PM / Domains: defer dev_pm_domain_set() until genpd->attach_dev succeeds if present
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 static inline int32_t percent_ext_fp(int percent)
88 {
89 return div_ext_fp(percent, 100);
90 }
91
92 /**
93 * struct sample - Store performance sample
94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
97 * P state. This can be different than core_avg_perf
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
110 struct sample {
111 int32_t core_avg_perf;
112 int32_t busy_scaled;
113 u64 aperf;
114 u64 mperf;
115 u64 tsc;
116 u64 time;
117 };
118
119 /**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
135 struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
139 int max_pstate_physical;
140 int scaling;
141 int turbo_pstate;
142 unsigned int max_freq;
143 unsigned int turbo_freq;
144 };
145
146 /**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
159 struct vid_data {
160 int min;
161 int max;
162 int turbo;
163 int32_t ratio;
164 };
165
166 /**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
178 struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
185 int32_t last_err;
186 };
187
188 /**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217 struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228 };
229
230 /**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
233 * @policy: CPUFreq policy value
234 * @update_util: CPUFreq utility callback information
235 * @update_util_set: CPUFreq utility callback is set
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
256 * @epp_policy: Last saved policy used to set EPP/EPB
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
264 struct cpudata {
265 int cpu;
266
267 unsigned int policy;
268 struct update_util_data update_util;
269 bool update_util_set;
270
271 struct pstate_data pstate;
272 struct vid_data vid;
273 struct _pid pid;
274
275 u64 last_update;
276 u64 last_sample_time;
277 u64 prev_aperf;
278 u64 prev_mperf;
279 u64 prev_tsc;
280 u64 prev_cummulative_iowait;
281 struct sample sample;
282 struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286 #endif
287 unsigned int iowait_boost;
288 s16 epp_powersave;
289 s16 epp_policy;
290 s16 epp_default;
291 s16 epp_saved;
292 };
293
294 static struct cpudata **all_cpu_data;
295
296 /**
297 * struct pstate_adjust_policy - Stores static PID configuration data
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
308 struct pstate_adjust_policy {
309 int sample_rate_ms;
310 s64 sample_rate_ns;
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316 };
317
318 /**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
332 struct pstate_funcs {
333 int (*get_max)(void);
334 int (*get_max_physical)(void);
335 int (*get_min)(void);
336 int (*get_turbo)(void);
337 int (*get_scaling)(void);
338 u64 (*get_val)(struct cpudata*, int pstate);
339 void (*get_vid)(struct cpudata *);
340 int32_t (*get_target_pstate)(struct cpudata *);
341 };
342
343 /**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
348 struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
351 };
352
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360
361 static bool driver_registered __read_mostly;
362
363 #ifdef CONFIG_ACPI
364 static bool acpi_ppc;
365 #endif
366
367 static struct perf_limits global;
368
369 static void intel_pstate_init_limits(struct perf_limits *limits)
370 {
371 memset(limits, 0, sizeof(*limits));
372 limits->max_perf_pct = 100;
373 limits->max_perf = int_ext_tofp(1);
374 limits->max_policy_pct = 100;
375 limits->max_sysfs_pct = 100;
376 }
377
378 static DEFINE_MUTEX(intel_pstate_driver_lock);
379 static DEFINE_MUTEX(intel_pstate_limits_lock);
380
381 #ifdef CONFIG_ACPI
382
383 static bool intel_pstate_get_ppc_enable_status(void)
384 {
385 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
386 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
387 return true;
388
389 return acpi_ppc;
390 }
391
392 #ifdef CONFIG_ACPI_CPPC_LIB
393
394 /* The work item is needed to avoid CPU hotplug locking issues */
395 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
396 {
397 sched_set_itmt_support();
398 }
399
400 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
401
402 static void intel_pstate_set_itmt_prio(int cpu)
403 {
404 struct cppc_perf_caps cppc_perf;
405 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
406 int ret;
407
408 ret = cppc_get_perf_caps(cpu, &cppc_perf);
409 if (ret)
410 return;
411
412 /*
413 * The priorities can be set regardless of whether or not
414 * sched_set_itmt_support(true) has been called and it is valid to
415 * update them at any time after it has been called.
416 */
417 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
418
419 if (max_highest_perf <= min_highest_perf) {
420 if (cppc_perf.highest_perf > max_highest_perf)
421 max_highest_perf = cppc_perf.highest_perf;
422
423 if (cppc_perf.highest_perf < min_highest_perf)
424 min_highest_perf = cppc_perf.highest_perf;
425
426 if (max_highest_perf > min_highest_perf) {
427 /*
428 * This code can be run during CPU online under the
429 * CPU hotplug locks, so sched_set_itmt_support()
430 * cannot be called from here. Queue up a work item
431 * to invoke it.
432 */
433 schedule_work(&sched_itmt_work);
434 }
435 }
436 }
437 #else
438 static void intel_pstate_set_itmt_prio(int cpu)
439 {
440 }
441 #endif
442
443 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
444 {
445 struct cpudata *cpu;
446 int ret;
447 int i;
448
449 if (hwp_active) {
450 intel_pstate_set_itmt_prio(policy->cpu);
451 return;
452 }
453
454 if (!intel_pstate_get_ppc_enable_status())
455 return;
456
457 cpu = all_cpu_data[policy->cpu];
458
459 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
460 policy->cpu);
461 if (ret)
462 return;
463
464 /*
465 * Check if the control value in _PSS is for PERF_CTL MSR, which should
466 * guarantee that the states returned by it map to the states in our
467 * list directly.
468 */
469 if (cpu->acpi_perf_data.control_register.space_id !=
470 ACPI_ADR_SPACE_FIXED_HARDWARE)
471 goto err;
472
473 /*
474 * If there is only one entry _PSS, simply ignore _PSS and continue as
475 * usual without taking _PSS into account
476 */
477 if (cpu->acpi_perf_data.state_count < 2)
478 goto err;
479
480 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
481 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
482 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
483 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
484 (u32) cpu->acpi_perf_data.states[i].core_frequency,
485 (u32) cpu->acpi_perf_data.states[i].power,
486 (u32) cpu->acpi_perf_data.states[i].control);
487 }
488
489 /*
490 * The _PSS table doesn't contain whole turbo frequency range.
491 * This just contains +1 MHZ above the max non turbo frequency,
492 * with control value corresponding to max turbo ratio. But
493 * when cpufreq set policy is called, it will call with this
494 * max frequency, which will cause a reduced performance as
495 * this driver uses real max turbo frequency as the max
496 * frequency. So correct this frequency in _PSS table to
497 * correct max turbo frequency based on the turbo state.
498 * Also need to convert to MHz as _PSS freq is in MHz.
499 */
500 if (!global.turbo_disabled)
501 cpu->acpi_perf_data.states[0].core_frequency =
502 policy->cpuinfo.max_freq / 1000;
503 cpu->valid_pss_table = true;
504 pr_debug("_PPC limits will be enforced\n");
505
506 return;
507
508 err:
509 cpu->valid_pss_table = false;
510 acpi_processor_unregister_performance(policy->cpu);
511 }
512
513 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514 {
515 struct cpudata *cpu;
516
517 cpu = all_cpu_data[policy->cpu];
518 if (!cpu->valid_pss_table)
519 return;
520
521 acpi_processor_unregister_performance(policy->cpu);
522 }
523 #else
524 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
525 {
526 }
527
528 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
529 {
530 }
531 #endif
532
533 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
534 int deadband, int integral) {
535 pid->setpoint = int_tofp(setpoint);
536 pid->deadband = int_tofp(deadband);
537 pid->integral = int_tofp(integral);
538 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
539 }
540
541 static inline void pid_p_gain_set(struct _pid *pid, int percent)
542 {
543 pid->p_gain = div_fp(percent, 100);
544 }
545
546 static inline void pid_i_gain_set(struct _pid *pid, int percent)
547 {
548 pid->i_gain = div_fp(percent, 100);
549 }
550
551 static inline void pid_d_gain_set(struct _pid *pid, int percent)
552 {
553 pid->d_gain = div_fp(percent, 100);
554 }
555
556 static signed int pid_calc(struct _pid *pid, int32_t busy)
557 {
558 signed int result;
559 int32_t pterm, dterm, fp_error;
560 int32_t integral_limit;
561
562 fp_error = pid->setpoint - busy;
563
564 if (abs(fp_error) <= pid->deadband)
565 return 0;
566
567 pterm = mul_fp(pid->p_gain, fp_error);
568
569 pid->integral += fp_error;
570
571 /*
572 * We limit the integral here so that it will never
573 * get higher than 30. This prevents it from becoming
574 * too large an input over long periods of time and allows
575 * it to get factored out sooner.
576 *
577 * The value of 30 was chosen through experimentation.
