call.
246 */
247 if (ret == -EIOCBQUEUED)
248 ret = 0;
249
250 if (dio->result) {
251 transferred = dio->result;
252
253 /* Check for short read case */
254 if ((dio->op == REQ_OP_READ) &&
255 ((offset + transferred) > dio->i_size))
256 transferred = dio->i_size - offset;
257 /* ignore EFAULT if some IO has been done */
258 if (unlikely(ret == -EFAULT) && transferred)
259 ret = 0;
260 }
261
262 if (ret == 0)
263 ret = dio->page_errors;
264 if (ret == 0)
265 ret = dio->io_error;
266 if (ret == 0)
267 ret = transferred;
268
269 if (dio->end_io) {
270 // XXX: ki_pos??
271 err = dio->end_io(dio->iocb, offset, ret, dio->private);
272 if (err)
273 ret = err;
274 }
275
276 /*
277 * Try again to invalidate clean pages which might have been cached by
278 * non-direct readahead, or faulted in by get_user_pages() if the source
279 * of the write was an mmap'ed region of the file we're writing. Either
280 * one is a pretty crazy thing to do, so we don't support it 100%. If
281 * this invalidation fails, tough, the write still worked...
282 *
283 * And this page cache invalidation has to be after dio->end_io(), as
284 * some filesystems convert unwritten extents to real allocations in
285 * end_io() when necessary, otherwise a racing buffer read would cache
286 * zeros from unwritten extents.
287 */
288 if (flags & DIO_COMPLETE_INVALIDATE &&
289 ret > 0 && dio->op == REQ_OP_WRITE &&
290 dio->inode->i_mapping->nrpages) {
291 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
292 offset >> PAGE_SHIFT,
293 (offset + ret - 1) >> PAGE_SHIFT);
294 WARN_ON_ONCE(err);
295 }
296
297 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
298 inode_dio_end(dio->inode);
299
300 if (flags & DIO_COMPLETE_ASYNC) {
301 /*
302 * generic_write_sync expects ki_pos to have been updated
303 * already, but the submission path only does this for
304 * synchronous I/O.
305 */
306 dio->iocb->ki_pos += transferred;
307
308 if (ret > 0 && dio->op == REQ_OP_WRITE)
309 ret = generic_write_sync(dio->iocb, ret);
310 dio->iocb->ki_complete(dio->iocb, ret, 0);
311 }
312
313 kmem_cache_free(dio_cache, dio);
314 return ret;
315 }
316
317 static void dio_aio_complete_work(struct work_struct *work)
318 {
319 struct dio *dio = container_of(work, struct dio, complete_work);
320
321 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
322 }
323
324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
325
326 /*
327 * Asynchronous IO callback.
328 */
329 static void dio_bio_end_aio(struct bio *bio)
330 {
331 struct dio *dio = bio->bi_private;
332 unsigned long remaining;
333 unsigned long flags;
334 bool defer_completion = false;
335
336 /* cleanup the bio */
337 dio_bio_complete(dio, bio);
338
339 spin_lock_irqsave(&dio->bio_lock, flags);
340 remaining = --dio->refcount;
341 if (remaining == 1 && dio->waiter)
342 wake_up_process(dio->waiter);
343 spin_unlock_irqrestore(&dio->bio_lock, flags);
344
345 if (remaining == 0) {
346 /*
347 * Defer completion when defer_completion is set or
348 * when the inode has pages mapped and this is AIO write.
349 * We need to invalidate those pages because there is a
350 * chance they contain stale data in the case buffered IO
351 * went in between AIO submission and completion into the
352 * same region.
353 */
354 if (dio->result)
355 defer_completion = dio->defer_completion ||
356 (dio->op == REQ_OP_WRITE &&
357 dio->inode->i_mapping->nrpages);
358 if (defer_completion) {
359 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
360 queue_work(dio->inode->i_sb->s_dio_done_wq,
361 &dio->complete_work);
362 } else {
363 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
364 }
365 }
366 }
367
368 /*
369 * The BIO completion handler simply queues the BIO up for the process-context
370 * handler.
371 *
372 * During I/O bi_private points at the dio. After I/O, bi_private is used to
373 * implement a singly-linked list of completed BIOs, at dio->bio_list.
374 */
375 static void dio_bio_end_io(struct bio *bio)
376 {
377 struct dio *dio = bio->bi_private;
378 unsigned long flags;
379
380 spin_lock_irqsave(&dio->bio_lock, flags);
381 bio->bi_private = dio->bio_list;
382 dio->bio_list = bio;
383 if (--dio->refcount == 1 && dio->waiter)
384 wake_up_process(dio->waiter);
385 spin_unlock_irqrestore(&dio->bio_lock, flags);
386 }
387
388 /**
389 * dio_end_io - handle the end io action for the given bio
390 * @bio: The direct io bio thats being completed
391 *
392 * This is meant to be called by any filesystem that uses their own dio_submit_t
393 * so that the DIO specific endio actions are dealt with after the filesystem
394 * has done it's completion work.
