defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / dma / nbpfaxi.c
1 /*
2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25
26 #include <dt-bindings/dma/nbpfaxi.h>
27
28 #include "dmaengine.h"
29
30 #define NBPF_REG_CHAN_OFFSET 0
31 #define NBPF_REG_CHAN_SIZE 0x40
32
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE 0x20
35
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT 0x24
38 #define NBPF_CHAN_STAT_EN 1
39 #define NBPF_CHAN_STAT_TACT 4
40 #define NBPF_CHAN_STAT_ERR 0x10
41 #define NBPF_CHAN_STAT_END 0x20
42 #define NBPF_CHAN_STAT_TC 0x40
43 #define NBPF_CHAN_STAT_DER 0x400
44
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL 0x28
47 #define NBPF_CHAN_CTRL_SETEN 1
48 #define NBPF_CHAN_CTRL_CLREN 2
49 #define NBPF_CHAN_CTRL_STG 4
50 #define NBPF_CHAN_CTRL_SWRST 8
51 #define NBPF_CHAN_CTRL_CLRRQ 0x10
52 #define NBPF_CHAN_CTRL_CLREND 0x20
53 #define NBPF_CHAN_CTRL_CLRTC 0x40
54 #define NBPF_CHAN_CTRL_SETSUS 0x100
55 #define NBPF_CHAN_CTRL_CLRSUS 0x200
56
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG 0x2c
59 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
77
78 #define NBPF_CHAN_NXLA 0x38
79 #define NBPF_CHAN_CRLA 0x3c
80
81 /* Link Header field */
82 #define NBPF_HEADER_LV 1
83 #define NBPF_HEADER_LE 2
84 #define NBPF_HEADER_WBD 4
85 #define NBPF_HEADER_DIM 8
86
87 #define NBPF_CTRL 0x300
88 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
90
91 #define NBPF_DSTAT_ER 0x314
92 #define NBPF_DSTAT_END 0x318
93
94 #define NBPF_DMA_BUSWIDTHS \
95 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
100
101 struct nbpf_config {
102 int num_channels;
103 int buffer_size;
104 };
105
106 /*
107 * We've got 3 types of objects, used to describe DMA transfers:
108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109 * in it, used to communicate with the user
110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111 * queuing, these must be DMAable, using either the streaming DMA API or
112 * allocated from coherent memory - one per SG segment
113 * 3. one per SG segment descriptors, used to manage HW link descriptors from
114 * (2). They do not have to be DMAable. They can either be (a) allocated
115 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
116 * separately. Even if allocated separately it would be best to link them
117 * to link descriptors once during channel resource allocation and always
118 * use them as a single object.
119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120 * treated as a single SG segment descriptor.
121 */
122
123 struct nbpf_link_reg {
124 u32 header;
125 u32 src_addr;
126 u32 dst_addr;
127 u32 transaction_size;
128 u32 config;
129 u32 interval;
130 u32 extension;
131 u32 next;
132 } __packed;
133
134 struct nbpf_device;
135 struct nbpf_channel;
136 struct nbpf_desc;
137
138 struct nbpf_link_desc {
139 struct nbpf_link_reg *hwdesc;
140 dma_addr_t hwdesc_dma_addr;
141 struct nbpf_desc *desc;
142 struct list_head node;
143 };
144
145 /**
146 * struct nbpf_desc - DMA transfer descriptor
147 * @async_tx: dmaengine object
148 * @user_wait: waiting for a user ack
149 * @length: total transfer length
150 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
151 * @node: member in channel descriptor lists
152 */
153 struct nbpf_desc {
154 struct dma_async_tx_descriptor async_tx;
155 bool user_wait;
156 size_t length;
157 struct nbpf_channel *chan;
158 struct list_head sg;
159 struct list_head node;
160 };
161
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
165 (sizeof(struct nbpf_desc) + \
166 NBPF_SEGMENTS_PER_DESC * \
167 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
169
170 struct nbpf_desc_page {
171 struct list_head node;
172 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
175 };
176
177 /**
178 * struct nbpf_channel - one DMAC channel
179 * @dma_chan: standard dmaengine channel object
180 * @base: register address base
181 * @nbpf: DMAC
182 * @name: IRQ name
183 * @irq: IRQ number
184 * @slave_addr: address for slave DMA
185 * @slave_width:slave data size in bytes
186 * @slave_burst:maximum slave burst size in bytes
187 * @terminal: DMA terminal, assigned to this channel
188 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189 * @flags: configuration flags from DT
190 * @lock: protect descriptor lists
191 * @free_links: list of free link descriptors
192 * @free: list of free descriptors
193 * @queued: list of queued descriptors
194 * @active: list of descriptors, scheduled for processing
195 * @done: list of completed descriptors, waiting post-processing
196 * @desc_page: list of additionally allocated descriptor pages - if any
197 */
198 struct nbpf_channel {
199 struct dma_chan dma_chan;
200 struct tasklet_struct tasklet;
201 void __iomem *base;
202 struct nbpf_device *nbpf;
203 char name[16];
204 int irq;
205 dma_addr_t slave_src_addr;
206 size_t slave_src_width;
207 size_t slave_src_burst;
208 dma_addr_t slave_dst_addr;
209 size_t slave_dst_width;
210 size_t slave_dst_burst;
211 unsigned int terminal;
212 u32 dmarq_cfg;
213 unsigned long flags;
214 spinlock_t lock;
215 struct list_head free_links;
216 struct list_head free;
217 struct list_head queued;
218 struct list_head active;
219 struct list_head done;
220 struct list_head desc_page;
221 struct nbpf_desc *running;
222 bool paused;
223 };
224
225 struct nbpf_device {
226 struct dma_device dma_dev;
227 void __iomem *base;
