Merge branch 'android-4.14-p' into android-exynos-4.14-ww-9610-minor_up-dev
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / mmc / core / mmc.c
1 /*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31
32 #define DEFAULT_CMD6_TIMEOUT_MS 500
33 #define MIN_CACHE_EN_TIMEOUT_MS 1600
34
35 static const unsigned int tran_exp[] = {
36 10000, 100000, 1000000, 10000000,
37 0, 0, 0, 0
38 };
39
40 static const unsigned char tran_mant[] = {
41 0, 10, 12, 13, 15, 20, 25, 30,
42 35, 40, 45, 50, 55, 60, 70, 80,
43 };
44
45 static const unsigned int taac_exp[] = {
46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
47 };
48
49 static const unsigned int taac_mant[] = {
50 0, 10, 12, 13, 15, 20, 25, 30,
51 35, 40, 45, 50, 55, 60, 70, 80,
52 };
53
54 #define UNSTUFF_BITS(resp,start,size) \
55 ({ \
56 const int __size = size; \
57 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
58 const int __off = 3 - ((start) / 32); \
59 const int __shft = (start) & 31; \
60 u32 __res; \
61 \
62 __res = resp[__off] >> __shft; \
63 if (__size + __shft > 32) \
64 __res |= resp[__off-1] << ((32 - __shft) % 32); \
65 __res & __mask; \
66 })
67
68 /*
69 * Given the decoded CSD structure, decode the raw CID to our CID structure.
70 */
71 static int mmc_decode_cid(struct mmc_card *card)
72 {
73 u32 *resp = card->raw_cid;
74
75 /*
76 * The selection of the format here is based upon published
77 * specs from sandisk and from what people have reported.
78 */
79 switch (card->csd.mmca_vsn) {
80 case 0: /* MMC v1.0 - v1.2 */
81 case 1: /* MMC v1.4 */
82 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
83 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
84 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
85 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
86 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
87 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
88 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
89 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
90 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
91 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
92 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
93 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
94 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
95 break;
96
97 case 2: /* MMC v2.0 - v2.2 */
98 case 3: /* MMC v3.1 - v3.3 */
99 case 4: /* MMC v4 */
100 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
101 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
102 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
103 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
104 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
105 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
106 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
107 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
108 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
109 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
110 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
111 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
112 break;
113
114 default:
115 pr_err("%s: card has unknown MMCA version %d\n",
116 mmc_hostname(card->host), card->csd.mmca_vsn);
117 return -EINVAL;
118 }
119
120 return 0;
121 }
122
123 static void mmc_set_erase_size(struct mmc_card *card)
124 {
125 if (card->ext_csd.erase_group_def & 1)
126 card->erase_size = card->ext_csd.hc_erase_size;
127 else
128 card->erase_size = card->csd.erase_size;
129
130 mmc_init_erase(card);
131 }
132
133 /*
134 * Given a 128-bit response, decode to our card CSD structure.
135 */
136 static int mmc_decode_csd(struct mmc_card *card)
137 {
138 struct mmc_csd *csd = &card->csd;
139 unsigned int e, m, a, b;
140 u32 *resp = card->raw_csd;
141
142 /*
143 * We only understand CSD structure v1.1 and v1.2.
144 * v1.2 has extra information in bits 15, 11 and 10.
145 * We also support eMMC v4.4 & v4.41.
146 */
147 csd->structure = UNSTUFF_BITS(resp, 126, 2);
148 if (csd->structure == 0) {
149 pr_err("%s: unrecognised CSD structure version %d\n",
150 mmc_hostname(card->host), csd->structure);
151 return -EINVAL;
152 }
153
154 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
155 m = UNSTUFF_BITS(resp, 115, 4);
156 e = UNSTUFF_BITS(resp, 112, 3);
157 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
158 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
159
160 m = UNSTUFF_BITS(resp, 99, 4);
161 e = UNSTUFF_BITS(resp, 96, 3);
162 csd->max_dtr = tran_exp[e] * tran_mant[m];
163 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
164
165 e = UNSTUFF_BITS(resp, 47, 3);
166 m = UNSTUFF_BITS(resp, 62, 12);
167 csd->capacity = (1 + m) << (e + 2);
168
169 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
170 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
171 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
172 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
173 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
174 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
175 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
176 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
177
178 if (csd->write_blkbits >= 9) {
179 a = UNSTUFF_BITS(resp, 42, 5);
180 b = UNSTUFF_BITS(resp, 37, 5);
181 csd->erase_size = (a + 1) * (b + 1);
182 csd->erase_size <<= csd->write_blkbits - 9;
183 }
184
185 return 0;
186 }
187
188 static void mmc_select_card_type(struct mmc_card *card)
189 {
190 struct mmc_host *host = card->host;
191 u8 card_type = card->ext_csd.raw_card_type;
192 u32 caps = host->caps, caps2 = host->caps2;
193 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
194 unsigned int avail_type = 0;
195
196 if (caps & MMC_CAP_MMC_HIGHSPEED &&
197 card_type & EXT_CSD_CARD_TYPE_HS_26) {
198 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
199 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
200 }
201
202 if (caps & MMC_CAP_MMC_HIGHSPEED &&
203 card_type & EXT_CSD_CARD_TYPE_HS_52) {
204 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
205 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
206 }
207
208 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
209 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
210 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
211 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
212 }
213
214 if (caps & MMC_CAP_1_2V_DDR &&
215 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
216 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
217 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
218 }
219
220 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
221 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
222 hs200_max_dtr = MMC_HS200_MAX_DTR;
223 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
224 }
225
226 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
227 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
228 hs200_max_dtr = MMC_HS200_MAX_DTR;
229 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
230 }
231
232 if (caps2 & MMC_CAP2_HS400_1_8V &&
233 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
234 hs200_max_dtr = MMC_HS200_MAX_DTR;
235 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
236 }
237
238 if (caps2 & MMC_CAP2_HS400_1_2V &&
239 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
240 hs200_max_dtr = MMC_HS200_MAX_DTR;
241 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
242 }
243
244 if ((caps2 & MMC_CAP2_HS400_ES) &&
245 card->ext_csd.strobe_support &&
246 (avail_type & EXT_CSD_CARD_TYPE_HS400))
247 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
248
249 card->ext_csd.hs_max_dtr = hs_max_dtr;
250 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
251 card->mmc_avail_type = avail_type;
252 }
253
254 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
255 {
256 u8 hc_erase_grp_sz, hc_wp_grp_sz;
257
258 /*
259 * Disable these attributes by default
260 */
261 card->ext_csd.enhanced_area_offset = -EINVAL;
262 card->ext_csd.enhanced_area_size = -EINVAL;
263
264 /*
265 * Enhanced area feature support -- check whether the eMMC
266 * card has the Enhanced area enabled. If so, export enhanced
267 * area offset and size to user by adding sysfs interface.
