Merge 4.14.30 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active) \
43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy) \
47 for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy) \
49 for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy) \
52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor) \
57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60 * The "cpufreq driver" - the arch- or hardware-dependent low
61 * level driver of CPUFreq support, and its spinlock. This lock
62 * also protects the cpufreq_cpu_data array.
63 */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85 * Two notifier lists: the "policy" list is involved in the
86 * validation process for a new CPU frequency policy; the
87 * "transition" list for kernel code that needs to handle
88 * changes to devices when the CPU clock speed changes.
89 * The mutex locks both lists.
90 */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98 init_cpufreq_transition_notifier_list_called = true;
99 return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 return off;
107 }
108 void disable_cpufreq(void)
109 {
110 off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113
114 bool have_governor_per_policy(void)
115 {
116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 u64 idle_time;
132 u64 cur_wall_time;
133 u64 busy_time;
134
135 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
136
137 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143
144 idle_time = cur_wall_time - busy_time;
145 if (wall)
146 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
147
148 return div_u64(idle_time, NSEC_PER_USEC);
149 }
150
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154
155 if (idle_time == -1ULL)
156 return get_cpu_idle_time_jiffy(cpu, wall);
157 else if (!io_busy)
158 idle_time += get_cpu_iowait_time_us(cpu, wall);
159
160 return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163
164 /*
165 * This is a generic cpufreq init() routine which can be used by cpufreq
166 * drivers of SMP systems. It will do following:
167 * - validate & show freq table passed
168 * - set policies transition latency
169 * - policy->cpus with all possible CPUs
170 */
171 int cpufreq_generic_init(struct cpufreq_policy *policy,
172 struct cpufreq_frequency_table *table,
173 unsigned int transition_latency)
174 {
175 int ret;
176
177 ret = cpufreq_table_validate_and_show(policy, table);
178 if (ret) {
179 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
180 return ret;
181 }
182
183 policy->cpuinfo.transition_latency = transition_latency;
184
185 /*
186 * The driver only supports the SMP configuration where all processors
187 * share the clock and voltage and clock.
188 */
189 cpumask_setall(policy->cpus);
190
191 return 0;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
194
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
198
199 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
202
203 unsigned int cpufreq_generic_get(unsigned int cpu)
204 {
205 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
206
207 if (!policy || IS_ERR(policy->clk)) {
208 pr_err("%s: No %s associated to cpu: %d\n",
209 __func__, policy ? "clk" : "policy", cpu);
210 return 0;
211 }
212
213 return clk_get_rate(policy->clk) / 1000;
214 }
215 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
216
217 /**
218 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
219 *
220 * @cpu: cpu to find policy for.
221 *
222 * This returns policy for 'cpu', returns NULL if it doesn't exist.
223 * It also increments the kobject reference count to mark it busy and so would
224 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
225 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
226 * freed as that depends on the kobj count.
227 *
228 * Return: A valid policy on success, otherwise NULL on failure.
229 */
230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
231 {
232 struct cpufreq_policy *policy = NULL;
233 unsigned long flags;
234
235 if (WARN_ON(cpu >= nr_cpu_ids))
236 return NULL;
237
238 /* get the cpufreq driver */
239 read_lock_irqsave(&cpufreq_driver_lock, flags);
240
241 if (cpufreq_driver) {
242 /* get the CPU */
243 policy = cpufreq_cpu_get_raw(cpu);
244 if (policy)
245 kobject_get(&policy->kobj);
246 }
247
248 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
249
250 return policy;
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
253
254 /**
255 * cpufreq_cpu_put: Decrements the usage count of a policy
256 *
257 * @policy: policy earlier returned by cpufreq_cpu_get().
258 *
259 * This decrements the kobject reference count incremented earlier by calling
260 * cpufreq_cpu_get().
261 */
262 void cpufreq_cpu_put(struct cpufreq_policy *policy)
263 {
264 kobject_put(&policy->kobj);
265 }
266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
267
268 /*********************************************************************
269 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
270 *********************************************************************/
271
272 /**
273 * adjust_jiffies - adjust the system "loops_per_jiffy"
274 *
275 * This function alters the system "loops_per_jiffy" for the clock
276 * speed change. Note that loops_per_jiffy cannot be updated on SMP
277 * systems as each CPU might be scaled differently. So, use the arch
278 * per-CPU loops_per_jiffy value wherever possible.