578 */
579 integral_limit = int_tofp(30);
580 if (pid->integral > integral_limit)
581 pid->integral = integral_limit;
582 if (pid->integral < -integral_limit)
583 pid->integral = -integral_limit;
584
585 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
586 pid->last_err = fp_error;
587
588 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
589 result = result + (1 << (FRAC_BITS-1));
590 return (signed int)fp_toint(result);
591 }
592
593 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
594 {
595 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
596 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
597 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
598
599 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
600 }
601
602 static inline void intel_pstate_reset_all_pid(void)
603 {
604 unsigned int cpu;
605
606 for_each_online_cpu(cpu) {
607 if (all_cpu_data[cpu])
608 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
609 }
610 }
611
612 static inline void update_turbo_state(void)
613 {
614 u64 misc_en;
615 struct cpudata *cpu;
616
617 cpu = all_cpu_data[0];
618 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
619 global.turbo_disabled =
620 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
621 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
622 }
623
624 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
625 {
626 u64 epb;
627 int ret;
628
629 if (!static_cpu_has(X86_FEATURE_EPB))
630 return -ENXIO;
631
632 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
633 if (ret)
634 return (s16)ret;
635
636 return (s16)(epb & 0x0f);
637 }
638
639 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
640 {
641 s16 epp;
642
643 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
644 /*
645 * When hwp_req_data is 0, means that caller didn't read
646 * MSR_HWP_REQUEST, so need to read and get EPP.
647 */
648 if (!hwp_req_data) {
649 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
650 &hwp_req_data);
651 if (epp)
652 return epp;
653 }
654 epp = (hwp_req_data >> 24) & 0xff;
655 } else {
656 /* When there is no EPP present, HWP uses EPB settings */
657 epp = intel_pstate_get_epb(cpu_data);
658 }
659
660 return epp;
661 }
662
663 static int intel_pstate_set_epb(int cpu, s16 pref)
664 {
665 u64 epb;
666 int ret;
667
668 if (!static_cpu_has(X86_FEATURE_EPB))
669 return -ENXIO;
670
671 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
672 if (ret)
673 return ret;
674
675 epb = (epb & ~0x0f) | pref;
676 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
677
678 return 0;
679 }
680
681 /*
682 * EPP/EPB display strings corresponding to EPP index in the
683 * energy_perf_strings[]
684 * index String
685 *-------------------------------------
686 * 0 default
687 * 1 performance
688 * 2 balance_performance
689 * 3 balance_power
690 * 4 power
691 */
692 static const char * const energy_perf_strings[] = {
693 "default",
694 "performance",
695 "balance_performance",
696 "balance_power",
697 "power",
698 NULL
699 };
700
701 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
702 {
703 s16 epp;
704 int index = -EINVAL;
705
706 epp = intel_pstate_get_epp(cpu_data, 0);
707 if (epp < 0)
708 return epp;
709
710 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
711 /*
712 * Range:
713 * 0x00-0x3F : Performance
714 * 0x40-0x7F : Balance performance
715 * 0x80-0xBF : Balance power
716 * 0xC0-0xFF : Power
717 * The EPP is a 8 bit value, but our ranges restrict the
718 * value which can be set. Here only using top two bits
719 * effectively.
720 */
721 index = (epp >> 6) + 1;
722 } else if (static_cpu_has(X86_FEATURE_EPB)) {
723 /*
724 * Range:
725 * 0x00-0x03 : Performance
726 * 0x04-0x07 : Balance performance
727 * 0x08-0x0B : Balance power
728 * 0x0C-0x0F : Power
729 * The EPB is a 4 bit value, but our ranges restrict the
730 * value which can be set. Here only using top two bits
731 * effectively.
732 */
733 index = (epp >> 2) + 1;
734 }
735
736 return index;
737 }
738
739 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
740 int pref_index)
741 {
742 int epp = -EINVAL;
743 int ret;
744
745 if (!pref_index)
746 epp = cpu_data->epp_default;
747
748 mutex_lock(&intel_pstate_limits_lock);
749
750 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
751 u64 value;
752
753 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
754 if (ret)
755 goto return_pref;
756
757 value &= ~GENMASK_ULL(31, 24);
758
759 /*
760 * If epp is not default, convert from index into
761 * energy_perf_strings to epp value, by shifting 6
762 * bits left to use only top two bits in epp.
763 * The resultant epp need to shifted by 24 bits to
764 * epp position in MSR_HWP_REQUEST.
765 */
766 if (epp == -EINVAL)
767 epp = (pref_index - 1) << 6;
768
769 value |= (u64)epp << 24;
770 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
771 } else {
772 if (epp == -EINVAL)
773 epp = (pref_index - 1) << 2;
774 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
775 }
776 return_pref:
777 mutex_unlock(&intel_pstate_limits_lock);
778
779 return ret;
780 }
781
782 static ssize_t show_energy_performance_available_preferences(
783 struct cpufreq_policy *policy, char *buf)
784 {
785 int i = 0;
786 int ret = 0;
787
788 while (energy_perf_strings[i] != NULL)
789 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
790
791 ret += sprintf(&buf[ret], "\n");
792
793 return ret;
794 }
795
796 cpufreq_freq_attr_ro(energy_performance_available_preferences);
797
798 static ssize_t store_energy_performance_preference(
799 struct cpufreq_policy *policy, const char *buf, size_t count)
800 {
801 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
802 char str_preference[21];
803 int ret, i = 0;
804
805 ret = sscanf(buf, "%20s", str_preference);
806 if (ret != 1)
807 return -EINVAL;
808
809 while (energy_perf_strings[i] != NULL) {
810 if (!strcmp(str_preference, energy_perf_strings[i])) {
811 intel_pstate_set_energy_pref_index(cpu_data, i);
812 return count;
813 }
814 ++i;
815 }
816
817 return -EINVAL;
818 }
819
820 static ssize_t show_energy_performance_preference(
821 struct cpufreq_policy *policy, char *buf)
822 {
823 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
824 int preference;
825
826 preference = intel_pstate_get_energy_pref_index(cpu_data);
827 if (preference < 0)
828 return preference;
829
830 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
831 }
832
833 cpufreq_freq_attr_rw(energy_performance_preference);
834
835 static struct freq_attr *hwp_cpufreq_attrs[] = {
836 &energy_performance_preference,
837 &energy_performance_available_preferences,
838 NULL,
839 };
840
841 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
842 {
843 int min, hw_min, max, hw_max, cpu;
844 struct perf_limits *perf_limits = &global;
845 u64 value, cap;
846
847 for_each_cpu(cpu, policy->cpus) {
848 struct cpudata *cpu_data = all_cpu_data[cpu];
849 s16 epp;
850
851 if (per_cpu_limits)
852 perf_limits = all_cpu_data[cpu]->perf_limits;
853
854 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
855 hw_min = HWP_LOWEST_PERF(cap);
856 if (global.no_turbo)
857 hw_max = HWP_GUARANTEED_PERF(cap);
858 else
859 hw_max = HWP_HIGHEST_PERF(cap);
860
861 max = fp_ext_toint(hw_max * perf_limits->max_perf);
862 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
863 min = max;
864 else
865 min = fp_ext_toint(hw_max * perf_limits->min_perf);
866
867 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
868
869 value &= ~HWP_MIN_PERF(~0L);
870 value |= HWP_MIN_PERF(min);
871
872 value &= ~HWP_MAX_PERF(~0L);
873 value |= HWP_MAX_PERF(max);
874
875 if (cpu_data->epp_policy == cpu_data->policy)
876 goto skip_epp;
877
878 cpu_data->epp_policy = cpu_data->policy;
879
880 if (cpu_data->epp_saved >= 0) {
881 epp = cpu_data->epp_saved;
882 cpu_data->epp_saved = -EINVAL;
883 goto update_epp;
884 }
885
886 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
887 epp = intel_pstate_get_epp(cpu_data, value);
888 cpu_data->epp_powersave = epp;
889 /* If EPP read was failed, then don't try to write */
890 if (epp < 0)
891 goto skip_epp;
892
893
894 epp = 0;
895 } else {
896 /* skip setting EPP, when saved value is invalid */
897 if (cpu_data->epp_powersave < 0)
898 goto skip_epp;
899
900 /*
901 * No need to restore EPP when it is not zero. This
902 * means:
903 * - Policy is not changed
904 * - user has manually changed
905 * - Error reading EPB
906 */
907 epp = intel_pstate_get_epp(cpu_data, value);
908 if (epp)
909 goto skip_epp;
910
911 epp = cpu_data->epp_powersave;
912 }
913 update_epp:
914 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
915 value &= ~GENMASK_ULL(31, 24);
916 value |= (u64)epp << 24;
917 } else {
918 intel_pstate_set_epb(cpu, epp);
919 }
920 skip_epp:
921 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
922 }
923 }
924
925 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
926 {
927 if (hwp_active)
928 intel_pstate_hwp_set(policy);
929
930 return 0;
931 }
932
933 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
934 {
935 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
936
937 if (!hwp_active)
938 return 0;
939
940 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
941
942 return 0;
943 }
944
945 static int intel_pstate_resume(struct cpufreq_policy *policy)
946 {
947 int ret;
948
949 if (!hwp_active)
950 return 0;
951
952 mutex_lock(&intel_pstate_limits_lock);
953
954 all_cpu_data[policy->cpu]->epp_policy = 0;
955
956 ret = intel_pstate_hwp_set_policy(policy);
957
958 mutex_unlock(&intel_pstate_limits_lock);
959
960 return ret;
961 }
962
963 static void intel_pstate_update_policies(void)
964 {
965 int cpu;
966
967 for_each_possible_cpu(cpu)
968 cpufreq_update_policy(cpu);
969 }
970
971 /************************** debugfs begin ************************/
972 static int pid_param_set(void *data, u64 val)
973 {
974 *(u32 *)data = val;
975 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
976 intel_pstate_reset_all_pid();
977 return 0;
978 }
979
980 static int pid_param_get(void *data, u64 *val)
981 {
982 *val = *(u32 *)data;
983 return 0;
984 }
985 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
986
987 static struct dentry *debugfs_parent;
988
989 struct pid_param {
990 char *name;
991 void *value;
992 struct dentry *dentry;
993 };
994
995 static struct pid_param pid_files[] = {
996 {"sample_rate_ms", &pid_params.sample_rate_ms, },
997 {"d_gain_pct", &pid_params.d_gain_pct, },
998 {"i_gain_pct", &pid_params.i_gain_pct, },
999 {"deadband", &pid_params.deadband, },
1000 {"setpoint", &pid_params.setpoint, },
1001 {"p_gain_pct", &pid_params.p_gain_pct, },
1002 {NULL, NULL, }
1003 };
1004
1005 static void intel_pstate_debug_expose_params(void)
1006 {
1007 int i;
1008
1009 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1010 if (IS_ERR_OR_NULL(debugfs_parent))
1011 return;
1012
1013 for (i = 0; pid_files[i].name; i++) {
1014 struct dentry *dentry;
1015
1016 dentry = debugfs_create_file(pid_files[i].name, 0660,
1017 debugfs_parent, pid_files[i].value,
1018 &fops_pid_param);
1019 if (!IS_ERR(dentry))
1020 pid_files[i].dentry = dentry;
1021 }
1022 }
1023
1024 static void intel_pstate_debug_hide_params(void)
1025 {
1026 int i;
1027
1028 if (IS_ERR_OR_NULL(debugfs_parent))
1029 return;
1030
1031 for (i = 0; pid_files[i].name; i++) {
1032 debugfs_remove(pid_files[i].dentry);
1033 pid_files[i].dentry = NULL;
1034 }
1035
1036 debugfs_remove(debugfs_parent);
1037 debugfs_parent = NULL;
1038 }
1039
1040 /************************** debugfs end ************************/
1041
1042 /************************** sysfs begin ************************/
1043 #define show_one(file_name, object) \
1044 static ssize_t show_##file_name \
1045 (struct kobject *kobj, struct attribute *attr, char *buf) \
1046 { \
1047 return sprintf(buf, "%u\n", global.object); \
1048 }
1049
1050 static ssize_t intel_pstate_show_status(char *buf);
1051 static int intel_pstate_update_status(const char *buf, size_t size);
1052
1053 static ssize_t show_status(struct kobject *kobj,
1054 struct attribute *attr, char *buf)
1055 {
1056 ssize_t ret;
1057
1058 mutex_lock(&intel_pstate_driver_lock);
1059 ret = intel_pstate_show_status(buf);
1060 mutex_unlock(&intel_pstate_driver_lock);
1061
1062 return ret;
1063 }
1064
1065 static ssize_t store_status(struct kobject *a, struct attribute *b,
1066 const char *buf, size_t count)
1067 {
1068 char *p = memchr(buf, '\n', count);
1069 int ret;
1070
1071 mutex_lock(&intel_pstate_driver_lock);
1072 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1073 mutex_unlock(&intel_pstate_driver_lock);
1074
1075 return ret < 0 ? ret : count;
1076 }
1077
1078 static ssize_t show_turbo_pct(struct kobject *kobj,
1079 struct attribute *attr, char *buf)
1080 {
1081 struct cpudata *cpu;
1082 int total, no_turbo, turbo_pct;
1083 uint32_t turbo_fp;
1084
1085 mutex_lock(&intel_pstate_driver_lock);
1086
1087 if (!driver_registered) {
1088 mutex_unlock(&intel_pstate_driver_lock);
1089 return -EAGAIN;
1090 }
1091
1092 cpu = all_cpu_data[0];
1093
1094 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1095 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1096 turbo_fp = div_fp(no_turbo, total);
1097 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1098
1099 mutex_unlock(&intel_pstate_driver_lock);
1100
1101 return sprintf(buf, "%u\n", turbo_pct);
1102 }
1103
1104 static ssize_t show_num_pstates(struct kobject *kobj,
1105 struct attribute *attr, char *buf)
1106 {
1107 struct cpudata *cpu;
1108 int total;
1109
1110 mutex_lock(&intel_pstate_driver_lock);
1111
1112 if (!driver_registered) {
1113 mutex_unlock(&intel_pstate_driver_lock);
1114 return -EAGAIN;
1115 }
1116
1117 cpu = all_cpu_data[0];
1118 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1119
1120 mutex_unlock(&intel_pstate_driver_lock);
1121
1122 return sprintf(buf, "%u\n", total);
1123 }
1124
1125 static ssize_t show_no_turbo(struct kobject *kobj,
1126 struct attribute *attr, char *buf)
1127 {
1128 ssize_t ret;
1129
1130 mutex_lock(&intel_pstate_driver_lock);
1131
1132 if (!driver_registered) {
1133 mutex_unlock(&intel_pstate_driver_lock);
1134 return -EAGAIN;
1135 }
1136
1137 update_turbo_state();
1138 if (global.turbo_disabled)
1139 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1140 else
1141 ret = sprintf(buf, "%u\n", global.no_turbo);
1142
1143 mutex_unlock(&intel_pstate_driver_lock);
1144
1145 return ret;
1146 }
1147
1148 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1149 const char *buf, size_t count)
1150 {
1151 unsigned int input;
1152 int ret;
1153
1154 ret = sscanf(buf, "%u", &input);
1155 if (ret != 1)
1156 return -EINVAL;
1157
1158 mutex_lock(&intel_pstate_driver_lock);
1159
1160 if (!driver_registered) {
1161 mutex_unlock(&intel_pstate_driver_lock);
1162 return -EAGAIN;
1163 }
1164
1165 mutex_lock(&intel_pstate_limits_lock);
1166
1167 update_turbo_state();
1168 if (global.turbo_disabled) {
1169 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1170 mutex_unlock(&intel_pstate_limits_lock);
1171 mutex_unlock(&intel_pstate_driver_lock);
1172 return -EPERM;
1173 }
1174
1175 global.no_turbo = clamp_t(int, input, 0, 1);
1176
1177 mutex_unlock(&intel_pstate_limits_lock);
1178
1179 intel_pstate_update_policies();
1180
1181 mutex_unlock(&intel_pstate_driver_lock);
1182
1183 return count;
1184 }
1185
1186 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1187 const char *buf, size_t count)
1188 {
1189 unsigned int input;
1190 int ret;
1191
1192 ret = sscanf(buf, "%u", &input);
1193 if (ret != 1)
1194 return -EINVAL;
1195
1196 mutex_lock(&intel_pstate_driver_lock);
1197
1198 if (!driver_registered) {
1199 mutex_unlock(&intel_pstate_driver_lock);
1200 return -EAGAIN;
1201 }
1202
1203 mutex_lock(&intel_pstate_limits_lock);
1204
1205 global.max_sysfs_pct = clamp_t(int, input, 0 , 100);
1206 global.max_perf_pct = min(global.max_policy_pct, global.max_sysfs_pct);
1207 global.max_perf_pct = max(global.min_policy_pct, global.max_perf_pct);
1208 global.max_perf_pct = max(global.min_perf_pct, global.max_perf_pct);
1209 global.max_perf = percent_ext_fp(global.max_perf_pct);
1210
1211 mutex_unlock(&intel_pstate_limits_lock);
1212
1213 intel_pstate_update_policies();
1214
1215 mutex_unlock(&intel_pstate_driver_lock);
1216
1217 return count;
1218 }
1219
1220 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1221 const char *buf, size_t count)
1222 {
1223 unsigned int input;
1224 int ret;
1225
1226 ret = sscanf(buf, "%u", &input);
1227 if (ret != 1)
1228 return -EINVAL;
1229
1230 mutex_lock(&intel_pstate_driver_lock);
1231
1232 if (!driver_registered) {
1233 mutex_unlock(&intel_pstate_driver_lock);