228 u32 max_burst_mem_read;
229 u32 max_burst_mem_write;
230 struct clk *clk;
231 const struct nbpf_config *config;
232 unsigned int eirq;
233 struct nbpf_channel chan[];
234 };
235
236 enum nbpf_model {
237 NBPF1B4,
238 NBPF1B8,
239 NBPF1B16,
240 NBPF4B4,
241 NBPF4B8,
242 NBPF4B16,
243 NBPF8B4,
244 NBPF8B8,
245 NBPF8B16,
246 };
247
248 static struct nbpf_config nbpf_cfg[] = {
249 [NBPF1B4] = {
250 .num_channels = 1,
251 .buffer_size = 4,
252 },
253 [NBPF1B8] = {
254 .num_channels = 1,
255 .buffer_size = 8,
256 },
257 [NBPF1B16] = {
258 .num_channels = 1,
259 .buffer_size = 16,
260 },
261 [NBPF4B4] = {
262 .num_channels = 4,
263 .buffer_size = 4,
264 },
265 [NBPF4B8] = {
266 .num_channels = 4,
267 .buffer_size = 8,
268 },
269 [NBPF4B16] = {
270 .num_channels = 4,
271 .buffer_size = 16,
272 },
273 [NBPF8B4] = {
274 .num_channels = 8,
275 .buffer_size = 4,
276 },
277 [NBPF8B8] = {
278 .num_channels = 8,
279 .buffer_size = 8,
280 },
281 [NBPF8B16] = {
282 .num_channels = 8,
283 .buffer_size = 16,
284 },
285 };
286
287 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
288
289 /*
290 * dmaengine drivers seem to have a lot in common and instead of sharing more
291 * code, they reimplement those common algorithms independently. In this driver
292 * we try to separate the hardware-specific part from the (largely) generic
293 * part. This improves code readability and makes it possible in the future to
294 * reuse the generic code in form of a helper library. That generic code should
295 * be suitable for various DMA controllers, using transfer descriptors in RAM
296 * and pushing one SG list at a time to the DMA controller.
297 */
298
299 /* Hardware-specific part */
300
301 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
302 unsigned int offset)
303 {
304 u32 data = ioread32(chan->base + offset);
305 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
306 __func__, chan->base, offset, data);
307 return data;
308 }
309
310 static inline void nbpf_chan_write(struct nbpf_channel *chan,
311 unsigned int offset, u32 data)
312 {
313 iowrite32(data, chan->base + offset);
314 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
315 __func__, chan->base, offset, data);
316 }
317
318 static inline u32 nbpf_read(struct nbpf_device *nbpf,
319 unsigned int offset)
320 {
321 u32 data = ioread32(nbpf->base + offset);
322 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
323 __func__, nbpf->base, offset, data);
324 return data;
325 }
326
327 static inline void nbpf_write(struct nbpf_device *nbpf,
328 unsigned int offset, u32 data)
329 {
330 iowrite32(data, nbpf->base + offset);
331 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
332 __func__, nbpf->base, offset, data);
333 }
334
335 static void nbpf_chan_halt(struct nbpf_channel *chan)
336 {
337 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
338 }
339
340 static bool nbpf_status_get(struct nbpf_channel *chan)
341 {
342 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
343
344 return status & BIT(chan - chan->nbpf->chan);
345 }
346
347 static void nbpf_status_ack(struct nbpf_channel *chan)
348 {
349 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
350 }
351
352 static u32 nbpf_error_get(struct nbpf_device *nbpf)
353 {
354 return nbpf_read(nbpf, NBPF_DSTAT_ER);
355 }
356
357 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
358 {
359 return nbpf->chan + __ffs(error);
360 }
361
362 static void nbpf_error_clear(struct nbpf_channel *chan)
363 {
364 u32 status;
365 int i;
366
367 /* Stop the channel, make sure DMA has been aborted */
368 nbpf_chan_halt(chan);
369
370 for (i = 1000; i; i--) {
371 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
372 if (!(status & NBPF_CHAN_STAT_TACT))
373 break;
374 cpu_relax();
375 }
376
377 if (!i)
378 dev_err(chan->dma_chan.device->dev,
379 "%s(): abort timeout, channel status 0x%x\n", __func__, status);
380
381 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
382 }
383
384 static int nbpf_start(struct nbpf_desc *desc)
385 {
386 struct nbpf_channel *chan = desc->chan;
387 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
388
389 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
390 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
391 chan->paused = false;
392
393 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
394 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
395 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
396
397 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
398 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
399
400 return 0;
401 }
402
403 static void nbpf_chan_prepare(struct nbpf_channel *chan)
404 {
405 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
406 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
407 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
408 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
409 chan->terminal;
410 }
411
412 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
413 {
414 /* Don't output DMAACK */
415 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
416 chan->terminal = 0;
417 chan->flags = 0;
418 }
419
420 static void nbpf_chan_configure(struct nbpf_channel *chan)
421 {
422 /*
423 * We assume, that only the link mode and DMA request line configuration
424 * have to be set in the configuration register manually. Dynamic
425 * per-transfer configuration will be loaded from transfer descriptors.