279 */
280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
281 {
282 #ifndef CONFIG_SMP
283 static unsigned long l_p_j_ref;
284 static unsigned int l_p_j_ref_freq;
285
286 if (ci->flags & CPUFREQ_CONST_LOOPS)
287 return;
288
289 if (!l_p_j_ref_freq) {
290 l_p_j_ref = loops_per_jiffy;
291 l_p_j_ref_freq = ci->old;
292 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
293 l_p_j_ref, l_p_j_ref_freq);
294 }
295 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 ci->new);
298 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
299 loops_per_jiffy, ci->new);
300 }
301 #endif
302 }
303
304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
305 struct cpufreq_freqs *freqs, unsigned int state)
306 {
307 BUG_ON(irqs_disabled());
308
309 if (cpufreq_disabled())
310 return;
311
312 freqs->flags = cpufreq_driver->flags;
313 pr_debug("notification %u of frequency transition to %u kHz\n",
314 state, freqs->new);
315
316 switch (state) {
317
318 case CPUFREQ_PRECHANGE:
319 /* detect if the driver reported a value as "old frequency"
320 * which is not equal to what the cpufreq core thinks is
321 * "old frequency".
322 */
323 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
324 if ((policy) && (policy->cpu == freqs->cpu) &&
325 (policy->cur) && (policy->cur != freqs->old)) {
326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 freqs->old, policy->cur);
328 freqs->old = policy->cur;
329 }
330 }
331 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
332 CPUFREQ_PRECHANGE, freqs);
333 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
334 break;
335
336 case CPUFREQ_POSTCHANGE:
337 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
338 pr_debug("FREQ: %lu - CPU: %lu\n",
339 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
340 trace_cpu_frequency(freqs->new, freqs->cpu);
341 cpufreq_stats_record_transition(policy, freqs->new);
342 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343 CPUFREQ_POSTCHANGE, freqs);
344 if (likely(policy) && likely(policy->cpu == freqs->cpu))
345 policy->cur = freqs->new;
346 break;
347 }
348 }
349
350 /**
351 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
352 * on frequency transition.
353 *
354 * This function calls the transition notifiers and the "adjust_jiffies"
355 * function. It is called twice on all CPU frequency changes that have
356 * external effects.
357 */
358 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
359 struct cpufreq_freqs *freqs, unsigned int state)
360 {
361 for_each_cpu(freqs->cpu, policy->cpus)
362 __cpufreq_notify_transition(policy, freqs, state);
363 }
364
365 /* Do post notifications when there are chances that transition has failed */
366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
367 struct cpufreq_freqs *freqs, int transition_failed)
368 {
369 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 if (!transition_failed)
371 return;
372
373 swap(freqs->old, freqs->new);
374 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
375 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 }
377
378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
379 struct cpufreq_freqs *freqs)
380 {
381
382 /*
383 * Catch double invocations of _begin() which lead to self-deadlock.
384 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
385 * doesn't invoke _begin() on their behalf, and hence the chances of
386 * double invocations are very low. Moreover, there are scenarios
387 * where these checks can emit false-positive warnings in these
388 * drivers; so we avoid that by skipping them altogether.
389 */
390 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
391 && current == policy->transition_task);
392
393 wait:
394 wait_event(policy->transition_wait, !policy->transition_ongoing);
395
396 spin_lock(&policy->transition_lock);
397
398 if (unlikely(policy->transition_ongoing)) {
399 spin_unlock(&policy->transition_lock);
400 goto wait;
401 }
402
403 policy->transition_ongoing = true;
404 policy->transition_task = current;
405
406 spin_unlock(&policy->transition_lock);
407
408 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 }
410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
411
412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
413 struct cpufreq_freqs *freqs, int transition_failed)
414 {
415 if (unlikely(WARN_ON(!policy->transition_ongoing)))
416 return;
417
418 cpufreq_notify_post_transition(policy, freqs, transition_failed);
419
420 policy->transition_ongoing = false;
421 policy->transition_task = NULL;
422
423 wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427 /*
428 * Fast frequency switching status count. Positive means "enabled", negative
429 * means "disabled" and 0 means "not decided yet".