395 */
396 void dio_end_io(struct bio *bio)
397 {
398 struct dio *dio = bio->bi_private;
399
400 if (dio->is_async)
401 dio_bio_end_aio(bio);
402 else
403 dio_bio_end_io(bio);
404 }
405 EXPORT_SYMBOL_GPL(dio_end_io);
406
407 static inline void
408 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
409 struct block_device *bdev,
410 sector_t first_sector, int nr_vecs)
411 {
412 struct bio *bio;
413
414 /*
415 * bio_alloc() is guaranteed to return a bio when called with
416 * __GFP_RECLAIM and we request a valid number of vectors.
417 */
418 bio = bio_alloc(GFP_KERNEL, nr_vecs);
419
420 bio_set_dev(bio, bdev);
421 bio->bi_iter.bi_sector = first_sector;
422 bio_set_op_attrs(bio, dio->op, dio->op_flags);
423 if (dio->is_async)
424 bio->bi_end_io = dio_bio_end_aio;
425 else
426 bio->bi_end_io = dio_bio_end_io;
427
428 bio->bi_write_hint = dio->iocb->ki_hint;
429
430 sdio->bio = bio;
431 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
432 }
433
434 /*
435 * In the AIO read case we speculatively dirty the pages before starting IO.
436 * During IO completion, any of these pages which happen to have been written
437 * back will be redirtied by bio_check_pages_dirty().
438 *
439 * bios hold a dio reference between submit_bio and ->end_io.
440 */
441 #ifdef CONFIG_CRYPTO_DISKCIPHER_DUN
442 static bool is_inode_filesystem_type(const struct inode *inode,
443 const char *fs_type)
444 {
445 if (!inode || !fs_type)
446 return false;
447
448 if (!inode->i_sb)
449 return false;
450
451 if (!inode->i_sb->s_type)
452 return false;
453
454 return (strcmp(inode->i_sb->s_type->name, fs_type) == 0);
455 }
456 #endif
457
458 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
459 {
460 struct bio *bio = sdio->bio;
461 unsigned long flags;
462
463 bio->bi_private = dio;
464
465 spin_lock_irqsave(&dio->bio_lock, flags);
466 dio->refcount++;
467 spin_unlock_irqrestore(&dio->bio_lock, flags);
468
469 #if defined(CONFIG_CRYPTO_DISKCIPHER)
470 if (dio->inode && fscrypt_has_encryption_key(dio->inode)) {
471 fscrypt_set_bio(dio->inode, bio, 0);
472 crypto_diskcipher_debug(FS_DIO, bio->bi_opf);
473 #if defined(CONFIG_CRYPTO_DISKCIPHER_DUN)
474 /* device unit number for iv sector */
475 #define PG_DUN(i,p) \
476 ((((i)->i_ino & 0xffffffff) << 32) | ((p) & 0xffffffff))
477
478 if (is_inode_filesystem_type(dio->inode, "f2fs"))
479 fscrypt_set_bio(dio->inode, bio, PG_DUN(dio->inode,
480 (sdio->logical_offset_in_bio >> PAGE_SHIFT)));
481 #endif
482 }
483 #endif
484
485 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
486 bio_set_pages_dirty(bio);
487
488 dio->bio_disk = bio->bi_disk;
489
490 if (sdio->submit_io) {
491 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
492 dio->bio_cookie = BLK_QC_T_NONE;
493 } else
494 dio->bio_cookie = submit_bio(bio);
495
496 sdio->bio = NULL;
497 sdio->boundary = 0;
498 sdio->logical_offset_in_bio = 0;
499 }
500
501 /*
502 * Release any resources in case of a failure
503 */
504 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
505 {
506 while (sdio->head < sdio->tail)
507 put_page(dio->pages[sdio->head++]);
508 }
509
510 /*
511 * Wait for the next BIO to complete. Remove it and return it. NULL is
512 * returned once all BIOs have been completed. This must only be called once
513 * all bios have been issued so that dio->refcount can only decrease. This
514 * requires that that the caller hold a reference on the dio.
515 */
516 static struct bio *dio_await_one(struct dio *dio)
517 {
518 unsigned long flags;
519 struct bio *bio = NULL;
520
521 spin_lock_irqsave(&dio->bio_lock, flags);
522
523 /*
524 * Wait as long as the list is empty and there are bios in flight. bio
525 * completion drops the count, maybe adds to the list, and wakes while
526 * holding the bio_lock so we don't need set_current_state()'s barrier
527 * and can call it after testing our condition.