268 */
269 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
270 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
271 if (card->ext_csd.partition_setting_completed) {
272 hc_erase_grp_sz =
273 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
274 hc_wp_grp_sz =
275 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
276
277 /*
278 * calculate the enhanced data area offset, in bytes
279 */
280 card->ext_csd.enhanced_area_offset =
281 (((unsigned long long)ext_csd[139]) << 24) +
282 (((unsigned long long)ext_csd[138]) << 16) +
283 (((unsigned long long)ext_csd[137]) << 8) +
284 (((unsigned long long)ext_csd[136]));
285 if (mmc_card_blockaddr(card))
286 card->ext_csd.enhanced_area_offset <<= 9;
287 /*
288 * calculate the enhanced data area size, in kilobytes
289 */
290 card->ext_csd.enhanced_area_size =
291 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
292 ext_csd[140];
293 card->ext_csd.enhanced_area_size *=
294 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
295 card->ext_csd.enhanced_area_size <<= 9;
296 } else {
297 pr_warn("%s: defines enhanced area without partition setting complete\n",
298 mmc_hostname(card->host));
299 }
300 }
301 }
302
303 static void mmc_part_add(struct mmc_card *card, unsigned int size,
304 unsigned int part_cfg, char *name, int idx, bool ro,
305 int area_type)
306 {
307 card->part[card->nr_parts].size = size;
308 card->part[card->nr_parts].part_cfg = part_cfg;
309 sprintf(card->part[card->nr_parts].name, name, idx);
310 card->part[card->nr_parts].force_ro = ro;
311 card->part[card->nr_parts].area_type = area_type;
312 card->nr_parts++;
313 }
314
315 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
316 {
317 int idx;
318 u8 hc_erase_grp_sz, hc_wp_grp_sz;
319 unsigned int part_size;
320
321 /*
322 * General purpose partition feature support --
323 * If ext_csd has the size of general purpose partitions,
324 * set size, part_cfg, partition name in mmc_part.
325 */
326 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
327 EXT_CSD_PART_SUPPORT_PART_EN) {
328 hc_erase_grp_sz =
329 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
330 hc_wp_grp_sz =
331 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
332
333 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
334 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
336 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
337 continue;
338 if (card->ext_csd.partition_setting_completed == 0) {
339 pr_warn("%s: has partition size defined without partition complete\n",
340 mmc_hostname(card->host));
341 break;
342 }
343 part_size =
344 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
345 << 16) +
346 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
347 << 8) +
348 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
349 part_size *= (size_t)(hc_erase_grp_sz *
350 hc_wp_grp_sz);
351 mmc_part_add(card, part_size << 19,
352 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
353 "gp%d", idx, false,
354 MMC_BLK_DATA_AREA_GP);
355 }
356 }
357 }
358
359 /* Minimum partition switch timeout in milliseconds */
360 #define MMC_MIN_PART_SWITCH_TIME 300
361
362 /*
363 * Decode extended CSD.
364 */
365 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
366 {
367 int err = 0, idx;
368 unsigned int part_size;
369 struct device_node *np;
370 bool broken_hpi = false;
371
372 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
373 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
374 if (card->csd.structure == 3) {
375 if (card->ext_csd.raw_ext_csd_structure > 2) {
376 pr_err("%s: unrecognised EXT_CSD structure "
377 "version %d\n", mmc_hostname(card->host),
378 card->ext_csd.raw_ext_csd_structure);
379 err = -EINVAL;
380 goto out;
381 }
382 }
383
384 np = mmc_of_find_child_device(card->host, 0);
385 if (np && of_device_is_compatible(np, "mmc-card"))
386 broken_hpi = of_property_read_bool(np, "broken-hpi");
387 of_node_put(np);
388
389 /*
390 * The EXT_CSD format is meant to be forward compatible. As long
391 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
392 * are authorized, see JEDEC JESD84-B50 section B.8.
393 */
394 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
395
396 /* fixup device after ext_csd revision field is updated */
397 mmc_fixup_device(card, mmc_ext_csd_fixups);
398
399 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
400 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
401 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
402 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
403 if (card->ext_csd.rev >= 2) {
404 card->ext_csd.sectors =
405 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
406 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
407 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
408 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
409
410 /* Cards with density > 2GiB are sector addressed */
411 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
412 mmc_card_set_blockaddr(card);
413 }
414
415 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
416 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
417 mmc_select_card_type(card);
418
419 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
420 card->ext_csd.raw_erase_timeout_mult =
421 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
422 card->ext_csd.raw_hc_erase_grp_size =
423 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
424 if (card->ext_csd.rev >= 3) {
425 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
426 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
427
428 /* EXT_CSD value is in units of 10ms, but we store in ms */
429 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
430 /* Some eMMC set the value too low so set a minimum */
431 if (card->ext_csd.part_time &&
432 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
433 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
434
435 /* Sleep / awake timeout in 100ns units */
436 if (sa_shift > 0 && sa_shift <= 0x17)
437 card->ext_csd.sa_timeout =
438 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
439 card->ext_csd.erase_group_def =
440 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
441 card->ext_csd.hc_erase_timeout = 300 *
442 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
443 card->ext_csd.hc_erase_size =
444 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
445
446 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
447
448 /*
449 * There are two boot regions of equal size, defined in
450 * multiples of 128K.
451 */
452 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
453 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
454 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
455 mmc_part_add(card, part_size,
456 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
457 "boot%d", idx, true,
458 MMC_BLK_DATA_AREA_BOOT);
459 }
460 }
461 }
462
463 card->ext_csd.raw_hc_erase_gap_size =
464 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
465 card->ext_csd.raw_sec_trim_mult =
466 ext_csd[EXT_CSD_SEC_TRIM_MULT];
467 card->ext_csd.raw_sec_erase_mult =
468 ext_csd[EXT_CSD_SEC_ERASE_MULT];
469 card->ext_csd.raw_sec_feature_support =
470 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
471 card->ext_csd.raw_trim_mult =
472 ext_csd[EXT_CSD_TRIM_MULT];
473 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
474 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
475 if (card->ext_csd.rev >= 4) {
476 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
477 EXT_CSD_PART_SETTING_COMPLETED)
478 card->ext_csd.partition_setting_completed = 1;
479 else
480 card->ext_csd.partition_setting_completed = 0;
481
482 mmc_manage_enhanced_area(card, ext_csd);
483
484 mmc_manage_gp_partitions(card, ext_csd);
485
486 card->ext_csd.sec_trim_mult =
487 ext_csd[EXT_CSD_SEC_TRIM_MULT];
488 card->ext_csd.sec_erase_mult =
489 ext_csd[EXT_CSD_SEC_ERASE_MULT];
490 card->ext_csd.sec_feature_support =
491 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
492 card->ext_csd.trim_timeout = 300 *
493 ext_csd[EXT_CSD_TRIM_MULT];
494
495 /*
496 * Note that the call to mmc_part_add above defaults to read
497 * only. If this default assumption is changed, the call must
498 * take into account the value of boot_locked below.
499 */
500 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
501 card->ext_csd.boot_ro_lockable = true;
502
503 /* Save power class values */
504 card->ext_csd.raw_pwr_cl_52_195 =
505 ext_csd[EXT_CSD_PWR_CL_52_195];
506 card->ext_csd.raw_pwr_cl_26_195 =
507 ext_csd[EXT_CSD_PWR_CL_26_195];
508 card->ext_csd.raw_pwr_cl_52_360 =
509 ext_csd[EXT_CSD_PWR_CL_52_360];
510 card->ext_csd.raw_pwr_cl_26_360 =
511 ext_csd[EXT_CSD_PWR_CL_26_360];
512 card->ext_csd.raw_pwr_cl_200_195 =
513 ext_csd[EXT_CSD_PWR_CL_200_195];
514 card->ext_csd.raw_pwr_cl_200_360 =
515 ext_csd[EXT_CSD_PWR_CL_200_360];
516 card->ext_csd.raw_pwr_cl_ddr_52_195 =
517 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
518 card->ext_csd.raw_pwr_cl_ddr_52_360 =
519 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
520 card->ext_csd.raw_pwr_cl_ddr_200_360 =
521 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
522 }
523
524 if (card->ext_csd.rev >= 5) {
525 /* Adjust production date as per JEDEC JESD84-B451 */
526 if (card->cid.year < 2010)
527 card->cid.year += 16;
528
529 /* check whether the eMMC card supports BKOPS */
530 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 card->ext_csd.bkops = 1;
532 card->ext_csd.man_bkops_en =
533 (ext_csd[EXT_CSD_BKOPS_EN] &
534 EXT_CSD_MANUAL_BKOPS_MASK);
535 card->ext_csd.raw_bkops_status =
536 ext_csd[EXT_CSD_BKOPS_STATUS];
537 if (card->ext_csd.man_bkops_en)
538 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 mmc_hostname(card->host));
540 card->ext_csd.auto_bkops_en =
541 (ext_csd[EXT_CSD_BKOPS_EN] &
542 EXT_CSD_AUTO_BKOPS_MASK);
543 if (card->ext_csd.auto_bkops_en)
544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 mmc_hostname(card->host));
546 }
547
548 /* check whether the eMMC card supports HPI */
549 if (!mmc_card_broken_hpi(card) &&
550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 card->ext_csd.hpi = 1;
552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
554 else
555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
556 /*
557 * Indicate the maximum timeout to close
558 * a command interrupted by HPI
559 */
560 card->ext_csd.out_of_int_time =
561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
562 }
563
564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
566
567 /*
568 * RPMB regions are defined in multiples of 128K.