430 */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
434 static void cpufreq_list_transition_notifiers(void)
435 {
436 struct notifier_block *nb;
437
438 pr_info("Registered transition notifiers:\n");
439
440 mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 pr_info("%pF\n", nb->notifier_call);
444
445 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447
448 /**
449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450 * @policy: cpufreq policy to enable fast frequency switching for.
451 *
452 * Try to enable fast frequency switching for @policy.
453 *
454 * The attempt will fail if there is at least one transition notifier registered
455 * at this point, as fast frequency switching is quite fundamentally at odds
456 * with transition notifiers. Thus if successful, it will make registration of
457 * transition notifiers fail going forward.
458 */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 lockdep_assert_held(&policy->rwsem);
462
463 if (!policy->fast_switch_possible)
464 return;
465
466 mutex_lock(&cpufreq_fast_switch_lock);
467 if (cpufreq_fast_switch_count >= 0) {
468 cpufreq_fast_switch_count++;
469 policy->fast_switch_enabled = true;
470 } else {
471 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 policy->cpu);
473 cpufreq_list_transition_notifiers();
474 }
475 mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479 /**
480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481 * @policy: cpufreq policy to disable fast frequency switching for.
482 */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 mutex_lock(&cpufreq_fast_switch_lock);
486 if (policy->fast_switch_enabled) {
487 policy->fast_switch_enabled = false;
488 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 cpufreq_fast_switch_count--;
490 }
491 mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
495 /**
496 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
497 * one.
498 * @target_freq: target frequency to resolve.
499 *
500 * The target to driver frequency mapping is cached in the policy.
501 *
502 * Return: Lowest driver-supported frequency greater than or equal to the
503 * given target_freq, subject to policy (min/max) and driver limitations.
504 */
505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
506 unsigned int target_freq)
507 {
508 target_freq = clamp_val(target_freq, policy->min, policy->max);
509 policy->cached_target_freq = target_freq;
510
511 if (cpufreq_driver->target_index) {
512 int idx;
513
514 idx = cpufreq_frequency_table_target(policy, target_freq,
515 CPUFREQ_RELATION_L);
516 policy->cached_resolved_idx = idx;
517 return policy->freq_table[idx].frequency;
518 }
519
520 if (cpufreq_driver->resolve_freq)
521 return cpufreq_driver->resolve_freq(policy, target_freq);
522
523 return target_freq;
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
526
527 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
528 {
529 unsigned int latency;
530
531 if (policy->transition_delay_us)
532 return policy->transition_delay_us;
533
534 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
535 if (latency) {
536 /*
537 * For platforms that can change the frequency very fast (< 10
538 * us), the above formula gives a decent transition delay. But
539 * for platforms where transition_latency is in milliseconds, it
540 * ends up giving unrealistic values.
541 *
542 * Cap the default transition delay to 10 ms, which seems to be
543 * a reasonable amount of time after which we should reevaluate
544 * the frequency.