1234 return -EAGAIN;
1235 }
1236
1237 mutex_lock(&intel_pstate_limits_lock);
1238
1239 global.min_sysfs_pct = clamp_t(int, input, 0 , 100);
1240 global.min_perf_pct = max(global.min_policy_pct, global.min_sysfs_pct);
1241 global.min_perf_pct = min(global.max_policy_pct, global.min_perf_pct);
1242 global.min_perf_pct = min(global.max_perf_pct, global.min_perf_pct);
1243 global.min_perf = percent_ext_fp(global.min_perf_pct);
1244
1245 mutex_unlock(&intel_pstate_limits_lock);
1246
1247 intel_pstate_update_policies();
1248
1249 mutex_unlock(&intel_pstate_driver_lock);
1250
1251 return count;
1252 }
1253
1254 show_one(max_perf_pct, max_perf_pct);
1255 show_one(min_perf_pct, min_perf_pct);
1256
1257 define_one_global_rw(status);
1258 define_one_global_rw(no_turbo);
1259 define_one_global_rw(max_perf_pct);
1260 define_one_global_rw(min_perf_pct);
1261 define_one_global_ro(turbo_pct);
1262 define_one_global_ro(num_pstates);
1263
1264 static struct attribute *intel_pstate_attributes[] = {
1265 &status.attr,
1266 &no_turbo.attr,
1267 &turbo_pct.attr,
1268 &num_pstates.attr,
1269 NULL
1270 };
1271
1272 static struct attribute_group intel_pstate_attr_group = {
1273 .attrs = intel_pstate_attributes,
1274 };
1275
1276 static void __init intel_pstate_sysfs_expose_params(void)
1277 {
1278 struct kobject *intel_pstate_kobject;
1279 int rc;
1280
1281 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1282 &cpu_subsys.dev_root->kobj);
1283 if (WARN_ON(!intel_pstate_kobject))
1284 return;
1285
1286 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1287 if (WARN_ON(rc))
1288 return;
1289
1290 /*
1291 * If per cpu limits are enforced there are no global limits, so
1292 * return without creating max/min_perf_pct attributes
1293 */
1294 if (per_cpu_limits)
1295 return;
1296
1297 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1298 WARN_ON(rc);
1299
1300 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1301 WARN_ON(rc);
1302
1303 }
1304 /************************** sysfs end ************************/
1305
1306 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1307 {
1308 /* First disable HWP notification interrupt as we don't process them */
1309 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1310 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1311
1312 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1313 cpudata->epp_policy = 0;
1314 if (cpudata->epp_default == -EINVAL)
1315 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1316 }
1317
1318 #define MSR_IA32_POWER_CTL_BIT_EE 19
1319
1320 /* Disable energy efficiency optimization */
1321 static void intel_pstate_disable_ee(int cpu)
1322 {
1323 u64 power_ctl;
1324 int ret;
1325
1326 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1327 if (ret)
1328 return;
1329
1330 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1331 pr_info("Disabling energy efficiency optimization\n");
1332 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1333 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1334 }
1335 }
1336
1337 static int atom_get_min_pstate(void)
1338 {
1339 u64 value;
1340
1341 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1342 return (value >> 8) & 0x7F;
1343 }
1344
1345 static int atom_get_max_pstate(void)
1346 {
1347 u64 value;
1348
1349 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1350 return (value >> 16) & 0x7F;
1351 }
1352
1353 static int atom_get_turbo_pstate(void)
1354 {
1355 u64 value;
1356
1357 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1358 return value & 0x7F;
1359 }
1360
1361 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1362 {
1363 u64 val;
1364 int32_t vid_fp;
1365 u32 vid;
1366
1367 val = (u64)pstate << 8;
1368 if (global.no_turbo && !global.turbo_disabled)
1369 val |= (u64)1 << 32;
1370
1371 vid_fp = cpudata->vid.min + mul_fp(
1372 int_tofp(pstate - cpudata->pstate.min_pstate),
1373 cpudata->vid.ratio);
1374
1375 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1376 vid = ceiling_fp(vid_fp);
1377
1378 if (pstate > cpudata->pstate.max_pstate)
1379 vid = cpudata->vid.turbo;
1380
1381 return val | vid;
1382 }
1383
1384 static int silvermont_get_scaling(void)
1385 {
1386 u64 value;
1387 int i;
1388 /* Defined in Table 35-6 from SDM (Sept 2015) */
1389 static int silvermont_freq_table[] = {
1390 83300, 100000, 133300, 116700, 80000};
1391
1392 rdmsrl(MSR_FSB_FREQ, value);
1393 i = value & 0x7;
1394 WARN_ON(i > 4);
1395
1396 return silvermont_freq_table[i];
1397 }
1398
1399 static int airmont_get_scaling(void)
1400 {
1401 u64 value;
1402 int i;
1403 /* Defined in Table 35-10 from SDM (Sept 2015) */
1404 static int airmont_freq_table[] = {
1405 83300, 100000, 133300, 116700, 80000,
1406 93300, 90000, 88900, 87500};
1407
1408 rdmsrl(MSR_FSB_FREQ, value);
1409 i = value & 0xF;
1410 WARN_ON(i > 8);
1411
1412 return airmont_freq_table[i];
1413 }
1414
1415 static void atom_get_vid(struct cpudata *cpudata)
1416 {
1417 u64 value;
1418
1419 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1420 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1421 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1422 cpudata->vid.ratio = div_fp(
1423 cpudata->vid.max - cpudata->vid.min,
1424 int_tofp(cpudata->pstate.max_pstate -
1425 cpudata->pstate.min_pstate));
1426
1427 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1428 cpudata->vid.turbo = value & 0x7f;
1429 }
1430
1431 static int core_get_min_pstate(void)
1432 {
1433 u64 value;
1434
1435 rdmsrl(MSR_PLATFORM_INFO, value);
1436 return (value >> 40) & 0xFF;
1437 }
1438
1439 static int core_get_max_pstate_physical(void)
1440 {
1441 u64 value;
1442
1443 rdmsrl(MSR_PLATFORM_INFO, value);
1444 return (value >> 8) & 0xFF;
1445 }
1446
1447 static int core_get_tdp_ratio(u64 plat_info)
1448 {
1449 /* Check how many TDP levels present */
1450 if (plat_info & 0x600000000) {
1451 u64 tdp_ctrl;
1452 u64 tdp_ratio;
1453 int tdp_msr;
1454 int err;
1455
1456 /* Get the TDP level (0, 1, 2) to get ratios */
1457 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1458 if (err)
1459 return err;
1460
1461 /* TDP MSR are continuous starting at 0x648 */
1462 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1463 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1464 if (err)
1465 return err;
1466
1467 /* For level 1 and 2, bits[23:16] contain the ratio */
1468 if (tdp_ctrl & 0x03)
1469 tdp_ratio >>= 16;
1470
1471 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1472 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1473
1474 return (int)tdp_ratio;
1475 }
1476
1477 return -ENXIO;
1478 }
1479
1480 static int core_get_max_pstate(void)
1481 {
1482 u64 tar;
1483 u64 plat_info;
1484 int max_pstate;
1485 int tdp_ratio;
1486 int err;
1487
1488 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1489 max_pstate = (plat_info >> 8) & 0xFF;
1490
1491 tdp_ratio = core_get_tdp_ratio(plat_info);
1492 if (tdp_ratio <= 0)
1493 return max_pstate;
1494
1495 if (hwp_active) {
1496 /* Turbo activation ratio is not used on HWP platforms */
1497 return tdp_ratio;
1498 }
1499
1500 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1501 if (!err) {
1502 int tar_levels;
1503
1504 /* Do some sanity checking for safety */
1505 tar_levels = tar & 0xff;
1506 if (tdp_ratio - 1 == tar_levels) {
1507 max_pstate = tar_levels;
1508 pr_debug("max_pstate=TAC %x\n", max_pstate);
1509 }
1510 }
1511
1512 return max_pstate;
1513 }
1514
1515 static int core_get_turbo_pstate(void)
1516 {
1517 u64 value;
1518 int nont, ret;
1519
1520 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1521 nont = core_get_max_pstate();
1522 ret = (value) & 255;
1523 if (ret <= nont)
1524 ret = nont;
1525 return ret;
1526 }
1527
1528 static inline int core_get_scaling(void)
1529 {
1530 return 100000;
1531 }
1532
1533 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1534 {
1535 u64 val;
1536
1537 val = (u64)pstate << 8;
1538 if (global.no_turbo && !global.turbo_disabled)
1539 val |= (u64)1 << 32;
1540
1541 return val;
1542 }
1543
1544 static int knl_get_turbo_pstate(void)
1545 {
1546 u64 value;
1547 int nont, ret;
1548
1549 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1550 nont = core_get_max_pstate();
1551 ret = (((value) >> 8) & 0xFF);
1552 if (ret <= nont)
1553 ret = nont;
1554 return ret;
1555 }
