Revert "cpufreq: Fix governor module removal race"
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active) \
43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy) \
47 for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy) \
49 for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy) \
52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor) \
57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60 * The "cpufreq driver" - the arch- or hardware-dependent low
61 * level driver of CPUFreq support, and its spinlock. This lock
62 * also protects the cpufreq_cpu_data array.
63 */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85 * Two notifier lists: the "policy" list is involved in the
86 * validation process for a new CPU frequency policy; the
87 * "transition" list for kernel code that needs to handle
88 * changes to devices when the CPU clock speed changes.
89 * The mutex locks both lists.
90 */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98 init_cpufreq_transition_notifier_list_called = true;
99 return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 return off;
107 }
108 void disable_cpufreq(void)
109 {
110 off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113
114 bool have_governor_per_policy(void)
115 {
116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 u64 idle_time;
132 u64 cur_wall_time;
133 u64 busy_time;
134
135 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
136
137 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143
144 idle_time = cur_wall_time - busy_time;
145 if (wall)
146 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
147
148 return div_u64(idle_time, NSEC_PER_USEC);
149 }
150
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154
155 if (idle_time == -1ULL)
156 return get_cpu_idle_time_jiffy(cpu, wall);
157 else if (!io_busy)
158 idle_time += get_cpu_iowait_time_us(cpu, wall);
159
160 return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163
164 /*
165 * This is a generic cpufreq init() routine which can be used by cpufreq
166 * drivers of SMP systems. It will do following:
167 * - validate & show freq table passed
168 * - set policies transition latency
169 * - policy->cpus with all possible CPUs
170 */
171 int cpufreq_generic_init(struct cpufreq_policy *policy,
172 struct cpufreq_frequency_table *table,
173 unsigned int transition_latency)
174 {
175 int ret;
176
177 ret = cpufreq_table_validate_and_show(policy, table);
178 if (ret) {
179 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
180 return ret;
181 }
182
183 policy->cpuinfo.transition_latency = transition_latency;
184
185 /*
186 * The driver only supports the SMP configuration where all processors
187 * share the clock and voltage and clock.
188 */
189 cpumask_setall(policy->cpus);
190
191 return 0;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
194
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
198
199 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
202
203 unsigned int cpufreq_generic_get(unsigned int cpu)
204 {
205 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
206
207 if (!policy || IS_ERR(policy->clk)) {
208 pr_err("%s: No %s associated to cpu: %d\n",
209 __func__, policy ? "clk" : "policy", cpu);
210 return 0;
211 }
212
213 return clk_get_rate(policy->clk) / 1000;
214 }
215 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
216
217 /**
218 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
219 *
220 * @cpu: cpu to find policy for.
221 *
222 * This returns policy for 'cpu', returns NULL if it doesn't exist.
223 * It also increments the kobject reference count to mark it busy and so would
224 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
225 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
226 * freed as that depends on the kobj count.
227 *
228 * Return: A valid policy on success, otherwise NULL on failure.
229 */
230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
231 {
232 struct cpufreq_policy *policy = NULL;
233 unsigned long flags;
234
235 if (WARN_ON(cpu >= nr_cpu_ids))
236 return NULL;
237
238 /* get the cpufreq driver */
239 read_lock_irqsave(&cpufreq_driver_lock, flags);
240
241 if (cpufreq_driver) {
242 /* get the CPU */
243 policy = cpufreq_cpu_get_raw(cpu);
244 if (policy)
245 kobject_get(&policy->kobj);
246 }
247
248 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
249
250 return policy;
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
253
254 /**
255 * cpufreq_cpu_put: Decrements the usage count of a policy
256 *
257 * @policy: policy earlier returned by cpufreq_cpu_get().
258 *
259 * This decrements the kobject reference count incremented earlier by calling
260 * cpufreq_cpu_get().
261 */
262 void cpufreq_cpu_put(struct cpufreq_policy *policy)
263 {
264 kobject_put(&policy->kobj);
265 }
266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
267
268 /*********************************************************************
269 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
270 *********************************************************************/
271
272 /**
273 * adjust_jiffies - adjust the system "loops_per_jiffy"
274 *
275 * This function alters the system "loops_per_jiffy" for the clock
276 * speed change. Note that loops_per_jiffy cannot be updated on SMP
277 * systems as each CPU might be scaled differently. So, use the arch
278 * per-CPU loops_per_jiffy value wherever possible.
279 */
280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
281 {
282 #ifndef CONFIG_SMP
283 static unsigned long l_p_j_ref;
284 static unsigned int l_p_j_ref_freq;
285
286 if (ci->flags & CPUFREQ_CONST_LOOPS)
287 return;
288
289 if (!l_p_j_ref_freq) {
290 l_p_j_ref = loops_per_jiffy;
291 l_p_j_ref_freq = ci->old;
292 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
293 l_p_j_ref, l_p_j_ref_freq);
294 }
295 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 ci->new);
298 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
299 loops_per_jiffy, ci->new);
300 }
301 #endif
302 }
303
304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
305 struct cpufreq_freqs *freqs, unsigned int state)
306 {
307 BUG_ON(irqs_disabled());
308
309 if (cpufreq_disabled())
310 return;
311
312 freqs->flags = cpufreq_driver->flags;
313 pr_debug("notification %u of frequency transition to %u kHz\n",
314 state, freqs->new);
315
316 switch (state) {
317
318 case CPUFREQ_PRECHANGE:
319 /* detect if the driver reported a value as "old frequency"
320 * which is not equal to what the cpufreq core thinks is
321 * "old frequency".
322 */
323 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
324 if ((policy) && (policy->cpu == freqs->cpu) &&
325 (policy->cur) && (policy->cur != freqs->old)) {
326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 freqs->old, policy->cur);
328 freqs->old = policy->cur;
329 }
330 }
331 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
332 CPUFREQ_PRECHANGE, freqs);
333 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
334 break;
335
336 case CPUFREQ_POSTCHANGE:
337 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
338 pr_debug("FREQ: %lu - CPU: %lu\n",
339 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
340 trace_cpu_frequency(freqs->new, freqs->cpu);
341 cpufreq_stats_record_transition(policy, freqs->new);
342 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343 CPUFREQ_POSTCHANGE, freqs);
344 if (likely(policy) && likely(policy->cpu == freqs->cpu))
345 policy->cur = freqs->new;
346 break;
347 }
348 }
349
350 /**
351 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
352 * on frequency transition.
353 *
354 * This function calls the transition notifiers and the "adjust_jiffies"
355 * function. It is called twice on all CPU frequency changes that have
356 * external effects.
357 */
358 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
359 struct cpufreq_freqs *freqs, unsigned int state)
360 {
361 for_each_cpu(freqs->cpu, policy->cpus)
362 __cpufreq_notify_transition(policy, freqs, state);
363 }
364
365 /* Do post notifications when there are chances that transition has failed */
366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
367 struct cpufreq_freqs *freqs, int transition_failed)
368 {
369 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 if (!transition_failed)
371 return;
372
373 swap(freqs->old, freqs->new);
374 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
375 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 }
377
378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
379 struct cpufreq_freqs *freqs)
380 {
381
382 /*
383 * Catch double invocations of _begin() which lead to self-deadlock.
384 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
385 * doesn't invoke _begin() on their behalf, and hence the chances of
386 * double invocations are very low. Moreover, there are scenarios
387 * where these checks can emit false-positive warnings in these
388 * drivers; so we avoid that by skipping them altogether.
389 */
390 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
391 && current == policy->transition_task);
392
393 wait:
394 wait_event(policy->transition_wait, !policy->transition_ongoing);
395
396 spin_lock(&policy->transition_lock);
397
398 if (unlikely(policy->transition_ongoing)) {
399 spin_unlock(&policy->transition_lock);
400 goto wait;
401 }
402
403 policy->transition_ongoing = true;
404 policy->transition_task = current;
405
406 spin_unlock(&policy->transition_lock);
407
408 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 }
410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
411
412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
413 struct cpufreq_freqs *freqs, int transition_failed)
414 {
415 if (unlikely(WARN_ON(!policy->transition_ongoing)))
416 return;
417
418 cpufreq_notify_post_transition(policy, freqs, transition_failed);
419
420 policy->transition_ongoing = false;
421 policy->transition_task = NULL;
422
423 wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427 /*
428 * Fast frequency switching status count. Positive means "enabled", negative
429 * means "disabled" and 0 means "not decided yet".
430 */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
434 static void cpufreq_list_transition_notifiers(void)
435 {
436 struct notifier_block *nb;
437
438 pr_info("Registered transition notifiers:\n");
439
440 mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 pr_info("%pF\n", nb->notifier_call);
444
445 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447
448 /**
449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450 * @policy: cpufreq policy to enable fast frequency switching for.