528 */
529 while (dio->refcount > 1 && dio->bio_list == NULL) {
530 __set_current_state(TASK_UNINTERRUPTIBLE);
531 dio->waiter = current;
532 spin_unlock_irqrestore(&dio->bio_lock, flags);
533 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
534 !blk_mq_poll(dio->bio_disk->queue, dio->bio_cookie))
535 io_schedule();
536 /* wake up sets us TASK_RUNNING */
537 spin_lock_irqsave(&dio->bio_lock, flags);
538 dio->waiter = NULL;
539 }
540 if (dio->bio_list) {
541 bio = dio->bio_list;
542 dio->bio_list = bio->bi_private;
543 }
544 spin_unlock_irqrestore(&dio->bio_lock, flags);
545 return bio;
546 }
547
548 /*
549 * Process one completed BIO. No locks are held.
550 */
551 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
552 {
553 struct bio_vec *bvec;
554 unsigned i;
555 blk_status_t err = bio->bi_status;
556
557 if (err) {
558 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
559 dio->io_error = -EAGAIN;
560 else
561 dio->io_error = -EIO;
562 }
563
564 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
565 bio_check_pages_dirty(bio); /* transfers ownership */
566 } else {
567 bio_for_each_segment_all(bvec, bio, i) {
568 struct page *page = bvec->bv_page;
569
570 if (dio->op == REQ_OP_READ && !PageCompound(page) &&
571 dio->should_dirty)
572 set_page_dirty_lock(page);
573 put_page(page);
574 }
575 bio_put(bio);
576 }
577 return err;
578 }
579
580 /*
581 * Wait on and process all in-flight BIOs. This must only be called once
582 * all bios have been issued so that the refcount can only decrease.
583 * This just waits for all bios to make it through dio_bio_complete. IO
584 * errors are propagated through dio->io_error and should be propagated via
585 * dio_complete().
586 */
587 static void dio_await_completion(struct dio *dio)
588 {
589 struct bio *bio;
590 do {
591 bio = dio_await_one(dio);
592 if (bio)
593 dio_bio_complete(dio, bio);
594 } while (bio);
595 }
596
597 /*
598 * A really large O_DIRECT read or write can generate a lot of BIOs. So
599 * to keep the memory consumption sane we periodically reap any completed BIOs
600 * during the BIO generation phase.
601 *
602 * This also helps to limit the peak amount of pinned userspace memory.
603 */
604 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
605 {
606 int ret = 0;
607
608 if (sdio->reap_counter++ >= 64) {
609 while (dio->bio_list) {
610 unsigned long flags;
611 struct bio *bio;
612 int ret2;
613
614 spin_lock_irqsave(&dio->bio_lock, flags);
615 bio = dio->bio_list;
616 dio->bio_list = bio->bi_private;
617 spin_unlock_irqrestore(&dio->bio_lock, flags);
618 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
619 if (ret == 0)
620 ret = ret2;
621 }
622 sdio->reap_counter = 0;
623 }
624 return ret;
625 }
626
627 /*
628 * Create workqueue for deferred direct IO completions. We allocate the
629 * workqueue when it's first needed. This avoids creating workqueue for
630 * filesystems that don't need it and also allows us to create the workqueue
631 * late enough so the we can include s_id in the name of the workqueue.
632 */
633 int sb_init_dio_done_wq(struct super_block *sb)
634 {
635 struct workqueue_struct *old;
636 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
637 WQ_MEM_RECLAIM, 0,
638 sb->s_id);
639 if (!wq)
640 return -ENOMEM;
641 /*
642 * This has to be atomic as more DIOs can race to create the workqueue
643 */
644 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
645 /* Someone created workqueue before us? Free ours... */
646 if (old)
647 destroy_workqueue(wq);
648 return 0;
649 }
650
651 static int dio_set_defer_completion(struct dio *dio)
652 {
653 struct super_block *sb = dio->inode->i_sb;
654
655 if (dio->defer_completion)
656 return 0;
657 dio->defer_completion = true;
658 if (!sb->s_dio_done_wq)
659 return sb_init_dio_done_wq(sb);
660 return 0;
661 }
662
663 /*
664 * Call into the fs to map some more disk blocks. We record the current number
665 * of available blocks at sdio->blocks_available. These are in units of the
666 * fs blocksize, i_blocksize(inode).
667 *
668 * The fs is allowed to map lots of blocks at once. If it wants to do that,
669 * it uses the passed inode-relative block number as the file offset, as usual.
670 *
671 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
672 * has remaining to do. The fs should not map more than this number of blocks.
673 *
674 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
675 * indicate how much contiguous disk space has been made available at
676 * bh->b_blocknr.
677 *
678 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
679 * This isn't very efficient...
680 *
681 * In the case of filesystem holes: the fs may return an arbitrarily-large
682 * hole by returning an appropriate value in b_size and by clearing
683 * buffer_mapped(). However the direct-io code will only process holes one
684 * block at a time - it will repeatedly call get_block() as it walks the hole.