569 */
570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 EXT_CSD_PART_CONFIG_ACC_RPMB,
574 "rpmb", 0, false,
575 MMC_BLK_DATA_AREA_RPMB);
576 }
577 }
578
579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 card->erased_byte = 0xFF;
582 else
583 card->erased_byte = 0x0;
584
585 /* eMMC v4.5 or later */
586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 if (card->ext_csd.rev >= 6) {
588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
589
590 card->ext_csd.generic_cmd6_time = 10 *
591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 card->ext_csd.power_off_longtime = 10 *
593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
594
595 card->ext_csd.cache_size =
596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
600
601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 card->ext_csd.data_sector_size = 4096;
603 else
604 card->ext_csd.data_sector_size = 512;
605
606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 card->ext_csd.data_tag_unit_size =
609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 (card->ext_csd.data_sector_size);
611 } else {
612 card->ext_csd.data_tag_unit_size = 0;
613 }
614
615 card->ext_csd.max_packed_writes =
616 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
617 card->ext_csd.max_packed_reads =
618 ext_csd[EXT_CSD_MAX_PACKED_READS];
619 } else {
620 card->ext_csd.data_sector_size = 512;
621 }
622
623 /* eMMC v5 or later */
624 if (card->ext_csd.rev >= 7) {
625 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
626 MMC_FIRMWARE_LEN);
627 card->ext_csd.ffu_capable =
628 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
629 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
630
631 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
632 card->ext_csd.device_life_time_est_typ_a =
633 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
634 card->ext_csd.device_life_time_est_typ_b =
635 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
636 }
637
638 /* eMMC v5.1 or later */
639 if (card->ext_csd.rev >= 8) {
640 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
641 EXT_CSD_CMDQ_SUPPORTED;
642 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
643 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
644 /* Exclude inefficiently small queue depths */
645 if (card->ext_csd.cmdq_depth <= 2) {
646 card->ext_csd.cmdq_support = false;
647 card->ext_csd.cmdq_depth = 0;
648 }
649 if (card->ext_csd.cmdq_support) {
650 pr_debug("%s: Command Queue supported depth %u\n",
651 mmc_hostname(card->host),
652 card->ext_csd.cmdq_depth);
653 }
654 }
655 out:
656 return err;
657 }
658
659 static int mmc_read_ext_csd(struct mmc_card *card)
660 {
661 u8 *ext_csd;
662 int err;
663
664 if (!mmc_can_ext_csd(card))
665 return 0;
666
667 err = mmc_get_ext_csd(card, &ext_csd);
668 if (err) {
669 /* If the host or the card can't do the switch,
670 * fail more gracefully. */
671 if ((err != -EINVAL)
672 && (err != -ENOSYS)
673 && (err != -EFAULT))
674 return err;
675
676 /*
677 * High capacity cards should have this "magic" size
678 * stored in their CSD.
679 */
680 if (card->csd.capacity == (4096 * 512)) {
681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 mmc_hostname(card->host));
683 } else {
684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 mmc_hostname(card->host));
686 err = 0;
687 }
688
689 return err;
690 }
691
692 err = mmc_decode_ext_csd(card, ext_csd);
693 kfree(ext_csd);
694 return err;
695 }
696
697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
698 {
699 u8 *bw_ext_csd;
700 int err;
701
702 if (bus_width == MMC_BUS_WIDTH_1)
703 return 0;
704
705 err = mmc_get_ext_csd(card, &bw_ext_csd);
706 if (err)
707 return err;
708
709 /* only compare read only fields */
710 err = !((card->ext_csd.raw_partition_support ==
711 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
712 (card->ext_csd.raw_erased_mem_count ==
713 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
714 (card->ext_csd.rev ==
715 bw_ext_csd[EXT_CSD_REV]) &&
716 (card->ext_csd.raw_ext_csd_structure ==
717 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
718 (card->ext_csd.raw_card_type ==
719 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
720 (card->ext_csd.raw_s_a_timeout ==
721 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
722 (card->ext_csd.raw_hc_erase_gap_size ==
723 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
724 (card->ext_csd.raw_erase_timeout_mult ==
725 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
726 (card->ext_csd.raw_hc_erase_grp_size ==
727 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
728 (card->ext_csd.raw_sec_trim_mult ==
729 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
730 (card->ext_csd.raw_sec_erase_mult ==
731 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
732 (card->ext_csd.raw_sec_feature_support ==
733 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
734 (card->ext_csd.raw_trim_mult ==
735 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
736 (card->ext_csd.raw_sectors[0] ==
737 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
738 (card->ext_csd.raw_sectors[1] ==
739 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
740 (card->ext_csd.raw_sectors[2] ==
741 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
742 (card->ext_csd.raw_sectors[3] ==
743 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
744 (card->ext_csd.raw_pwr_cl_52_195 ==
745 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
746 (card->ext_csd.raw_pwr_cl_26_195 ==
747 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
748 (card->ext_csd.raw_pwr_cl_52_360 ==
749 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
750 (card->ext_csd.raw_pwr_cl_26_360 ==
751 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
752 (card->ext_csd.raw_pwr_cl_200_195 ==
753 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
754 (card->ext_csd.raw_pwr_cl_200_360 ==
755 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
756 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
758 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
759 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
760 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
761 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
762
763 if (err)
764 err = -EINVAL;
765
766 kfree(bw_ext_csd);
767 return err;
768 }
769
770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
771 card->raw_cid[2], card->raw_cid[3]);
772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
773 card->raw_csd[2], card->raw_csd[3]);
774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
783 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
784 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
785 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
786 card->ext_csd.device_life_time_est_typ_a,
787 card->ext_csd.device_life_time_est_typ_b);
788 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
789 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
790 card->ext_csd.enhanced_area_offset);
791 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
792 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
793 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
794 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
795 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
796
797 static ssize_t mmc_fwrev_show(struct device *dev,
798 struct device_attribute *attr,
799 char *buf)
800 {
801 struct mmc_card *card = mmc_dev_to_card(dev);
802
803 if (card->ext_csd.rev < 7) {
804 return sprintf(buf, "0x%x\n", card->cid.fwrev);
805 } else {
806 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
807 card->ext_csd.fwrev);
808 }
809 }
810
811 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
812
813 static ssize_t mmc_dsr_show(struct device *dev,
814 struct device_attribute *attr,
815 char *buf)
816 {
817 struct mmc_card *card = mmc_dev_to_card(dev);
818 struct mmc_host *host = card->host;
819
820 if (card->csd.dsr_imp && host->dsr_req)
821 return sprintf(buf, "0x%x\n", host->dsr);
822 else
823 /* return default DSR value */
824 return sprintf(buf, "0x%x\n", 0x404);
825 }
826
827 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
828
829 static struct attribute *mmc_std_attrs[] = {
830 &dev_attr_cid.attr,
831 &dev_attr_csd.attr,
832 &dev_attr_date.attr,
833 &dev_attr_erase_size.attr,
834 &dev_attr_preferred_erase_size.attr,
835 &dev_attr_fwrev.attr,
836 &dev_attr_ffu_capable.attr,
837 &dev_attr_hwrev.attr,
838 &dev_attr_manfid.attr,
839 &dev_attr_name.attr,
840 &dev_attr_oemid.attr,
841 &dev_attr_prv.attr,
842 &dev_attr_rev.attr,
843 &dev_attr_pre_eol_info.attr,
844 &dev_attr_life_time.attr,
845 &dev_attr_serial.attr,
846 &dev_attr_enhanced_area_offset.attr,
847 &dev_attr_enhanced_area_size.attr,
848 &dev_attr_raw_rpmb_size_mult.attr,
849 &dev_attr_rel_sectors.attr,
850 &dev_attr_ocr.attr,
851 &dev_attr_dsr.attr,
852 &dev_attr_cmdq_en.attr,
853 NULL,
854 };
855 ATTRIBUTE_GROUPS(mmc_std);
856
857 static struct device_type mmc_type = {
858 .groups = mmc_std_groups,
859 };
860
861 /*
862 * Select the PowerClass for the current bus width
863 * If power class is defined for 4/8 bit bus in the
864 * extended CSD register, select it by executing the
865 * mmc_switch command.