451 *
452 * Try to enable fast frequency switching for @policy.
453 *
454 * The attempt will fail if there is at least one transition notifier registered
455 * at this point, as fast frequency switching is quite fundamentally at odds
456 * with transition notifiers. Thus if successful, it will make registration of
457 * transition notifiers fail going forward.
458 */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 lockdep_assert_held(&policy->rwsem);
462
463 if (!policy->fast_switch_possible)
464 return;
465
466 mutex_lock(&cpufreq_fast_switch_lock);
467 if (cpufreq_fast_switch_count >= 0) {
468 cpufreq_fast_switch_count++;
469 policy->fast_switch_enabled = true;
470 } else {
471 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 policy->cpu);
473 cpufreq_list_transition_notifiers();
474 }
475 mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479 /**
480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481 * @policy: cpufreq policy to disable fast frequency switching for.
482 */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 mutex_lock(&cpufreq_fast_switch_lock);
486 if (policy->fast_switch_enabled) {
487 policy->fast_switch_enabled = false;
488 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 cpufreq_fast_switch_count--;
490 }
491 mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
495 /**
496 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
497 * one.
498 * @target_freq: target frequency to resolve.
499 *
500 * The target to driver frequency mapping is cached in the policy.
501 *
502 * Return: Lowest driver-supported frequency greater than or equal to the
503 * given target_freq, subject to policy (min/max) and driver limitations.
504 */
505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
506 unsigned int target_freq)
507 {
508 target_freq = clamp_val(target_freq, policy->min, policy->max);
509 policy->cached_target_freq = target_freq;
510
511 if (cpufreq_driver->target_index) {
512 int idx;
513
514 idx = cpufreq_frequency_table_target(policy, target_freq,
515 CPUFREQ_RELATION_L);
516 policy->cached_resolved_idx = idx;
517 return policy->freq_table[idx].frequency;
518 }
519
520 if (cpufreq_driver->resolve_freq)
521 return cpufreq_driver->resolve_freq(policy, target_freq);
522
523 return target_freq;
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
526
527 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
528 {
529 unsigned int latency;
530
531 if (policy->transition_delay_us)
532 return policy->transition_delay_us;
533
534 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
535 if (latency) {
536 /*
537 * For platforms that can change the frequency very fast (< 10
538 * us), the above formula gives a decent transition delay. But
539 * for platforms where transition_latency is in milliseconds, it
540 * ends up giving unrealistic values.
541 *
542 * Cap the default transition delay to 10 ms, which seems to be
543 * a reasonable amount of time after which we should reevaluate
544 * the frequency.
545 */
546 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
547 }
548
549 return LATENCY_MULTIPLIER;
550 }
551 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
552
553 /*********************************************************************
554 * SYSFS INTERFACE *
555 *********************************************************************/
556 static ssize_t show_boost(struct kobject *kobj,
557 struct attribute *attr, char *buf)
558 {
559 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
560 }
561
562 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
563 const char *buf, size_t count)
564 {
565 int ret, enable;
566
567 ret = sscanf(buf, "%d", &enable);
568 if (ret != 1 || enable < 0 || enable > 1)
569 return -EINVAL;
570
571 if (cpufreq_boost_trigger_state(enable)) {
572 pr_err("%s: Cannot %s BOOST!\n",
573 __func__, enable ? "enable" : "disable");
574 return -EINVAL;
575 }
576
577 pr_debug("%s: cpufreq BOOST %s\n",
578 __func__, enable ? "enabled" : "disabled");
579
580 return count;
581 }
582 define_one_global_rw(boost);
583
584 static struct cpufreq_governor *find_governor(const char *str_governor)
585 {
586 struct cpufreq_governor *t;
587
588 for_each_governor(t)
589 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
590 return t;
591
592 return NULL;
593 }
594
595 /**
596 * cpufreq_parse_governor - parse a governor string
597 */
598 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
599 struct cpufreq_governor **governor)
600 {
601 int err = -EINVAL;
602
603 if (cpufreq_driver->setpolicy) {
604 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
605 *policy = CPUFREQ_POLICY_PERFORMANCE;
606 err = 0;
607 } else if (!strncasecmp(str_governor, "powersave",
608 CPUFREQ_NAME_LEN)) {
609 *policy = CPUFREQ_POLICY_POWERSAVE;
610 err = 0;
611 }
612 } else {
613 struct cpufreq_governor *t;
614
615 mutex_lock(&cpufreq_governor_mutex);
616
617 t = find_governor(str_governor);
618
619 if (t == NULL) {
620 int ret;
621
622 mutex_unlock(&cpufreq_governor_mutex);
623 ret = request_module("cpufreq_%s", str_governor);
624 mutex_lock(&cpufreq_governor_mutex);
625
626 if (ret == 0)
627 t = find_governor(str_governor);
628 }
629
630 if (t != NULL) {
631 *governor = t;
632 err = 0;
633 }
634
635 mutex_unlock(&cpufreq_governor_mutex);
636 }
637 return err;
638 }
639
640 /**
641 * cpufreq_per_cpu_attr_read() / show_##file_name() -
642 * print out cpufreq information
643 *
644 * Write out information from cpufreq_driver->policy[cpu]; object must be
645 * "unsigned int".
646 */
647
648 #define show_one(file_name, object) \
649 static ssize_t show_##file_name \
650 (struct cpufreq_policy *policy, char *buf) \
651 { \
652 return sprintf(buf, "%u\n", policy->object); \
653 }
654
655 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
656 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
657 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
658 show_one(scaling_min_freq, min);
659 show_one(scaling_max_freq, max);
660
661 __weak unsigned int arch_freq_get_on_cpu(int cpu)
662 {
663 return 0;
664 }
665
666 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
667 {
668 ssize_t ret;
669 unsigned int freq;
670
671 freq = arch_freq_get_on_cpu(policy->cpu);
672 if (freq)
673 ret = sprintf(buf, "%u\n", freq);
674 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
675 cpufreq_driver->get)
676 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
677 else
678 ret = sprintf(buf, "%u\n", policy->cur);
679 return ret;
680 }
681
682 static int cpufreq_set_policy(struct cpufreq_policy *policy,
683 struct cpufreq_policy *new_policy);
684
685 /**
686 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
687 */
688 #define store_one(file_name, object) \
689 static ssize_t store_##file_name \
690 (struct cpufreq_policy *policy, const char *buf, size_t count) \
691 { \
692 int ret, temp; \
693 struct cpufreq_policy new_policy; \
694 \
695 memcpy(&new_policy, policy, sizeof(*policy)); \
696 \
697 ret = sscanf(buf, "%u", &new_policy.object); \
698 if (ret != 1) \
699 return -EINVAL; \
700 \
701 temp = new_policy.object; \
702 ret = cpufreq_set_policy(policy, &new_policy); \
703 if (!ret) \
704 policy->user_policy.object = temp; \
705 \
706 return ret ? ret : count; \
707 }
708
709 store_one(scaling_min_freq, min);
710 store_one(scaling_max_freq, max);
711
712 /**
713 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
714 */
715 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
716 char *buf)
717 {
718 unsigned int cur_freq = __cpufreq_get(policy);
719
720 if (cur_freq)
721 return sprintf(buf, "%u\n", cur_freq);
722
723 return sprintf(buf, "<unknown>\n");
724 }
725
726 /**
727 * show_scaling_governor - show the current policy for the specified CPU
728 */
729 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
730 {
731 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
732 return sprintf(buf, "powersave\n");
733 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
734 return sprintf(buf, "performance\n");
735 else if (policy->governor)
736 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
737 policy->governor->name);
738 return -EINVAL;
739 }
740
741 /**
742 * store_scaling_governor - store policy for the specified CPU
743 */
744 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
745 const char *buf, size_t count)
746 {
747 int ret;
748 char str_governor[16];
749 struct cpufreq_policy new_policy;
750
751 memcpy(&new_policy, policy, sizeof(*policy));
752
753 ret = sscanf(buf, "%15s", str_governor);
754 if (ret != 1)
755 return -EINVAL;
756
757 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
758 &new_policy.governor))
759 return -EINVAL;
760
761 ret = cpufreq_set_policy(policy, &new_policy);
762 return ret ? ret : count;
763 }
764
765 /**
766 * show_scaling_driver - show the cpufreq driver currently loaded
767 */
768 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
769 {
770 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
771 }
772
773 /**
774 * show_scaling_available_governors - show the available CPUfreq governors
775 */
776 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
777 char *buf)
778 {
779 ssize_t i = 0;
780 struct cpufreq_governor *t;
781
782 if (!has_target()) {
783 i += sprintf(buf, "performance powersave");
784 goto out;
785 }
786
787 for_each_governor(t) {
788 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
789 - (CPUFREQ_NAME_LEN + 2)))
790 goto out;
791 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