426 */
427 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
428 }
429
430 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
431 enum dma_transfer_direction direction)
432 {
433 int max_burst = nbpf->config->buffer_size * 8;
434
435 if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
436 switch (direction) {
437 case DMA_MEM_TO_MEM:
438 max_burst = min_not_zero(nbpf->max_burst_mem_read,
439 nbpf->max_burst_mem_write);
440 break;
441 case DMA_MEM_TO_DEV:
442 if (nbpf->max_burst_mem_read)
443 max_burst = nbpf->max_burst_mem_read;
444 break;
445 case DMA_DEV_TO_MEM:
446 if (nbpf->max_burst_mem_write)
447 max_burst = nbpf->max_burst_mem_write;
448 break;
449 case DMA_DEV_TO_DEV:
450 default:
451 break;
452 }
453 }
454
455 /* Maximum supported bursts depend on the buffer size */
456 return min_t(int, __ffs(size), ilog2(max_burst));
457 }
458
459 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
460 enum dma_slave_buswidth width, u32 burst)
461 {
462 size_t size;
463
464 if (!burst)
465 burst = 1;
466
467 switch (width) {
468 case DMA_SLAVE_BUSWIDTH_8_BYTES:
469 size = 8 * burst;
470 break;
471
472 case DMA_SLAVE_BUSWIDTH_4_BYTES:
473 size = 4 * burst;
474 break;
475
476 case DMA_SLAVE_BUSWIDTH_2_BYTES:
477 size = 2 * burst;
478 break;
479
480 default:
481 pr_warn("%s(): invalid bus width %u\n", __func__, width);
482 case DMA_SLAVE_BUSWIDTH_1_BYTE:
483 size = burst;
484 }
485
486 return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
487 }
488
489 /*
490 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
491 * i.e. it isn't known in advance how many bytes will be received. Therefore
492 * the slave driver has to provide a "large enough" buffer and either read the
493 * buffer, when it is full, or detect, that some data has arrived, then wait for
494 * a timeout, if no more data arrives - receive what's already there. We want to
495 * handle such slaves in a special way to allow an optimised mode for other
496 * users, for whom the amount of data is known in advance. So far there's no way
497 * to recognise such slaves. We use a data-width check to distinguish between
498 * the SD host and the PL011 UART.
499 */
500
501 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
502 enum dma_transfer_direction direction,
503 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
504 {
505 struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
506 struct nbpf_desc *desc = ldesc->desc;
507 struct nbpf_channel *chan = desc->chan;
508 struct device *dev = chan->dma_chan.device->dev;
509 size_t mem_xfer, slave_xfer;
510 bool can_burst;
511
512 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
513 (last ? NBPF_HEADER_LE : 0);
514
515 hwdesc->src_addr = src;
516 hwdesc->dst_addr = dst;
517 hwdesc->transaction_size = size;
518
519 /*
520 * set config: SAD, DAD, DDS, SDS, etc.
521 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
522 * but it is important to have transaction size a multiple of both
523 * receiver and transmitter transfer sizes. It is also possible to use
524 * different RAM and device transfer sizes, and it does work well with
525 * some devices, e.g. with V08R07S01E SD host controllers, which can use
526 * 128 byte transfers. But this doesn't work with other devices,
527 * especially when the transaction size is unknown. This is the case,
528 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
529 * the transaction size of 4K and if fewer bytes are received, it
530 * pauses DMA and reads out data received via DMA as well as those left
531 * in the Rx FIFO. For this to work with the RAM side using burst
532 * transfers we enable the SBE bit and terminate the transfer in our
533 * .device_pause handler.
534 */
535 mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
536
537 switch (direction) {
538 case DMA_DEV_TO_MEM:
539 can_burst = chan->slave_src_width >= 3;
540 slave_xfer = min(mem_xfer, can_burst ?
541 chan->slave_src_burst : chan->slave_src_width);
542 /*
543 * Is the slave narrower than 64 bits, i.e. isn't using the full
544 * bus width and cannot use bursts?