685 */
686 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
687 struct buffer_head *map_bh)
688 {
689 int ret;
690 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
691 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
692 unsigned long fs_count; /* Number of filesystem-sized blocks */
693 int create;
694 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
695 loff_t i_size;
696
697 /*
698 * If there was a memory error and we've overwritten all the
699 * mapped blocks then we can now return that memory error
700 */
701 ret = dio->page_errors;
702 if (ret == 0) {
703 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
704 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
705 fs_endblk = (sdio->final_block_in_request - 1) >>
706 sdio->blkfactor;
707 fs_count = fs_endblk - fs_startblk + 1;
708
709 map_bh->b_state = 0;
710 map_bh->b_size = fs_count << i_blkbits;
711
712 /*
713 * For writes that could fill holes inside i_size on a
714 * DIO_SKIP_HOLES filesystem we forbid block creations: only
715 * overwrites are permitted. We will return early to the caller
716 * once we see an unmapped buffer head returned, and the caller
717 * will fall back to buffered I/O.
718 *
719 * Otherwise the decision is left to the get_blocks method,
720 * which may decide to handle it or also return an unmapped
721 * buffer head.
722 */
723 create = dio->op == REQ_OP_WRITE;
724 if (dio->flags & DIO_SKIP_HOLES) {
725 i_size = i_size_read(dio->inode);
726 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
727 create = 0;
728 }
729
730 ret = (*sdio->get_block)(dio->inode, fs_startblk,
731 map_bh, create);
732
733 /* Store for completion */
734 dio->private = map_bh->b_private;
735
736 if (ret == 0 && buffer_defer_completion(map_bh))
737 ret = dio_set_defer_completion(dio);
738 }
739 return ret;
740 }
741
742 /*
743 * There is no bio. Make one now.
744 */
745 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
746 sector_t start_sector, struct buffer_head *map_bh)
747 {
748 sector_t sector;
749 int ret, nr_pages;
750
751 ret = dio_bio_reap(dio, sdio);
752 if (ret)
753 goto out;
754 sector = start_sector << (sdio->blkbits - 9);
755 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
756 BUG_ON(nr_pages <= 0);
757 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
758 sdio->boundary = 0;
759 out:
760 return ret;
761 }
762
763 /*
764 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
765 * that was successful then update final_block_in_bio and take a ref against
766 * the just-added page.
767 *
768 * Return zero on success. Non-zero means the caller needs to start a new BIO.
769 */
770 static inline int dio_bio_add_page(struct dio_submit *sdio)
771 {
772 int ret;
773
774 ret = bio_add_page(sdio->bio, sdio->cur_page,
775 sdio->cur_page_len, sdio->cur_page_offset);
776 if (ret == sdio->cur_page_len) {
777 /*
778 * Decrement count only, if we are done with this page
779 */
780 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
781 sdio->pages_in_io--;
782 get_page(sdio->cur_page);
783 sdio->final_block_in_bio = sdio->cur_page_block +
784 (sdio->cur_page_len >> sdio->blkbits);
785 ret = 0;
786 } else {
787 ret = 1;
788 }
789 return ret;
790 }
791
792 /*
793 * Put cur_page under IO. The section of cur_page which is described by
794 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
795 * starts on-disk at cur_page_block.
796 *
797 * We take a ref against the page here (on behalf of its presence in the bio).
798 *
799 * The caller of this function is responsible for removing cur_page from the
800 * dio, and for dropping the refcount which came from that presence.
801 */
802 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
803 struct buffer_head *map_bh)
804 {
805 int ret = 0;
806
807 if (sdio->bio) {
808 loff_t cur_offset = sdio->cur_page_fs_offset;
809 loff_t bio_next_offset = sdio->logical_offset_in_bio +
810 sdio->bio->bi_iter.bi_size;
811
812 /*
813 * See whether this new request is contiguous with the old.
814 *
815 * Btrfs cannot handle having logically non-contiguous requests
816 * submitted. For example if you have
817 *
818 * Logical: [0-4095][HOLE][8192-12287]
819 * Physical: [0-4095] [4096-8191]
820 *
821 * We cannot submit those pages together as one BIO. So if our
822 * current logical offset in the file does not equal what would
823 * be the next logical offset in the bio, submit the bio we
824 * have.
825 */
826 if (sdio->final_block_in_bio != sdio->cur_page_block ||
827 cur_offset != bio_next_offset)
828 dio_bio_submit(dio, sdio);
829 }
830
831 if (sdio->bio == NULL) {
832 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
833 if (ret)
834 goto out;
835 }
836
837 if (dio_bio_add_page(sdio) != 0) {
838 dio_bio_submit(dio, sdio);
839 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
840 if (ret == 0) {
841 ret = dio_bio_add_page(sdio);
842 BUG_ON(ret != 0);
843 }
844 }
845 out:
846 return ret;
847 }
848
849 /*
850 * An autonomous function to put a chunk of a page under deferred IO.
851 *
852 * The caller doesn't actually know (or care) whether this piece of page is in
853 * a BIO, or is under IO or whatever. We just take care of all possible
854 * situations here. The separation between the logic of do_direct_IO() and
855 * that of submit_page_section() is important for clarity. Please don't break.