545 */
546 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
547 }
548
549 return LATENCY_MULTIPLIER;
550 }
551 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
552
553 /*********************************************************************
554 * SYSFS INTERFACE *
555 *********************************************************************/
556 static ssize_t show_boost(struct kobject *kobj,
557 struct attribute *attr, char *buf)
558 {
559 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
560 }
561
562 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
563 const char *buf, size_t count)
564 {
565 int ret, enable;
566
567 ret = sscanf(buf, "%d", &enable);
568 if (ret != 1 || enable < 0 || enable > 1)
569 return -EINVAL;
570
571 if (cpufreq_boost_trigger_state(enable)) {
572 pr_err("%s: Cannot %s BOOST!\n",
573 __func__, enable ? "enable" : "disable");
574 return -EINVAL;
575 }
576
577 pr_debug("%s: cpufreq BOOST %s\n",
578 __func__, enable ? "enabled" : "disabled");
579
580 return count;
581 }
582 define_one_global_rw(boost);
583
584 static struct cpufreq_governor *find_governor(const char *str_governor)
585 {
586 struct cpufreq_governor *t;
587
588 for_each_governor(t)
589 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
590 return t;
591
592 return NULL;
593 }
594
595 /**
596 * cpufreq_parse_governor - parse a governor string
597 */
598 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
599 struct cpufreq_governor **governor)
600 {
601 int err = -EINVAL;
602
603 if (cpufreq_driver->setpolicy) {
604 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
605 *policy = CPUFREQ_POLICY_PERFORMANCE;
606 err = 0;
607 } else if (!strncasecmp(str_governor, "powersave",
608 CPUFREQ_NAME_LEN)) {
609 *policy = CPUFREQ_POLICY_POWERSAVE;
610 err = 0;
611 }
612 } else {
613 struct cpufreq_governor *t;
614
615 mutex_lock(&cpufreq_governor_mutex);
616
617 t = find_governor(str_governor);
618
619 if (t == NULL) {
620 int ret;
621
622 mutex_unlock(&cpufreq_governor_mutex);
623 ret = request_module("cpufreq_%s", str_governor);
624 mutex_lock(&cpufreq_governor_mutex);
625
626 if (ret == 0)
627 t = find_governor(str_governor);
628 }
629
630 if (t != NULL) {
631 *governor = t;
632 err = 0;
633 }
634 if (t && !try_module_get(t->owner))
635 t = NULL;
636
637 mutex_unlock(&cpufreq_governor_mutex);
638 }
639 return err;
640 }
641
642 /**
643 * cpufreq_per_cpu_attr_read() / show_##file_name() -
644 * print out cpufreq information
645 *
646 * Write out information from cpufreq_driver->policy[cpu]; object must be
647 * "unsigned int".
648 */
649
650 #define show_one(file_name, object) \
651 static ssize_t show_##file_name \
652 (struct cpufreq_policy *policy, char *buf) \
653 { \
654 return sprintf(buf, "%u\n", policy->object); \
655 }
656
657 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
658 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
659 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
660 show_one(scaling_min_freq, min);
661 show_one(scaling_max_freq, max);
662
663 __weak unsigned int arch_freq_get_on_cpu(int cpu)
664 {
665 return 0;
666 }
667
668 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
669 {
670 ssize_t ret;
671 unsigned int freq;
672
673 freq = arch_freq_get_on_cpu(policy->cpu);
674 if (freq)
675 ret = sprintf(buf, "%u\n", freq);
676 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
677 cpufreq_driver->get)
678 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
679 else
680 ret = sprintf(buf, "%u\n", policy->cur);
681 return ret;
682 }
683
684 static int cpufreq_set_policy(struct cpufreq_policy *policy,
685 struct cpufreq_policy *new_policy);
686
687 /**
688 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
689 */
690 #define store_one(file_name, object) \
691 static ssize_t store_##file_name \
692 (struct cpufreq_policy *policy, const char *buf, size_t count) \
693 { \
694 int ret, temp; \
695 struct cpufreq_policy new_policy; \
696 \
697 memcpy(&new_policy, policy, sizeof(*policy)); \
698 \
699 ret = sscanf(buf, "%u", &new_policy.object); \
700 if (ret != 1) \
701 return -EINVAL; \
702 \
703 temp = new_policy.object; \
704 ret = cpufreq_set_policy(policy, &new_policy); \
705 if (!ret) \
706 policy->user_policy.object = temp; \
707 \
708 return ret ? ret : count; \
709 }
710
711 store_one(scaling_min_freq, min);
712 store_one(scaling_max_freq, max);
713
714 /**