545 */
546 if (mem_xfer > chan->slave_src_burst && !can_burst)
547 mem_xfer = chan->slave_src_burst;
548 /* Device-to-RAM DMA is unreliable without REQD set */
549 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
550 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
551 NBPF_CHAN_CFG_SBE;
552 break;
553
554 case DMA_MEM_TO_DEV:
555 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
556 chan->slave_dst_burst : chan->slave_dst_width);
557 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
558 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
559 break;
560
561 case DMA_MEM_TO_MEM:
562 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
563 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
564 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
565 break;
566
567 default:
568 return -EINVAL;
569 }
570
571 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
572 NBPF_CHAN_CFG_DMS;
573
574 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
575 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
576 hwdesc->config, size, &src, &dst);
577
578 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
579 DMA_TO_DEVICE);
580
581 return 0;
582 }
583
584 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
585 {
586 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
587 }
588
589 static void nbpf_configure(struct nbpf_device *nbpf)
590 {
591 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
592 }
593
594 /* Generic part */
595
596 /* DMA ENGINE functions */
597 static void nbpf_issue_pending(struct dma_chan *dchan)
598 {
599 struct nbpf_channel *chan = nbpf_to_chan(dchan);
600 unsigned long flags;
601
602 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
603
604 spin_lock_irqsave(&chan->lock, flags);
605 if (list_empty(&chan->queued))
606 goto unlock;
607
608 list_splice_tail_init(&chan->queued, &chan->active);
609
610 if (!chan->running) {
611 struct nbpf_desc *desc = list_first_entry(&chan->active,
612 struct nbpf_desc, node);
613 if (!nbpf_start(desc))
614 chan->running = desc;
615 }
616
617 unlock:
618 spin_unlock_irqrestore(&chan->lock, flags);
619 }
620
621 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
622 dma_cookie_t cookie, struct dma_tx_state *state)
623 {
624 struct nbpf_channel *chan = nbpf_to_chan(dchan);
625 enum dma_status status = dma_cookie_status(dchan, cookie, state);
626
627 if (state) {
628 dma_cookie_t running;
629 unsigned long flags;
630
631 spin_lock_irqsave(&chan->lock, flags);
632 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
633
634 if (cookie == running) {
635 state->residue = nbpf_bytes_left(chan);
636 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
637 state->residue);
638 } else if (status == DMA_IN_PROGRESS) {
639 struct nbpf_desc *desc;
640 bool found = false;
641
642 list_for_each_entry(desc, &chan->active, node)
643 if (desc->async_tx.cookie == cookie) {
644 found = true;
645 break;
646 }
647
648 if (!found)
649 list_for_each_entry(desc, &chan->queued, node)
650 if (desc->async_tx.cookie == cookie) {
651 found = true;
652 break;
653
654 }
655
656 state->residue = found ? desc->length : 0;
657 }
658
659 spin_unlock_irqrestore(&chan->lock, flags);
660 }
661
662 if (chan->paused)
663 status = DMA_PAUSED;
664
665 return status;
666 }
667
668 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
669 {
670 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
671 struct nbpf_channel *chan = desc->chan;
672 unsigned long flags;
673 dma_cookie_t cookie;
674
675 spin_lock_irqsave(&chan->lock, flags);
676 cookie = dma_cookie_assign(tx);
677 list_add_tail(&desc->node, &chan->queued);
678 spin_unlock_irqrestore(&chan->lock, flags);
679
680 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
681
682 return cookie;
683 }
684
685 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
686 {
687 struct dma_chan *dchan = &chan->dma_chan;
688 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
689 struct nbpf_link_desc *ldesc;
690 struct nbpf_link_reg *hwdesc;
691 struct nbpf_desc *desc;
692 LIST_HEAD(head);
693 LIST_HEAD(lhead);
694 int i;
695 struct device *dev = dchan->device->dev;
696
697 if (!dpage)
698 return -ENOMEM;
699
700 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
701 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
702
703 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
704 i < ARRAY_SIZE(dpage->ldesc);
705 i++, ldesc++, hwdesc++) {
706 ldesc->hwdesc = hwdesc;
707 list_add_tail(&ldesc->node, &lhead);
708 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
709 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
710
711 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
712 hwdesc, &ldesc->hwdesc_dma_addr);
713 }
714
715 for (i = 0, desc = dpage->desc;
716 i < ARRAY_SIZE(dpage->desc);
717 i++, desc++) {
718 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
719 desc->async_tx.tx_submit = nbpf_tx_submit;
720 desc->chan = chan;
721 INIT_LIST_HEAD(&desc->sg);
722 list_add_tail(&desc->node, &head);
723 }
724
725 /*
726 * This function cannot be called from interrupt context, so, no need to
727 * save flags
728 */
729 spin_lock_irq(&chan->lock);
730 list_splice_tail(&lhead, &chan->free_links);
731 list_splice_tail(&head, &chan->free);
732 list_add(&dpage->node, &chan->desc_page);
733 spin_unlock_irq(&chan->lock);
734
735 return ARRAY_SIZE(dpage->desc);
736 }
737
738 static void nbpf_desc_put(struct nbpf_desc *desc)
739 {
740 struct nbpf_channel *chan = desc->chan;
741 struct nbpf_link_desc *ldesc, *tmp;
742 unsigned long flags;
743
744 spin_lock_irqsave(&chan->lock, flags);
745 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
746 list_move(&ldesc->node, &chan->free_links);
747
748 list_add(&desc->node, &chan->free);
749 spin_unlock_irqrestore(&chan->lock, flags);
750 }
751
752 static void nbpf_scan_acked(struct nbpf_channel *chan)
753 {
754 struct nbpf_desc *desc, *tmp;
755 unsigned long flags;
756 LIST_HEAD(head);
757
758 spin_lock_irqsave(&chan->lock, flags);
759 list_for_each_entry_safe(desc, tmp, &chan->done, node)
760 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
761 list_move(&desc->node, &head);
762 desc->user_wait = false;
763 }
764 spin_unlock_irqrestore(&chan->lock, flags);
765
766 list_for_each_entry_safe(desc, tmp, &head, node) {
767 list_del(&desc->node);
768 nbpf_desc_put(desc);
769 }
770 }
771
772 /*
773 * We have to allocate descriptors with the channel lock dropped. This means,
774 * before we re-acquire the lock buffers can be taken already, so we have to
775 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
776 * again.