792 }
793 out:
794 i += sprintf(&buf[i], "\n");
795 return i;
796 }
797
798 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
799 {
800 ssize_t i = 0;
801 unsigned int cpu;
802
803 for_each_cpu(cpu, mask) {
804 if (i)
805 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
806 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
807 if (i >= (PAGE_SIZE - 5))
808 break;
809 }
810 i += sprintf(&buf[i], "\n");
811 return i;
812 }
813 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
814
815 /**
816 * show_related_cpus - show the CPUs affected by each transition even if
817 * hw coordination is in use
818 */
819 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
820 {
821 return cpufreq_show_cpus(policy->related_cpus, buf);
822 }
823
824 /**
825 * show_affected_cpus - show the CPUs affected by each transition
826 */
827 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
828 {
829 return cpufreq_show_cpus(policy->cpus, buf);
830 }
831
832 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
833 const char *buf, size_t count)
834 {
835 unsigned int freq = 0;
836 unsigned int ret;
837
838 if (!policy->governor || !policy->governor->store_setspeed)
839 return -EINVAL;
840
841 ret = sscanf(buf, "%u", &freq);
842 if (ret != 1)
843 return -EINVAL;
844
845 policy->governor->store_setspeed(policy, freq);
846
847 return count;
848 }
849
850 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
851 {
852 if (!policy->governor || !policy->governor->show_setspeed)
853 return sprintf(buf, "<unsupported>\n");
854
855 return policy->governor->show_setspeed(policy, buf);
856 }
857
858 /**
859 * show_bios_limit - show the current cpufreq HW/BIOS limitation
860 */
861 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
862 {
863 unsigned int limit;
864 int ret;
865 if (cpufreq_driver->bios_limit) {
866 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
867 if (!ret)
868 return sprintf(buf, "%u\n", limit);
869 }
870 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
871 }
872
873 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
874 cpufreq_freq_attr_ro(cpuinfo_min_freq);
875 cpufreq_freq_attr_ro(cpuinfo_max_freq);
876 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
877 cpufreq_freq_attr_ro(scaling_available_governors);
878 cpufreq_freq_attr_ro(scaling_driver);
879 cpufreq_freq_attr_ro(scaling_cur_freq);
880 cpufreq_freq_attr_ro(bios_limit);
881 cpufreq_freq_attr_ro(related_cpus);
882 cpufreq_freq_attr_ro(affected_cpus);
883 cpufreq_freq_attr_rw(scaling_min_freq);
884 cpufreq_freq_attr_rw(scaling_max_freq);
885 cpufreq_freq_attr_rw(scaling_governor);
886 cpufreq_freq_attr_rw(scaling_setspeed);
887
888 static struct attribute *default_attrs[] = {
889 &cpuinfo_min_freq.attr,
890 &cpuinfo_max_freq.attr,
891 &cpuinfo_transition_latency.attr,
892 &scaling_min_freq.attr,
893 &scaling_max_freq.attr,
894 &affected_cpus.attr,
895 &related_cpus.attr,
896 &scaling_governor.attr,
897 &scaling_driver.attr,
898 &scaling_available_governors.attr,
899 &scaling_setspeed.attr,
900 NULL
901 };
902
903 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
904 #define to_attr(a) container_of(a, struct freq_attr, attr)
905
906 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
907 {
908 struct cpufreq_policy *policy = to_policy(kobj);
909 struct freq_attr *fattr = to_attr(attr);
910 ssize_t ret;
911
912 down_read(&policy->rwsem);
913 ret = fattr->show(policy, buf);
914 up_read(&policy->rwsem);
915
916 return ret;
917 }
918
919 static ssize_t store(struct kobject *kobj, struct attribute *attr,
920 const char *buf, size_t count)
921 {
922 struct cpufreq_policy *policy = to_policy(kobj);
923 struct freq_attr *fattr = to_attr(attr);
924 ssize_t ret = -EINVAL;
925
926 cpus_read_lock();
927
928 if (cpu_online(policy->cpu)) {
929 down_write(&policy->rwsem);
930 ret = fattr->store(policy, buf, count);
931 up_write(&policy->rwsem);
932 }
933
934 cpus_read_unlock();
935
936 return ret;
937 }
938
939 static void cpufreq_sysfs_release(struct kobject *kobj)
940 {
941 struct cpufreq_policy *policy = to_policy(kobj);
942 pr_debug("last reference is dropped\n");
943 complete(&policy->kobj_unregister);
944 }
945
946 static const struct sysfs_ops sysfs_ops = {
947 .show = show,
948 .store = store,
949 };
950
951 static struct kobj_type ktype_cpufreq = {
952 .sysfs_ops = &sysfs_ops,
953 .default_attrs = default_attrs,
954 .release = cpufreq_sysfs_release,
955 };
956
957 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
958 {
959 struct device *dev = get_cpu_device(cpu);
960
961 if (!dev)
962 return;
963
964 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
965 return;
966
967 dev_dbg(dev, "%s: Adding symlink\n", __func__);
968 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
969 dev_err(dev, "cpufreq symlink creation failed\n");
970 }
971
972 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
973 struct device *dev)
974 {
975 dev_dbg(dev, "%s: Removing symlink\n", __func__);
976 sysfs_remove_link(&dev->kobj, "cpufreq");
977 }
978
979 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
980 {
981 struct freq_attr **drv_attr;
982 int ret = 0;
983
984 /* set up files for this cpu device */
985 drv_attr = cpufreq_driver->attr;
986 while (drv_attr && *drv_attr) {
987 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
988 if (ret)
989 return ret;
990 drv_attr++;
991 }
992 if (cpufreq_driver->get) {
993 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
994 if (ret)
995 return ret;
996 }
997
998 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
999 if (ret)
1000 return ret;
1001
1002 if (cpufreq_driver->bios_limit) {
1003 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1004 if (ret)
1005 return ret;
1006 }
1007
1008 return 0;
1009 }
1010
1011 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1012 {
1013 return NULL;
1014 }
1015
1016 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1017 {
1018 struct cpufreq_governor *gov = NULL;
1019 struct cpufreq_policy new_policy;
1020
1021 memcpy(&new_policy, policy, sizeof(*policy));
1022
1023 /* Update governor of new_policy to the governor used before hotplug */
1024 gov = find_governor(policy->last_governor);
1025 if (gov) {
1026 pr_debug("Restoring governor %s for cpu %d\n",
1027 policy->governor->name, policy->cpu);
1028 } else {
1029 gov = cpufreq_default_governor();
1030 if (!gov)
1031 return -ENODATA;
1032 }
1033
1034 new_policy.governor = gov;
1035
1036 /* Use the default policy if there is no last_policy. */
1037 if (cpufreq_driver->setpolicy) {
1038 if (policy->last_policy)
1039 new_policy.policy = policy->last_policy;
1040 else
1041 cpufreq_parse_governor(gov->name, &new_policy.policy,
1042 NULL);
1043 }
1044 /* set default policy */
1045 return cpufreq_set_policy(policy, &new_policy);
1046 }
1047
1048 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1049 {
1050 int ret = 0;
1051
1052 /* Has this CPU been taken care of already? */
1053 if (cpumask_test_cpu(cpu, policy->cpus))
1054 return 0;
1055
1056 down_write(&policy->rwsem);
1057 if (has_target())
1058 cpufreq_stop_governor(policy);
1059
1060 cpumask_set_cpu(cpu, policy->cpus);
1061
1062 if (has_target()) {
1063 ret = cpufreq_start_governor(policy);
1064 if (ret)
1065 pr_err("%s: Failed to start governor\n", __func__);
1066 }
1067 up_write(&policy->rwsem);
1068 return ret;
1069 }
1070
1071 static void handle_update(struct work_struct *work)
1072 {
1073 struct cpufreq_policy *policy =
1074 container_of(work, struct cpufreq_policy, update);
1075 unsigned int cpu = policy->cpu;
1076 pr_debug("handle_update for cpu %u called\n", cpu);
1077 cpufreq_update_policy(cpu);
1078 }
1079
1080 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1081 {
1082 struct cpufreq_policy *policy;
1083 int ret;
1084
1085 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1086 if (!policy)
1087 return NULL;
1088
1089 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1090 goto err_free_policy;
1091
1092 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1093 goto err_free_cpumask;
1094
1095 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1096 goto err_free_rcpumask;
1097
1098 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1099 cpufreq_global_kobject, "policy%u", cpu);
1100 if (ret) {
1101 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1102 goto err_free_real_cpus;
1103 }
1104
1105 INIT_LIST_HEAD(&policy->policy_list);
1106 init_rwsem(&policy->rwsem);
1107 spin_lock_init(&policy->transition_lock);
1108 init_waitqueue_head(&policy->transition_wait);
1109 init_completion(&policy->kobj_unregister);
1110 INIT_WORK(&policy->update, handle_update);
1111
1112 policy->cpu = cpu;
1113 return policy;
1114
1115 err_free_real_cpus:
1116 free_cpumask_var(policy->real_cpus);
1117 err_free_rcpumask:
1118 free_cpumask_var(policy->related_cpus);
1119 err_free_cpumask:
1120 free_cpumask_var(policy->cpus);
1121 err_free_policy:
1122 kfree(policy);
1123
1124 return NULL;
1125 }
1126
1127 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1128 {
1129 struct kobject *kobj;
1130 struct completion *cmp;
1131
1132 down_write(&policy->rwsem);
1133 cpufreq_stats_free_table(policy);
1134 kobj = &policy->kobj;
1135 cmp = &policy->kobj_unregister;
1136 up_write(&policy->rwsem);
1137 kobject_put(kobj);
1138
1139 /*
1140 * We need to make sure that the underlying kobj is
1141 * actually not referenced anymore by anybody before we
1142 * proceed with unloading.
