Input: allow matching device IDs on property bits
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
39
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42
43 /*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49 static DEFINE_MUTEX(input_mutex);
50
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
53 static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
55 {
56 return code <= max && test_bit(code, bm);
57 }
58
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
64
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
67
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
70 }
71
72 return value;
73 }
74
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84 }
85
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 del_timer(&dev->timer);
89 }
90
91 /*
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
95 */
96 static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
98 {
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
102
103 if (handler->filter) {
104 for (v = vals; v != vals + count; v++) {
105 if (handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
111 count = end - vals;
112 }
113
114 if (!count)
115 return 0;
116
117 if (handler->events)
118 handler->events(handle, vals, count);
119 else if (handler->event)
120 for (v = vals; v != vals + count; v++)
121 handler->event(handle, v->type, v->code, v->value);
122
123 return count;
124 }
125
126 /*
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
130 */
131 static void input_pass_values(struct input_dev *dev,
132 struct input_value *vals, unsigned int count)
133 {
134 struct input_handle *handle;
135 struct input_value *v;
136
137 if (!count)
138 return;
139
140 rcu_read_lock();
141
142 handle = rcu_dereference(dev->grab);
143 if (handle) {
144 count = input_to_handler(handle, vals, count);
145 } else {
146 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 if (handle->open) {
148 count = input_to_handler(handle, vals, count);
149 if (!count)
150 break;
151 }
152 }
153
154 rcu_read_unlock();
155
156 /* trigger auto repeat for key events */
157 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
158 for (v = vals; v != vals + count; v++) {
159 if (v->type == EV_KEY && v->value != 2) {
160 if (v->value)
161 input_start_autorepeat(dev, v->code);
162 else
163 input_stop_autorepeat(dev);
164 }
165 }
166 }
167 }
168
169 static void input_pass_event(struct input_dev *dev,
170 unsigned int type, unsigned int code, int value)
171 {
172 struct input_value vals[] = { { type, code, value } };
173
174 input_pass_values(dev, vals, ARRAY_SIZE(vals));
175 }
176
177 /*
178 * Generate software autorepeat event. Note that we take
179 * dev->event_lock here to avoid racing with input_event
180 * which may cause keys get "stuck".
181 */
182 static void input_repeat_key(unsigned long data)
183 {
184 struct input_dev *dev = (void *) data;
185 unsigned long flags;
186
187 spin_lock_irqsave(&dev->event_lock, flags);
188
189 if (test_bit(dev->repeat_key, dev->key) &&
190 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
191 struct input_value vals[] = {
192 { EV_KEY, dev->repeat_key, 2 },
193 input_value_sync
194 };
195
196 input_pass_values(dev, vals, ARRAY_SIZE(vals));
197
198 if (dev->rep[REP_PERIOD])
199 mod_timer(&dev->timer, jiffies +
200 msecs_to_jiffies(dev->rep[REP_PERIOD]));
201 }
202
203 spin_unlock_irqrestore(&dev->event_lock, flags);
204 }
205
206 #define INPUT_IGNORE_EVENT 0
207 #define INPUT_PASS_TO_HANDLERS 1
208 #define INPUT_PASS_TO_DEVICE 2
209 #define INPUT_SLOT 4
210 #define INPUT_FLUSH 8
211 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
212
213 static int input_handle_abs_event(struct input_dev *dev,
214 unsigned int code, int *pval)
215 {
216 struct input_mt *mt = dev->mt;
217 bool is_mt_event;
218 int *pold;
219
220 if (code == ABS_MT_SLOT) {
221 /*
222 * "Stage" the event; we'll flush it later, when we
223 * get actual touch data.
224 */
225 if (mt && *pval >= 0 && *pval < mt->num_slots)
226 mt->slot = *pval;
227
228 return INPUT_IGNORE_EVENT;
229 }
230
231 is_mt_event = input_is_mt_value(code);
232
233 if (!is_mt_event) {
234 pold = &dev->absinfo[code].value;
235 } else if (mt) {
236 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
237 } else {
238 /*
239 * Bypass filtering for multi-touch events when
240 * not employing slots.
241 */
242 pold = NULL;
243 }
244
245 if (pold) {
246 *pval = input_defuzz_abs_event(*pval, *pold,
247 dev->absinfo[code].fuzz);
248 if (*pold == *pval)
249 return INPUT_IGNORE_EVENT;
250
251 *pold = *pval;
252 }
253
254 /* Flush pending "slot" event */
255 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
256 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
257 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
258 }
259
260 return INPUT_PASS_TO_HANDLERS;
261 }
262
263 static int input_get_disposition(struct input_dev *dev,
264 unsigned int type, unsigned int code, int *pval)
265 {
266 int disposition = INPUT_IGNORE_EVENT;
267 int value = *pval;
268
269 switch (type) {
270
271 case EV_SYN:
272 switch (code) {
273 case SYN_CONFIG:
274 disposition = INPUT_PASS_TO_ALL;
275 break;
276
277 case SYN_REPORT:
278 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
279 break;
280 case SYN_MT_REPORT:
281 disposition = INPUT_PASS_TO_HANDLERS;
282 break;
283 }
284 break;
285
286 case EV_KEY:
287 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
288
289 /* auto-repeat bypasses state updates */
290 if (value == 2) {
291 disposition = INPUT_PASS_TO_HANDLERS;
292 break;
293 }
294
295 if (!!test_bit(code, dev->key) != !!value) {
296
297 __change_bit(code, dev->key);
298 disposition = INPUT_PASS_TO_HANDLERS;
299 }
300 }
301 break;
302
303 case EV_SW:
304 if (is_event_supported(code, dev->swbit, SW_MAX) &&
305 !!test_bit(code, dev->sw) != !!value) {
306
307 __change_bit(code, dev->sw);
308 disposition = INPUT_PASS_TO_HANDLERS;
309 }
310 break;
311
312 case EV_ABS:
313 if (is_event_supported(code, dev->absbit, ABS_MAX))
314 disposition = input_handle_abs_event(dev, code, &value);
315
316 break;
317
318 case EV_REL:
319 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
320 disposition = INPUT_PASS_TO_HANDLERS;
321
322 break;
323
324 case EV_MSC:
325 if (is_event_supported(code, dev->mscbit, MSC_MAX))
326 disposition = INPUT_PASS_TO_ALL;
327
328 break;
329
330 case EV_LED:
331 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
332 !!test_bit(code, dev->led) != !!value) {
333
334 __change_bit(code, dev->led);
335 disposition = INPUT_PASS_TO_ALL;
336 }
337 break;
338
339 case EV_SND:
340 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
341
342 if (!!test_bit(code, dev->snd) != !!value)
343 __change_bit(code, dev->snd);
344 disposition = INPUT_PASS_TO_ALL;
345 }
346 break;
347
348 case EV_REP:
349 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
350 dev->rep[code] = value;
351 disposition = INPUT_PASS_TO_ALL;
352 }
353 break;
354
355 case EV_FF:
356 if (value >= 0)
357 disposition = INPUT_PASS_TO_ALL;
358 break;
359
360 case EV_PWR:
361 disposition = INPUT_PASS_TO_ALL;
362 break;
363 }
364
365 *pval = value;
366 return disposition;
367 }
368
369 static void input_handle_event(struct input_dev *dev,
370 unsigned int type, unsigned int code, int value)
371 {
372 int disposition = input_get_disposition(dev, type, code, &value);
373
374 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
375 add_input_randomness(type, code, value);
376
377 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
378 dev->event(dev, type, code, value);
379
380 if (!dev->vals)
381 return;
382
383 if (disposition & INPUT_PASS_TO_HANDLERS) {
384 struct input_value *v;
385
386 if (disposition & INPUT_SLOT) {
387 v = &dev->vals[dev->num_vals++];
388 v->type = EV_ABS;
389 v->code = ABS_MT_SLOT;
390 v->value = dev->mt->slot;
391 }
392
393 v = &dev->vals[dev->num_vals++];
394 v->type = type;
395 v->code = code;
396 v->value = value;
397 }
398
399 if (disposition & INPUT_FLUSH) {
400 if (dev->num_vals >= 2)
401 input_pass_values(dev, dev->vals, dev->num_vals);
402 dev->num_vals = 0;
403 } else if (dev->num_vals >= dev->max_vals - 2) {
404 dev->vals[dev->num_vals++] = input_value_sync;
405 input_pass_values(dev, dev->vals, dev->num_vals);
406 dev->num_vals = 0;
407 }
408
409 }
410
411 /**
412 * input_event() - report new input event
413 * @dev: device that generated the event
414 * @type: type of the event
415 * @code: event code
416 * @value: value of the event
417 *
418 * This function should be used by drivers implementing various input
419 * devices to report input events. See also input_inject_event().