866 */
867 static int __mmc_select_powerclass(struct mmc_card *card,
868 unsigned int bus_width)
869 {
870 struct mmc_host *host = card->host;
871 struct mmc_ext_csd *ext_csd = &card->ext_csd;
872 unsigned int pwrclass_val = 0;
873 int err = 0;
874
875 switch (1 << host->ios.vdd) {
876 case MMC_VDD_165_195:
877 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
878 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
879 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
880 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
881 ext_csd->raw_pwr_cl_52_195 :
882 ext_csd->raw_pwr_cl_ddr_52_195;
883 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
884 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
885 break;
886 case MMC_VDD_27_28:
887 case MMC_VDD_28_29:
888 case MMC_VDD_29_30:
889 case MMC_VDD_30_31:
890 case MMC_VDD_31_32:
891 case MMC_VDD_32_33:
892 case MMC_VDD_33_34:
893 case MMC_VDD_34_35:
894 case MMC_VDD_35_36:
895 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
896 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
897 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
898 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
899 ext_csd->raw_pwr_cl_52_360 :
900 ext_csd->raw_pwr_cl_ddr_52_360;
901 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
902 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
903 ext_csd->raw_pwr_cl_ddr_200_360 :
904 ext_csd->raw_pwr_cl_200_360;
905 break;
906 default:
907 pr_warn("%s: Voltage range not supported for power class\n",
908 mmc_hostname(host));
909 return -EINVAL;
910 }
911
912 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
913 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
914 EXT_CSD_PWR_CL_8BIT_SHIFT;
915 else
916 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
917 EXT_CSD_PWR_CL_4BIT_SHIFT;
918
919 /* If the power class is different from the default value */
920 if (pwrclass_val > 0) {
921 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
922 EXT_CSD_POWER_CLASS,
923 pwrclass_val,
924 card->ext_csd.generic_cmd6_time);
925 }
926
927 return err;
928 }
929
930 static int mmc_select_powerclass(struct mmc_card *card)
931 {
932 struct mmc_host *host = card->host;
933 u32 bus_width, ext_csd_bits;
934 int err, ddr;
935
936 /* Power class selection is supported for versions >= 4.0 */
937 if (!mmc_can_ext_csd(card))
938 return 0;
939
940 bus_width = host->ios.bus_width;
941 /* Power class values are defined only for 4/8 bit bus */
942 if (bus_width == MMC_BUS_WIDTH_1)
943 return 0;
944
945 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
946 if (ddr)
947 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
948 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
949 else
950 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
951 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
952
953 err = __mmc_select_powerclass(card, ext_csd_bits);
954 if (err)
955 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
956 mmc_hostname(host), 1 << bus_width, ddr);
957
958 return err;
959 }
960
961 /*
962 * Set the bus speed for the selected speed mode.
963 */
964 static void mmc_set_bus_speed(struct mmc_card *card)
965 {
966 unsigned int max_dtr = (unsigned int)-1;
967
968 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
969 max_dtr > card->ext_csd.hs200_max_dtr)
970 max_dtr = card->ext_csd.hs200_max_dtr;
971 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
972 max_dtr = card->ext_csd.hs_max_dtr;
973 else if (max_dtr > card->csd.max_dtr)
974 max_dtr = card->csd.max_dtr;
975
976 mmc_set_clock(card->host, max_dtr);
977 }
978
979 /*
980 * Select the bus width amoung 4-bit and 8-bit(SDR).
981 * If the bus width is changed successfully, return the selected width value.
982 * Zero is returned instead of error value if the wide width is not supported.
983 */
984 static int mmc_select_bus_width(struct mmc_card *card)
985 {
986 static unsigned ext_csd_bits[] = {
987 EXT_CSD_BUS_WIDTH_8,
988 EXT_CSD_BUS_WIDTH_4,
989 };
990 static unsigned bus_widths[] = {
991 MMC_BUS_WIDTH_8,
992 MMC_BUS_WIDTH_4,
993 };
994 struct mmc_host *host = card->host;
995 unsigned idx, bus_width = 0;
996 int err = 0;
997
998 if (!mmc_can_ext_csd(card) ||
999 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1000 return 0;
1001
1002 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1003
1004 /*
1005 * Unlike SD, MMC cards dont have a configuration register to notify
1006 * supported bus width. So bus test command should be run to identify
1007 * the supported bus width or compare the ext csd values of current
1008 * bus width and ext csd values of 1 bit mode read earlier.
1009 */
1010 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1011 /*
1012 * Host is capable of 8bit transfer, then switch
1013 * the device to work in 8bit transfer mode. If the
1014 * mmc switch command returns error then switch to
1015 * 4bit transfer mode. On success set the corresponding
1016 * bus width on the host.
1017 */
1018 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1019 EXT_CSD_BUS_WIDTH,
1020 ext_csd_bits[idx],
1021 card->ext_csd.generic_cmd6_time);
1022 if (err)
1023 continue;
1024
1025 bus_width = bus_widths[idx];
1026 mmc_set_bus_width(host, bus_width);
1027
1028 /*
1029 * If controller can't handle bus width test,
1030 * compare ext_csd previously read in 1 bit mode
1031 * against ext_csd at new bus width
1032 */
1033 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1034 err = mmc_compare_ext_csds(card, bus_width);
1035 else
1036 err = mmc_bus_test(card, bus_width);
1037
1038 if (!err) {
1039 err = bus_width;
1040 break;
1041 } else {
1042 pr_warn("%s: switch to bus width %d failed\n",
1043 mmc_hostname(host), 1 << bus_width);
1044 }
1045 }
1046
1047 return err;
1048 }
1049
1050 /*
1051 * Switch to the high-speed mode
1052 */
1053 static int mmc_select_hs(struct mmc_card *card)
1054 {
1055 int err;
1056
1057 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1058 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1059 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1060 true, true, true);
1061 if (err)
1062 pr_warn("%s: switch to high-speed failed, err:%d\n",
1063 mmc_hostname(card->host), err);
1064
1065 return err;
1066 }
1067
1068 /*
1069 * Activate wide bus and DDR if supported.