1143 */
1144 pr_debug("waiting for dropping of refcount\n");
1145 wait_for_completion(cmp);
1146 pr_debug("wait complete\n");
1147 }
1148
1149 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1150 {
1151 unsigned long flags;
1152 int cpu;
1153
1154 /* Remove policy from list */
1155 write_lock_irqsave(&cpufreq_driver_lock, flags);
1156 list_del(&policy->policy_list);
1157
1158 for_each_cpu(cpu, policy->related_cpus)
1159 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1160 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1161
1162 cpufreq_policy_put_kobj(policy);
1163 free_cpumask_var(policy->real_cpus);
1164 free_cpumask_var(policy->related_cpus);
1165 free_cpumask_var(policy->cpus);
1166 kfree(policy);
1167 }
1168
1169 static int cpufreq_online(unsigned int cpu)
1170 {
1171 struct cpufreq_policy *policy;
1172 bool new_policy;
1173 unsigned long flags;
1174 unsigned int j;
1175 int ret;
1176
1177 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1178
1179 /* Check if this CPU already has a policy to manage it */
1180 policy = per_cpu(cpufreq_cpu_data, cpu);
1181 if (policy) {
1182 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1183 if (!policy_is_inactive(policy))
1184 return cpufreq_add_policy_cpu(policy, cpu);
1185
1186 /* This is the only online CPU for the policy. Start over. */
1187 new_policy = false;
1188 down_write(&policy->rwsem);
1189 policy->cpu = cpu;
1190 policy->governor = NULL;
1191 up_write(&policy->rwsem);
1192 } else {
1193 new_policy = true;
1194 policy = cpufreq_policy_alloc(cpu);
1195 if (!policy)
1196 return -ENOMEM;
1197 }
1198
1199 cpumask_copy(policy->cpus, cpumask_of(cpu));
1200
1201 /* call driver. From then on the cpufreq must be able
1202 * to accept all calls to ->verify and ->setpolicy for this CPU
1203 */
1204 ret = cpufreq_driver->init(policy);
1205 if (ret) {
1206 pr_debug("initialization failed\n");
1207 goto out_free_policy;
1208 }
1209
1210 down_write(&policy->rwsem);
1211
1212 if (new_policy) {
1213 /* related_cpus should at least include policy->cpus. */
1214 cpumask_copy(policy->related_cpus, policy->cpus);
1215 }
1216
1217 /*
1218 * affected cpus must always be the one, which are online. We aren't
1219 * managing offline cpus here.
1220 */
1221 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1222
1223 if (new_policy) {
1224 policy->user_policy.min = policy->min;
1225 policy->user_policy.max = policy->max;
1226
1227 for_each_cpu(j, policy->related_cpus) {
1228 per_cpu(cpufreq_cpu_data, j) = policy;
1229 add_cpu_dev_symlink(policy, j);
1230 }
1231 } else {
1232 policy->min = policy->user_policy.min;
1233 policy->max = policy->user_policy.max;
1234 }
1235
1236 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1237 policy->cur = cpufreq_driver->get(policy->cpu);
1238 if (!policy->cur) {
1239 pr_err("%s: ->get() failed\n", __func__);
1240 goto out_exit_policy;
1241 }
1242 }
1243
1244 /*
1245 * Sometimes boot loaders set CPU frequency to a value outside of
1246 * frequency table present with cpufreq core. In such cases CPU might be
1247 * unstable if it has to run on that frequency for long duration of time
1248 * and so its better to set it to a frequency which is specified in
1249 * freq-table. This also makes cpufreq stats inconsistent as
1250 * cpufreq-stats would fail to register because current frequency of CPU
1251 * isn't found in freq-table.
1252 *
1253 * Because we don't want this change to effect boot process badly, we go
1254 * for the next freq which is >= policy->cur ('cur' must be set by now,
1255 * otherwise we will end up setting freq to lowest of the table as 'cur'
1256 * is initialized to zero).
1257 *
1258 * We are passing target-freq as "policy->cur - 1" otherwise
1259 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1260 * equal to target-freq.
1261 */
1262 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1263 && has_target()) {
1264 /* Are we running at unknown frequency ? */
1265 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1266 if (ret == -EINVAL) {
1267 /* Warn user and fix it */
1268 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1269 __func__, policy->cpu, policy->cur);
1270 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1271 CPUFREQ_RELATION_L);
1272
1273 /*
1274 * Reaching here after boot in a few seconds may not
1275 * mean that system will remain stable at "unknown"
1276 * frequency for longer duration. Hence, a BUG_ON().
1277 */
1278 BUG_ON(ret);
1279 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1280 __func__, policy->cpu, policy->cur);
1281 }
1282 }
1283
1284 if (new_policy) {
1285 ret = cpufreq_add_dev_interface(policy);
1286 if (ret)
1287 goto out_exit_policy;
1288
1289 cpufreq_stats_create_table(policy);
1290
1291 write_lock_irqsave(&cpufreq_driver_lock, flags);
1292 list_add(&policy->policy_list, &cpufreq_policy_list);
1293 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1294 }
1295
1296 ret = cpufreq_init_policy(policy);
1297 if (ret) {
1298 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1299 __func__, cpu, ret);
1300 /* cpufreq_policy_free() will notify based on this */
1301 new_policy = false;
1302 goto out_exit_policy;
1303 }
1304
1305 up_write(&policy->rwsem);
1306
1307 kobject_uevent(&policy->kobj, KOBJ_ADD);
1308
1309 /* Callback for handling stuff after policy is ready */
1310 if (cpufreq_driver->ready)
1311 cpufreq_driver->ready(policy);
1312
1313 pr_debug("initialization complete\n");
1314
1315 return 0;
1316
1317 out_exit_policy:
1318 up_write(&policy->rwsem);
1319
1320 if (cpufreq_driver->exit)
1321 cpufreq_driver->exit(policy);
1322
1323 for_each_cpu(j, policy->real_cpus)
1324 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1325
1326 out_free_policy:
1327 cpufreq_policy_free(policy);
1328 return ret;
1329 }
1330
1331 /**
1332 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1333 * @dev: CPU device.
1334 * @sif: Subsystem interface structure pointer (not used)
1335 */
1336 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1337 {
1338 struct cpufreq_policy *policy;
1339 unsigned cpu = dev->id;
1340 int ret;
1341
1342 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1343
1344 if (cpu_online(cpu)) {
1345 ret = cpufreq_online(cpu);
1346 if (ret)
1347 return ret;
1348 }
1349
1350 /* Create sysfs link on CPU registration */
1351 policy = per_cpu(cpufreq_cpu_data, cpu);
1352 if (policy)
1353 add_cpu_dev_symlink(policy, cpu);
1354
1355 return 0;
1356 }
1357
1358 static int cpufreq_offline(unsigned int cpu)
1359 {
1360 struct cpufreq_policy *policy;
1361 int ret;
1362
1363 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1364
1365 policy = cpufreq_cpu_get_raw(cpu);
1366 if (!policy) {
1367 pr_debug("%s: No cpu_data found\n", __func__);
1368 return 0;
1369 }
1370
1371 down_write(&policy->rwsem);
1372 if (has_target())
1373 cpufreq_stop_governor(policy);
1374
1375 cpumask_clear_cpu(cpu, policy->cpus);
1376
1377 if (policy_is_inactive(policy)) {
1378 if (has_target())
1379 strncpy(policy->last_governor, policy->governor->name,
1380 CPUFREQ_NAME_LEN);
1381 else
1382 policy->last_policy = policy->policy;
1383 } else if (cpu == policy->cpu) {
1384 /* Nominate new CPU */
1385 policy->cpu = cpumask_any(policy->cpus);
1386 }
1387
1388 /* Start governor again for active policy */
1389 if (!policy_is_inactive(policy)) {
1390 if (has_target()) {
1391 ret = cpufreq_start_governor(policy);
1392 if (ret)
1393 pr_err("%s: Failed to start governor\n", __func__);
1394 }
1395
1396 goto unlock;
1397 }
1398
1399 if (cpufreq_driver->stop_cpu)
1400 cpufreq_driver->stop_cpu(policy);
1401
1402 if (has_target())
1403 cpufreq_exit_governor(policy);
1404
1405 /*
1406 * Perform the ->exit() even during light-weight tear-down,
1407 * since this is a core component, and is essential for the
1408 * subsequent light-weight ->init() to succeed.