777 */
778 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
779 {
780 struct nbpf_desc *desc = NULL;
781 struct nbpf_link_desc *ldesc, *prev = NULL;
782
783 nbpf_scan_acked(chan);
784
785 spin_lock_irq(&chan->lock);
786
787 do {
788 int i = 0, ret;
789
790 if (list_empty(&chan->free)) {
791 /* No more free descriptors */
792 spin_unlock_irq(&chan->lock);
793 ret = nbpf_desc_page_alloc(chan);
794 if (ret < 0)
795 return NULL;
796 spin_lock_irq(&chan->lock);
797 continue;
798 }
799 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
800 list_del(&desc->node);
801
802 do {
803 if (list_empty(&chan->free_links)) {
804 /* No more free link descriptors */
805 spin_unlock_irq(&chan->lock);
806 ret = nbpf_desc_page_alloc(chan);
807 if (ret < 0) {
808 nbpf_desc_put(desc);
809 return NULL;
810 }
811 spin_lock_irq(&chan->lock);
812 continue;
813 }
814
815 ldesc = list_first_entry(&chan->free_links,
816 struct nbpf_link_desc, node);
817 ldesc->desc = desc;
818 if (prev)
819 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
820
821 prev = ldesc;
822 list_move_tail(&ldesc->node, &desc->sg);
823
824 i++;
825 } while (i < len);
826 } while (!desc);
827
828 prev->hwdesc->next = 0;
829
830 spin_unlock_irq(&chan->lock);
831
832 return desc;
833 }
834
835 static void nbpf_chan_idle(struct nbpf_channel *chan)
836 {
837 struct nbpf_desc *desc, *tmp;
838 unsigned long flags;
839 LIST_HEAD(head);
840
841 spin_lock_irqsave(&chan->lock, flags);
842
843 list_splice_init(&chan->done, &head);
844 list_splice_init(&chan->active, &head);
845 list_splice_init(&chan->queued, &head);
846
847 chan->running = NULL;
848
849 spin_unlock_irqrestore(&chan->lock, flags);
850
851 list_for_each_entry_safe(desc, tmp, &head, node) {
852 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
853 __func__, desc, desc->async_tx.cookie);
854 list_del(&desc->node);
855 nbpf_desc_put(desc);
856 }
857 }
858
859 static int nbpf_pause(struct dma_chan *dchan)
860 {
861 struct nbpf_channel *chan = nbpf_to_chan(dchan);
862
863 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
864
865 chan->paused = true;
866 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
867 /* See comment in nbpf_prep_one() */
868 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
869
870 return 0;
871 }
872
873 static int nbpf_terminate_all(struct dma_chan *dchan)
874 {
875 struct nbpf_channel *chan = nbpf_to_chan(dchan);
876
877 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
878 dev_dbg(dchan->device->dev, "Terminating\n");
879
880 nbpf_chan_halt(chan);
881 nbpf_chan_idle(chan);
882
883 return 0;
884 }
885
886 static int nbpf_config(struct dma_chan *dchan,
887 struct dma_slave_config *config)
888 {
889 struct nbpf_channel *chan = nbpf_to_chan(dchan);
890
891 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
892
893 /*
894 * We could check config->slave_id to match chan->terminal here,
895 * but with DT they would be coming from the same source, so
896 * such a check would be superflous
897 */
898
899 chan->slave_dst_addr = config->dst_addr;
900 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
901 config->dst_addr_width, 1);
902 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
903 config->dst_addr_width,
904 config->dst_maxburst);
905 chan->slave_src_addr = config->src_addr;
906 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
907 config->src_addr_width, 1);
908 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
909 config->src_addr_width,
910 config->src_maxburst);
911
912 return 0;
913 }
914
915 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
916 struct scatterlist *src_sg, struct scatterlist *dst_sg,
917 size_t len, enum dma_transfer_direction direction,
918 unsigned long flags)
919 {
920 struct nbpf_link_desc *ldesc;
921 struct scatterlist *mem_sg;
922 struct nbpf_desc *desc;
923 bool inc_src, inc_dst;
924 size_t data_len = 0;
925 int i = 0;
926
927 switch (direction) {
928 case DMA_DEV_TO_MEM:
929 mem_sg = dst_sg;
930 inc_src = false;
931 inc_dst = true;
932 break;
933
934 case DMA_MEM_TO_DEV:
935 mem_sg = src_sg;
936 inc_src = true;
937 inc_dst = false;
938 break;
939
940 default:
941 case DMA_MEM_TO_MEM:
942 mem_sg = src_sg;
943 inc_src = true;
944 inc_dst = true;
945 }
946
947 desc = nbpf_desc_get(chan, len);
948 if (!desc)
949 return NULL;
950
951 desc->async_tx.flags = flags;
952 desc->async_tx.cookie = -EBUSY;
953 desc->user_wait = false;
954
955 /*
956 * This is a private descriptor list, and we own the descriptor. No need
957 * to lock.