1070 */
1071 static int mmc_select_hs_ddr(struct mmc_card *card)
1072 {
1073 struct mmc_host *host = card->host;
1074 u32 bus_width, ext_csd_bits;
1075 int err = 0;
1076
1077 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1078 return 0;
1079
1080 bus_width = host->ios.bus_width;
1081 if (bus_width == MMC_BUS_WIDTH_1)
1082 return 0;
1083
1084 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1085 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1086
1087 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1088 EXT_CSD_BUS_WIDTH,
1089 ext_csd_bits,
1090 card->ext_csd.generic_cmd6_time,
1091 MMC_TIMING_MMC_DDR52,
1092 true, true, true);
1093 if (err) {
1094 pr_err("%s: switch to bus width %d ddr failed\n",
1095 mmc_hostname(host), 1 << bus_width);
1096 return err;
1097 }
1098
1099 /*
1100 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1101 * signaling.
1102 *
1103 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1104 *
1105 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1106 * in the JEDEC spec for DDR.
1107 *
1108 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1109 * host controller can support this, like some of the SDHCI
1110 * controller which connect to an eMMC device. Some of these
1111 * host controller still needs to use 1.8v vccq for supporting
1112 * DDR mode.
1113 *
1114 * So the sequence will be:
1115 * if (host and device can both support 1.2v IO)
1116 * use 1.2v IO;
1117 * else if (host and device can both support 1.8v IO)
1118 * use 1.8v IO;
1119 * so if host and device can only support 3.3v IO, this is the
1120 * last choice.
1121 *
1122 * WARNING: eMMC rules are NOT the same as SD DDR
1123 */
1124 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1125 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1126 if (!err)
1127 return 0;
1128 }
1129
1130 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1131 host->caps & MMC_CAP_1_8V_DDR)
1132 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1133
1134 /* make sure vccq is 3.3v after switching disaster */
1135 if (err)
1136 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1137
1138 return err;
1139 }
1140
1141 static int mmc_select_hs400(struct mmc_card *card)
1142 {
1143 struct mmc_host *host = card->host;
1144 unsigned int max_dtr;
1145 int err = 0;
1146 u8 val;
1147
1148 /*
1149 * HS400 mode requires 8-bit bus width
1150 */
1151 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1152 host->ios.bus_width == MMC_BUS_WIDTH_8))
1153 return 0;
1154
1155 /* Switch card to HS mode */
1156 val = EXT_CSD_TIMING_HS;
1157 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1158 EXT_CSD_HS_TIMING, val,
1159 card->ext_csd.generic_cmd6_time, 0,
1160 true, false, true);
1161 if (err) {
1162 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1163 mmc_hostname(host), err);
1164 return err;
1165 }
1166
1167 /* Set host controller to HS timing */
1168 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1169
1170 /* Reduce frequency to HS frequency */
1171 max_dtr = card->ext_csd.hs_max_dtr;
1172 mmc_set_clock(host, max_dtr);
1173
1174 err = mmc_switch_status(card);
1175 if (err)
1176 goto out_err;
1177
1178 /* Switch card to DDR */
1179 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1180 EXT_CSD_BUS_WIDTH,
1181 EXT_CSD_DDR_BUS_WIDTH_8,
1182 card->ext_csd.generic_cmd6_time);
1183 if (err) {
1184 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1185 mmc_hostname(host), err);
1186 return err;
1187 }
1188
1189 /* Switch card to HS400 */
1190 val = EXT_CSD_TIMING_HS400 |
1191 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1192 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1193 EXT_CSD_HS_TIMING, val,
1194 card->ext_csd.generic_cmd6_time, 0,
1195 true, false, true);
1196 if (err) {
1197 pr_err("%s: switch to hs400 failed, err:%d\n",
1198 mmc_hostname(host), err);
1199 return err;
1200 }
1201
1202 /* Set host controller to HS400 timing and frequency */
1203 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1204 mmc_set_bus_speed(card);
1205
1206 err = mmc_switch_status(card);
1207 if (err)
1208 goto out_err;
1209
1210 return 0;
1211
1212 out_err:
1213 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1214 __func__, err);
1215 return err;
1216 }
1217
1218 int mmc_hs200_to_hs400(struct mmc_card *card)
1219 {
1220 return mmc_select_hs400(card);
1221 }
1222
1223 int mmc_hs400_to_hs200(struct mmc_card *card)
1224 {
1225 struct mmc_host *host = card->host;
1226 unsigned int max_dtr;
1227 int err;
1228 u8 val;
1229
1230 /* Reduce frequency to HS */
1231 max_dtr = card->ext_csd.hs_max_dtr;
1232 mmc_set_clock(host, max_dtr);
1233
1234 /* Switch HS400 to HS DDR */
1235 val = EXT_CSD_TIMING_HS;
1236 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1237 val, card->ext_csd.generic_cmd6_time, 0,
1238 true, false, true);
1239 if (err)
1240 goto out_err;
1241
1242 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1243
1244 err = mmc_switch_status(card);
1245 if (err)
1246 goto out_err;
1247
1248 /* Switch HS DDR to HS */
1249 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1250 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1251 0, true, false, true);
1252 if (err)
1253 goto out_err;
1254
1255 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1256
1257 err = mmc_switch_status(card);
1258 if (err)
1259 goto out_err;
1260
1261 /* Switch HS to HS200 */
1262 val = EXT_CSD_TIMING_HS200 |
1263 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1264 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1265 val, card->ext_csd.generic_cmd6_time, 0,
1266 true, false, true);
1267 if (err)
1268 goto out_err;
1269
1270 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1271
1272 /*
1273 * For HS200, CRC errors are not a reliable way to know the switch
1274 * failed. If there really is a problem, we would expect tuning will
1275 * fail and the result ends up the same.
1276 */
1277 err = __mmc_switch_status(card, false);
1278 if (err)
1279 goto out_err;
1280
1281 mmc_set_bus_speed(card);
1282
1283 return 0;
1284
1285 out_err:
1286 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1287 __func__, err);
1288 return err;
1289 }
1290
1291 static void mmc_select_driver_type(struct mmc_card *card)
1292 {
1293 int card_drv_type, drive_strength, drv_type;
1294
1295 card_drv_type = card->ext_csd.raw_driver_strength |
1296 mmc_driver_type_mask(0);
1297
1298 drive_strength = mmc_select_drive_strength(card,
1299 card->ext_csd.hs200_max_dtr,
1300 card_drv_type, &drv_type);
1301
1302 card->drive_strength = drive_strength;
1303
1304 if (drv_type)
1305 mmc_set_driver_type(card->host, drv_type);
1306 }
1307
1308 static int mmc_select_hs400es(struct mmc_card *card)
1309 {
1310 struct mmc_host *host = card->host;
1311 int err = -EINVAL;
1312 u8 val;
1313
1314 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1315 err = -ENOTSUPP;
1316 goto out_err;
1317 }
1318
1319 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1320 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1321
1322 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1323 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1324
1325 /* If fails try again during next card power cycle */
1326 if (err)
1327 goto out_err;
1328
1329 err = mmc_select_bus_width(card);
1330 if (err < 0)
1331 goto out_err;
1332
1333 /* Switch card to HS mode */
1334 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1335 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1336 card->ext_csd.generic_cmd6_time, 0,
1337 true, false, true);
1338 if (err) {
1339 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1340 mmc_hostname(host), err);
1341 goto out_err;
1342 }
1343
1344 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1345 err = mmc_switch_status(card);
1346 if (err)
1347 goto out_err;
1348
1349 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1350
1351 /* Switch card to DDR with strobe bit */
1352 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1353 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1354 EXT_CSD_BUS_WIDTH,
1355 val,
1356 card->ext_csd.generic_cmd6_time);
1357 if (err) {
1358 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1359 mmc_hostname(host), err);
1360 goto out_err;
1361 }
1362
1363 mmc_select_driver_type(card);
1364
1365 /* Switch card to HS400 */
1366 val = EXT_CSD_TIMING_HS400 |
1367 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1368 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1369 EXT_CSD_HS_TIMING, val,
1370 card->ext_csd.generic_cmd6_time, 0,
1371 true, false, true);
1372 if (err) {
1373 pr_err("%s: switch to hs400es failed, err:%d\n",
1374 mmc_hostname(host), err);
1375 goto out_err;
1376 }
1377
1378 /* Set host controller to HS400 timing and frequency */
1379 mmc_set_timing(host, MMC_TIMING_MMC_HS400_ES);
1380
1381 /* Controller enable enhanced strobe function */
1382 host->ios.enhanced_strobe = true;
1383 if (host->ops->hs400_enhanced_strobe)
1384 host->ops->hs400_enhanced_strobe(host, &host->ios);
1385
1386 err = mmc_switch_status(card);
1387 if (err)
1388 goto out_err;
1389
1390 return 0;
1391
1392 out_err:
1393 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1394 __func__, err);
1395 return err;
1396 }
1397
1398 /*
1399 * For device supporting HS200 mode, the following sequence
1400 * should be done before executing the tuning process.