715 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
716 */
717 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
718 char *buf)
719 {
720 unsigned int cur_freq = __cpufreq_get(policy);
721
722 if (cur_freq)
723 return sprintf(buf, "%u\n", cur_freq);
724
725 return sprintf(buf, "<unknown>\n");
726 }
727
728 /**
729 * show_scaling_governor - show the current policy for the specified CPU
730 */
731 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
732 {
733 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
734 return sprintf(buf, "powersave\n");
735 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
736 return sprintf(buf, "performance\n");
737 else if (policy->governor)
738 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
739 policy->governor->name);
740 return -EINVAL;
741 }
742
743 /**
744 * store_scaling_governor - store policy for the specified CPU
745 */
746 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
747 const char *buf, size_t count)
748 {
749 int ret;
750 char str_governor[16];
751 struct cpufreq_policy new_policy;
752
753 memcpy(&new_policy, policy, sizeof(*policy));
754
755 ret = sscanf(buf, "%15s", str_governor);
756 if (ret != 1)
757 return -EINVAL;
758
759 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
760 &new_policy.governor))
761 return -EINVAL;
762
763 ret = cpufreq_set_policy(policy, &new_policy);
764
765 if (new_policy.governor)
766 module_put(new_policy.governor->owner);
767
768 return ret ? ret : count;
769 }
770
771 /**
772 * show_scaling_driver - show the cpufreq driver currently loaded
773 */
774 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
775 {
776 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
777 }
778
779 /**
780 * show_scaling_available_governors - show the available CPUfreq governors
781 */
782 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
783 char *buf)
784 {
785 ssize_t i = 0;
786 struct cpufreq_governor *t;
787
788 if (!has_target()) {
789 i += sprintf(buf, "performance powersave");
790 goto out;
791 }
792
793 for_each_governor(t) {
794 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
795 - (CPUFREQ_NAME_LEN + 2)))
796 goto out;
797 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
798 }
799 out:
800 i += sprintf(&buf[i], "\n");
801 return i;
802 }
803
804 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
805 {
806 ssize_t i = 0;
807 unsigned int cpu;
808
809 for_each_cpu(cpu, mask) {
810 if (i)
811 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
812 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
813 if (i >= (PAGE_SIZE - 5))
814 break;
815 }
816 i += sprintf(&buf[i], "\n");
817 return i;
818 }
819 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
820
821 /**
822 * show_related_cpus - show the CPUs affected by each transition even if
823 * hw coordination is in use
824 */
825 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
826 {
827 return cpufreq_show_cpus(policy->related_cpus, buf);
828 }
829
830 /**
831 * show_affected_cpus - show the CPUs affected by each transition
832 */
833 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
834 {
835 return cpufreq_show_cpus(policy->cpus, buf);
836 }
837
838 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
839 const char *buf, size_t count)
840 {
841 unsigned int freq = 0;
842 unsigned int ret;
843
844 if (!policy->governor || !policy->governor->store_setspeed)
845 return -EINVAL;
846
847 ret = sscanf(buf, "%u", &freq);
848 if (ret != 1)
849 return -EINVAL;
850
851 policy->governor->store_setspeed(policy, freq);
852
853 return count;
854 }
855
856 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
857 {
858 if (!policy->governor || !policy->governor->show_setspeed)
859 return sprintf(buf, "<unsupported>\n");
860
861 return policy->governor->show_setspeed(policy, buf);
862 }
863
864 /**
865 * show_bios_limit - show the current cpufreq HW/BIOS limitation
866 */
867 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
868 {
869 unsigned int limit;
870 int ret;
871 if (cpufreq_driver->bios_limit) {
872 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
873 if (!ret)
874 return sprintf(buf, "%u\n", limit);
875 }
876 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
877 }
878
879 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
880 cpufreq_freq_attr_ro(cpuinfo_min_freq);
881 cpufreq_freq_attr_ro(cpuinfo_max_freq);