1556
1557 static struct cpu_defaults core_params = {
1558 .pid_policy = {
1559 .sample_rate_ms = 10,
1560 .deadband = 0,
1561 .setpoint = 97,
1562 .p_gain_pct = 20,
1563 .d_gain_pct = 0,
1564 .i_gain_pct = 0,
1565 },
1566 .funcs = {
1567 .get_max = core_get_max_pstate,
1568 .get_max_physical = core_get_max_pstate_physical,
1569 .get_min = core_get_min_pstate,
1570 .get_turbo = core_get_turbo_pstate,
1571 .get_scaling = core_get_scaling,
1572 .get_val = core_get_val,
1573 .get_target_pstate = get_target_pstate_use_performance,
1574 },
1575 };
1576
1577 static const struct cpu_defaults silvermont_params = {
1578 .pid_policy = {
1579 .sample_rate_ms = 10,
1580 .deadband = 0,
1581 .setpoint = 60,
1582 .p_gain_pct = 14,
1583 .d_gain_pct = 0,
1584 .i_gain_pct = 4,
1585 },
1586 .funcs = {
1587 .get_max = atom_get_max_pstate,
1588 .get_max_physical = atom_get_max_pstate,
1589 .get_min = atom_get_min_pstate,
1590 .get_turbo = atom_get_turbo_pstate,
1591 .get_val = atom_get_val,
1592 .get_scaling = silvermont_get_scaling,
1593 .get_vid = atom_get_vid,
1594 .get_target_pstate = get_target_pstate_use_cpu_load,
1595 },
1596 };
1597
1598 static const struct cpu_defaults airmont_params = {
1599 .pid_policy = {
1600 .sample_rate_ms = 10,
1601 .deadband = 0,
1602 .setpoint = 60,
1603 .p_gain_pct = 14,
1604 .d_gain_pct = 0,
1605 .i_gain_pct = 4,
1606 },
1607 .funcs = {
1608 .get_max = atom_get_max_pstate,
1609 .get_max_physical = atom_get_max_pstate,
1610 .get_min = atom_get_min_pstate,
1611 .get_turbo = atom_get_turbo_pstate,
1612 .get_val = atom_get_val,
1613 .get_scaling = airmont_get_scaling,
1614 .get_vid = atom_get_vid,
1615 .get_target_pstate = get_target_pstate_use_cpu_load,
1616 },
1617 };
1618
1619 static const struct cpu_defaults knl_params = {
1620 .pid_policy = {
1621 .sample_rate_ms = 10,
1622 .deadband = 0,
1623 .setpoint = 97,
1624 .p_gain_pct = 20,
1625 .d_gain_pct = 0,
1626 .i_gain_pct = 0,
1627 },
1628 .funcs = {
1629 .get_max = core_get_max_pstate,
1630 .get_max_physical = core_get_max_pstate_physical,
1631 .get_min = core_get_min_pstate,
1632 .get_turbo = knl_get_turbo_pstate,
1633 .get_scaling = core_get_scaling,
1634 .get_val = core_get_val,
1635 .get_target_pstate = get_target_pstate_use_performance,
1636 },
1637 };
1638
1639 static const struct cpu_defaults bxt_params = {
1640 .pid_policy = {
1641 .sample_rate_ms = 10,
1642 .deadband = 0,
1643 .setpoint = 60,
1644 .p_gain_pct = 14,
1645 .d_gain_pct = 0,
1646 .i_gain_pct = 4,
1647 },
1648 .funcs = {
1649 .get_max = core_get_max_pstate,
1650 .get_max_physical = core_get_max_pstate_physical,
1651 .get_min = core_get_min_pstate,
1652 .get_turbo = core_get_turbo_pstate,
1653 .get_scaling = core_get_scaling,
1654 .get_val = core_get_val,
1655 .get_target_pstate = get_target_pstate_use_cpu_load,
1656 },
1657 };
1658
1659 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1660 {
1661 int max_perf = cpu->pstate.turbo_pstate;
1662 int max_perf_adj;
1663 int min_perf;
1664 struct perf_limits *perf_limits = &global;
1665
1666 if (global.no_turbo || global.turbo_disabled)
1667 max_perf = cpu->pstate.max_pstate;
1668
1669 if (per_cpu_limits)
1670 perf_limits = cpu->perf_limits;
1671
1672 /*
1673 * performance can be limited by user through sysfs, by cpufreq
1674 * policy, or by cpu specific default values determined through
1675 * experimentation.
1676 */
1677 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1678 *max = clamp_t(int, max_perf_adj,
1679 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1680
1681 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1682 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1683 }
1684
1685 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1686 {
1687 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1688 cpu->pstate.current_pstate = pstate;
1689 /*
1690 * Generally, there is no guarantee that this code will always run on
1691 * the CPU being updated, so force the register update to run on the
1692 * right CPU.
1693 */
1694 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1695 pstate_funcs.get_val(cpu, pstate));
1696 }
1697
1698 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1699 {
1700 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1701 }
1702
1703 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1704 {
1705 int min_pstate, max_pstate;
1706
1707 update_turbo_state();
1708 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1709 intel_pstate_set_pstate(cpu, max_pstate);
1710 }
1711
1712 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1713 {
1714 cpu->pstate.min_pstate = pstate_funcs.get_min();
1715 cpu->pstate.max_pstate = pstate_funcs.get_max();
1716 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1717 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1718 cpu->pstate.scaling = pstate_funcs.get_scaling();
1719 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1720 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1721
1722 if (pstate_funcs.get_vid)
1723 pstate_funcs.get_vid(cpu);
1724
1725 intel_pstate_set_min_pstate(cpu);
1726 }
1727
1728 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1729 {
1730 struct sample *sample = &cpu->sample;
1731
1732 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1733 }
1734
1735 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1736 {
1737 u64 aperf, mperf;
1738 unsigned long flags;
1739 u64 tsc;
1740
1741 local_irq_save(flags);
1742 rdmsrl(MSR_IA32_APERF, aperf);
1743 rdmsrl(MSR_IA32_MPERF, mperf);
1744 tsc = rdtsc();
1745 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1746 local_irq_restore(flags);
1747 return false;
1748 }
1749 local_irq_restore(flags);
1750
1751 cpu->last_sample_time = cpu->sample.time;
1752 cpu->sample.time = time;
1753 cpu->sample.aperf = aperf;
1754 cpu->sample.mperf = mperf;
1755 cpu->sample.tsc = tsc;
1756 cpu->sample.aperf -= cpu->prev_aperf;
1757 cpu->sample.mperf -= cpu->prev_mperf;
1758 cpu->sample.tsc -= cpu->prev_tsc;
1759
1760 cpu->prev_aperf = aperf;
1761 cpu->prev_mperf = mperf;
1762 cpu->prev_tsc = tsc;
1763 /*
1764 * First time this function is invoked in a given cycle, all of the
1765 * previous sample data fields are equal to zero or stale and they must
1766 * be populated with meaningful numbers for things to work, so assume
1767 * that sample.time will always be reset before setting the utilization
1768 * update hook and make the caller skip the sample then.
1769 */
1770 return !!cpu->last_sample_time;
1771 }
1772
1773 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1774 {
1775 return mul_ext_fp(cpu->sample.core_avg_perf,
1776 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1777 }
1778
1779 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1780 {
1781 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1782 cpu->sample.core_avg_perf);
1783 }
1784
1785 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1786 {
1787 struct sample *sample = &cpu->sample;
1788 int32_t busy_frac, boost;
1789 int target, avg_pstate;
1790
1791 busy_frac = div_fp(sample->mperf, sample->tsc);
1792
1793 boost = cpu->iowait_boost;
1794 cpu->iowait_boost >>= 1;
1795
1796 if (busy_frac < boost)
1797 busy_frac = boost;
1798
1799 sample->busy_scaled = busy_frac * 100;
1800
1801 target = global.no_turbo || global.turbo_disabled ?
1802 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1803 target += target >> 2;
1804 target = mul_fp(target, busy_frac);
1805 if (target < cpu->pstate.min_pstate)
1806 target = cpu->pstate.min_pstate;
1807
1808 /*
1809 * If the average P-state during the previous cycle was higher than the
1810 * current target, add 50% of the difference to the target to reduce
1811 * possible performance oscillations and offset possible performance
1812 * loss related to moving the workload from one CPU to another within
1813 * a package/module.
1814 */
1815 avg_pstate = get_avg_pstate(cpu);
1816 if (avg_pstate > target)
1817 target += (avg_pstate - target) >> 1;
1818
1819 return target;
1820 }
1821
1822 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1823 {
1824 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1825 u64 duration_ns;
1826
1827 /*
1828 * perf_scaled is the ratio of the average P-state during the last
1829 * sampling period to the P-state requested last time (in percent).