856 *
857 * The chunk of page starts on-disk at blocknr.
858 *
859 * We perform deferred IO, by recording the last-submitted page inside our
860 * private part of the dio structure. If possible, we just expand the IO
861 * across that page here.
862 *
863 * If that doesn't work out then we put the old page into the bio and add this
864 * page to the dio instead.
865 */
866 static inline int
867 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
868 unsigned offset, unsigned len, sector_t blocknr,
869 struct buffer_head *map_bh)
870 {
871 int ret = 0;
872
873 if (dio->op == REQ_OP_WRITE) {
874 /*
875 * Read accounting is performed in submit_bio()
876 */
877 task_io_account_write(len);
878 }
879
880 /*
881 * Can we just grow the current page's presence in the dio?
882 */
883 if (sdio->cur_page == page &&
884 sdio->cur_page_offset + sdio->cur_page_len == offset &&
885 sdio->cur_page_block +
886 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
887 sdio->cur_page_len += len;
888 goto out;
889 }
890
891 /*
892 * If there's a deferred page already there then send it.
893 */
894 if (sdio->cur_page) {
895 ret = dio_send_cur_page(dio, sdio, map_bh);
896 put_page(sdio->cur_page);
897 sdio->cur_page = NULL;
898 if (ret)
899 return ret;
900 }
901
902 get_page(page); /* It is in dio */
903 sdio->cur_page = page;
904 sdio->cur_page_offset = offset;
905 sdio->cur_page_len = len;
906 sdio->cur_page_block = blocknr;
907 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
908 out:
909 /*
910 * If sdio->boundary then we want to schedule the IO now to
911 * avoid metadata seeks.
912 */
913 if (sdio->boundary) {
914 ret = dio_send_cur_page(dio, sdio, map_bh);
915 if (sdio->bio)
916 dio_bio_submit(dio, sdio);
917 put_page(sdio->cur_page);
918 sdio->cur_page = NULL;
919 }
920 return ret;
921 }
922
923 /*
924 * If we are not writing the entire block and get_block() allocated
925 * the block for us, we need to fill-in the unused portion of the
926 * block with zeros. This happens only if user-buffer, fileoffset or
927 * io length is not filesystem block-size multiple.
928 *
929 * `end' is zero if we're doing the start of the IO, 1 at the end of the
930 * IO.
931 */
932 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
933 int end, struct buffer_head *map_bh)
934 {
935 unsigned dio_blocks_per_fs_block;
936 unsigned this_chunk_blocks; /* In dio_blocks */
937 unsigned this_chunk_bytes;
938 struct page *page;
939
940 sdio->start_zero_done = 1;
941 if (!sdio->blkfactor || !buffer_new(map_bh))
942 return;
943
944 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
945 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
946
947 if (!this_chunk_blocks)
948 return;
949
950 /*
951 * We need to zero out part of an fs block. It is either at the
952 * beginning or the end of the fs block.
953 */
954 if (end)
955 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
956
957 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
958
959 page = ZERO_PAGE(0);
960 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
961 sdio->next_block_for_io, map_bh))
962 return;
963
964 sdio->next_block_for_io += this_chunk_blocks;
965 }
966
967 /*
968 * Walk the user pages, and the file, mapping blocks to disk and generating
969 * a sequence of (page,offset,len,block) mappings. These mappings are injected
970 * into submit_page_section(), which takes care of the next stage of submission
971 *
972 * Direct IO against a blockdev is different from a file. Because we can
973 * happily perform page-sized but 512-byte aligned IOs. It is important that
974 * blockdev IO be able to have fine alignment and large sizes.
975 *
976 * So what we do is to permit the ->get_block function to populate bh.b_size
977 * with the size of IO which is permitted at this offset and this i_blkbits.
978 *
979 * For best results, the blockdev should be set up with 512-byte i_blkbits and
980 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
981 * fine alignment but still allows this function to work in PAGE_SIZE units.