1401 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1402 * 2. switch to HS200 mode
1403 * 3. set the clock to > 52Mhz and <=200MHz
1404 */
1405 static int mmc_select_hs200(struct mmc_card *card)
1406 {
1407 struct mmc_host *host = card->host;
1408 unsigned int old_timing, old_signal_voltage;
1409 int err = -EINVAL;
1410 u8 val;
1411
1412 old_signal_voltage = host->ios.signal_voltage;
1413 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1414 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1415
1416 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1417 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1418
1419 /* If fails try again during next card power cycle */
1420 if (err)
1421 return err;
1422
1423 mmc_select_driver_type(card);
1424
1425 /*
1426 * Set the bus width(4 or 8) with host's support and
1427 * switch to HS200 mode if bus width is set successfully.
1428 */
1429 err = mmc_select_bus_width(card);
1430 if (err > 0) {
1431 val = EXT_CSD_TIMING_HS200 |
1432 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1433 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1434 EXT_CSD_HS_TIMING, val,
1435 card->ext_csd.generic_cmd6_time, 0,
1436 true, false, true);
1437 if (err)
1438 goto err;
1439 old_timing = host->ios.timing;
1440 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1441
1442 /*
1443 * For HS200, CRC errors are not a reliable way to know the
1444 * switch failed. If there really is a problem, we would expect
1445 * tuning will fail and the result ends up the same.
1446 */
1447 err = __mmc_switch_status(card, false);
1448
1449 /*
1450 * mmc_select_timing() assumes timing has not changed if
1451 * it is a switch error.
1452 */
1453 if (err == -EBADMSG)
1454 mmc_set_timing(host, old_timing);
1455 }
1456 err:
1457 if (err) {
1458 /* fall back to the old signal voltage, if fails report error */
1459 if (mmc_set_signal_voltage(host, old_signal_voltage))
1460 err = -EIO;
1461
1462 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1463 __func__, err);
1464 }
1465 return err;
1466 }
1467
1468 /*
1469 * Activate High Speed, HS200 or HS400ES mode if supported.
1470 */
1471 static int mmc_select_timing(struct mmc_card *card)
1472 {
1473 int err = 0;
1474
1475 if (!mmc_can_ext_csd(card))
1476 goto bus_speed;
1477
1478 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1479 err = mmc_select_hs400es(card);
1480 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1481 err = mmc_select_hs200(card);
1482 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1483 err = mmc_select_hs(card);
1484
1485 if (err && err != -EBADMSG)
1486 return err;
1487
1488 bus_speed:
1489 /*
1490 * Set the bus speed to the selected bus timing.
1491 * If timing is not selected, backward compatible is the default.
1492 */
1493 mmc_set_bus_speed(card);
1494 return 0;
1495 }
1496
1497 /*
1498 * Execute tuning sequence to seek the proper bus operating
1499 * conditions for HS200 and HS400, which sends CMD21 to the device.
1500 */
1501 static int mmc_hs200_tuning(struct mmc_card *card)
1502 {
1503 struct mmc_host *host = card->host;
1504
1505 /*
1506 * Timing should be adjusted to the HS400 target
1507 * operation frequency for tuning process
1508 */
1509 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1510 host->ios.bus_width == MMC_BUS_WIDTH_8)
1511 if (host->ops->prepare_hs400_tuning)
1512 host->ops->prepare_hs400_tuning(host, &host->ios);
1513
1514 return mmc_execute_tuning(card);
1515 }
1516
1517 /*
1518 * Handle the detection and initialisation of a card.
1519 *
1520 * In the case of a resume, "oldcard" will contain the card
1521 * we're trying to reinitialise.
1522 */
1523 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1524 struct mmc_card *oldcard)
1525 {
1526 struct mmc_card *card;
1527 int err;
1528 u32 cid[4];
1529 u32 rocr;
1530
1531 WARN_ON(!host->claimed);
1532
1533 /* Set correct bus mode for MMC before attempting init */
1534 if (!mmc_host_is_spi(host))
1535 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1536
1537 /*
1538 * Since we're changing the OCR value, we seem to
1539 * need to tell some cards to go back to the idle
1540 * state. We wait 1ms to give cards time to
1541 * respond.
1542 * mmc_go_idle is needed for eMMC that are asleep
1543 */
1544 mmc_go_idle(host);
1545
1546 /* The extra bit indicates that we support high capacity */
1547 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1548 if (err)
1549 goto err;
1550
1551 /*
1552 * For SPI, enable CRC as appropriate.
1553 */
1554 if (mmc_host_is_spi(host)) {
1555 err = mmc_spi_set_crc(host, use_spi_crc);
1556 if (err)
1557 goto err;
1558 }
1559
1560 /*
1561 * Fetch CID from card.
1562 */
1563 err = mmc_send_cid(host, cid);
1564 if (err)
1565 goto err;
1566
1567 if (oldcard) {
1568 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1569 err = -ENOENT;
1570 goto err;
1571 }
1572
1573 card = oldcard;
1574 } else {
1575 /*
1576 * Allocate card structure.
1577 */
1578 card = mmc_alloc_card(host, &mmc_type);
1579 if (IS_ERR(card)) {
1580 err = PTR_ERR(card);
1581 goto err;
1582 }
1583
1584 card->ocr = ocr;
1585 card->type = MMC_TYPE_MMC;
1586 card->rca = 1;
1587 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1588 }
1589
1590 /*
1591 * Call the optional HC's init_card function to handle quirks.
1592 */
1593 if (host->ops->init_card)
1594 host->ops->init_card(host, card);
1595
1596 /*
1597 * For native busses: set card RCA and quit open drain mode.
1598 */
1599 if (!mmc_host_is_spi(host)) {
1600 err = mmc_set_relative_addr(card);
1601 if (err)
1602 goto free_card;
1603
1604 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1605 }
1606
1607 if (!oldcard) {
1608 /*
1609 * Fetch CSD from card.
1610 */
1611 err = mmc_send_csd(card, card->raw_csd);
1612 if (err)
1613 goto free_card;
1614
1615 err = mmc_decode_csd(card);
1616 if (err)
1617 goto free_card;
1618 err = mmc_decode_cid(card);
1619 if (err)
1620 goto free_card;
1621 }
1622
1623 /*
1624 * handling only for cards supporting DSR and hosts requesting
1625 * DSR configuration
1626 */
1627 if (card->csd.dsr_imp && host->dsr_req)
1628 mmc_set_dsr(host);
1629
1630 /*
1631 * Select card, as all following commands rely on that.
1632 */
1633 if (!mmc_host_is_spi(host)) {
1634 err = mmc_select_card(card);
1635 if (err)
1636 goto free_card;
1637 }
1638
1639 if (!oldcard) {
1640 /* Read extended CSD. */
1641 err = mmc_read_ext_csd(card);
1642 if (err)
1643 goto free_card;
1644
1645 /*
1646 * If doing byte addressing, check if required to do sector
1647 * addressing. Handle the case of <2GB cards needing sector
1648 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1649 * ocr register has bit 30 set for sector addressing.