958 */
959 list_for_each_entry(ldesc, &desc->sg, node) {
960 int ret = nbpf_prep_one(ldesc, direction,
961 sg_dma_address(src_sg),
962 sg_dma_address(dst_sg),
963 sg_dma_len(mem_sg),
964 i == len - 1);
965 if (ret < 0) {
966 nbpf_desc_put(desc);
967 return NULL;
968 }
969 data_len += sg_dma_len(mem_sg);
970 if (inc_src)
971 src_sg = sg_next(src_sg);
972 if (inc_dst)
973 dst_sg = sg_next(dst_sg);
974 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
975 i++;
976 }
977
978 desc->length = data_len;
979
980 /* The user has to return the descriptor to us ASAP via .tx_submit() */
981 return &desc->async_tx;
982 }
983
984 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
985 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
986 size_t len, unsigned long flags)
987 {
988 struct nbpf_channel *chan = nbpf_to_chan(dchan);
989 struct scatterlist dst_sg;
990 struct scatterlist src_sg;
991
992 sg_init_table(&dst_sg, 1);
993 sg_init_table(&src_sg, 1);
994
995 sg_dma_address(&dst_sg) = dst;
996 sg_dma_address(&src_sg) = src;
997
998 sg_dma_len(&dst_sg) = len;
999 sg_dma_len(&src_sg) = len;
1000
1001 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1002 __func__, len, &src, &dst);
1003
1004 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1005 DMA_MEM_TO_MEM, flags);
1006 }
1007
1008 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1009 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1010 enum dma_transfer_direction direction, unsigned long flags, void *context)
1011 {
1012 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1013 struct scatterlist slave_sg;
1014
1015 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1016
1017 sg_init_table(&slave_sg, 1);
1018
1019 switch (direction) {
1020 case DMA_MEM_TO_DEV:
1021 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1022 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1023 direction, flags);
1024
1025 case DMA_DEV_TO_MEM:
1026 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1027 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1028 direction, flags);
1029
1030 default:
1031 return NULL;
1032 }
1033 }
1034
1035 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1036 {
1037 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1038 int ret;
1039
1040 INIT_LIST_HEAD(&chan->free);
1041 INIT_LIST_HEAD(&chan->free_links);
1042 INIT_LIST_HEAD(&chan->queued);
1043 INIT_LIST_HEAD(&chan->active);
1044 INIT_LIST_HEAD(&chan->done);
1045
1046 ret = nbpf_desc_page_alloc(chan);
1047 if (ret < 0)
1048 return ret;
1049
1050 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1051 chan->terminal);
1052
1053 nbpf_chan_configure(chan);
1054
1055 return ret;
1056 }
1057
1058 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1059 {
1060 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1061 struct nbpf_desc_page *dpage, *tmp;
1062
1063 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1064
1065 nbpf_chan_halt(chan);
1066 nbpf_chan_idle(chan);
1067 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1068 nbpf_chan_prepare_default(chan);
1069
1070 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1071 struct nbpf_link_desc *ldesc;
1072 int i;
1073 list_del(&dpage->node);
1074 for (i = 0, ldesc = dpage->ldesc;
1075 i < ARRAY_SIZE(dpage->ldesc);
1076 i++, ldesc++)
1077 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1078 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1079 free_page((unsigned long)dpage);
1080 }
1081 }
1082
1083 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1084 struct of_dma *ofdma)
1085 {
1086 struct nbpf_device *nbpf = ofdma->of_dma_data;
1087 struct dma_chan *dchan;
1088 struct nbpf_channel *chan;
1089
1090 if (dma_spec->args_count != 2)
1091 return NULL;
1092
1093 dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1094 if (!dchan)
1095 return NULL;
1096
1097 dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1098 dma_spec->np->name);
1099
1100 chan = nbpf_to_chan(dchan);
1101
1102 chan->terminal = dma_spec->args[0];
1103 chan->flags = dma_spec->args[1];
1104
1105 nbpf_chan_prepare(chan);
1106 nbpf_chan_configure(chan);
1107
1108 return dchan;
1109 }
1110
1111 static void nbpf_chan_tasklet(unsigned long data)
1112 {
1113 struct nbpf_channel *chan = (struct nbpf_channel *)data;
1114 struct nbpf_desc *desc, *tmp;
1115 struct dmaengine_desc_callback cb;
1116
1117 while (!list_empty(&chan->done)) {
1118 bool found = false, must_put, recycling = false;
1119
1120 spin_lock_irq(&chan->lock);
1121
1122 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1123 if (!desc->user_wait) {
1124 /* Newly completed descriptor, have to process */
1125 found = true;
1126 break;
1127 } else if (async_tx_test_ack(&desc->async_tx)) {
1128 /*
1129 * This descriptor was waiting for a user ACK,
1130 * it can be recycled now.