420 *
421 * NOTE: input_event() may be safely used right after input device was
422 * allocated with input_allocate_device(), even before it is registered
423 * with input_register_device(), but the event will not reach any of the
424 * input handlers. Such early invocation of input_event() may be used
425 * to 'seed' initial state of a switch or initial position of absolute
426 * axis, etc.
427 */
428 void input_event(struct input_dev *dev,
429 unsigned int type, unsigned int code, int value)
430 {
431 unsigned long flags;
432
433 if (is_event_supported(type, dev->evbit, EV_MAX)) {
434
435 spin_lock_irqsave(&dev->event_lock, flags);
436 input_handle_event(dev, type, code, value);
437 spin_unlock_irqrestore(&dev->event_lock, flags);
438 }
439 }
440 EXPORT_SYMBOL(input_event);
441
442 /**
443 * input_inject_event() - send input event from input handler
444 * @handle: input handle to send event through
445 * @type: type of the event
446 * @code: event code
447 * @value: value of the event
448 *
449 * Similar to input_event() but will ignore event if device is
450 * "grabbed" and handle injecting event is not the one that owns
451 * the device.
452 */
453 void input_inject_event(struct input_handle *handle,
454 unsigned int type, unsigned int code, int value)
455 {
456 struct input_dev *dev = handle->dev;
457 struct input_handle *grab;
458 unsigned long flags;
459
460 if (is_event_supported(type, dev->evbit, EV_MAX)) {
461 spin_lock_irqsave(&dev->event_lock, flags);
462
463 rcu_read_lock();
464 grab = rcu_dereference(dev->grab);
465 if (!grab || grab == handle)
466 input_handle_event(dev, type, code, value);
467 rcu_read_unlock();
468
469 spin_unlock_irqrestore(&dev->event_lock, flags);
470 }
471 }
472 EXPORT_SYMBOL(input_inject_event);
473
474 /**
475 * input_alloc_absinfo - allocates array of input_absinfo structs
476 * @dev: the input device emitting absolute events
477 *
478 * If the absinfo struct the caller asked for is already allocated, this
479 * functions will not do anything.
480 */
481 void input_alloc_absinfo(struct input_dev *dev)
482 {
483 if (!dev->absinfo)
484 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo),
485 GFP_KERNEL);
486
487 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
488 }
489 EXPORT_SYMBOL(input_alloc_absinfo);
490
491 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
492 int min, int max, int fuzz, int flat)
493 {
494 struct input_absinfo *absinfo;
495
496 input_alloc_absinfo(dev);
497 if (!dev->absinfo)
498 return;
499
500 absinfo = &dev->absinfo[axis];
501 absinfo->minimum = min;
502 absinfo->maximum = max;
503 absinfo->fuzz = fuzz;
504 absinfo->flat = flat;
505
506 __set_bit(EV_ABS, dev->evbit);
507 __set_bit(axis, dev->absbit);
508 }
509 EXPORT_SYMBOL(input_set_abs_params);
510
511
512 /**
513 * input_grab_device - grabs device for exclusive use
514 * @handle: input handle that wants to own the device
515 *
516 * When a device is grabbed by an input handle all events generated by
517 * the device are delivered only to this handle. Also events injected
518 * by other input handles are ignored while device is grabbed.
519 */
520 int input_grab_device(struct input_handle *handle)
521 {
522 struct input_dev *dev = handle->dev;
523 int retval;
524
525 retval = mutex_lock_interruptible(&dev->mutex);
526 if (retval)
527 return retval;
528
529 if (dev->grab) {
530 retval = -EBUSY;
531 goto out;
532 }
533
534 rcu_assign_pointer(dev->grab, handle);
535
536 out:
537 mutex_unlock(&dev->mutex);
538 return retval;
539 }
540 EXPORT_SYMBOL(input_grab_device);
541
542 static void __input_release_device(struct input_handle *handle)
543 {
544 struct input_dev *dev = handle->dev;
545 struct input_handle *grabber;
546
547 grabber = rcu_dereference_protected(dev->grab,
548 lockdep_is_held(&dev->mutex));
549 if (grabber == handle) {
550 rcu_assign_pointer(dev->grab, NULL);
551 /* Make sure input_pass_event() notices that grab is gone */
552 synchronize_rcu();
553
554 list_for_each_entry(handle, &dev->h_list, d_node)
555 if (handle->open && handle->handler->start)
556 handle->handler->start(handle);
557 }
558 }
559
560 /**
561 * input_release_device - release previously grabbed device
562 * @handle: input handle that owns the device
563 *
564 * Releases previously grabbed device so that other input handles can
565 * start receiving input events. Upon release all handlers attached
566 * to the device have their start() method called so they have a change
567 * to synchronize device state with the rest of the system.
568 */
569 void input_release_device(struct input_handle *handle)
570 {
571 struct input_dev *dev = handle->dev;
572
573 mutex_lock(&dev->mutex);
574 __input_release_device(handle);
575 mutex_unlock(&dev->mutex);
576 }
577 EXPORT_SYMBOL(input_release_device);
578
579 /**
580 * input_open_device - open input device
581 * @handle: handle through which device is being accessed
582 *
583 * This function should be called by input handlers when they
584 * want to start receive events from given input device.
585 */
586 int input_open_device(struct input_handle *handle)
587 {
588 struct input_dev *dev = handle->dev;
589 int retval;
590
591 retval = mutex_lock_interruptible(&dev->mutex);
592 if (retval)
593 return retval;
594
595 if (dev->going_away) {
596 retval = -ENODEV;
597 goto out;
598 }
599
600 handle->open++;
601
602 if (!dev->users++ && dev->open)
603 retval = dev->open(dev);
604
605 if (retval) {
606 dev->users--;
607 if (!--handle->open) {
608 /*
609 * Make sure we are not delivering any more events
610 * through this handle
611 */
612 synchronize_rcu();
613 }
614 }
615
616 out:
617 mutex_unlock(&dev->mutex);
618 return retval;
619 }
620 EXPORT_SYMBOL(input_open_device);
621
622 int input_flush_device(struct input_handle *handle, struct file *file)
623 {
624 struct input_dev *dev = handle->dev;
625 int retval;
626
627 retval = mutex_lock_interruptible(&dev->mutex);
628 if (retval)
629 return retval;
630
631 if (dev->flush)
632 retval = dev->flush(dev, file);
633
634 mutex_unlock(&dev->mutex);
635 return retval;
636 }
637 EXPORT_SYMBOL(input_flush_device);
638
639 /**
640 * input_close_device - close input device
641 * @handle: handle through which device is being accessed
642 *
643 * This function should be called by input handlers when they
644 * want to stop receive events from given input device.
645 */
646 void input_close_device(struct input_handle *handle)
647 {
648 struct input_dev *dev = handle->dev;
649
650 mutex_lock(&dev->mutex);
651
652 __input_release_device(handle);
653
654 if (!--dev->users && dev->close)
655 dev->close(dev);
656
657 if (!--handle->open) {
658 /*
659 * synchronize_rcu() makes sure that input_pass_event()
660 * completed and that no more input events are delivered
661 * through this handle
662 */
663 synchronize_rcu();
664 }
665
666 mutex_unlock(&dev->mutex);
667 }
668 EXPORT_SYMBOL(input_close_device);
669
670 /*
671 * Simulate keyup events for all keys that are marked as pressed.
672 * The function must be called with dev->event_lock held.
673 */
674 static void input_dev_release_keys(struct input_dev *dev)
675 {
676 bool need_sync = false;
677 int code;
678
679 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
680 for_each_set_bit(code, dev->key, KEY_CNT) {
681 input_pass_event(dev, EV_KEY, code, 0);
682 need_sync = true;
683 }
684
685 if (need_sync)
686 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
687
688 memset(dev->key, 0, sizeof(dev->key));
689 }
690 }
691
692 /*
693 * Prepare device for unregistering
694 */
695 static void input_disconnect_device(struct input_dev *dev)
696 {
697 struct input_handle *handle;
698
699 /*
700 * Mark device as going away. Note that we take dev->mutex here
701 * not to protect access to dev->going_away but rather to ensure
702 * that there are no threads in the middle of input_open_device()
703 */
704 mutex_lock(&dev->mutex);
705 dev->going_away = true;
706 mutex_unlock(&dev->mutex);
707
708 spin_lock_irq(&dev->event_lock);
709
710 /*
711 * Simulate keyup events for all pressed keys so that handlers
712 * are not left with "stuck" keys. The driver may continue
713 * generate events even after we done here but they will not
714 * reach any handlers.