1650 */
1651 if (rocr & BIT(30))
1652 mmc_card_set_blockaddr(card);
1653
1654 /* Erase size depends on CSD and Extended CSD */
1655 mmc_set_erase_size(card);
1656 }
1657
1658 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1659 if (card->ext_csd.rev >= 3) {
1660 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1661 EXT_CSD_ERASE_GROUP_DEF, 1,
1662 card->ext_csd.generic_cmd6_time);
1663
1664 if (err && err != -EBADMSG)
1665 goto free_card;
1666
1667 if (err) {
1668 err = 0;
1669 /*
1670 * Just disable enhanced area off & sz
1671 * will try to enable ERASE_GROUP_DEF
1672 * during next time reinit
1673 */
1674 card->ext_csd.enhanced_area_offset = -EINVAL;
1675 card->ext_csd.enhanced_area_size = -EINVAL;
1676 } else {
1677 card->ext_csd.erase_group_def = 1;
1678 /*
1679 * enable ERASE_GRP_DEF successfully.
1680 * This will affect the erase size, so
1681 * here need to reset erase size
1682 */
1683 mmc_set_erase_size(card);
1684 }
1685 }
1686
1687 /*
1688 * Ensure eMMC user default partition is enabled
1689 */
1690 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1691 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1692 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1693 card->ext_csd.part_config,
1694 card->ext_csd.part_time);
1695 if (err && err != -EBADMSG)
1696 goto free_card;
1697 }
1698
1699 /*
1700 * Enable power_off_notification byte in the ext_csd register
1701 */
1702 if (card->ext_csd.rev >= 6) {
1703 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1704 EXT_CSD_POWER_OFF_NOTIFICATION,
1705 EXT_CSD_POWER_ON,
1706 card->ext_csd.generic_cmd6_time);
1707 if (err && err != -EBADMSG)
1708 goto free_card;
1709
1710 /*
1711 * The err can be -EBADMSG or 0,
1712 * so check for success and update the flag
1713 */
1714 if (!err)
1715 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1716 }
1717
1718 /*
1719 * Select timing interface
1720 */
1721 err = mmc_select_timing(card);
1722 if (err)
1723 goto free_card;
1724
1725 if (mmc_card_hs200(card)) {
1726 err = mmc_hs200_tuning(card);
1727 if (err)
1728 goto free_card;
1729
1730 err = mmc_select_hs400(card);
1731 if (err)
1732 goto free_card;
1733 } else if (!mmc_card_hs400es(card)) {
1734 /* Select the desired bus width optionally */
1735 err = mmc_select_bus_width(card);
1736 if (err > 0 && mmc_card_hs(card)) {
1737 err = mmc_select_hs_ddr(card);
1738 if (err)
1739 goto free_card;
1740 }
1741 }
1742
1743 /*
1744 * Choose the power class with selected bus interface
1745 */
1746 mmc_select_powerclass(card);
1747
1748 /*
1749 * Enable HPI feature (if supported)
1750 */
1751 if (card->ext_csd.hpi) {
1752 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1753 EXT_CSD_HPI_MGMT, 1,
1754 card->ext_csd.generic_cmd6_time);
1755 if (err && err != -EBADMSG)
1756 goto free_card;
1757 if (err) {
1758 pr_warn("%s: Enabling HPI failed\n",
1759 mmc_hostname(card->host));
1760 card->ext_csd.hpi_en = 0;
1761 err = 0;
1762 } else {
1763 card->ext_csd.hpi_en = 1;
1764 }
1765 }
1766
1767 /*
1768 * If cache size is higher than 0, this indicates the existence of cache
1769 * and it can be turned on. Note that some eMMCs from Micron has been
1770 * reported to need ~800 ms timeout, while enabling the cache after
1771 * sudden power failure tests. Let's extend the timeout to a minimum of
1772 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1773 */
1774 if (card->ext_csd.cache_size > 0) {
1775 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1776
1777 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1778 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1779 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1780 if (err && err != -EBADMSG)
1781 goto free_card;
1782
1783 /*
1784 * Only if no error, cache is turned on successfully.
1785 */
1786 if (err) {
1787 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1788 mmc_hostname(card->host), err);
1789 card->ext_csd.cache_ctrl = 0;
1790 err = 0;
1791 } else {
1792 card->ext_csd.cache_ctrl = 1;
1793 }
1794 }
1795
1796 /*
1797 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1798 * disabled for a time, so a flag is needed to indicate to re-enable the
1799 * Command Queue.
1800 */
1801 card->reenable_cmdq = card->ext_csd.cmdq_en;
1802
1803 if (!oldcard)
1804 host->card = card;
1805
1806 return 0;
1807
1808 free_card:
1809 if (!oldcard)
1810 mmc_remove_card(card);
1811 err:
1812 return err;
1813 }
1814
1815 static int mmc_can_sleep(struct mmc_card *card)
1816 {
1817 return (card && card->ext_csd.rev >= 3);
1818 }
1819
1820 static int mmc_sleep(struct mmc_host *host)
1821 {
1822 struct mmc_command cmd = {};
1823 struct mmc_card *card = host->card;
1824 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1825 int err;
1826
1827 /* Re-tuning can't be done once the card is deselected */
1828 mmc_retune_hold(host);
1829
1830 err = mmc_deselect_cards(host);
1831 if (err)
1832 goto out_release;
1833
1834 cmd.opcode = MMC_SLEEP_AWAKE;
1835 cmd.arg = card->rca << 16;
1836 cmd.arg |= 1 << 15;
1837
1838 /*
1839 * If the max_busy_timeout of the host is specified, validate it against
1840 * the sleep cmd timeout. A failure means we need to prevent the host
1841 * from doing hw busy detection, which is done by converting to a R1
1842 * response instead of a R1B.
1843 */
1844 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1845 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1846 } else {
1847 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1848 cmd.busy_timeout = timeout_ms;
1849 }
1850
1851 err = mmc_wait_for_cmd(host, &cmd, 0);
1852 if (err)
1853 goto out_release;
1854
1855 /*
1856 * If the host does not wait while the card signals busy, then we will
1857 * will have to wait the sleep/awake timeout. Note, we cannot use the
1858 * SEND_STATUS command to poll the status because that command (and most
1859 * others) is invalid while the card sleeps.
1860 */
1861 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1862 mmc_delay(timeout_ms);
1863
1864 out_release:
1865 mmc_retune_release(host);
1866 return err;
1867 }
1868
1869 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1870 {
1871 return card &&
1872 mmc_card_mmc(card) &&
1873 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1874 }
1875
1876 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1877 {
1878 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1879 int err;
1880
1881 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1882 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1883 timeout = card->ext_csd.power_off_longtime;
1884
1885 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1886 EXT_CSD_POWER_OFF_NOTIFICATION,
1887 notify_type, timeout, 0, true, false, false);
1888 if (err)
1889 pr_err("%s: Power Off Notification timed out, %u\n",
1890 mmc_hostname(card->host), timeout);
1891
1892 /* Disable the power off notification after the switch operation. */
1893 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1894
1895 return err;
1896 }
1897
1898 /*
1899 * Host is being removed. Free up the current card.
1900 */
1901 static void mmc_remove(struct mmc_host *host)
1902 {
1903 mmc_remove_card(host->card);
1904 host->card = NULL;
1905 }
1906
1907 /*
1908 * Card detection - card is alive.
1909 */
1910 static int mmc_alive(struct mmc_host *host)
1911 {
1912 return mmc_send_status(host->card, NULL);
1913 }
1914
1915 /*
1916 * Card detection callback from host.