1131 */
1132 list_del(&desc->node);
1133 spin_unlock_irq(&chan->lock);
1134 nbpf_desc_put(desc);
1135 recycling = true;
1136 break;
1137 }
1138 }
1139
1140 if (recycling)
1141 continue;
1142
1143 if (!found) {
1144 /* This can happen if TERMINATE_ALL has been called */
1145 spin_unlock_irq(&chan->lock);
1146 break;
1147 }
1148
1149 dma_cookie_complete(&desc->async_tx);
1150
1151 /*
1152 * With released lock we cannot dereference desc, maybe it's
1153 * still on the "done" list
1154 */
1155 if (async_tx_test_ack(&desc->async_tx)) {
1156 list_del(&desc->node);
1157 must_put = true;
1158 } else {
1159 desc->user_wait = true;
1160 must_put = false;
1161 }
1162
1163 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1164
1165 /* ack and callback completed descriptor */
1166 spin_unlock_irq(&chan->lock);
1167
1168 dmaengine_desc_callback_invoke(&cb, NULL);
1169
1170 if (must_put)
1171 nbpf_desc_put(desc);
1172 }
1173 }
1174
1175 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1176 {
1177 struct nbpf_channel *chan = dev;
1178 bool done = nbpf_status_get(chan);
1179 struct nbpf_desc *desc;
1180 irqreturn_t ret;
1181 bool bh = false;
1182
1183 if (!done)
1184 return IRQ_NONE;
1185
1186 nbpf_status_ack(chan);
1187
1188 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1189
1190 spin_lock(&chan->lock);
1191 desc = chan->running;
1192 if (WARN_ON(!desc)) {
1193 ret = IRQ_NONE;
1194 goto unlock;
1195 } else {
1196 ret = IRQ_HANDLED;
1197 bh = true;
1198 }
1199
1200 list_move_tail(&desc->node, &chan->done);
1201 chan->running = NULL;
1202
1203 if (!list_empty(&chan->active)) {
1204 desc = list_first_entry(&chan->active,
1205 struct nbpf_desc, node);
1206 if (!nbpf_start(desc))
1207 chan->running = desc;
1208 }
1209
1210 unlock:
1211 spin_unlock(&chan->lock);
1212
1213 if (bh)
1214 tasklet_schedule(&chan->tasklet);
1215
1216 return ret;
1217 }
1218
1219 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1220 {
1221 struct nbpf_device *nbpf = dev;
1222 u32 error = nbpf_error_get(nbpf);
1223
1224 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1225
1226 if (!error)
1227 return IRQ_NONE;
1228
1229 do {
1230 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1231 /* On error: abort all queued transfers, no callback */
1232 nbpf_error_clear(chan);
1233 nbpf_chan_idle(chan);
1234 error = nbpf_error_get(nbpf);
1235 } while (error);
1236
1237 return IRQ_HANDLED;
1238 }
1239
1240 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1241 {
1242 struct dma_device *dma_dev = &nbpf->dma_dev;
1243 struct nbpf_channel *chan = nbpf->chan + n;
1244 int ret;
1245
1246 chan->nbpf = nbpf;
1247 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1248 INIT_LIST_HEAD(&chan->desc_page);
1249 spin_lock_init(&chan->lock);
1250 chan->dma_chan.device = dma_dev;
1251 dma_cookie_init(&chan->dma_chan);
1252 nbpf_chan_prepare_default(chan);
1253
1254 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1255
1256 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1257
1258 tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1259 ret = devm_request_irq(dma_dev->dev, chan->irq,
1260 nbpf_chan_irq, IRQF_SHARED,
1261 chan->name, chan);
1262 if (ret < 0)
1263 return ret;
1264
1265 /* Add the channel to DMA device channel list */
1266 list_add_tail(&chan->dma_chan.device_node,
1267 &dma_dev->channels);
1268
1269 return 0;
1270 }
1271
1272 static const struct of_device_id nbpf_match[] = {
1273 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
1274 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
1275 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
1276 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
1277 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
1278 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
1279 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
1280 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
1281 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
1282 {}
1283 };
1284 MODULE_DEVICE_TABLE(of, nbpf_match);
1285
1286 static int nbpf_probe(struct platform_device *pdev)
1287 {
1288 struct device *dev = &pdev->dev;
1289 const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1290 struct device_node *np = dev->of_node;
1291 struct nbpf_device *nbpf;
1292 struct dma_device *dma_dev;
1293 struct resource *iomem, *irq_res;
1294 const struct nbpf_config *cfg;
1295 int num_channels;
1296 int ret, irq, eirq, i;
1297 int irqbuf[9] /* maximum 8 channels + error IRQ */;
1298 unsigned int irqs = 0;
1299
1300 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1301
1302 /* DT only */
1303 if (!np || !of_id || !of_id->data)
1304 return -ENODEV;
1305
1306 cfg = of_id->data;
1307 num_channels = cfg->num_channels;
1308
1309 nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1310 sizeof(nbpf->chan[0]), GFP_KERNEL);
1311 if (!nbpf)
1312 return -ENOMEM;
1313
1314 dma_dev = &nbpf->dma_dev;
1315 dma_dev->dev = dev;
1316
1317 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1318 nbpf->base = devm_ioremap_resource(dev, iomem);
1319 if (IS_ERR(nbpf->base))
1320 return PTR_ERR(nbpf->base);
1321
1322 nbpf->clk = devm_clk_get(dev, NULL);
1323 if (IS_ERR(nbpf->clk))
1324 return PTR_ERR(nbpf->clk);
1325
1326 of_property_read_u32(np, "max-burst-mem-read",
1327 &nbpf->max_burst_mem_read);
1328 of_property_read_u32(np, "max-burst-mem-write",
1329 &nbpf->max_burst_mem_write);
1330
1331 nbpf->config = cfg;
1332
1333 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1334 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1335 if (!irq_res)