715 */
716 input_dev_release_keys(dev);
717
718 list_for_each_entry(handle, &dev->h_list, d_node)
719 handle->open = 0;
720
721 spin_unlock_irq(&dev->event_lock);
722 }
723
724 /**
725 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
726 * @ke: keymap entry containing scancode to be converted.
727 * @scancode: pointer to the location where converted scancode should
728 * be stored.
729 *
730 * This function is used to convert scancode stored in &struct keymap_entry
731 * into scalar form understood by legacy keymap handling methods. These
732 * methods expect scancodes to be represented as 'unsigned int'.
733 */
734 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
735 unsigned int *scancode)
736 {
737 switch (ke->len) {
738 case 1:
739 *scancode = *((u8 *)ke->scancode);
740 break;
741
742 case 2:
743 *scancode = *((u16 *)ke->scancode);
744 break;
745
746 case 4:
747 *scancode = *((u32 *)ke->scancode);
748 break;
749
750 default:
751 return -EINVAL;
752 }
753
754 return 0;
755 }
756 EXPORT_SYMBOL(input_scancode_to_scalar);
757
758 /*
759 * Those routines handle the default case where no [gs]etkeycode() is
760 * defined. In this case, an array indexed by the scancode is used.
761 */
762
763 static unsigned int input_fetch_keycode(struct input_dev *dev,
764 unsigned int index)
765 {
766 switch (dev->keycodesize) {
767 case 1:
768 return ((u8 *)dev->keycode)[index];
769
770 case 2:
771 return ((u16 *)dev->keycode)[index];
772
773 default:
774 return ((u32 *)dev->keycode)[index];
775 }
776 }
777
778 static int input_default_getkeycode(struct input_dev *dev,
779 struct input_keymap_entry *ke)
780 {
781 unsigned int index;
782 int error;
783
784 if (!dev->keycodesize)
785 return -EINVAL;
786
787 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
788 index = ke->index;
789 else {
790 error = input_scancode_to_scalar(ke, &index);
791 if (error)
792 return error;
793 }
794
795 if (index >= dev->keycodemax)
796 return -EINVAL;
797
798 ke->keycode = input_fetch_keycode(dev, index);
799 ke->index = index;
800 ke->len = sizeof(index);
801 memcpy(ke->scancode, &index, sizeof(index));
802
803 return 0;
804 }
805
806 static int input_default_setkeycode(struct input_dev *dev,
807 const struct input_keymap_entry *ke,
808 unsigned int *old_keycode)
809 {
810 unsigned int index;
811 int error;
812 int i;
813
814 if (!dev->keycodesize)
815 return -EINVAL;
816
817 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
818 index = ke->index;
819 } else {
820 error = input_scancode_to_scalar(ke, &index);
821 if (error)
822 return error;
823 }
824
825 if (index >= dev->keycodemax)
826 return -EINVAL;
827
828 if (dev->keycodesize < sizeof(ke->keycode) &&
829 (ke->keycode >> (dev->keycodesize * 8)))
830 return -EINVAL;
831
832 switch (dev->keycodesize) {
833 case 1: {
834 u8 *k = (u8 *)dev->keycode;
835 *old_keycode = k[index];
836 k[index] = ke->keycode;
837 break;
838 }
839 case 2: {
840 u16 *k = (u16 *)dev->keycode;
841 *old_keycode = k[index];
842 k[index] = ke->keycode;
843 break;
844 }
845 default: {
846 u32 *k = (u32 *)dev->keycode;
847 *old_keycode = k[index];
848 k[index] = ke->keycode;
849 break;
850 }
851 }
852
853 __clear_bit(*old_keycode, dev->keybit);
854 __set_bit(ke->keycode, dev->keybit);
855
856 for (i = 0; i < dev->keycodemax; i++) {
857 if (input_fetch_keycode(dev, i) == *old_keycode) {
858 __set_bit(*old_keycode, dev->keybit);
859 break; /* Setting the bit twice is useless, so break */
860 }
861 }
862
863 return 0;
864 }
865
866 /**
867 * input_get_keycode - retrieve keycode currently mapped to a given scancode
868 * @dev: input device which keymap is being queried
869 * @ke: keymap entry
870 *
871 * This function should be called by anyone interested in retrieving current
872 * keymap. Presently evdev handlers use it.
873 */
874 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
875 {
876 unsigned long flags;
877 int retval;
878
879 spin_lock_irqsave(&dev->event_lock, flags);
880 retval = dev->getkeycode(dev, ke);
881 spin_unlock_irqrestore(&dev->event_lock, flags);
882
883 return retval;
884 }
885 EXPORT_SYMBOL(input_get_keycode);
886
887 /**
888 * input_set_keycode - attribute a keycode to a given scancode
889 * @dev: input device which keymap is being updated
890 * @ke: new keymap entry
891 *
892 * This function should be called by anyone needing to update current
893 * keymap. Presently keyboard and evdev handlers use it.
894 */
895 int input_set_keycode(struct input_dev *dev,
896 const struct input_keymap_entry *ke)
897 {
898 unsigned long flags;
899 unsigned int old_keycode;
900 int retval;
901
902 if (ke->keycode > KEY_MAX)
903 return -EINVAL;
904
905 spin_lock_irqsave(&dev->event_lock, flags);
906
907 retval = dev->setkeycode(dev, ke, &old_keycode);
908 if (retval)
909 goto out;
910
911 /* Make sure KEY_RESERVED did not get enabled. */
912 __clear_bit(KEY_RESERVED, dev->keybit);
913
914 /*
915 * Simulate keyup event if keycode is not present
916 * in the keymap anymore
917 */
918 if (test_bit(EV_KEY, dev->evbit) &&
919 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
920 __test_and_clear_bit(old_keycode, dev->key)) {
921 struct input_value vals[] = {
922 { EV_KEY, old_keycode, 0 },
923 input_value_sync
924 };
925
926 input_pass_values(dev, vals, ARRAY_SIZE(vals));
927 }
928
929 out:
930 spin_unlock_irqrestore(&dev->event_lock, flags);
931
932 return retval;
933 }
934 EXPORT_SYMBOL(input_set_keycode);
935
936 bool input_match_device_id(const struct input_dev *dev,
937 const struct input_device_id *id)
938 {
939 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
940 if (id->bustype != dev->id.bustype)
941 return false;
942
943 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
944 if (id->vendor != dev->id.vendor)
945 return false;
946
947 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
948 if (id->product != dev->id.product)
949 return false;
950
951 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
952 if (id->version != dev->id.version)
953 return false;
954
955 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
956 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
957 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
958 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
959 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
960 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
961 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
962 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
963 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
964 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
965 return false;
966 }
967
968 return true;
969 }
970 EXPORT_SYMBOL(input_match_device_id);
971
972 static const struct input_device_id *input_match_device(struct input_handler *handler,
973 struct input_dev *dev)
974 {
975 const struct input_device_id *id;
976
977 for (id = handler->id_table; id->flags || id->driver_info; id++) {
978 if (input_match_device_id(dev, id) &&
979 (!handler->match || handler->match(handler, dev))) {
980 return id;
981 }
982 }
983
984 return NULL;
985 }
986
987 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
988 {
989 const struct input_device_id *id;
990 int error;
991
992 id = input_match_device(handler, dev);
993 if (!id)
994 return -ENODEV;
995
996 error = handler->connect(handler, dev, id);
997 if (error && error != -ENODEV)
998 pr_err("failed to attach handler %s to device %s, error: %d\n",
999 handler->name, kobject_name(&dev->dev.kobj), error);
1000
1001 return error;
1002 }
1003
1004 #ifdef CONFIG_COMPAT
1005
1006 static int input_bits_to_string(char *buf, int buf_size,
1007 unsigned long bits, bool skip_empty)
1008 {
1009 int len = 0;
1010
1011 if (in_compat_syscall()) {
1012 u32 dword = bits >> 32;
1013 if (dword || !skip_empty)
1014 len += snprintf(buf, buf_size, "%x ", dword);
1015
1016 dword = bits & 0xffffffffUL;
1017 if (dword || !skip_empty || len)
1018 len += snprintf(buf + len, max(buf_size - len, 0),
1019 "%x", dword);
1020 } else {
1021 if (bits || !skip_empty)
1022 len += snprintf(buf, buf_size, "%lx", bits);
1023 }
1024
1025 return len;
1026 }
1027
1028 #else /* !CONFIG_COMPAT */
1029
1030 static int input_bits_to_string(char *buf, int buf_size,
1031 unsigned long bits, bool skip_empty)
1032 {
1033 return bits || !skip_empty ?