1917 */
1918 static void mmc_detect(struct mmc_host *host)
1919 {
1920 int err;
1921
1922 mmc_get_card(host->card);
1923
1924 /*
1925 * Just check if our card has been removed.
1926 */
1927 err = _mmc_detect_card_removed(host);
1928
1929 mmc_put_card(host->card);
1930
1931 if (err) {
1932 mmc_remove(host);
1933
1934 mmc_claim_host(host);
1935 mmc_detach_bus(host);
1936 mmc_power_off(host);
1937 mmc_release_host(host);
1938 }
1939 }
1940
1941 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1942 {
1943 int err = 0;
1944 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1945 EXT_CSD_POWER_OFF_LONG;
1946
1947 mmc_claim_host(host);
1948
1949 if (mmc_card_suspended(host->card))
1950 goto out;
1951
1952 if (mmc_card_doing_bkops(host->card)) {
1953 err = mmc_stop_bkops(host->card);
1954 if (err)
1955 goto out;
1956 }
1957
1958 err = mmc_flush_cache(host->card);
1959 if (err)
1960 goto out;
1961
1962 if (mmc_can_poweroff_notify(host->card) &&
1963 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1964 err = mmc_poweroff_notify(host->card, notify_type);
1965 else if (mmc_can_sleep(host->card))
1966 err = mmc_sleep(host);
1967 else if (!mmc_host_is_spi(host))
1968 err = mmc_deselect_cards(host);
1969
1970 if (!err) {
1971 mmc_power_off(host);
1972 mmc_card_set_suspended(host->card);
1973 }
1974 out:
1975 mmc_release_host(host);
1976 return err;
1977 }
1978
1979 /*
1980 * Suspend callback
1981 */
1982 static int mmc_suspend(struct mmc_host *host)
1983 {
1984 int err;
1985
1986 err = _mmc_suspend(host, true);
1987 if (!err) {
1988 pm_runtime_disable(&host->card->dev);
1989 pm_runtime_set_suspended(&host->card->dev);
1990 }
1991
1992 return err;
1993 }
1994
1995 /*
1996 * This function tries to determine if the same card is still present
1997 * and, if so, restore all state to it.
1998 */
1999 static int _mmc_resume(struct mmc_host *host)
2000 {
2001 int err = 0;
2002
2003 mmc_claim_host(host);
2004
2005 if (!mmc_card_suspended(host->card))
2006 goto out;
2007
2008 mmc_power_up(host, host->card->ocr);
2009 err = mmc_init_card(host, host->card->ocr, host->card);
2010 mmc_card_clr_suspended(host->card);
2011
2012 out:
2013 mmc_release_host(host);
2014 return err;
2015 }
2016
2017 /*
2018 * Shutdown callback
2019 */
2020 static int mmc_shutdown(struct mmc_host *host)
2021 {
2022 int err = 0;
2023
2024 /*
2025 * In a specific case for poweroff notify, we need to resume the card
2026 * before we can shutdown it properly.
2027 */
2028 if (mmc_can_poweroff_notify(host->card) &&
2029 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2030 err = _mmc_resume(host);
2031
2032 if (!err)
2033 err = _mmc_suspend(host, false);
2034
2035 return err;
2036 }
2037
2038 /*
2039 * Callback for resume.
2040 */
2041 static int mmc_resume(struct mmc_host *host)
2042 {
2043 pm_runtime_enable(&host->card->dev);
2044 return 0;
2045 }
2046
2047 /*
2048 * Callback for runtime_suspend.
2049 */
2050 static int mmc_runtime_suspend(struct mmc_host *host)
2051 {
2052 int err;
2053
2054 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2055 return 0;
2056
2057 err = _mmc_suspend(host, true);
2058 if (err)
2059 pr_err("%s: error %d doing aggressive suspend\n",
2060 mmc_hostname(host), err);
2061
2062 return err;
2063 }
2064
2065 /*
2066 * Callback for runtime_resume.
2067 */
2068 static int mmc_runtime_resume(struct mmc_host *host)
2069 {
2070 int err;
2071
2072 err = _mmc_resume(host);
2073 if (err && err != -ENOMEDIUM)
2074 pr_err("%s: error %d doing runtime resume\n",
2075 mmc_hostname(host), err);
2076
2077 return 0;
2078 }
2079
2080 static int mmc_can_reset(struct mmc_card *card)
2081 {
2082 u8 rst_n_function;
2083
2084 rst_n_function = card->ext_csd.rst_n_function;
2085 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2086 return 0;
2087 return 1;
2088 }
2089
2090 static int mmc_reset(struct mmc_host *host)
2091 {
2092 struct mmc_card *card = host->card;
2093
2094 /*
2095 * In the case of recovery, we can't expect flushing the cache to work
2096 * always, but we have a go and ignore errors.
2097 */
2098 mmc_flush_cache(host->card);
2099
2100 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2101 mmc_can_reset(card)) {
2102 /* If the card accept RST_n signal, send it. */
2103 mmc_set_clock(host, host->f_init);
2104 host->ops->hw_reset(host);
2105 /* Set initial state and call mmc_set_ios */
2106 mmc_set_initial_state(host);
2107 } else {
2108 /* Do a brute force power cycle */
2109 mmc_power_cycle(host, card->ocr);
2110 mmc_pwrseq_reset(host);
2111 }
2112 return mmc_init_card(host, card->ocr, card);
2113 }
2114
2115 static const struct mmc_bus_ops mmc_ops = {
2116 .remove = mmc_remove,
2117 .detect = mmc_detect,
2118 .suspend = mmc_suspend,
2119 .resume = mmc_resume,
2120 .runtime_suspend = mmc_runtime_suspend,
2121 .runtime_resume = mmc_runtime_resume,
2122 .alive = mmc_alive,
2123 .shutdown = mmc_shutdown,
2124 .reset = mmc_reset,
2125 };
2126
2127 /*
2128 * Starting point for MMC card init.
2129 */
2130 int mmc_attach_mmc(struct mmc_host *host)
2131 {
2132 int err;
2133 u32 ocr, rocr;
2134
2135 WARN_ON(!host->claimed);
2136
2137 /* Set correct bus mode for MMC before attempting attach */
2138 if (!mmc_host_is_spi(host))
2139 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2140
2141 err = mmc_send_op_cond(host, 0, &ocr);
2142 if (err)
2143 return err;
2144
2145 mmc_attach_bus(host, &mmc_ops);
2146 if (host->ocr_avail_mmc)
2147 host->ocr_avail = host->ocr_avail_mmc;
2148
2149 /*
2150 * We need to get OCR a different way for SPI.
2151 */
2152 if (mmc_host_is_spi(host)) {
2153 err = mmc_spi_read_ocr(host, 1, &ocr);
2154 if (err)
2155 goto err;
2156 }
2157
2158 rocr = mmc_select_voltage(host, ocr);
2159
2160 /*
2161 * Can we support the voltage of the card?
2162 */
2163 if (!rocr) {
2164 err = -EINVAL;
2165 goto err;
2166 }
2167
2168 /*
2169 * Detect and init the card.
2170 */
2171 err = mmc_init_card(host, rocr, NULL);
2172 if (err)
2173 goto err;
2174
2175 mmc_release_host(host);
2176 err = mmc_add_card(host->card);
2177 if (err)
2178 goto remove_card;
2179
2180 mmc_claim_host(host);
2181 return 0;
2182
2183 remove_card:
2184 mmc_remove_card(host->card);
2185 mmc_claim_host(host);
2186 host->card = NULL;
2187 err:
2188 mmc_detach_bus(host);
2189
2190 pr_err("%s: error %d whilst initialising MMC card\n",
2191 mmc_hostname(host), err);
2192
2193 return err;
2194 }