1409 */
1410 if (cpufreq_driver->exit) {
1411 cpufreq_driver->exit(policy);
1412 policy->freq_table = NULL;
1413 }
1414
1415 unlock:
1416 up_write(&policy->rwsem);
1417 return 0;
1418 }
1419
1420 /**
1421 * cpufreq_remove_dev - remove a CPU device
1422 *
1423 * Removes the cpufreq interface for a CPU device.
1424 */
1425 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1426 {
1427 unsigned int cpu = dev->id;
1428 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1429
1430 if (!policy)
1431 return;
1432
1433 if (cpu_online(cpu))
1434 cpufreq_offline(cpu);
1435
1436 cpumask_clear_cpu(cpu, policy->real_cpus);
1437 remove_cpu_dev_symlink(policy, dev);
1438
1439 if (cpumask_empty(policy->real_cpus))
1440 cpufreq_policy_free(policy);
1441 }
1442
1443 /**
1444 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1445 * in deep trouble.
1446 * @policy: policy managing CPUs
1447 * @new_freq: CPU frequency the CPU actually runs at
1448 *
1449 * We adjust to current frequency first, and need to clean up later.
1450 * So either call to cpufreq_update_policy() or schedule handle_update()).
1451 */
1452 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1453 unsigned int new_freq)
1454 {
1455 struct cpufreq_freqs freqs;
1456
1457 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1458 policy->cur, new_freq);
1459
1460 freqs.old = policy->cur;
1461 freqs.new = new_freq;
1462
1463 cpufreq_freq_transition_begin(policy, &freqs);
1464 cpufreq_freq_transition_end(policy, &freqs, 0);
1465 }
1466
1467 /**
1468 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1469 * @cpu: CPU number
1470 *
1471 * This is the last known freq, without actually getting it from the driver.
1472 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1473 */
1474 unsigned int cpufreq_quick_get(unsigned int cpu)
1475 {
1476 struct cpufreq_policy *policy;
1477 unsigned int ret_freq = 0;
1478 unsigned long flags;
1479
1480 read_lock_irqsave(&cpufreq_driver_lock, flags);
1481
1482 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1483 ret_freq = cpufreq_driver->get(cpu);
1484 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1485 return ret_freq;
1486 }
1487
1488 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1489
1490 policy = cpufreq_cpu_get(cpu);
1491 if (policy) {
1492 ret_freq = policy->cur;
1493 cpufreq_cpu_put(policy);
1494 }
1495
1496 return ret_freq;
1497 }
1498 EXPORT_SYMBOL(cpufreq_quick_get);
1499
1500 /**
1501 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1502 * @cpu: CPU number
1503 *
1504 * Just return the max possible frequency for a given CPU.
1505 */
1506 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1507 {
1508 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1509 unsigned int ret_freq = 0;
1510
1511 if (policy) {
1512 ret_freq = policy->max;
1513 cpufreq_cpu_put(policy);
1514 }
1515
1516 return ret_freq;
1517 }
1518 EXPORT_SYMBOL(cpufreq_quick_get_max);
1519
1520 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1521 {
1522 unsigned int ret_freq = 0;
1523
1524 if (!cpufreq_driver->get)
1525 return ret_freq;
1526
1527 ret_freq = cpufreq_driver->get(policy->cpu);
1528
1529 /*
1530 * Updating inactive policies is invalid, so avoid doing that. Also
1531 * if fast frequency switching is used with the given policy, the check
1532 * against policy->cur is pointless, so skip it in that case too.
1533 */
1534 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1535 return ret_freq;
1536
1537 if (ret_freq && policy->cur &&
1538 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1539 /* verify no discrepancy between actual and
1540 saved value exists */
1541 if (unlikely(ret_freq != policy->cur)) {
1542 cpufreq_out_of_sync(policy, ret_freq);
1543 schedule_work(&policy->update);
1544 }
1545 }
1546
1547 return ret_freq;
1548 }
1549
1550 /**
1551 * cpufreq_get - get the current CPU frequency (in kHz)
1552 * @cpu: CPU number
1553 *
1554 * Get the CPU current (static) CPU frequency
1555 */
1556 unsigned int cpufreq_get(unsigned int cpu)
1557 {
1558 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1559 unsigned int ret_freq = 0;
1560
1561 if (policy) {
1562 down_read(&policy->rwsem);
1563
1564 if (!policy_is_inactive(policy))
1565 ret_freq = __cpufreq_get(policy);
1566
1567 up_read(&policy->rwsem);
1568
1569 cpufreq_cpu_put(policy);
1570 }
1571
1572 return ret_freq;
1573 }
1574 EXPORT_SYMBOL(cpufreq_get);
1575
1576 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1577 {
1578 unsigned int new_freq;
1579
1580 new_freq = cpufreq_driver->get(policy->cpu);
1581 if (!new_freq)
1582 return 0;
1583
1584 if (!policy->cur) {
1585 pr_debug("cpufreq: Driver did not initialize current freq\n");
1586 policy->cur = new_freq;
1587 } else if (policy->cur != new_freq && has_target()) {
1588 cpufreq_out_of_sync(policy, new_freq);
1589 }
1590
1591 return new_freq;
1592 }
1593
1594 static struct subsys_interface cpufreq_interface = {
1595 .name = "cpufreq",
1596 .subsys = &cpu_subsys,
1597 .add_dev = cpufreq_add_dev,
1598 .remove_dev = cpufreq_remove_dev,
1599 };
1600
1601 /*
1602 * In case platform wants some specific frequency to be configured
1603 * during suspend..
1604 */
1605 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1606 {
1607 int ret;
1608
1609 if (!policy->suspend_freq) {
1610 pr_debug("%s: suspend_freq not defined\n", __func__);
1611 return 0;
1612 }
1613
1614 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1615 policy->suspend_freq);
1616
1617 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1618 CPUFREQ_RELATION_H);
1619 if (ret)
1620 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1621 __func__, policy->suspend_freq, ret);
1622
1623 return ret;
1624 }
1625 EXPORT_SYMBOL(cpufreq_generic_suspend);
1626
1627 /**
1628 * cpufreq_suspend() - Suspend CPUFreq governors
1629 *
1630 * Called during system wide Suspend/Hibernate cycles for suspending governors
1631 * as some platforms can't change frequency after this point in suspend cycle.
1632 * Because some of the devices (like: i2c, regulators, etc) they use for
1633 * changing frequency are suspended quickly after this point.
1634 */
1635 void cpufreq_suspend(void)
1636 {
1637 struct cpufreq_policy *policy;
1638
1639 if (!cpufreq_driver)
1640 return;
1641
1642 if (!has_target() && !cpufreq_driver->suspend)
1643 goto suspend;
1644
1645 pr_debug("%s: Suspending Governors\n", __func__);
1646
1647 for_each_active_policy(policy) {
1648 if (has_target()) {
1649 down_write(&policy->rwsem);
1650 cpufreq_stop_governor(policy);
1651 up_write(&policy->rwsem);
1652 }
1653
1654 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1655 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1656 policy);
1657 }
1658
1659 suspend:
1660 cpufreq_suspended = true;
1661 }
1662
1663 /**
1664 * cpufreq_resume() - Resume CPUFreq governors
1665 *
1666 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1667 * are suspended with cpufreq_suspend().