982 */
983 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
984 struct buffer_head *map_bh)
985 {
986 const unsigned blkbits = sdio->blkbits;
987 const unsigned i_blkbits = blkbits + sdio->blkfactor;
988 int ret = 0;
989
990 while (sdio->block_in_file < sdio->final_block_in_request) {
991 struct page *page;
992 size_t from, to;
993
994 page = dio_get_page(dio, sdio);
995 if (IS_ERR(page)) {
996 ret = PTR_ERR(page);
997 goto out;
998 }
999 from = sdio->head ? 0 : sdio->from;
1000 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
1001 sdio->head++;
1002
1003 while (from < to) {
1004 unsigned this_chunk_bytes; /* # of bytes mapped */
1005 unsigned this_chunk_blocks; /* # of blocks */
1006 unsigned u;
1007
1008 if (sdio->blocks_available == 0) {
1009 /*
1010 * Need to go and map some more disk
1011 */
1012 unsigned long blkmask;
1013 unsigned long dio_remainder;
1014
1015 ret = get_more_blocks(dio, sdio, map_bh);
1016 if (ret) {
1017 put_page(page);
1018 goto out;
1019 }
1020 if (!buffer_mapped(map_bh))
1021 goto do_holes;
1022
1023 sdio->blocks_available =
1024 map_bh->b_size >> blkbits;
1025 sdio->next_block_for_io =
1026 map_bh->b_blocknr << sdio->blkfactor;
1027 if (buffer_new(map_bh)) {
1028 clean_bdev_aliases(
1029 map_bh->b_bdev,
1030 map_bh->b_blocknr,
1031 map_bh->b_size >> i_blkbits);
1032 }
1033
1034 if (!sdio->blkfactor)
1035 goto do_holes;
1036
1037 blkmask = (1 << sdio->blkfactor) - 1;
1038 dio_remainder = (sdio->block_in_file & blkmask);
1039
1040 /*
1041 * If we are at the start of IO and that IO
1042 * starts partway into a fs-block,
1043 * dio_remainder will be non-zero. If the IO
1044 * is a read then we can simply advance the IO
1045 * cursor to the first block which is to be
1046 * read. But if the IO is a write and the
1047 * block was newly allocated we cannot do that;
1048 * the start of the fs block must be zeroed out
1049 * on-disk
1050 */
1051 if (!buffer_new(map_bh))
1052 sdio->next_block_for_io += dio_remainder;
1053 sdio->blocks_available -= dio_remainder;
1054 }
1055 do_holes:
1056 /* Handle holes */
1057 if (!buffer_mapped(map_bh)) {
1058 loff_t i_size_aligned;
1059
1060 /* AKPM: eargh, -ENOTBLK is a hack */
1061 if (dio->op == REQ_OP_WRITE) {
1062 put_page(page);
1063 return -ENOTBLK;
1064 }
1065
1066 /*
1067 * Be sure to account for a partial block as the
1068 * last block in the file
1069 */
1070 i_size_aligned = ALIGN(i_size_read(dio->inode),
1071 1 << blkbits);
1072 if (sdio->block_in_file >=
1073 i_size_aligned >> blkbits) {
1074 /* We hit eof */
1075 put_page(page);
1076 goto out;
1077 }
1078 zero_user(page, from, 1 << blkbits);
1079 sdio->block_in_file++;
1080 from += 1 << blkbits;
1081 dio->result += 1 << blkbits;
1082 goto next_block;
1083 }
1084
1085 /*
1086 * If we're performing IO which has an alignment which
1087 * is finer than the underlying fs, go check to see if
1088 * we must zero out the start of this block.
1089 */
1090 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1091 dio_zero_block(dio, sdio, 0, map_bh);
1092
1093 /*
1094 * Work out, in this_chunk_blocks, how much disk we
1095 * can add to this page
1096 */
1097 this_chunk_blocks = sdio->blocks_available;
1098 u = (to - from) >> blkbits;
1099 if (this_chunk_blocks > u)
1100 this_chunk_blocks = u;
1101 u = sdio->final_block_in_request - sdio->block_in_file;
1102 if (this_chunk_blocks > u)
1103 this_chunk_blocks = u;
1104 this_chunk_bytes = this_chunk_blocks << blkbits;
1105 BUG_ON(this_chunk_bytes == 0);
1106
1107 if (this_chunk_blocks == sdio->blocks_available)
1108 sdio->boundary = buffer_boundary(map_bh);
1109 ret = submit_page_section(dio, sdio, page,
1110 from,
1111 this_chunk_bytes,
1112 sdio->next_block_for_io,
1113 map_bh);
1114 if (ret) {
1115 put_page(page);
1116 goto out;
1117 }
1118 sdio->next_block_for_io += this_chunk_blocks;
1119
1120 sdio->block_in_file += this_chunk_blocks;
1121 from += this_chunk_bytes;
1122 dio->result += this_chunk_bytes;
1123 sdio->blocks_available -= this_chunk_blocks;
1124 next_block:
1125 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1126 if (sdio->block_in_file == sdio->final_block_in_request)
1127 break;
1128 }
1129
1130 /* Drop the ref which was taken in get_user_pages() */
1131 put_page(page);
1132 }
1133 out:
1134 return ret;
1135 }
1136
1137 static inline int drop_refcount(struct dio *dio)
1138 {
1139 int ret2;
1140 unsigned long flags;
1141
1142 /*
1143 * Sync will always be dropping the final ref and completing the
1144 * operation. AIO can if it was a broken operation described above or
1145 * in fact if all the bios race to complete before we get here. In
1146 * that case dio_complete() translates the EIOCBQUEUED into the proper
1147 * return code that the caller will hand to ->complete().
1148 *
1149 * This is managed by the bio_lock instead of being an atomic_t so that
1150 * completion paths can drop their ref and use the remaining count to
1151 * decide to wake the submission path atomically.