1034 snprintf(buf, buf_size, "%lx", bits) : 0;
1035 }
1036
1037 #endif
1038
1039 #ifdef CONFIG_PROC_FS
1040
1041 static struct proc_dir_entry *proc_bus_input_dir;
1042 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1043 static int input_devices_state;
1044
1045 static inline void input_wakeup_procfs_readers(void)
1046 {
1047 input_devices_state++;
1048 wake_up(&input_devices_poll_wait);
1049 }
1050
1051 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1052 {
1053 poll_wait(file, &input_devices_poll_wait, wait);
1054 if (file->f_version != input_devices_state) {
1055 file->f_version = input_devices_state;
1056 return POLLIN | POLLRDNORM;
1057 }
1058
1059 return 0;
1060 }
1061
1062 union input_seq_state {
1063 struct {
1064 unsigned short pos;
1065 bool mutex_acquired;
1066 };
1067 void *p;
1068 };
1069
1070 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1071 {
1072 union input_seq_state *state = (union input_seq_state *)&seq->private;
1073 int error;
1074
1075 /* We need to fit into seq->private pointer */
1076 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1077
1078 error = mutex_lock_interruptible(&input_mutex);
1079 if (error) {
1080 state->mutex_acquired = false;
1081 return ERR_PTR(error);
1082 }
1083
1084 state->mutex_acquired = true;
1085
1086 return seq_list_start(&input_dev_list, *pos);
1087 }
1088
1089 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1090 {
1091 return seq_list_next(v, &input_dev_list, pos);
1092 }
1093
1094 static void input_seq_stop(struct seq_file *seq, void *v)
1095 {
1096 union input_seq_state *state = (union input_seq_state *)&seq->private;
1097
1098 if (state->mutex_acquired)
1099 mutex_unlock(&input_mutex);
1100 }
1101
1102 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1103 unsigned long *bitmap, int max)
1104 {
1105 int i;
1106 bool skip_empty = true;
1107 char buf[18];
1108
1109 seq_printf(seq, "B: %s=", name);
1110
1111 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1112 if (input_bits_to_string(buf, sizeof(buf),
1113 bitmap[i], skip_empty)) {
1114 skip_empty = false;
1115 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1116 }
1117 }
1118
1119 /*
1120 * If no output was produced print a single 0.
1121 */
1122 if (skip_empty)
1123 seq_putc(seq, '0');
1124
1125 seq_putc(seq, '\n');
1126 }
1127
1128 static int input_devices_seq_show(struct seq_file *seq, void *v)
1129 {
1130 struct input_dev *dev = container_of(v, struct input_dev, node);
1131 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1132 struct input_handle *handle;
1133
1134 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1135 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1136
1137 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1138 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1139 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1140 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1141 seq_puts(seq, "H: Handlers=");
1142
1143 list_for_each_entry(handle, &dev->h_list, d_node)
1144 seq_printf(seq, "%s ", handle->name);
1145 seq_putc(seq, '\n');
1146
1147 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1148
1149 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1150 if (test_bit(EV_KEY, dev->evbit))
1151 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1152 if (test_bit(EV_REL, dev->evbit))
1153 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1154 if (test_bit(EV_ABS, dev->evbit))
1155 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1156 if (test_bit(EV_MSC, dev->evbit))
1157 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1158 if (test_bit(EV_LED, dev->evbit))
1159 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1160 if (test_bit(EV_SND, dev->evbit))
1161 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1162 if (test_bit(EV_FF, dev->evbit))
1163 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1164 if (test_bit(EV_SW, dev->evbit))
1165 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1166
1167 seq_putc(seq, '\n');
1168
1169 kfree(path);
1170 return 0;
1171 }
1172
1173 static const struct seq_operations input_devices_seq_ops = {
1174 .start = input_devices_seq_start,
1175 .next = input_devices_seq_next,
1176 .stop = input_seq_stop,
1177 .show = input_devices_seq_show,
1178 };
1179
1180 static int input_proc_devices_open(struct inode *inode, struct file *file)
1181 {
1182 return seq_open(file, &input_devices_seq_ops);
1183 }
1184
1185 static const struct file_operations input_devices_fileops = {
1186 .owner = THIS_MODULE,
1187 .open = input_proc_devices_open,
1188 .poll = input_proc_devices_poll,
1189 .read = seq_read,
1190 .llseek = seq_lseek,
1191 .release = seq_release,
1192 };
1193
1194 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1195 {
1196 union input_seq_state *state = (union input_seq_state *)&seq->private;
1197 int error;
1198
1199 /* We need to fit into seq->private pointer */
1200 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1201
1202 error = mutex_lock_interruptible(&input_mutex);
1203 if (error) {
1204 state->mutex_acquired = false;
1205 return ERR_PTR(error);
1206 }
1207
1208 state->mutex_acquired = true;
1209 state->pos = *pos;
1210
1211 return seq_list_start(&input_handler_list, *pos);
1212 }
1213
1214 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1215 {
1216 union input_seq_state *state = (union input_seq_state *)&seq->private;
1217
1218 state->pos = *pos + 1;
1219 return seq_list_next(v, &input_handler_list, pos);
1220 }
1221
1222 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1223 {
1224 struct input_handler *handler = container_of(v, struct input_handler, node);
1225 union input_seq_state *state = (union input_seq_state *)&seq->private;
1226
1227 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1228 if (handler->filter)
1229 seq_puts(seq, " (filter)");
1230 if (handler->legacy_minors)
1231 seq_printf(seq, " Minor=%d", handler->minor);
1232 seq_putc(seq, '\n');
1233
1234 return 0;
1235 }
1236
1237 static const struct seq_operations input_handlers_seq_ops = {
1238 .start = input_handlers_seq_start,
1239 .next = input_handlers_seq_next,
1240 .stop = input_seq_stop,
1241 .show = input_handlers_seq_show,
1242 };
1243
1244 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1245 {
1246 return seq_open(file, &input_handlers_seq_ops);
1247 }
1248
1249 static const struct file_operations input_handlers_fileops = {
1250 .owner = THIS_MODULE,
1251 .open = input_proc_handlers_open,
1252 .read = seq_read,
1253 .llseek = seq_lseek,
1254 .release = seq_release,
1255 };
1256
1257 static int __init input_proc_init(void)
1258 {
1259 struct proc_dir_entry *entry;
1260
1261 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1262 if (!proc_bus_input_dir)
1263 return -ENOMEM;
1264
1265 entry = proc_create("devices", 0, proc_bus_input_dir,
1266 &input_devices_fileops);
1267 if (!entry)
1268 goto fail1;
1269
1270 entry = proc_create("handlers", 0, proc_bus_input_dir,
1271 &input_handlers_fileops);
1272 if (!entry)
1273 goto fail2;
1274
1275 return 0;
1276
1277 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1278 fail1: remove_proc_entry("bus/input", NULL);
1279 return -ENOMEM;
1280 }
1281
1282 static void input_proc_exit(void)
1283 {
1284 remove_proc_entry("devices", proc_bus_input_dir);
1285 remove_proc_entry("handlers", proc_bus_input_dir);
1286 remove_proc_entry("bus/input", NULL);
1287 }
1288
1289 #else /* !CONFIG_PROC_FS */
1290 static inline void input_wakeup_procfs_readers(void) { }
1291 static inline int input_proc_init(void) { return 0; }
1292 static inline void input_proc_exit(void) { }
1293 #endif
1294
1295 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1296 static ssize_t input_dev_show_##name(struct device *dev, \
1297 struct device_attribute *attr, \
1298 char *buf) \
1299 { \
1300 struct input_dev *input_dev = to_input_dev(dev); \
1301 \
1302 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1303 input_dev->name ? input_dev->name : ""); \
1304 } \
1305 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1306
1307 INPUT_DEV_STRING_ATTR_SHOW(name);
1308 INPUT_DEV_STRING_ATTR_SHOW(phys);
1309 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1310
1311 static int input_print_modalias_bits(char *buf, int size,
1312 char name, unsigned long *bm,
1313 unsigned int min_bit, unsigned int max_bit)
1314 {
1315 int len = 0, i;
1316
1317 len += snprintf(buf, max(size, 0), "%c", name);
1318 for (i = min_bit; i < max_bit; i++)
1319 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1320 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1321 return len;
1322 }
1323
1324 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1325 int add_cr)
1326 {
1327 int len;
1328
1329 len = snprintf(buf, max(size, 0),
1330 "input:b%04Xv%04Xp%04Xe%04X-",
1331 id->id.bustype, id->id.vendor,
1332 id->id.product, id->id.version);
1333
1334 len += input_print_modalias_bits(buf + len, size - len,
1335 'e', id->evbit, 0, EV_MAX);
1336 len += input_print_modalias_bits(buf + len, size - len,
1337 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1338 len += input_print_modalias_bits(buf + len, size - len,
1339 'r', id->relbit, 0, REL_MAX);