1668 */
1669 void cpufreq_resume(void)
1670 {
1671 struct cpufreq_policy *policy;
1672 int ret;
1673
1674 if (!cpufreq_driver)
1675 return;
1676
1677 cpufreq_suspended = false;
1678
1679 if (!has_target() && !cpufreq_driver->resume)
1680 return;
1681
1682 pr_debug("%s: Resuming Governors\n", __func__);
1683
1684 for_each_active_policy(policy) {
1685 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1686 pr_err("%s: Failed to resume driver: %p\n", __func__,
1687 policy);
1688 } else if (has_target()) {
1689 down_write(&policy->rwsem);
1690 ret = cpufreq_start_governor(policy);
1691 up_write(&policy->rwsem);
1692
1693 if (ret)
1694 pr_err("%s: Failed to start governor for policy: %p\n",
1695 __func__, policy);
1696 }
1697 }
1698 }
1699
1700 /**
1701 * cpufreq_get_current_driver - return current driver's name
1702 *
1703 * Return the name string of the currently loaded cpufreq driver
1704 * or NULL, if none.
1705 */
1706 const char *cpufreq_get_current_driver(void)
1707 {
1708 if (cpufreq_driver)
1709 return cpufreq_driver->name;
1710
1711 return NULL;
1712 }
1713 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1714
1715 /**
1716 * cpufreq_get_driver_data - return current driver data
1717 *
1718 * Return the private data of the currently loaded cpufreq
1719 * driver, or NULL if no cpufreq driver is loaded.
1720 */
1721 void *cpufreq_get_driver_data(void)
1722 {
1723 if (cpufreq_driver)
1724 return cpufreq_driver->driver_data;
1725
1726 return NULL;
1727 }
1728 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1729
1730 /*********************************************************************
1731 * NOTIFIER LISTS INTERFACE *
1732 *********************************************************************/
1733
1734 /**
1735 * cpufreq_register_notifier - register a driver with cpufreq
1736 * @nb: notifier function to register
1737 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1738 *
1739 * Add a driver to one of two lists: either a list of drivers that
1740 * are notified about clock rate changes (once before and once after
1741 * the transition), or a list of drivers that are notified about
1742 * changes in cpufreq policy.
1743 *
1744 * This function may sleep, and has the same return conditions as
1745 * blocking_notifier_chain_register.
1746 */
1747 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1748 {
1749 int ret;
1750
1751 if (cpufreq_disabled())
1752 return -EINVAL;
1753
1754 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1755
1756 switch (list) {
1757 case CPUFREQ_TRANSITION_NOTIFIER:
1758 mutex_lock(&cpufreq_fast_switch_lock);
1759
1760 if (cpufreq_fast_switch_count > 0) {
1761 mutex_unlock(&cpufreq_fast_switch_lock);
1762 return -EBUSY;
1763 }
1764 ret = srcu_notifier_chain_register(
1765 &cpufreq_transition_notifier_list, nb);
1766 if (!ret)
1767 cpufreq_fast_switch_count--;
1768
1769 mutex_unlock(&cpufreq_fast_switch_lock);
1770 break;
1771 case CPUFREQ_POLICY_NOTIFIER:
1772 ret = blocking_notifier_chain_register(
1773 &cpufreq_policy_notifier_list, nb);
1774 break;
1775 default:
1776 ret = -EINVAL;
1777 }
1778
1779 return ret;
1780 }
1781 EXPORT_SYMBOL(cpufreq_register_notifier);
1782
1783 /**
1784 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1785 * @nb: notifier block to be unregistered
1786 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1787 *
1788 * Remove a driver from the CPU frequency notifier list.
1789 *
1790 * This function may sleep, and has the same return conditions as
1791 * blocking_notifier_chain_unregister.
1792 */
1793 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1794 {
1795 int ret;
1796
1797 if (cpufreq_disabled())
1798 return -EINVAL;
1799
1800 switch (list) {
1801 case CPUFREQ_TRANSITION_NOTIFIER:
1802 mutex_lock(&cpufreq_fast_switch_lock);
1803
1804 ret = srcu_notifier_chain_unregister(
1805 &cpufreq_transition_notifier_list, nb);
1806 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1807 cpufreq_fast_switch_count++;
1808
1809 mutex_unlock(&cpufreq_fast_switch_lock);
1810 break;
1811 case CPUFREQ_POLICY_NOTIFIER:
1812 ret = blocking_notifier_chain_unregister(
1813 &cpufreq_policy_notifier_list, nb);
1814 break;
1815 default:
1816 ret = -EINVAL;
1817 }
1818
1819 return ret;
1820 }
1821 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1822
1823
1824 /*********************************************************************
1825 * GOVERNORS *
1826 *********************************************************************/
1827
1828 /**
1829 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1830 * @policy: cpufreq policy to switch the frequency for.
1831 * @target_freq: New frequency to set (may be approximate).
1832 *
1833 * Carry out a fast frequency switch without sleeping.
1834 *
1835 * The driver's ->fast_switch() callback invoked by this function must be
1836 * suitable for being called from within RCU-sched read-side critical sections
1837 * and it is expected to select the minimum available frequency greater than or
1838 * equal to @target_freq (CPUFREQ_RELATION_L).
1839 *
1840 * This function must not be called if policy->fast_switch_enabled is unset.
1841 *
1842 * Governors calling this function must guarantee that it will never be invoked
1843 * twice in parallel for the same policy and that it will never be called in
1844 * parallel with either ->target() or ->target_index() for the same policy.
1845 *
1846 * Returns the actual frequency set for the CPU.
1847 *
1848 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1849 * error condition, the hardware configuration must be preserved.
1850 */
1851 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1852 unsigned int target_freq)
1853 {
1854 target_freq = clamp_val(target_freq, policy->min, policy->max);
1855
1856 return cpufreq_driver->fast_switch(policy, target_freq);
1857 }
1858 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1859
1860 /* Must set freqs->new to intermediate frequency */
1861 static int __target_intermediate(struct cpufreq_policy *policy,
1862 struct cpufreq_freqs *freqs, int index)
1863 {
1864 int ret;
1865
1866 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1867
1868 /* We don't need to switch to intermediate freq */
1869 if (!freqs->new)
1870 return 0;
1871
1872 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1873 __func__, policy->cpu, freqs->old, freqs->new);
1874
1875 cpufreq_freq_transition_begin(policy, freqs);
1876 ret = cpufreq_driver->target_intermediate(policy, index);
1877 cpufreq_freq_transition_end(policy, freqs, ret);
1878
1879 if (ret)
1880 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1881 __func__, ret);
1882
1883 return ret;
1884 }
1885
1886 static int __target_index(struct cpufreq_policy *policy, int index)
1887 {
1888 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1889 unsigned int intermediate_freq = 0;
1890 unsigned int newfreq = policy->freq_table[index].frequency;
1891 int retval = -EINVAL;
1892 bool notify;
1893
1894 if (newfreq == policy->cur)
1895 return 0;
1896
1897 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1898 if (notify) {
1899 /* Handle switching to intermediate frequency */
1900 if (cpufreq_driver->get_intermediate) {
1901 retval = __target_intermediate(policy, &freqs, index);
1902 if (retval)
1903 return retval;
1904
1905 intermediate_freq = freqs.new;
1906 /* Set old freq to intermediate */
1907 if (intermediate_freq)
1908 freqs.old = freqs.new;
1909 }
1910
1911 freqs.new = newfreq;
1912 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1913 __func__, policy->cpu, freqs.old, freqs.new);
1914
1915 cpufreq_freq_transition_begin(policy, &freqs);
1916 }
1917
1918 retval = cpufreq_driver->target_index(policy, index);
1919 if (retval)
1920 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1921 retval);
1922
1923 if (notify) {
1924 cpufreq_freq_transition_end(policy, &freqs, retval);
1925
1926 /*
1927 * Failed after setting to intermediate freq? Driver should have
1928 * reverted back to initial frequency and so should we. Check
1929 * here for intermediate_freq instead of get_intermediate, in
1930 * case we haven't switched to intermediate freq at all.
1931 */
1932 if (unlikely(retval && intermediate_freq)) {
1933 freqs.old = intermediate_freq;
1934 freqs.new = policy->restore_freq;
1935 cpufreq_freq_transition_begin(policy, &freqs);
1936 cpufreq_freq_transition_end(policy, &freqs, 0);
1937 }
1938 }
1939
1940 return retval;
1941 }
1942
1943 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1944 unsigned int target_freq,
1945 unsigned int relation)
1946 {
1947 unsigned int old_target_freq = target_freq;
1948 int index;
1949
1950 if (cpufreq_disabled())
1951 return -ENODEV;
1952
1953 /* Make sure that target_freq is within supported range */
1954 target_freq = clamp_val(target_freq, policy->min, policy->max);
1955
1956 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1957 policy->cpu, target_freq, relation, old_target_freq);
1958
1959 /*
1960 * This might look like a redundant call as we are checking it again
1961 * after finding index. But it is left intentionally for cases where
1962 * exactly same freq is called again and so we can save on few function
1963 * calls.