1152 */
1153 spin_lock_irqsave(&dio->bio_lock, flags);
1154 ret2 = --dio->refcount;
1155 spin_unlock_irqrestore(&dio->bio_lock, flags);
1156 return ret2;
1157 }
1158
1159 /*
1160 * This is a library function for use by filesystem drivers.
1161 *
1162 * The locking rules are governed by the flags parameter:
1163 * - if the flags value contains DIO_LOCKING we use a fancy locking
1164 * scheme for dumb filesystems.
1165 * For writes this function is called under i_mutex and returns with
1166 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1167 * taken and dropped again before returning.
1168 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1169 * internal locking but rather rely on the filesystem to synchronize
1170 * direct I/O reads/writes versus each other and truncate.
1171 *
1172 * To help with locking against truncate we incremented the i_dio_count
1173 * counter before starting direct I/O, and decrement it once we are done.
1174 * Truncate can wait for it to reach zero to provide exclusion. It is
1175 * expected that filesystem provide exclusion between new direct I/O
1176 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1177 * but other filesystems need to take care of this on their own.
1178 *
1179 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1180 * is always inlined. Otherwise gcc is unable to split the structure into
1181 * individual fields and will generate much worse code. This is important
1182 * for the whole file.
1183 */
1184 static inline ssize_t
1185 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1186 struct block_device *bdev, struct iov_iter *iter,
1187 get_block_t get_block, dio_iodone_t end_io,
1188 dio_submit_t submit_io, int flags)
1189 {
1190 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1191 unsigned blkbits = i_blkbits;
1192 unsigned blocksize_mask = (1 << blkbits) - 1;
1193 ssize_t retval = -EINVAL;
1194 size_t count = iov_iter_count(iter);
1195 loff_t offset = iocb->ki_pos;
1196 loff_t end = offset + count;
1197 struct dio *dio;
1198 struct dio_submit sdio = { 0, };
1199 struct buffer_head map_bh = { 0, };
1200 struct blk_plug plug;
1201 unsigned long align = offset | iov_iter_alignment(iter);
1202
1203 /*
1204 * Avoid references to bdev if not absolutely needed to give
1205 * the early prefetch in the caller enough time.
1206 */
1207
1208 if (align & blocksize_mask) {
1209 if (bdev)
1210 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1211 blocksize_mask = (1 << blkbits) - 1;
1212 if (align & blocksize_mask)
1213 goto out;
1214 }
1215
1216 /* watch out for a 0 len io from a tricksy fs */
1217 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1218 return 0;
1219
1220 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1221 retval = -ENOMEM;
1222 if (!dio)
1223 goto out;
1224 /*
1225 * Believe it or not, zeroing out the page array caused a .5%
1226 * performance regression in a database benchmark. So, we take
1227 * care to only zero out what's needed.
1228 */
1229 memset(dio, 0, offsetof(struct dio, pages));
1230
1231 dio->flags = flags;
1232 if (dio->flags & DIO_LOCKING) {
1233 if (iov_iter_rw(iter) == READ) {
1234 struct address_space *mapping =
1235 iocb->ki_filp->f_mapping;
1236
1237 /* will be released by direct_io_worker */
1238 inode_lock(inode);
1239
1240 retval = filemap_write_and_wait_range(mapping, offset,
1241 end - 1);
1242 if (retval) {
1243 inode_unlock(inode);
1244 kmem_cache_free(dio_cache, dio);
1245 goto out;
1246 }
1247 }
1248 }
1249
1250 /* Once we sampled i_size check for reads beyond EOF */
1251 dio->i_size = i_size_read(inode);
1252 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1253 if (dio->flags & DIO_LOCKING)
1254 inode_unlock(inode);
1255 kmem_cache_free(dio_cache, dio);
1256 retval = 0;
1257 goto out;
1258 }
1259
1260 /*
1261 * For file extending writes updating i_size before data writeouts
1262 * complete can expose uninitialized blocks in dumb filesystems.
1263 * In that case we need to wait for I/O completion even if asked
1264 * for an asynchronous write.
1265 */
1266 if (is_sync_kiocb(iocb))
1267 dio->is_async = false;
1268 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1269 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1270 dio->is_async = false;
1271 else
1272 dio->is_async = true;
1273
1274 dio->inode = inode;
1275 if (iov_iter_rw(iter) == WRITE) {
1276 dio->op = REQ_OP_WRITE;
1277 dio->op_flags = REQ_SYNC | REQ_IDLE;
1278 if (iocb->ki_flags & IOCB_NOWAIT)
1279 dio->op_flags |= REQ_NOWAIT;
1280 } else {
1281 dio->op = REQ_OP_READ;
1282 }
1283
1284 /*
1285 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1286 * so that we can call ->fsync.