1340 len += input_print_modalias_bits(buf + len, size - len,
1341 'a', id->absbit, 0, ABS_MAX);
1342 len += input_print_modalias_bits(buf + len, size - len,
1343 'm', id->mscbit, 0, MSC_MAX);
1344 len += input_print_modalias_bits(buf + len, size - len,
1345 'l', id->ledbit, 0, LED_MAX);
1346 len += input_print_modalias_bits(buf + len, size - len,
1347 's', id->sndbit, 0, SND_MAX);
1348 len += input_print_modalias_bits(buf + len, size - len,
1349 'f', id->ffbit, 0, FF_MAX);
1350 len += input_print_modalias_bits(buf + len, size - len,
1351 'w', id->swbit, 0, SW_MAX);
1352
1353 if (add_cr)
1354 len += snprintf(buf + len, max(size - len, 0), "\n");
1355
1356 return len;
1357 }
1358
1359 static ssize_t input_dev_show_modalias(struct device *dev,
1360 struct device_attribute *attr,
1361 char *buf)
1362 {
1363 struct input_dev *id = to_input_dev(dev);
1364 ssize_t len;
1365
1366 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1367
1368 return min_t(int, len, PAGE_SIZE);
1369 }
1370 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1371
1372 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1373 int max, int add_cr);
1374
1375 static ssize_t input_dev_show_properties(struct device *dev,
1376 struct device_attribute *attr,
1377 char *buf)
1378 {
1379 struct input_dev *input_dev = to_input_dev(dev);
1380 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1381 INPUT_PROP_MAX, true);
1382 return min_t(int, len, PAGE_SIZE);
1383 }
1384 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1385
1386 static struct attribute *input_dev_attrs[] = {
1387 &dev_attr_name.attr,
1388 &dev_attr_phys.attr,
1389 &dev_attr_uniq.attr,
1390 &dev_attr_modalias.attr,
1391 &dev_attr_properties.attr,
1392 NULL
1393 };
1394
1395 static const struct attribute_group input_dev_attr_group = {
1396 .attrs = input_dev_attrs,
1397 };
1398
1399 #define INPUT_DEV_ID_ATTR(name) \
1400 static ssize_t input_dev_show_id_##name(struct device *dev, \
1401 struct device_attribute *attr, \
1402 char *buf) \
1403 { \
1404 struct input_dev *input_dev = to_input_dev(dev); \
1405 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1406 } \
1407 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1408
1409 INPUT_DEV_ID_ATTR(bustype);
1410 INPUT_DEV_ID_ATTR(vendor);
1411 INPUT_DEV_ID_ATTR(product);
1412 INPUT_DEV_ID_ATTR(version);
1413
1414 static struct attribute *input_dev_id_attrs[] = {
1415 &dev_attr_bustype.attr,
1416 &dev_attr_vendor.attr,
1417 &dev_attr_product.attr,
1418 &dev_attr_version.attr,
1419 NULL
1420 };
1421
1422 static const struct attribute_group input_dev_id_attr_group = {
1423 .name = "id",
1424 .attrs = input_dev_id_attrs,
1425 };
1426
1427 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1428 int max, int add_cr)
1429 {
1430 int i;
1431 int len = 0;
1432 bool skip_empty = true;
1433
1434 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1435 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1436 bitmap[i], skip_empty);
1437 if (len) {
1438 skip_empty = false;
1439 if (i > 0)
1440 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1441 }
1442 }
1443
1444 /*
1445 * If no output was produced print a single 0.
1446 */
1447 if (len == 0)
1448 len = snprintf(buf, buf_size, "%d", 0);
1449
1450 if (add_cr)
1451 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1452
1453 return len;
1454 }
1455
1456 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1457 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1458 struct device_attribute *attr, \
1459 char *buf) \
1460 { \
1461 struct input_dev *input_dev = to_input_dev(dev); \
1462 int len = input_print_bitmap(buf, PAGE_SIZE, \
1463 input_dev->bm##bit, ev##_MAX, \
1464 true); \
1465 return min_t(int, len, PAGE_SIZE); \
1466 } \
1467 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1468
1469 INPUT_DEV_CAP_ATTR(EV, ev);
1470 INPUT_DEV_CAP_ATTR(KEY, key);
1471 INPUT_DEV_CAP_ATTR(REL, rel);
1472 INPUT_DEV_CAP_ATTR(ABS, abs);
1473 INPUT_DEV_CAP_ATTR(MSC, msc);
1474 INPUT_DEV_CAP_ATTR(LED, led);
1475 INPUT_DEV_CAP_ATTR(SND, snd);
1476 INPUT_DEV_CAP_ATTR(FF, ff);
1477 INPUT_DEV_CAP_ATTR(SW, sw);
1478
1479 static struct attribute *input_dev_caps_attrs[] = {
1480 &dev_attr_ev.attr,
1481 &dev_attr_key.attr,
1482 &dev_attr_rel.attr,
1483 &dev_attr_abs.attr,
1484 &dev_attr_msc.attr,
1485 &dev_attr_led.attr,
1486 &dev_attr_snd.attr,
1487 &dev_attr_ff.attr,
1488 &dev_attr_sw.attr,
1489 NULL
1490 };
1491
1492 static const struct attribute_group input_dev_caps_attr_group = {
1493 .name = "capabilities",
1494 .attrs = input_dev_caps_attrs,
1495 };
1496
1497 static const struct attribute_group *input_dev_attr_groups[] = {
1498 &input_dev_attr_group,
1499 &input_dev_id_attr_group,
1500 &input_dev_caps_attr_group,
1501 NULL
1502 };
1503
1504 static void input_dev_release(struct device *device)
1505 {
1506 struct input_dev *dev = to_input_dev(device);
1507
1508 input_ff_destroy(dev);
1509 input_mt_destroy_slots(dev);
1510 kfree(dev->absinfo);
1511 kfree(dev->vals);
1512 kfree(dev);
1513
1514 module_put(THIS_MODULE);
1515 }
1516
1517 /*
1518 * Input uevent interface - loading event handlers based on
1519 * device bitfields.
1520 */
1521 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1522 const char *name, unsigned long *bitmap, int max)
1523 {
1524 int len;
1525
1526 if (add_uevent_var(env, "%s", name))
1527 return -ENOMEM;
1528
1529 len = input_print_bitmap(&env->buf[env->buflen - 1],
1530 sizeof(env->buf) - env->buflen,
1531 bitmap, max, false);
1532 if (len >= (sizeof(env->buf) - env->buflen))
1533 return -ENOMEM;
1534
1535 env->buflen += len;
1536 return 0;
1537 }
1538
1539 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1540 struct input_dev *dev)
1541 {
1542 int len;
1543
1544 if (add_uevent_var(env, "MODALIAS="))
1545 return -ENOMEM;
1546
1547 len = input_print_modalias(&env->buf[env->buflen - 1],
1548 sizeof(env->buf) - env->buflen,
1549 dev, 0);
1550 if (len >= (sizeof(env->buf) - env->buflen))
1551 return -ENOMEM;
1552
1553 env->buflen += len;
1554 return 0;
1555 }
1556
1557 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1558 do { \
1559 int err = add_uevent_var(env, fmt, val); \
1560 if (err) \
1561 return err; \
1562 } while (0)
1563
1564 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1565 do { \
1566 int err = input_add_uevent_bm_var(env, name, bm, max); \
1567 if (err) \
1568 return err; \
1569 } while (0)
1570
1571 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1572 do { \
1573 int err = input_add_uevent_modalias_var(env, dev); \
1574 if (err) \
1575 return err; \
1576 } while (0)
1577
1578 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1579 {
1580 struct input_dev *dev = to_input_dev(device);
1581
1582 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1583 dev->id.bustype, dev->id.vendor,
1584 dev->id.product, dev->id.version);
1585 if (dev->name)
1586 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1587 if (dev->phys)
1588 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1589 if (dev->uniq)
1590 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1591
1592 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1593
1594 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1595 if (test_bit(EV_KEY, dev->evbit))
1596 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1597 if (test_bit(EV_REL, dev->evbit))
1598 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1599 if (test_bit(EV_ABS, dev->evbit))
1600 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1601 if (test_bit(EV_MSC, dev->evbit))
1602 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1603 if (test_bit(EV_LED, dev->evbit))
1604 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1605 if (test_bit(EV_SND, dev->evbit))
1606 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1607 if (test_bit(EV_FF, dev->evbit))
1608 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1609 if (test_bit(EV_SW, dev->evbit))
1610 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1611
1612 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1613
1614 return 0;
1615 }
1616
1617 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1618 do { \
1619 int i; \
1620 bool active; \
1621 \
1622 if (!test_bit(EV_##type, dev->evbit)) \
1623 break; \
1624 \
1625 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1626 active = test_bit(i, dev->bits); \
1627 if (!active && !on) \
1628 continue; \
1629 \
1630 dev->event(dev, EV_##type, i, on ? active : 0); \
1631 } \
1632 } while (0)
1633
1634 static void input_dev_toggle(struct input_dev *dev, bool activate)
1635 {
1636 if (!dev->event)
1637 return;
1638
1639 INPUT_DO_TOGGLE(dev, LED, led, activate);
1640 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1641
1642 if (activate && test_bit(EV_REP, dev->evbit)) {
1643 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1644 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1645 }
1646 }
1647
1648 /**
1649 * input_reset_device() - reset/restore the state of input device
1650 * @dev: input device whose state needs to be reset
1651 *
1652 * This function tries to reset the state of an opened input device and
1653 * bring internal state and state if the hardware in sync with each other.