1964 */
1965 if (target_freq == policy->cur)
1966 return 0;
1967
1968 /* Save last value to restore later on errors */
1969 policy->restore_freq = policy->cur;
1970
1971 if (cpufreq_driver->target)
1972 return cpufreq_driver->target(policy, target_freq, relation);
1973
1974 if (!cpufreq_driver->target_index)
1975 return -EINVAL;
1976
1977 index = cpufreq_frequency_table_target(policy, target_freq, relation);
1978
1979 return __target_index(policy, index);
1980 }
1981 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1982
1983 int cpufreq_driver_target(struct cpufreq_policy *policy,
1984 unsigned int target_freq,
1985 unsigned int relation)
1986 {
1987 int ret = -EINVAL;
1988
1989 down_write(&policy->rwsem);
1990
1991 ret = __cpufreq_driver_target(policy, target_freq, relation);
1992
1993 up_write(&policy->rwsem);
1994
1995 return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1998
1999 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2000 {
2001 return NULL;
2002 }
2003
2004 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2005 {
2006 int ret;
2007
2008 /* Don't start any governor operations if we are entering suspend */
2009 if (cpufreq_suspended)
2010 return 0;
2011 /*
2012 * Governor might not be initiated here if ACPI _PPC changed
2013 * notification happened, so check it.
2014 */
2015 if (!policy->governor)
2016 return -EINVAL;
2017
2018 /* Platform doesn't want dynamic frequency switching ? */
2019 if (policy->governor->dynamic_switching &&
2020 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2021 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2022
2023 if (gov) {
2024 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2025 policy->governor->name, gov->name);
2026 policy->governor = gov;
2027 } else {
2028 return -EINVAL;
2029 }
2030 }
2031
2032 if (!try_module_get(policy->governor->owner))
2033 return -EINVAL;
2034
2035 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2036
2037 if (policy->governor->init) {
2038 ret = policy->governor->init(policy);
2039 if (ret) {
2040 module_put(policy->governor->owner);
2041 return ret;
2042 }
2043 }
2044
2045 return 0;
2046 }
2047
2048 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2049 {
2050 if (cpufreq_suspended || !policy->governor)
2051 return;
2052
2053 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2054
2055 if (policy->governor->exit)
2056 policy->governor->exit(policy);
2057
2058 module_put(policy->governor->owner);
2059 }
2060
2061 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2062 {
2063 int ret;
2064
2065 if (cpufreq_suspended)
2066 return 0;
2067
2068 if (!policy->governor)
2069 return -EINVAL;
2070
2071 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2072
2073 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2074 cpufreq_update_current_freq(policy);
2075
2076 if (policy->governor->start) {
2077 ret = policy->governor->start(policy);
2078 if (ret)
2079 return ret;
2080 }
2081
2082 if (policy->governor->limits)
2083 policy->governor->limits(policy);
2084
2085 return 0;
2086 }
2087
2088 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2089 {
2090 if (cpufreq_suspended || !policy->governor)
2091 return;
2092
2093 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2094
2095 if (policy->governor->stop)
2096 policy->governor->stop(policy);
2097 }
2098
2099 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2100 {
2101 if (cpufreq_suspended || !policy->governor)
2102 return;
2103
2104 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2105
2106 if (policy->governor->limits)
2107 policy->governor->limits(policy);
2108 }
2109
2110 int cpufreq_register_governor(struct cpufreq_governor *governor)
2111 {
2112 int err;
2113
2114 if (!governor)
2115 return -EINVAL;
2116
2117 if (cpufreq_disabled())
2118 return -ENODEV;
2119
2120 mutex_lock(&cpufreq_governor_mutex);
2121
2122 err = -EBUSY;
2123 if (!find_governor(governor->name)) {
2124 err = 0;
2125 list_add(&governor->governor_list, &cpufreq_governor_list);
2126 }
2127
2128 mutex_unlock(&cpufreq_governor_mutex);
2129 return err;
2130 }
2131 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2132
2133 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2134 {
2135 struct cpufreq_policy *policy;
2136 unsigned long flags;
2137
2138 if (!governor)
2139 return;
2140
2141 if (cpufreq_disabled())
2142 return;
2143
2144 /* clear last_governor for all inactive policies */
2145 read_lock_irqsave(&cpufreq_driver_lock, flags);
2146 for_each_inactive_policy(policy) {
2147 if (!strcmp(policy->last_governor, governor->name)) {
2148 policy->governor = NULL;
2149 strcpy(policy->last_governor, "\0");
2150 }
2151 }
2152 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2153
2154 mutex_lock(&cpufreq_governor_mutex);
2155 list_del(&governor->governor_list);
2156 mutex_unlock(&cpufreq_governor_mutex);
2157 return;
2158 }
2159 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2160
2161
2162 /*********************************************************************
2163 * POLICY INTERFACE *
2164 *********************************************************************/
2165
2166 /**
2167 * cpufreq_get_policy - get the current cpufreq_policy
2168 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2169 * is written
2170 *
2171 * Reads the current cpufreq policy.
2172 */
2173 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2174 {
2175 struct cpufreq_policy *cpu_policy;
2176 if (!policy)
2177 return -EINVAL;
2178
2179 cpu_policy = cpufreq_cpu_get(cpu);
2180 if (!cpu_policy)
2181 return -EINVAL;
2182
2183 memcpy(policy, cpu_policy, sizeof(*policy));
2184
2185 cpufreq_cpu_put(cpu_policy);
2186 return 0;
2187 }
2188 EXPORT_SYMBOL(cpufreq_get_policy);
2189
2190 /*
2191 * policy : current policy.
2192 * new_policy: policy to be set.
2193 */
2194 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2195 struct cpufreq_policy *new_policy)
2196 {
2197 struct cpufreq_governor *old_gov;
2198 int ret;
2199
2200 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2201 new_policy->cpu, new_policy->min, new_policy->max);
2202
2203 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2204
2205 /*
2206 * This check works well when we store new min/max freq attributes,
2207 * because new_policy is a copy of policy with one field updated.
2208 */
2209 if (new_policy->min > new_policy->max)
2210 return -EINVAL;
2211
2212 /* verify the cpu speed can be set within this limit */
2213 ret = cpufreq_driver->verify(new_policy);
2214 if (ret)
2215 return ret;
2216
2217 /* adjust if necessary - all reasons */
2218 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2219 CPUFREQ_ADJUST, new_policy);
2220
2221 /*
2222 * verify the cpu speed can be set within this limit, which might be
2223 * different to the first one
2224 */
2225 ret = cpufreq_driver->verify(new_policy);
2226 if (ret)
2227 return ret;
2228
2229 /* notification of the new policy */
2230 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2231 CPUFREQ_NOTIFY, new_policy);
2232
2233 policy->min = new_policy->min;
2234 policy->max = new_policy->max;
2235
2236 policy->cached_target_freq = UINT_MAX;
2237
2238 pr_debug("new min and max freqs are %u - %u kHz\n",
2239 policy->min, policy->max);
2240
2241 if (cpufreq_driver->setpolicy) {
2242 policy->policy = new_policy->policy;
2243 pr_debug("setting range\n");
2244 return cpufreq_driver->setpolicy(new_policy);
2245 }
2246
2247 if (new_policy->governor == policy->governor) {
2248 pr_debug("cpufreq: governor limits update\n");
2249 cpufreq_governor_limits(policy);
2250 return 0;
2251 }
2252
2253 pr_debug("governor switch\n");
2254
2255 /* save old, working values */
2256 old_gov = policy->governor;
2257 /* end old governor */
2258 if (old_gov) {
2259 cpufreq_stop_governor(policy);
2260 cpufreq_exit_governor(policy);
2261 }
2262
2263 /* start new governor */
2264 policy->governor = new_policy->governor;
2265 ret = cpufreq_init_governor(policy);
2266 if (!ret) {
2267 ret = cpufreq_start_governor(policy);
2268 if (!ret) {
2269 pr_debug("cpufreq: governor change\n");
2270 return 0;
2271 }
2272 cpufreq_exit_governor(policy);
2273 }
2274
2275 /* new governor failed, so re-start old one */
2276 pr_debug("starting governor %s failed\n", policy->governor->name);
2277 if (old_gov) {
2278 policy->governor = old_gov;
2279 if (cpufreq_init_governor(policy))
2280 policy->governor = NULL;
2281 else
2282 cpufreq_start_governor(policy);
2283 }
2284
2285 return ret;
2286 }
2287
2288 /**
2289 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2290 * @cpu: CPU which shall be re-evaluated
2291 *
2292 * Useful for policy notifiers which have different necessities
2293 * at different times.