1287 */
1288 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1289 retval = 0;
1290 if (iocb->ki_flags & IOCB_DSYNC)
1291 retval = dio_set_defer_completion(dio);
1292 else if (!dio->inode->i_sb->s_dio_done_wq) {
1293 /*
1294 * In case of AIO write racing with buffered read we
1295 * need to defer completion. We can't decide this now,
1296 * however the workqueue needs to be initialized here.
1297 */
1298 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1299 }
1300 if (retval) {
1301 /*
1302 * We grab i_mutex only for reads so we don't have
1303 * to release it here
1304 */
1305 kmem_cache_free(dio_cache, dio);
1306 goto out;
1307 }
1308 }
1309
1310 /*
1311 * Will be decremented at I/O completion time.
1312 */
1313 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1314 inode_dio_begin(inode);
1315
1316 retval = 0;
1317 sdio.blkbits = blkbits;
1318 sdio.blkfactor = i_blkbits - blkbits;
1319 sdio.block_in_file = offset >> blkbits;
1320
1321 sdio.get_block = get_block;
1322 dio->end_io = end_io;
1323 sdio.submit_io = submit_io;
1324 sdio.final_block_in_bio = -1;
1325 sdio.next_block_for_io = -1;
1326
1327 dio->iocb = iocb;
1328
1329 spin_lock_init(&dio->bio_lock);
1330 dio->refcount = 1;
1331
1332 dio->should_dirty = (iter->type == ITER_IOVEC);
1333 sdio.iter = iter;
1334 sdio.final_block_in_request =
1335 (offset + iov_iter_count(iter)) >> blkbits;
1336
1337 /*
1338 * In case of non-aligned buffers, we may need 2 more
1339 * pages since we need to zero out first and last block.
1340 */
1341 if (unlikely(sdio.blkfactor))
1342 sdio.pages_in_io = 2;
1343
1344 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1345
1346 blk_start_plug(&plug);
1347
1348 retval = do_direct_IO(dio, &sdio, &map_bh);
1349 if (retval)
1350 dio_cleanup(dio, &sdio);
1351
1352 if (retval == -ENOTBLK) {
1353 /*
1354 * The remaining part of the request will be
1355 * be handled by buffered I/O when we return
1356 */
1357 retval = 0;
1358 }
1359 /*
1360 * There may be some unwritten disk at the end of a part-written
1361 * fs-block-sized block. Go zero that now.
1362 */
1363 dio_zero_block(dio, &sdio, 1, &map_bh);
1364
1365 if (sdio.cur_page) {
1366 ssize_t ret2;
1367
1368 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1369 if (retval == 0)
1370 retval = ret2;
1371 put_page(sdio.cur_page);
1372 sdio.cur_page = NULL;
1373 }
1374 if (sdio.bio)
1375 dio_bio_submit(dio, &sdio);
1376
1377 blk_finish_plug(&plug);
1378
1379 /*
1380 * It is possible that, we return short IO due to end of file.
1381 * In that case, we need to release all the pages we got hold on.
1382 */
1383 dio_cleanup(dio, &sdio);
1384
1385 /*
1386 * All block lookups have been performed. For READ requests
1387 * we can let i_mutex go now that its achieved its purpose
1388 * of protecting us from looking up uninitialized blocks.
1389 */
1390 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1391 inode_unlock(dio->inode);
1392
1393 /*
1394 * The only time we want to leave bios in flight is when a successful
1395 * partial aio read or full aio write have been setup. In that case
1396 * bio completion will call aio_complete. The only time it's safe to
1397 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1398 * This had *better* be the only place that raises -EIOCBQUEUED.
1399 */
1400 BUG_ON(retval == -EIOCBQUEUED);
1401 if (dio->is_async && retval == 0 && dio->result &&
1402 (iov_iter_rw(iter) == READ || dio->result == count))
1403 retval = -EIOCBQUEUED;
1404 else
1405 dio_await_completion(dio);
1406
1407 if (drop_refcount(dio) == 0) {
1408 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1409 } else
1410 BUG_ON(retval != -EIOCBQUEUED);
1411
1412 out:
1413 return retval;
1414 }
1415
1416 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1417 struct block_device *bdev, struct iov_iter *iter,
1418 get_block_t get_block,
1419 dio_iodone_t end_io, dio_submit_t submit_io,
1420 int flags)
1421 {
1422 /*
1423 * The block device state is needed in the end to finally
1424 * submit everything. Since it's likely to be cache cold
1425 * prefetch it here as first thing to hide some of the
1426 * latency.
1427 *
1428 * Attempt to prefetch the pieces we likely need later.
1429 */
1430 prefetch(&bdev->bd_disk->part_tbl);
1431 prefetch(bdev->bd_queue);
1432 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1433
1434 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1435 end_io, submit_io, flags);
1436 }
1437
1438 EXPORT_SYMBOL(__blockdev_direct_IO);
1439
1440 static __init int dio_init(void)
1441 {
1442 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1443 return 0;
1444 }
1445 module_init(dio_init)