1830 *
1831 * That measures the system's response to the previous P-state
1832 * selection.
1833 */
1834 max_pstate = cpu->pstate.max_pstate_physical;
1835 current_pstate = cpu->pstate.current_pstate;
1836 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1837 div_fp(100 * max_pstate, current_pstate));
1838
1839 /*
1840 * Since our utilization update callback will not run unless we are
1841 * in C0, check if the actual elapsed time is significantly greater (3x)
1842 * than our sample interval. If it is, then we were idle for a long
1843 * enough period of time to adjust our performance metric.
1844 */
1845 duration_ns = cpu->sample.time - cpu->last_sample_time;
1846 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1847 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1848 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1849 } else {
1850 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1851 if (sample_ratio < int_tofp(1))
1852 perf_scaled = 0;
1853 }
1854
1855 cpu->sample.busy_scaled = perf_scaled;
1856 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1857 }
1858
1859 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1860 {
1861 int max_perf, min_perf;
1862
1863 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1864 pstate = clamp_t(int, pstate, min_perf, max_perf);
1865 return pstate;
1866 }
1867
1868 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1869 {
1870 if (pstate == cpu->pstate.current_pstate)
1871 return;
1872
1873 cpu->pstate.current_pstate = pstate;
1874 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1875 }
1876
1877 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1878 {
1879 int from, target_pstate;
1880 struct sample *sample;
1881
1882 from = cpu->pstate.current_pstate;
1883
1884 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1885 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1886
1887 update_turbo_state();
1888
1889 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1890 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1891 intel_pstate_update_pstate(cpu, target_pstate);
1892
1893 sample = &cpu->sample;
1894 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1895 fp_toint(sample->busy_scaled),
1896 from,
1897 cpu->pstate.current_pstate,
1898 sample->mperf,
1899 sample->aperf,
1900 sample->tsc,
1901 get_avg_frequency(cpu),
1902 fp_toint(cpu->iowait_boost * 100));
1903 }
1904
1905 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1906 unsigned int flags)
1907 {
1908 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1909 u64 delta_ns;
1910
1911 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1912 if (flags & SCHED_CPUFREQ_IOWAIT) {
1913 cpu->iowait_boost = int_tofp(1);
1914 } else if (cpu->iowait_boost) {
1915 /* Clear iowait_boost if the CPU may have been idle. */
1916 delta_ns = time - cpu->last_update;
1917 if (delta_ns > TICK_NSEC)
1918 cpu->iowait_boost = 0;
1919 }
1920 cpu->last_update = time;
1921 }
1922
1923 delta_ns = time - cpu->sample.time;
1924 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1925 bool sample_taken = intel_pstate_sample(cpu, time);
1926
1927 if (sample_taken) {
1928 intel_pstate_calc_avg_perf(cpu);
1929 if (!hwp_active)
1930 intel_pstate_adjust_busy_pstate(cpu);
1931 }
1932 }
1933 }
1934
1935 #define ICPU(model, policy) \
1936 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1937 (unsigned long)&policy }
1938
1939 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1940 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1941 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1942 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1943 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1944 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1945 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1946 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1947 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1948 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1949 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1950 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1951 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1952 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1953 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1954 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1955 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1956 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
1957 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
1958 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
1959 {}
1960 };
1961 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1962
1963 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1964 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1965 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1966 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1967 {}
1968 };
1969
1970 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1971 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1972 {}
1973 };
1974
1975 static int intel_pstate_init_cpu(unsigned int cpunum)
1976 {
1977 struct cpudata *cpu;
1978
1979 cpu = all_cpu_data[cpunum];
1980
1981 if (!cpu) {
1982 unsigned int size = sizeof(struct cpudata);
1983
1984 if (per_cpu_limits)
1985 size += sizeof(struct perf_limits);
1986
1987 cpu = kzalloc(size, GFP_KERNEL);
1988 if (!cpu)
1989 return -ENOMEM;
1990
1991 all_cpu_data[cpunum] = cpu;
1992 if (per_cpu_limits)
1993 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1994
1995 cpu->epp_default = -EINVAL;
1996 cpu->epp_powersave = -EINVAL;
1997 cpu->epp_saved = -EINVAL;
1998 }
1999
2000 cpu = all_cpu_data[cpunum];
2001
2002 cpu->cpu = cpunum;
2003
2004 if (hwp_active) {
2005 const struct x86_cpu_id *id;
2006
2007 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2008 if (id)
2009 intel_pstate_disable_ee(cpunum);
2010
2011 intel_pstate_hwp_enable(cpu);
2012 pid_params.sample_rate_ms = 50;
2013 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2014 }
2015
2016 intel_pstate_get_cpu_pstates(cpu);
2017
2018 intel_pstate_busy_pid_reset(cpu);
2019
2020 pr_debug("controlling: cpu %d\n", cpunum);
2021
2022 return 0;
2023 }
2024
2025 static unsigned int intel_pstate_get(unsigned int cpu_num)
2026 {
2027 struct cpudata *cpu = all_cpu_data[cpu_num];
2028
2029 return cpu ? get_avg_frequency(cpu) : 0;
2030 }
2031
2032 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2033 {
2034 struct cpudata *cpu = all_cpu_data[cpu_num];
2035
2036 if (cpu->update_util_set)
2037 return;
2038
2039 /* Prevent intel_pstate_update_util() from using stale data. */
2040 cpu->sample.time = 0;
2041 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2042 intel_pstate_update_util);
2043 cpu->update_util_set = true;
2044 }
2045
2046 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2047 {
2048 struct cpudata *cpu_data = all_cpu_data[cpu];
2049
2050 if (!cpu_data->update_util_set)
2051 return;
2052
2053 cpufreq_remove_update_util_hook(cpu);
2054 cpu_data->update_util_set = false;
2055 synchronize_sched();
2056 }
2057
2058 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2059 struct perf_limits *limits)
2060 {
2061 int32_t max_policy_perf, min_policy_perf;
2062
2063 max_policy_perf = div_ext_fp(policy->max, policy->cpuinfo.max_freq);
2064 max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
2065 if (policy->max == policy->min) {
2066 min_policy_perf = max_policy_perf;
2067 } else {
2068 min_policy_perf = div_ext_fp(policy->min,
2069 policy->cpuinfo.max_freq);
2070 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2071 0, max_policy_perf);
2072 }
2073
2074 /* Normalize user input to [min_perf, max_perf] */
2075 limits->min_perf = max(min_policy_perf,
2076 percent_ext_fp(limits->min_sysfs_pct));
2077 limits->min_perf = min(limits->min_perf, max_policy_perf);
2078 limits->max_perf = min(max_policy_perf,
2079 percent_ext_fp(limits->max_sysfs_pct));
2080 limits->max_perf = max(min_policy_perf, limits->max_perf);
2081
2082 /* Make sure min_perf <= max_perf */
2083 limits->min_perf = min(limits->min_perf, limits->max_perf);
2084
2085 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2086 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2087 limits->max_perf_pct = fp_ext_toint(limits->max_perf * 100);
2088 limits->min_perf_pct = fp_ext_toint(limits->min_perf * 100);
2089
2090 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2091 limits->max_perf_pct, limits->min_perf_pct);
2092 }
2093
2094 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2095 {
2096 struct cpudata *cpu;
2097 struct perf_limits *perf_limits = &global;
2098
2099 if (!policy->cpuinfo.max_freq)
2100 return -ENODEV;
2101
2102 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2103 policy->cpuinfo.max_freq, policy->max);
2104
2105 cpu = all_cpu_data[policy->cpu];
2106 cpu->policy = policy->policy;
2107
2108 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2109 policy->max < policy->cpuinfo.max_freq &&
2110 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2111 pr_debug("policy->max > max non turbo frequency\n");
2112 policy->max = policy->cpuinfo.max_freq;
2113 }
2114
2115 if (per_cpu_limits)
2116 perf_limits = cpu->perf_limits;
2117
2118 mutex_lock(&intel_pstate_limits_lock);
2119
2120 intel_pstate_update_perf_limits(policy, perf_limits);
2121
2122 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2123 /*
2124 * NOHZ_FULL CPUs need this as the governor callback may not
2125 * be invoked on them.
2126 */
2127 intel_pstate_clear_update_util_hook(policy->cpu);
2128 intel_pstate_max_within_limits(cpu);
2129 }
2130
2131 intel_pstate_set_update_util_hook(policy->cpu);
2132
2133 intel_pstate_hwp_set_policy(policy);
2134
2135 mutex_unlock(&intel_pstate_limits_lock);
2136
2137 return 0;
2138 }
2139
2140 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2141 {
2142 struct cpudata *cpu = all_cpu_data[policy->cpu];
2143
2144 update_turbo_state();
2145 policy->cpuinfo.max_freq = global.turbo_disabled || global.no_turbo ?