2294 */
2295 void cpufreq_update_policy(unsigned int cpu)
2296 {
2297 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2298 struct cpufreq_policy new_policy;
2299
2300 if (!policy)
2301 return;
2302
2303 down_write(&policy->rwsem);
2304
2305 if (policy_is_inactive(policy))
2306 goto unlock;
2307
2308 pr_debug("updating policy for CPU %u\n", cpu);
2309 memcpy(&new_policy, policy, sizeof(*policy));
2310 new_policy.min = policy->user_policy.min;
2311 new_policy.max = policy->user_policy.max;
2312
2313 /*
2314 * BIOS might change freq behind our back
2315 * -> ask driver for current freq and notify governors about a change
2316 */
2317 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2318 if (cpufreq_suspended)
2319 goto unlock;
2320
2321 new_policy.cur = cpufreq_update_current_freq(policy);
2322 if (WARN_ON(!new_policy.cur))
2323 goto unlock;
2324 }
2325
2326 cpufreq_set_policy(policy, &new_policy);
2327
2328 unlock:
2329 up_write(&policy->rwsem);
2330
2331 cpufreq_cpu_put(policy);
2332 }
2333 EXPORT_SYMBOL(cpufreq_update_policy);
2334
2335 /*********************************************************************
2336 * BOOST *
2337 *********************************************************************/
2338 static int cpufreq_boost_set_sw(int state)
2339 {
2340 struct cpufreq_policy *policy;
2341 int ret = -EINVAL;
2342
2343 for_each_active_policy(policy) {
2344 if (!policy->freq_table)
2345 continue;
2346
2347 ret = cpufreq_frequency_table_cpuinfo(policy,
2348 policy->freq_table);
2349 if (ret) {
2350 pr_err("%s: Policy frequency update failed\n",
2351 __func__);
2352 break;
2353 }
2354
2355 down_write(&policy->rwsem);
2356 policy->user_policy.max = policy->max;
2357 cpufreq_governor_limits(policy);
2358 up_write(&policy->rwsem);
2359 }
2360
2361 return ret;
2362 }
2363
2364 int cpufreq_boost_trigger_state(int state)
2365 {
2366 unsigned long flags;
2367 int ret = 0;
2368
2369 if (cpufreq_driver->boost_enabled == state)
2370 return 0;
2371
2372 write_lock_irqsave(&cpufreq_driver_lock, flags);
2373 cpufreq_driver->boost_enabled = state;
2374 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2375
2376 ret = cpufreq_driver->set_boost(state);
2377 if (ret) {
2378 write_lock_irqsave(&cpufreq_driver_lock, flags);
2379 cpufreq_driver->boost_enabled = !state;
2380 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2381
2382 pr_err("%s: Cannot %s BOOST\n",
2383 __func__, state ? "enable" : "disable");
2384 }
2385
2386 return ret;
2387 }
2388
2389 static bool cpufreq_boost_supported(void)
2390 {
2391 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2392 }
2393
2394 static int create_boost_sysfs_file(void)
2395 {
2396 int ret;
2397
2398 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2399 if (ret)
2400 pr_err("%s: cannot register global BOOST sysfs file\n",
2401 __func__);
2402
2403 return ret;
2404 }
2405
2406 static void remove_boost_sysfs_file(void)
2407 {
2408 if (cpufreq_boost_supported())
2409 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2410 }
2411
2412 int cpufreq_enable_boost_support(void)
2413 {
2414 if (!cpufreq_driver)
2415 return -EINVAL;
2416
2417 if (cpufreq_boost_supported())
2418 return 0;
2419
2420 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2421
2422 /* This will get removed on driver unregister */
2423 return create_boost_sysfs_file();
2424 }
2425 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2426
2427 int cpufreq_boost_enabled(void)
2428 {
2429 return cpufreq_driver->boost_enabled;
2430 }
2431 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2432
2433 /*********************************************************************
2434 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2435 *********************************************************************/
2436 static enum cpuhp_state hp_online;
2437
2438 static int cpuhp_cpufreq_online(unsigned int cpu)
2439 {
2440 cpufreq_online(cpu);
2441
2442 return 0;
2443 }
2444
2445 static int cpuhp_cpufreq_offline(unsigned int cpu)
2446 {
2447 cpufreq_offline(cpu);
2448
2449 return 0;
2450 }
2451
2452 /**
2453 * cpufreq_register_driver - register a CPU Frequency driver
2454 * @driver_data: A struct cpufreq_driver containing the values#
2455 * submitted by the CPU Frequency driver.
2456 *
2457 * Registers a CPU Frequency driver to this core code. This code
2458 * returns zero on success, -EEXIST when another driver got here first
2459 * (and isn't unregistered in the meantime).
2460 *
2461 */
2462 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2463 {
2464 unsigned long flags;
2465 int ret;
2466
2467 if (cpufreq_disabled())
2468 return -ENODEV;
2469
2470 if (!driver_data || !driver_data->verify || !driver_data->init ||
2471 !(driver_data->setpolicy || driver_data->target_index ||
2472 driver_data->target) ||
2473 (driver_data->setpolicy && (driver_data->target_index ||
2474 driver_data->target)) ||
2475 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2476 return -EINVAL;
2477
2478 pr_debug("trying to register driver %s\n", driver_data->name);
2479
2480 /* Protect against concurrent CPU online/offline. */
2481 cpus_read_lock();
2482
2483 write_lock_irqsave(&cpufreq_driver_lock, flags);
2484 if (cpufreq_driver) {
2485 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2486 ret = -EEXIST;
2487 goto out;
2488 }
2489 cpufreq_driver = driver_data;
2490 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2491
2492 if (driver_data->setpolicy)
2493 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2494
2495 if (cpufreq_boost_supported()) {
2496 ret = create_boost_sysfs_file();
2497 if (ret)
2498 goto err_null_driver;
2499 }
2500
2501 ret = subsys_interface_register(&cpufreq_interface);
2502 if (ret)
2503 goto err_boost_unreg;
2504
2505 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2506 list_empty(&cpufreq_policy_list)) {
2507 /* if all ->init() calls failed, unregister */
2508 ret = -ENODEV;
2509 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2510 driver_data->name);
2511 goto err_if_unreg;
2512 }
2513
2514 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2515 "cpufreq:online",
2516 cpuhp_cpufreq_online,
2517 cpuhp_cpufreq_offline);
2518 if (ret < 0)
2519 goto err_if_unreg;
2520 hp_online = ret;
2521 ret = 0;
2522
2523 pr_debug("driver %s up and running\n", driver_data->name);
2524 goto out;
2525
2526 err_if_unreg:
2527 subsys_interface_unregister(&cpufreq_interface);
2528 err_boost_unreg:
2529 remove_boost_sysfs_file();
2530 err_null_driver:
2531 write_lock_irqsave(&cpufreq_driver_lock, flags);
2532 cpufreq_driver = NULL;
2533 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2534 out:
2535 cpus_read_unlock();
2536 return ret;
2537 }
2538 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2539
2540 /**
2541 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2542 *
2543 * Unregister the current CPUFreq driver. Only call this if you have
2544 * the right to do so, i.e. if you have succeeded in initialising before!
2545 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2546 * currently not initialised.
2547 */
2548 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2549 {
2550 unsigned long flags;
2551
2552 if (!cpufreq_driver || (driver != cpufreq_driver))
2553 return -EINVAL;
2554
2555 pr_debug("unregistering driver %s\n", driver->name);
2556
2557 /* Protect against concurrent cpu hotplug */
2558 cpus_read_lock();
2559 subsys_interface_unregister(&cpufreq_interface);
2560 remove_boost_sysfs_file();
2561 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2562
2563 write_lock_irqsave(&cpufreq_driver_lock, flags);
2564
2565 cpufreq_driver = NULL;
2566
2567 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2568 cpus_read_unlock();
2569
2570 return 0;
2571 }
2572 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2573
2574 /*
2575 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2576 * or mutexes when secondary CPUs are halted.
2577 */
2578 static struct syscore_ops cpufreq_syscore_ops = {
2579 .shutdown = cpufreq_suspend,
2580 };
2581
2582 struct kobject *cpufreq_global_kobject;
2583 EXPORT_SYMBOL(cpufreq_global_kobject);
2584
2585 static int __init cpufreq_core_init(void)
2586 {
2587 if (cpufreq_disabled())
2588 return -ENODEV;
2589
2590 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2591 BUG_ON(!cpufreq_global_kobject);
2592
2593 register_syscore_ops(&cpufreq_syscore_ops);
2594
2595 return 0;
2596 }
2597 module_param(off, int, 0444);
2598 core_initcall(cpufreq_core_init);