1654 * We mark all keys as released, restore LED state, repeat rate, etc.
1655 */
1656 void input_reset_device(struct input_dev *dev)
1657 {
1658 unsigned long flags;
1659
1660 mutex_lock(&dev->mutex);
1661 spin_lock_irqsave(&dev->event_lock, flags);
1662
1663 input_dev_toggle(dev, true);
1664 input_dev_release_keys(dev);
1665
1666 spin_unlock_irqrestore(&dev->event_lock, flags);
1667 mutex_unlock(&dev->mutex);
1668 }
1669 EXPORT_SYMBOL(input_reset_device);
1670
1671 #ifdef CONFIG_PM_SLEEP
1672 static int input_dev_suspend(struct device *dev)
1673 {
1674 struct input_dev *input_dev = to_input_dev(dev);
1675
1676 spin_lock_irq(&input_dev->event_lock);
1677
1678 /*
1679 * Keys that are pressed now are unlikely to be
1680 * still pressed when we resume.
1681 */
1682 input_dev_release_keys(input_dev);
1683
1684 /* Turn off LEDs and sounds, if any are active. */
1685 input_dev_toggle(input_dev, false);
1686
1687 spin_unlock_irq(&input_dev->event_lock);
1688
1689 return 0;
1690 }
1691
1692 static int input_dev_resume(struct device *dev)
1693 {
1694 struct input_dev *input_dev = to_input_dev(dev);
1695
1696 spin_lock_irq(&input_dev->event_lock);
1697
1698 /* Restore state of LEDs and sounds, if any were active. */
1699 input_dev_toggle(input_dev, true);
1700
1701 spin_unlock_irq(&input_dev->event_lock);
1702
1703 return 0;
1704 }
1705
1706 static int input_dev_freeze(struct device *dev)
1707 {
1708 struct input_dev *input_dev = to_input_dev(dev);
1709
1710 spin_lock_irq(&input_dev->event_lock);
1711
1712 /*
1713 * Keys that are pressed now are unlikely to be
1714 * still pressed when we resume.
1715 */
1716 input_dev_release_keys(input_dev);
1717
1718 spin_unlock_irq(&input_dev->event_lock);
1719
1720 return 0;
1721 }
1722
1723 static int input_dev_poweroff(struct device *dev)
1724 {
1725 struct input_dev *input_dev = to_input_dev(dev);
1726
1727 spin_lock_irq(&input_dev->event_lock);
1728
1729 /* Turn off LEDs and sounds, if any are active. */
1730 input_dev_toggle(input_dev, false);
1731
1732 spin_unlock_irq(&input_dev->event_lock);
1733
1734 return 0;
1735 }
1736
1737 static const struct dev_pm_ops input_dev_pm_ops = {
1738 .suspend = input_dev_suspend,
1739 .resume = input_dev_resume,
1740 .freeze = input_dev_freeze,
1741 .poweroff = input_dev_poweroff,
1742 .restore = input_dev_resume,
1743 };
1744 #endif /* CONFIG_PM */
1745
1746 static const struct device_type input_dev_type = {
1747 .groups = input_dev_attr_groups,
1748 .release = input_dev_release,
1749 .uevent = input_dev_uevent,
1750 #ifdef CONFIG_PM_SLEEP
1751 .pm = &input_dev_pm_ops,
1752 #endif
1753 };
1754
1755 static char *input_devnode(struct device *dev, umode_t *mode)
1756 {
1757 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1758 }
1759
1760 struct class input_class = {
1761 .name = "input",
1762 .devnode = input_devnode,
1763 };
1764 EXPORT_SYMBOL_GPL(input_class);
1765
1766 /**
1767 * input_allocate_device - allocate memory for new input device
1768 *
1769 * Returns prepared struct input_dev or %NULL.
1770 *
1771 * NOTE: Use input_free_device() to free devices that have not been
1772 * registered; input_unregister_device() should be used for already
1773 * registered devices.
1774 */
1775 struct input_dev *input_allocate_device(void)
1776 {
1777 static atomic_t input_no = ATOMIC_INIT(-1);
1778 struct input_dev *dev;
1779
1780 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1781 if (dev) {
1782 dev->dev.type = &input_dev_type;
1783 dev->dev.class = &input_class;
1784 device_initialize(&dev->dev);
1785 mutex_init(&dev->mutex);
1786 spin_lock_init(&dev->event_lock);
1787 init_timer(&dev->timer);
1788 INIT_LIST_HEAD(&dev->h_list);
1789 INIT_LIST_HEAD(&dev->node);
1790
1791 dev_set_name(&dev->dev, "input%lu",
1792 (unsigned long)atomic_inc_return(&input_no));
1793
1794 __module_get(THIS_MODULE);
1795 }
1796
1797 return dev;
1798 }
1799 EXPORT_SYMBOL(input_allocate_device);
1800
1801 struct input_devres {
1802 struct input_dev *input;
1803 };
1804
1805 static int devm_input_device_match(struct device *dev, void *res, void *data)
1806 {
1807 struct input_devres *devres = res;
1808
1809 return devres->input == data;
1810 }
1811
1812 static void devm_input_device_release(struct device *dev, void *res)
1813 {
1814 struct input_devres *devres = res;
1815 struct input_dev *input = devres->input;
1816
1817 dev_dbg(dev, "%s: dropping reference to %s\n",
1818 __func__, dev_name(&input->dev));
1819 input_put_device(input);
1820 }
1821
1822 /**
1823 * devm_input_allocate_device - allocate managed input device
1824 * @dev: device owning the input device being created
1825 *
1826 * Returns prepared struct input_dev or %NULL.
1827 *
1828 * Managed input devices do not need to be explicitly unregistered or
1829 * freed as it will be done automatically when owner device unbinds from
1830 * its driver (or binding fails). Once managed input device is allocated,
1831 * it is ready to be set up and registered in the same fashion as regular
1832 * input device. There are no special devm_input_device_[un]register()
1833 * variants, regular ones work with both managed and unmanaged devices,
1834 * should you need them. In most cases however, managed input device need
1835 * not be explicitly unregistered or freed.
1836 *
1837 * NOTE: the owner device is set up as parent of input device and users
1838 * should not override it.
1839 */
1840 struct input_dev *devm_input_allocate_device(struct device *dev)
1841 {
1842 struct input_dev *input;
1843 struct input_devres *devres;
1844
1845 devres = devres_alloc(devm_input_device_release,
1846 sizeof(*devres), GFP_KERNEL);
1847 if (!devres)
1848 return NULL;
1849
1850 input = input_allocate_device();
1851 if (!input) {
1852 devres_free(devres);
1853 return NULL;
1854 }
1855
1856 input->dev.parent = dev;
1857 input->devres_managed = true;
1858
1859 devres->input = input;
1860 devres_add(dev, devres);
1861
1862 return input;
1863 }
1864 EXPORT_SYMBOL(devm_input_allocate_device);
1865
1866 /**
1867 * input_free_device - free memory occupied by input_dev structure
1868 * @dev: input device to free
1869 *
1870 * This function should only be used if input_register_device()
1871 * was not called yet or if it failed. Once device was registered
1872 * use input_unregister_device() and memory will be freed once last
1873 * reference to the device is dropped.
1874 *
1875 * Device should be allocated by input_allocate_device().
1876 *
1877 * NOTE: If there are references to the input device then memory
1878 * will not be freed until last reference is dropped.