1336 break;
1337
1338 for (irq = irq_res->start; irq <= irq_res->end;
1339 irq++, irqs++)
1340 irqbuf[irqs] = irq;
1341 }
1342
1343 /*
1344 * 3 IRQ resource schemes are supported:
1345 * 1. 1 shared IRQ for error and all channels
1346 * 2. 2 IRQs: one for error and one shared for all channels
1347 * 3. 1 IRQ for error and an own IRQ for each channel
1348 */
1349 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1350 return -ENXIO;
1351
1352 if (irqs == 1) {
1353 eirq = irqbuf[0];
1354
1355 for (i = 0; i <= num_channels; i++)
1356 nbpf->chan[i].irq = irqbuf[0];
1357 } else {
1358 eirq = platform_get_irq_byname(pdev, "error");
1359 if (eirq < 0)
1360 return eirq;
1361
1362 if (irqs == num_channels + 1) {
1363 struct nbpf_channel *chan;
1364
1365 for (i = 0, chan = nbpf->chan; i <= num_channels;
1366 i++, chan++) {
1367 /* Skip the error IRQ */
1368 if (irqbuf[i] == eirq)
1369 i++;
1370 chan->irq = irqbuf[i];
1371 }
1372
1373 if (chan != nbpf->chan + num_channels)
1374 return -EINVAL;
1375 } else {
1376 /* 2 IRQs and more than one channel */
1377 if (irqbuf[0] == eirq)
1378 irq = irqbuf[1];
1379 else
1380 irq = irqbuf[0];
1381
1382 for (i = 0; i <= num_channels; i++)
1383 nbpf->chan[i].irq = irq;
1384 }
1385 }
1386
1387 ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1388 IRQF_SHARED, "dma error", nbpf);
1389 if (ret < 0)
1390 return ret;
1391 nbpf->eirq = eirq;
1392
1393 INIT_LIST_HEAD(&dma_dev->channels);
1394
1395 /* Create DMA Channel */
1396 for (i = 0; i < num_channels; i++) {
1397 ret = nbpf_chan_probe(nbpf, i);
1398 if (ret < 0)
1399 return ret;
1400 }
1401
1402 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1403 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1404 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1405
1406 /* Common and MEMCPY operations */
1407 dma_dev->device_alloc_chan_resources
1408 = nbpf_alloc_chan_resources;
1409 dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1410 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1411 dma_dev->device_tx_status = nbpf_tx_status;
1412 dma_dev->device_issue_pending = nbpf_issue_pending;
1413
1414 /*
1415 * If we drop support for unaligned MEMCPY buffer addresses and / or
1416 * lengths by setting
1417 * dma_dev->copy_align = 4;
1418 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1419 * DMA_MEM_TO_MEM
1420 */
1421
1422 /* Compulsory for DMA_SLAVE fields */
1423 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1424 dma_dev->device_config = nbpf_config;
1425 dma_dev->device_pause = nbpf_pause;
1426 dma_dev->device_terminate_all = nbpf_terminate_all;
1427
1428 dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1429 dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1430 dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1431
1432 platform_set_drvdata(pdev, nbpf);
1433
1434 ret = clk_prepare_enable(nbpf->clk);
1435 if (ret < 0)
1436 return ret;
1437
1438 nbpf_configure(nbpf);
1439
1440 ret = dma_async_device_register(dma_dev);
1441 if (ret < 0)
1442 goto e_clk_off;
1443
1444 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1445 if (ret < 0)
1446 goto e_dma_dev_unreg;
1447
1448 return 0;
1449
1450 e_dma_dev_unreg:
1451 dma_async_device_unregister(dma_dev);
1452 e_clk_off:
1453 clk_disable_unprepare(nbpf->clk);
1454
1455 return ret;
1456 }
1457
1458 static int nbpf_remove(struct platform_device *pdev)
1459 {
1460 struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1461 int i;
1462
1463 devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1464
1465 for (i = 0; i < nbpf->config->num_channels; i++) {
1466 struct nbpf_channel *chan = nbpf->chan + i;
1467
1468 devm_free_irq(&pdev->dev, chan->irq, chan);
1469
1470 tasklet_kill(&chan->tasklet);
1471 }
1472
1473 of_dma_controller_free(pdev->dev.of_node);
1474 dma_async_device_unregister(&nbpf->dma_dev);
1475 clk_disable_unprepare(nbpf->clk);
1476
1477 return 0;
1478 }
1479
1480 static const struct platform_device_id nbpf_ids[] = {
1481 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1482 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1483 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1484 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1485 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1486 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1487 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1488 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1489 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1490 {},
1491 };
1492 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1493
1494 #ifdef CONFIG_PM
1495 static int nbpf_runtime_suspend(struct device *dev)
1496 {
1497 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1498 clk_disable_unprepare(nbpf->clk);
1499 return 0;
1500 }
1501
1502 static int nbpf_runtime_resume(struct device *dev)
1503 {
1504 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1505 return clk_prepare_enable(nbpf->clk);
1506 }
1507 #endif
1508
1509 static const struct dev_pm_ops nbpf_pm_ops = {
1510 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1511 };
1512
1513 static struct platform_driver nbpf_driver = {
1514 .driver = {
1515 .name = "dma-nbpf",
1516 .of_match_table = nbpf_match,
1517 .pm = &nbpf_pm_ops,
1518 },
1519 .id_table = nbpf_ids,
1520 .probe = nbpf_probe,
1521 .remove = nbpf_remove,
1522 };
1523
1524 module_platform_driver(nbpf_driver);
1525
1526 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1527 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1528 MODULE_LICENSE("GPL v2");