2146 cpu->pstate.max_freq :
2147 cpu->pstate.turbo_freq;
2148
2149 cpufreq_verify_within_cpu_limits(policy);
2150
2151 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2152 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2153 return -EINVAL;
2154
2155 /* When per-CPU limits are used, sysfs limits are not used */
2156 if (!per_cpu_limits) {
2157 unsigned int max_freq, min_freq;
2158
2159 max_freq = policy->cpuinfo.max_freq *
2160 global.max_sysfs_pct / 100;
2161 min_freq = policy->cpuinfo.max_freq *
2162 global.min_sysfs_pct / 100;
2163 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2164 }
2165
2166 return 0;
2167 }
2168
2169 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2170 {
2171 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2172 }
2173
2174 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2175 {
2176 pr_debug("CPU %d exiting\n", policy->cpu);
2177
2178 intel_pstate_clear_update_util_hook(policy->cpu);
2179 if (hwp_active)
2180 intel_pstate_hwp_save_state(policy);
2181 else
2182 intel_cpufreq_stop_cpu(policy);
2183 }
2184
2185 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2186 {
2187 intel_pstate_exit_perf_limits(policy);
2188
2189 policy->fast_switch_possible = false;
2190
2191 return 0;
2192 }
2193
2194 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2195 {
2196 struct cpudata *cpu;
2197 int rc;
2198
2199 rc = intel_pstate_init_cpu(policy->cpu);
2200 if (rc)
2201 return rc;
2202
2203 cpu = all_cpu_data[policy->cpu];
2204
2205 if (per_cpu_limits)
2206 intel_pstate_init_limits(cpu->perf_limits);
2207
2208 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2209 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2210
2211 /* cpuinfo and default policy values */
2212 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2213 update_turbo_state();
2214 policy->cpuinfo.max_freq = global.turbo_disabled ?
2215 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2216 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2217
2218 intel_pstate_init_acpi_perf_limits(policy);
2219 cpumask_set_cpu(policy->cpu, policy->cpus);
2220
2221 policy->fast_switch_possible = true;
2222
2223 return 0;
2224 }
2225
2226 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2227 {
2228 int ret = __intel_pstate_cpu_init(policy);
2229
2230 if (ret)
2231 return ret;
2232
2233 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2234 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2235 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2236 else
2237 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2238
2239 return 0;
2240 }
2241
2242 static struct cpufreq_driver intel_pstate = {
2243 .flags = CPUFREQ_CONST_LOOPS,
2244 .verify = intel_pstate_verify_policy,
2245 .setpolicy = intel_pstate_set_policy,
2246 .suspend = intel_pstate_hwp_save_state,
2247 .resume = intel_pstate_resume,
2248 .get = intel_pstate_get,
2249 .init = intel_pstate_cpu_init,
2250 .exit = intel_pstate_cpu_exit,
2251 .stop_cpu = intel_pstate_stop_cpu,
2252 .name = "intel_pstate",
2253 };
2254
2255 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2256 {
2257 struct cpudata *cpu = all_cpu_data[policy->cpu];
2258
2259 update_turbo_state();
2260 policy->cpuinfo.max_freq = global.no_turbo || global.turbo_disabled ?
2261 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2262
2263 cpufreq_verify_within_cpu_limits(policy);
2264
2265 return 0;
2266 }
2267
2268 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2269 unsigned int target_freq,
2270 unsigned int relation)
2271 {
2272 struct cpudata *cpu = all_cpu_data[policy->cpu];
2273 struct cpufreq_freqs freqs;
2274 int target_pstate;
2275
2276 update_turbo_state();
2277
2278 freqs.old = policy->cur;
2279 freqs.new = target_freq;
2280
2281 cpufreq_freq_transition_begin(policy, &freqs);
2282 switch (relation) {
2283 case CPUFREQ_RELATION_L:
2284 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2285 break;
2286 case CPUFREQ_RELATION_H:
2287 target_pstate = freqs.new / cpu->pstate.scaling;
2288 break;
2289 default:
2290 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2291 break;
2292 }
2293 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2294 if (target_pstate != cpu->pstate.current_pstate) {
2295 cpu->pstate.current_pstate = target_pstate;
2296 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2297 pstate_funcs.get_val(cpu, target_pstate));
2298 }
2299 freqs.new = target_pstate * cpu->pstate.scaling;
2300 cpufreq_freq_transition_end(policy, &freqs, false);
2301
2302 return 0;
2303 }
2304
2305 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2306 unsigned int target_freq)
2307 {
2308 struct cpudata *cpu = all_cpu_data[policy->cpu];
2309 int target_pstate;
2310
2311 update_turbo_state();
2312
2313 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2314 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2315 intel_pstate_update_pstate(cpu, target_pstate);
2316 return target_pstate * cpu->pstate.scaling;
2317 }
2318
2319 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2320 {
2321 int ret = __intel_pstate_cpu_init(policy);
2322
2323 if (ret)
2324 return ret;
2325
2326 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2327 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2328 policy->cur = policy->cpuinfo.min_freq;
2329
2330 return 0;
2331 }
2332
2333 static struct cpufreq_driver intel_cpufreq = {
2334 .flags = CPUFREQ_CONST_LOOPS,
2335 .verify = intel_cpufreq_verify_policy,
2336 .target = intel_cpufreq_target,
2337 .fast_switch = intel_cpufreq_fast_switch,
2338 .init = intel_cpufreq_cpu_init,
2339 .exit = intel_pstate_cpu_exit,
2340 .stop_cpu = intel_cpufreq_stop_cpu,
2341 .name = "intel_cpufreq",
2342 };
2343
2344 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2345
2346 static void intel_pstate_driver_cleanup(void)
2347 {
2348 unsigned int cpu;
2349
2350 get_online_cpus();
2351 for_each_online_cpu(cpu) {
2352 if (all_cpu_data[cpu]) {
2353 if (intel_pstate_driver == &intel_pstate)
2354 intel_pstate_clear_update_util_hook(cpu);
2355
2356 kfree(all_cpu_data[cpu]);
2357 all_cpu_data[cpu] = NULL;
2358 }
2359 }
2360 put_online_cpus();
2361 }
2362
2363 static int intel_pstate_register_driver(void)
2364 {
2365 int ret;
2366
2367 intel_pstate_init_limits(&global);
2368
2369 ret = cpufreq_register_driver(intel_pstate_driver);
2370 if (ret) {
2371 intel_pstate_driver_cleanup();
2372 return ret;
2373 }
2374
2375 mutex_lock(&intel_pstate_limits_lock);
2376 driver_registered = true;
2377 mutex_unlock(&intel_pstate_limits_lock);
2378
2379 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2380 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2381 intel_pstate_debug_expose_params();
2382
2383 return 0;
2384 }
2385
2386 static int intel_pstate_unregister_driver(void)
2387 {
2388 if (hwp_active)
2389 return -EBUSY;
2390
2391 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2392 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2393 intel_pstate_debug_hide_params();
2394
2395 mutex_lock(&intel_pstate_limits_lock);
2396 driver_registered = false;
2397 mutex_unlock(&intel_pstate_limits_lock);
2398
2399 cpufreq_unregister_driver(intel_pstate_driver);
2400 intel_pstate_driver_cleanup();
2401
2402 return 0;
2403 }
2404
2405 static ssize_t intel_pstate_show_status(char *buf)
2406 {
2407 if (!driver_registered)
2408 return sprintf(buf, "off\n");
2409
2410 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2411 "active" : "passive");
2412 }
2413
2414 static int intel_pstate_update_status(const char *buf, size_t size)
2415 {
2416 int ret;
2417
2418 if (size == 3 && !strncmp(buf, "off", size))
2419 return driver_registered ?