1879 */
1880 void input_free_device(struct input_dev *dev)
1881 {
1882 if (dev) {
1883 if (dev->devres_managed)
1884 WARN_ON(devres_destroy(dev->dev.parent,
1885 devm_input_device_release,
1886 devm_input_device_match,
1887 dev));
1888 input_put_device(dev);
1889 }
1890 }
1891 EXPORT_SYMBOL(input_free_device);
1892
1893 /**
1894 * input_set_capability - mark device as capable of a certain event
1895 * @dev: device that is capable of emitting or accepting event
1896 * @type: type of the event (EV_KEY, EV_REL, etc...)
1897 * @code: event code
1898 *
1899 * In addition to setting up corresponding bit in appropriate capability
1900 * bitmap the function also adjusts dev->evbit.
1901 */
1902 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1903 {
1904 switch (type) {
1905 case EV_KEY:
1906 __set_bit(code, dev->keybit);
1907 break;
1908
1909 case EV_REL:
1910 __set_bit(code, dev->relbit);
1911 break;
1912
1913 case EV_ABS:
1914 input_alloc_absinfo(dev);
1915 if (!dev->absinfo)
1916 return;
1917
1918 __set_bit(code, dev->absbit);
1919 break;
1920
1921 case EV_MSC:
1922 __set_bit(code, dev->mscbit);
1923 break;
1924
1925 case EV_SW:
1926 __set_bit(code, dev->swbit);
1927 break;
1928
1929 case EV_LED:
1930 __set_bit(code, dev->ledbit);
1931 break;
1932
1933 case EV_SND:
1934 __set_bit(code, dev->sndbit);
1935 break;
1936
1937 case EV_FF:
1938 __set_bit(code, dev->ffbit);
1939 break;
1940
1941 case EV_PWR:
1942 /* do nothing */
1943 break;
1944
1945 default:
1946 pr_err("input_set_capability: unknown type %u (code %u)\n",
1947 type, code);
1948 dump_stack();
1949 return;
1950 }
1951
1952 __set_bit(type, dev->evbit);
1953 }
1954 EXPORT_SYMBOL(input_set_capability);
1955
1956 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1957 {
1958 int mt_slots;
1959 int i;
1960 unsigned int events;
1961
1962 if (dev->mt) {
1963 mt_slots = dev->mt->num_slots;
1964 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1965 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1966 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1967 mt_slots = clamp(mt_slots, 2, 32);
1968 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1969 mt_slots = 2;
1970 } else {
1971 mt_slots = 0;
1972 }
1973
1974 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1975
1976 if (test_bit(EV_ABS, dev->evbit))
1977 for_each_set_bit(i, dev->absbit, ABS_CNT)
1978 events += input_is_mt_axis(i) ? mt_slots : 1;
1979
1980 if (test_bit(EV_REL, dev->evbit))
1981 events += bitmap_weight(dev->relbit, REL_CNT);
1982
1983 /* Make room for KEY and MSC events */
1984 events += 7;
1985
1986 return events;
1987 }
1988
1989 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1990 do { \
1991 if (!test_bit(EV_##type, dev->evbit)) \
1992 memset(dev->bits##bit, 0, \
1993 sizeof(dev->bits##bit)); \
1994 } while (0)
1995
1996 static void input_cleanse_bitmasks(struct input_dev *dev)
1997 {
1998 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1999 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2000 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2001 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2002 INPUT_CLEANSE_BITMASK(dev, LED, led);
2003 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2004 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2005 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2006 }
2007
2008 static void __input_unregister_device(struct input_dev *dev)
2009 {
2010 struct input_handle *handle, *next;
2011
2012 input_disconnect_device(dev);
2013
2014 mutex_lock(&input_mutex);
2015
2016 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2017 handle->handler->disconnect(handle);
2018 WARN_ON(!list_empty(&dev->h_list));
2019
2020 del_timer_sync(&dev->timer);
2021 list_del_init(&dev->node);
2022
2023 input_wakeup_procfs_readers();
2024
2025 mutex_unlock(&input_mutex);
2026
2027 device_del(&dev->dev);
2028 }
2029
2030 static void devm_input_device_unregister(struct device *dev, void *res)
2031 {
2032 struct input_devres *devres = res;
2033 struct input_dev *input = devres->input;
2034
2035 dev_dbg(dev, "%s: unregistering device %s\n",
2036 __func__, dev_name(&input->dev));
2037 __input_unregister_device(input);
2038 }
2039
2040 /**
2041 * input_enable_softrepeat - enable software autorepeat
2042 * @dev: input device
2043 * @delay: repeat delay
2044 * @period: repeat period
2045 *
2046 * Enable software autorepeat on the input device.
2047 */
2048 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2049 {
2050 dev->timer.data = (unsigned long) dev;
2051 dev->timer.function = input_repeat_key;
2052 dev->rep[REP_DELAY] = delay;
2053 dev->rep[REP_PERIOD] = period;
2054 }
2055 EXPORT_SYMBOL(input_enable_softrepeat);
2056
2057 /**
2058 * input_register_device - register device with input core
2059 * @dev: device to be registered
2060 *
2061 * This function registers device with input core. The device must be
2062 * allocated with input_allocate_device() and all it's capabilities
2063 * set up before registering.
2064 * If function fails the device must be freed with input_free_device().
2065 * Once device has been successfully registered it can be unregistered
2066 * with input_unregister_device(); input_free_device() should not be
2067 * called in this case.
2068 *
2069 * Note that this function is also used to register managed input devices
2070 * (ones allocated with devm_input_allocate_device()). Such managed input
2071 * devices need not be explicitly unregistered or freed, their tear down
2072 * is controlled by the devres infrastructure. It is also worth noting
2073 * that tear down of managed input devices is internally a 2-step process:
2074 * registered managed input device is first unregistered, but stays in
2075 * memory and can still handle input_event() calls (although events will
2076 * not be delivered anywhere). The freeing of managed input device will
2077 * happen later, when devres stack is unwound to the point where device
2078 * allocation was made.
2079 */
2080 int input_register_device(struct input_dev *dev)
2081 {
2082 struct input_devres *devres = NULL;
2083 struct input_handler *handler;
2084 unsigned int packet_size;
2085 const char *path;
2086 int error;
2087
2088 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2089 dev_err(&dev->dev,
2090 "Absolute device without dev->absinfo, refusing to register\n");
2091 return -EINVAL;
2092 }
2093
2094 if (dev->devres_managed) {
2095 devres = devres_alloc(devm_input_device_unregister,
2096 sizeof(*devres), GFP_KERNEL);
2097 if (!devres)
2098 return -ENOMEM;
2099
2100 devres->input = dev;
2101 }
2102
2103 /* Every input device generates EV_SYN/SYN_REPORT events. */
2104 __set_bit(EV_SYN, dev->evbit);
2105
2106 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2107 __clear_bit(KEY_RESERVED, dev->keybit);
2108
2109 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2110 input_cleanse_bitmasks(dev);
2111
2112 packet_size = input_estimate_events_per_packet(dev);
2113 if (dev->hint_events_per_packet < packet_size)
2114 dev->hint_events_per_packet = packet_size;
2115
2116 dev->max_vals = dev->hint_events_per_packet + 2;
2117 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2118 if (!dev->vals) {
2119 error = -ENOMEM;
2120 goto err_devres_free;
2121 }
2122
2123 /*
2124 * If delay and period are pre-set by the driver, then autorepeating
2125 * is handled by the driver itself and we don't do it in input.c.
2126 */
2127 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2128 input_enable_softrepeat(dev, 250, 33);
2129
2130 if (!dev->getkeycode)
2131 dev->getkeycode = input_default_getkeycode;
2132
2133 if (!dev->setkeycode)
2134 dev->setkeycode = input_default_setkeycode;
2135
2136 error = device_add(&dev->dev);
2137 if (error)
2138 goto err_free_vals;
2139
2140 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2141 pr_info("%s as %s\n",
2142 dev->name ? dev->name : "Unspecified device",
2143 path ? path : "N/A");
2144 kfree(path);
2145
2146 error = mutex_lock_interruptible(&input_mutex);
2147 if (error)
2148 goto err_device_del;
2149
2150 list_add_tail(&dev->node, &input_dev_list);
2151
2152 list_for_each_entry(handler, &input_handler_list, node)
2153 input_attach_handler(dev, handler);
2154
2155 input_wakeup_procfs_readers();
2156
2157 mutex_unlock(&input_mutex);
2158
2159 if (dev->devres_managed) {
2160 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2161 __func__, dev_name(&dev->dev));
2162 devres_add(dev->dev.parent, devres);
2163 }
2164 return 0;
2165
2166 err_device_del:
2167 device_del(&dev->dev);
2168 err_free_vals:
2169 kfree(dev->vals);
2170 dev->vals = NULL;
2171 err_devres_free:
2172 devres_free(devres);
2173 return error;
2174 }
2175 EXPORT_SYMBOL(input_register_device);
2176
2177 /**
2178 * input_unregister_device - unregister previously registered device
2179 * @dev: device to be unregistered
2180 *
2181 * This function unregisters an input device. Once device is unregistered
2182 * the caller should not try to access it as it may get freed at any moment.