2420 intel_pstate_unregister_driver() : -EINVAL;
2421
2422 if (size == 6 && !strncmp(buf, "active", size)) {
2423 if (driver_registered) {
2424 if (intel_pstate_driver == &intel_pstate)
2425 return 0;
2426
2427 ret = intel_pstate_unregister_driver();
2428 if (ret)
2429 return ret;
2430 }
2431
2432 intel_pstate_driver = &intel_pstate;
2433 return intel_pstate_register_driver();
2434 }
2435
2436 if (size == 7 && !strncmp(buf, "passive", size)) {
2437 if (driver_registered) {
2438 if (intel_pstate_driver != &intel_pstate)
2439 return 0;
2440
2441 ret = intel_pstate_unregister_driver();
2442 if (ret)
2443 return ret;
2444 }
2445
2446 intel_pstate_driver = &intel_cpufreq;
2447 return intel_pstate_register_driver();
2448 }
2449
2450 return -EINVAL;
2451 }
2452
2453 static int no_load __initdata;
2454 static int no_hwp __initdata;
2455 static int hwp_only __initdata;
2456 static unsigned int force_load __initdata;
2457
2458 static int __init intel_pstate_msrs_not_valid(void)
2459 {
2460 if (!pstate_funcs.get_max() ||
2461 !pstate_funcs.get_min() ||
2462 !pstate_funcs.get_turbo())
2463 return -ENODEV;
2464
2465 return 0;
2466 }
2467
2468 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2469 {
2470 pid_params.sample_rate_ms = policy->sample_rate_ms;
2471 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2472 pid_params.p_gain_pct = policy->p_gain_pct;
2473 pid_params.i_gain_pct = policy->i_gain_pct;
2474 pid_params.d_gain_pct = policy->d_gain_pct;
2475 pid_params.deadband = policy->deadband;
2476 pid_params.setpoint = policy->setpoint;
2477 }
2478
2479 #ifdef CONFIG_ACPI
2480 static void intel_pstate_use_acpi_profile(void)
2481 {
2482 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2483 pstate_funcs.get_target_pstate =
2484 get_target_pstate_use_cpu_load;
2485 }
2486 #else
2487 static void intel_pstate_use_acpi_profile(void)
2488 {
2489 }
2490 #endif
2491
2492 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2493 {
2494 pstate_funcs.get_max = funcs->get_max;
2495 pstate_funcs.get_max_physical = funcs->get_max_physical;
2496 pstate_funcs.get_min = funcs->get_min;
2497 pstate_funcs.get_turbo = funcs->get_turbo;
2498 pstate_funcs.get_scaling = funcs->get_scaling;
2499 pstate_funcs.get_val = funcs->get_val;
2500 pstate_funcs.get_vid = funcs->get_vid;
2501 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2502
2503 intel_pstate_use_acpi_profile();
2504 }
2505
2506 #ifdef CONFIG_ACPI
2507
2508 static bool __init intel_pstate_no_acpi_pss(void)
2509 {
2510 int i;
2511
2512 for_each_possible_cpu(i) {
2513 acpi_status status;
2514 union acpi_object *pss;
2515 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2516 struct acpi_processor *pr = per_cpu(processors, i);
2517
2518 if (!pr)
2519 continue;
2520
2521 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2522 if (ACPI_FAILURE(status))
2523 continue;
2524
2525 pss = buffer.pointer;
2526 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2527 kfree(pss);
2528 return false;
2529 }
2530
2531 kfree(pss);
2532 }
2533
2534 return true;
2535 }
2536
2537 static bool __init intel_pstate_has_acpi_ppc(void)
2538 {
2539 int i;
2540
2541 for_each_possible_cpu(i) {
2542 struct acpi_processor *pr = per_cpu(processors, i);
2543
2544 if (!pr)
2545 continue;
2546 if (acpi_has_method(pr->handle, "_PPC"))
2547 return true;
2548 }
2549 return false;
2550 }
2551
2552 enum {
2553 PSS,
2554 PPC,
2555 };
2556
2557 struct hw_vendor_info {
2558 u16 valid;
2559 char oem_id[ACPI_OEM_ID_SIZE];
2560 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2561 int oem_pwr_table;
2562 };
2563
2564 /* Hardware vendor-specific info that has its own power management modes */
2565 static struct hw_vendor_info vendor_info[] __initdata = {
2566 {1, "HP ", "ProLiant", PSS},
2567 {1, "ORACLE", "X4-2 ", PPC},
2568 {1, "ORACLE", "X4-2L ", PPC},
2569 {1, "ORACLE", "X4-2B ", PPC},
2570 {1, "ORACLE", "X3-2 ", PPC},
2571 {1, "ORACLE", "X3-2L ", PPC},
2572 {1, "ORACLE", "X3-2B ", PPC},
2573 {1, "ORACLE", "X4470M2 ", PPC},
2574 {1, "ORACLE", "X4270M3 ", PPC},
2575 {1, "ORACLE", "X4270M2 ", PPC},
2576 {1, "ORACLE", "X4170M2 ", PPC},
2577 {1, "ORACLE", "X4170 M3", PPC},
2578 {1, "ORACLE", "X4275 M3", PPC},
2579 {1, "ORACLE", "X6-2 ", PPC},
2580 {1, "ORACLE", "Sudbury ", PPC},
2581 {0, "", ""},
2582 };
2583
2584 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2585 {
2586 struct acpi_table_header hdr;
2587 struct hw_vendor_info *v_info;
2588 const struct x86_cpu_id *id;
2589 u64 misc_pwr;
2590
2591 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2592 if (id) {
2593 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2594 if ( misc_pwr & (1 << 8))
2595 return true;
2596 }
2597
2598 if (acpi_disabled ||
2599 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2600 return false;
2601
2602 for (v_info = vendor_info; v_info->valid; v_info++) {
2603 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2604 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2605 ACPI_OEM_TABLE_ID_SIZE))
2606 switch (v_info->oem_pwr_table) {
2607 case PSS:
2608 return intel_pstate_no_acpi_pss();
2609 case PPC:
2610 return intel_pstate_has_acpi_ppc() &&
2611 (!force_load);
2612 }
2613 }
2614
2615 return false;
2616 }
2617
2618 static void intel_pstate_request_control_from_smm(void)
2619 {
2620 /*
2621 * It may be unsafe to request P-states control from SMM if _PPC support
2622 * has not been enabled.
2623 */
2624 if (acpi_ppc)
2625 acpi_processor_pstate_control();
2626 }
2627 #else /* CONFIG_ACPI not enabled */
2628 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2629 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2630 static inline void intel_pstate_request_control_from_smm(void) {}
2631 #endif /* CONFIG_ACPI */
2632
2633 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2634 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2635 {}
2636 };
2637
2638 static int __init intel_pstate_init(void)
2639 {
2640 const struct x86_cpu_id *id;
2641 struct cpu_defaults *cpu_def;
2642 int rc = 0;
2643
2644 if (no_load)
2645 return -ENODEV;
2646
2647 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2648 copy_cpu_funcs(&core_params.funcs);
2649 hwp_active++;
2650 intel_pstate.attr = hwp_cpufreq_attrs;
2651 goto hwp_cpu_matched;
2652 }
2653
2654 id = x86_match_cpu(intel_pstate_cpu_ids);
2655 if (!id)
2656 return -ENODEV;
2657
2658 cpu_def = (struct cpu_defaults *)id->driver_data;
2659
2660 copy_pid_params(&cpu_def->pid_policy);
2661 copy_cpu_funcs(&cpu_def->funcs);
2662
2663 if (intel_pstate_msrs_not_valid())
2664 return -ENODEV;
2665
2666 hwp_cpu_matched:
2667 /*
2668 * The Intel pstate driver will be ignored if the platform
2669 * firmware has its own power management modes.
2670 */
2671 if (intel_pstate_platform_pwr_mgmt_exists())
2672 return -ENODEV;
2673
2674 if (!hwp_active && hwp_only)
2675 return -ENOTSUPP;
2676
2677 pr_info("Intel P-state driver initializing\n");
2678
2679 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2680 if (!all_cpu_data)
2681 return -ENOMEM;
2682
2683 intel_pstate_request_control_from_smm();
2684
2685 intel_pstate_sysfs_expose_params();
2686
2687 mutex_lock(&intel_pstate_driver_lock);
2688 rc = intel_pstate_register_driver();
2689 mutex_unlock(&intel_pstate_driver_lock);
2690 if (rc)
2691 return rc;
2692
2693 if (hwp_active)
2694 pr_info("HWP enabled\n");
2695
2696 return 0;
2697 }
2698 device_initcall(intel_pstate_init);
2699
2700 static int __init intel_pstate_setup(char *str)
2701 {
2702 if (!str)
2703 return -EINVAL;
2704
2705 if (!strcmp(str, "disable")) {
2706 no_load = 1;
2707 } else if (!strcmp(str, "passive")) {
2708 pr_info("Passive mode enabled\n");
2709 intel_pstate_driver = &intel_cpufreq;
2710 no_hwp = 1;
2711 }
2712 if (!strcmp(str, "no_hwp")) {
2713 pr_info("HWP disabled\n");
2714 no_hwp = 1;
2715 }
2716 if (!strcmp(str, "force"))
2717 force_load = 1;
2718 if (!strcmp(str, "hwp_only"))
2719 hwp_only = 1;
2720 if (!strcmp(str, "per_cpu_perf_limits"))
2721 per_cpu_limits = true;
2722
2723 #ifdef CONFIG_ACPI
2724 if (!strcmp(str, "support_acpi_ppc"))
2725 acpi_ppc = true;
2726 #endif
2727
2728 return 0;
2729 }
2730 early_param("intel_pstate", intel_pstate_setup);
2731
2732 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2733 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2734 MODULE_LICENSE("GPL");