2183 */
2184 void input_unregister_device(struct input_dev *dev)
2185 {
2186 if (dev->devres_managed) {
2187 WARN_ON(devres_destroy(dev->dev.parent,
2188 devm_input_device_unregister,
2189 devm_input_device_match,
2190 dev));
2191 __input_unregister_device(dev);
2192 /*
2193 * We do not do input_put_device() here because it will be done
2194 * when 2nd devres fires up.
2195 */
2196 } else {
2197 __input_unregister_device(dev);
2198 input_put_device(dev);
2199 }
2200 }
2201 EXPORT_SYMBOL(input_unregister_device);
2202
2203 /**
2204 * input_register_handler - register a new input handler
2205 * @handler: handler to be registered
2206 *
2207 * This function registers a new input handler (interface) for input
2208 * devices in the system and attaches it to all input devices that
2209 * are compatible with the handler.
2210 */
2211 int input_register_handler(struct input_handler *handler)
2212 {
2213 struct input_dev *dev;
2214 int error;
2215
2216 error = mutex_lock_interruptible(&input_mutex);
2217 if (error)
2218 return error;
2219
2220 INIT_LIST_HEAD(&handler->h_list);
2221
2222 list_add_tail(&handler->node, &input_handler_list);
2223
2224 list_for_each_entry(dev, &input_dev_list, node)
2225 input_attach_handler(dev, handler);
2226
2227 input_wakeup_procfs_readers();
2228
2229 mutex_unlock(&input_mutex);
2230 return 0;
2231 }
2232 EXPORT_SYMBOL(input_register_handler);
2233
2234 /**
2235 * input_unregister_handler - unregisters an input handler
2236 * @handler: handler to be unregistered
2237 *
2238 * This function disconnects a handler from its input devices and
2239 * removes it from lists of known handlers.
2240 */
2241 void input_unregister_handler(struct input_handler *handler)
2242 {
2243 struct input_handle *handle, *next;
2244
2245 mutex_lock(&input_mutex);
2246
2247 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2248 handler->disconnect(handle);
2249 WARN_ON(!list_empty(&handler->h_list));
2250
2251 list_del_init(&handler->node);
2252
2253 input_wakeup_procfs_readers();
2254
2255 mutex_unlock(&input_mutex);
2256 }
2257 EXPORT_SYMBOL(input_unregister_handler);
2258
2259 /**
2260 * input_handler_for_each_handle - handle iterator
2261 * @handler: input handler to iterate
2262 * @data: data for the callback
2263 * @fn: function to be called for each handle
2264 *
2265 * Iterate over @bus's list of devices, and call @fn for each, passing
2266 * it @data and stop when @fn returns a non-zero value. The function is
2267 * using RCU to traverse the list and therefore may be using in atomic
2268 * contexts. The @fn callback is invoked from RCU critical section and
2269 * thus must not sleep.
2270 */
2271 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2272 int (*fn)(struct input_handle *, void *))
2273 {
2274 struct input_handle *handle;
2275 int retval = 0;
2276
2277 rcu_read_lock();
2278
2279 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2280 retval = fn(handle, data);
2281 if (retval)
2282 break;
2283 }
2284
2285 rcu_read_unlock();
2286
2287 return retval;
2288 }
2289 EXPORT_SYMBOL(input_handler_for_each_handle);
2290
2291 /**
2292 * input_register_handle - register a new input handle
2293 * @handle: handle to register
2294 *
2295 * This function puts a new input handle onto device's
2296 * and handler's lists so that events can flow through
2297 * it once it is opened using input_open_device().
2298 *
2299 * This function is supposed to be called from handler's
2300 * connect() method.
2301 */
2302 int input_register_handle(struct input_handle *handle)
2303 {
2304 struct input_handler *handler = handle->handler;
2305 struct input_dev *dev = handle->dev;
2306 int error;
2307
2308 /*
2309 * We take dev->mutex here to prevent race with
2310 * input_release_device().
2311 */
2312 error = mutex_lock_interruptible(&dev->mutex);
2313 if (error)
2314 return error;
2315
2316 /*
2317 * Filters go to the head of the list, normal handlers
2318 * to the tail.
2319 */
2320 if (handler->filter)
2321 list_add_rcu(&handle->d_node, &dev->h_list);
2322 else
2323 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2324
2325 mutex_unlock(&dev->mutex);
2326
2327 /*
2328 * Since we are supposed to be called from ->connect()
2329 * which is mutually exclusive with ->disconnect()
2330 * we can't be racing with input_unregister_handle()
2331 * and so separate lock is not needed here.
2332 */
2333 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2334
2335 if (handler->start)
2336 handler->start(handle);
2337
2338 return 0;
2339 }
2340 EXPORT_SYMBOL(input_register_handle);
2341
2342 /**
2343 * input_unregister_handle - unregister an input handle
2344 * @handle: handle to unregister
2345 *
2346 * This function removes input handle from device's
2347 * and handler's lists.
2348 *
2349 * This function is supposed to be called from handler's
2350 * disconnect() method.
2351 */
2352 void input_unregister_handle(struct input_handle *handle)
2353 {
2354 struct input_dev *dev = handle->dev;
2355
2356 list_del_rcu(&handle->h_node);
2357
2358 /*
2359 * Take dev->mutex to prevent race with input_release_device().
2360 */
2361 mutex_lock(&dev->mutex);
2362 list_del_rcu(&handle->d_node);
2363 mutex_unlock(&dev->mutex);
2364
2365 synchronize_rcu();
2366 }
2367 EXPORT_SYMBOL(input_unregister_handle);
2368
2369 /**
2370 * input_get_new_minor - allocates a new input minor number
2371 * @legacy_base: beginning or the legacy range to be searched
2372 * @legacy_num: size of legacy range
2373 * @allow_dynamic: whether we can also take ID from the dynamic range
2374 *
2375 * This function allocates a new device minor for from input major namespace.
2376 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2377 * parameters and whether ID can be allocated from dynamic range if there are
2378 * no free IDs in legacy range.
2379 */
2380 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2381 bool allow_dynamic)
2382 {
2383 /*
2384 * This function should be called from input handler's ->connect()
2385 * methods, which are serialized with input_mutex, so no additional
2386 * locking is needed here.
2387 */
2388 if (legacy_base >= 0) {
2389 int minor = ida_simple_get(&input_ida,
2390 legacy_base,
2391 legacy_base + legacy_num,
2392 GFP_KERNEL);
2393 if (minor >= 0 || !allow_dynamic)
2394 return minor;
2395 }
2396
2397 return ida_simple_get(&input_ida,
2398 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2399 GFP_KERNEL);
2400 }
2401 EXPORT_SYMBOL(input_get_new_minor);
2402
2403 /**
2404 * input_free_minor - release previously allocated minor
2405 * @minor: minor to be released
2406 *
2407 * This function releases previously allocated input minor so that it can be
2408 * reused later.
2409 */
2410 void input_free_minor(unsigned int minor)
2411 {
2412 ida_simple_remove(&input_ida, minor);
2413 }
2414 EXPORT_SYMBOL(input_free_minor);
2415
2416 static int __init input_init(void)
2417 {
2418 int err;
2419
2420 err = class_register(&input_class);
2421 if (err) {
2422 pr_err("unable to register input_dev class\n");
2423 return err;
2424 }
2425
2426 err = input_proc_init();
2427 if (err)
2428 goto fail1;
2429
2430 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2431 INPUT_MAX_CHAR_DEVICES, "input");
2432 if (err) {
2433 pr_err("unable to register char major %d", INPUT_MAJOR);
2434 goto fail2;
2435 }
2436
2437 return 0;
2438
2439 fail2: input_proc_exit();
2440 fail1: class_unregister(&input_class);
2441 return err;
2442 }
2443
2444 static void __exit input_exit(void)
2445 {
2446 input_proc_exit();
2447 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2448 INPUT_MAX_CHAR_DEVICES);
2449 class_unregister(&input_class);
2450 }
2451
2452 subsys_initcall(input_init);
2453 module_exit(input_exit);