882 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
883 cpufreq_freq_attr_ro(scaling_available_governors);
884 cpufreq_freq_attr_ro(scaling_driver);
885 cpufreq_freq_attr_ro(scaling_cur_freq);
886 cpufreq_freq_attr_ro(bios_limit);
887 cpufreq_freq_attr_ro(related_cpus);
888 cpufreq_freq_attr_ro(affected_cpus);
889 cpufreq_freq_attr_rw(scaling_min_freq);
890 cpufreq_freq_attr_rw(scaling_max_freq);
891 cpufreq_freq_attr_rw(scaling_governor);
892 cpufreq_freq_attr_rw(scaling_setspeed);
893
894 static struct attribute *default_attrs[] = {
895 &cpuinfo_min_freq.attr,
896 &cpuinfo_max_freq.attr,
897 &cpuinfo_transition_latency.attr,
898 &scaling_min_freq.attr,
899 &scaling_max_freq.attr,
900 &affected_cpus.attr,
901 &related_cpus.attr,
902 &scaling_governor.attr,
903 &scaling_driver.attr,
904 &scaling_available_governors.attr,
905 &scaling_setspeed.attr,
906 NULL
907 };
908
909 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
910 #define to_attr(a) container_of(a, struct freq_attr, attr)
911
912 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
913 {
914 struct cpufreq_policy *policy = to_policy(kobj);
915 struct freq_attr *fattr = to_attr(attr);
916 ssize_t ret;
917
918 down_read(&policy->rwsem);
919 ret = fattr->show(policy, buf);
920 up_read(&policy->rwsem);
921
922 return ret;
923 }
924
925 static ssize_t store(struct kobject *kobj, struct attribute *attr,
926 const char *buf, size_t count)
927 {
928 struct cpufreq_policy *policy = to_policy(kobj);
929 struct freq_attr *fattr = to_attr(attr);
930 ssize_t ret = -EINVAL;
931
932 cpus_read_lock();
933
934 if (cpu_online(policy->cpu)) {
935 down_write(&policy->rwsem);
936 ret = fattr->store(policy, buf, count);
937 up_write(&policy->rwsem);
938 }
939
940 cpus_read_unlock();
941
942 return ret;
943 }
944
945 static void cpufreq_sysfs_release(struct kobject *kobj)
946 {
947 struct cpufreq_policy *policy = to_policy(kobj);
948 pr_debug("last reference is dropped\n");
949 complete(&policy->kobj_unregister);
950 }
951
952 static const struct sysfs_ops sysfs_ops = {
953 .show = show,
954 .store = store,
955 };
956
957 static struct kobj_type ktype_cpufreq = {
958 .sysfs_ops = &sysfs_ops,
959 .default_attrs = default_attrs,
960 .release = cpufreq_sysfs_release,
961 };
962
963 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
964 {
965 struct device *dev = get_cpu_device(cpu);
966
967 if (!dev)
968 return;
969
970 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
971 return;
972
973 dev_dbg(dev, "%s: Adding symlink\n", __func__);
974 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
975 dev_err(dev, "cpufreq symlink creation failed\n");
976 }
977
978 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
979 struct device *dev)
980 {
981 dev_dbg(dev, "%s: Removing symlink\n", __func__);
982 sysfs_remove_link(&dev->kobj, "cpufreq");
983 }
984
985 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
986 {
987 struct freq_attr **drv_attr;
988 int ret = 0;
989
990 /* set up files for this cpu device */
991 drv_attr = cpufreq_driver->attr;
992 while (drv_attr && *drv_attr) {
993 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
994 if (ret)
995 return ret;
996 drv_attr++;
997 }
998 if (cpufreq_driver->get) {
999 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1000 if (ret)
1001 return ret;
1002 }
1003
1004 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1005 if (ret)
1006 return ret;
1007
1008 if (cpufreq_driver->bios_limit) {
1009 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1010 if (ret)
1011 return ret;
1012 }
1013
1014 return 0;
1015 }
1016
1017 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1018 {
1019 return NULL;
1020 }
1021
1022 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1023 {
1024 struct cpufreq_governor *gov = NULL;
1025 struct cpufreq_policy new_policy;
1026
1027 memcpy(&new_policy, policy, sizeof(*policy));
1028
1029 /* Update governor of new_policy to the governor used before hotplug */
1030 gov = find_governor(policy->last_governor);
1031 if (gov) {
1032 pr_debug("Restoring governor %s for cpu %d\n",
1033 policy->governor->name, policy->cpu);
1034 } else {
1035 gov = cpufreq_default_governor();
1036 if (!gov)
1037 return -ENODATA;
1038 }
1039
1040 new_policy.governor = gov;
1041
1042 /* Use the default policy if there is no last_policy. */
1043 if (cpufreq_driver->setpolicy) {
1044 if (policy->last_policy)
1045 new_policy.policy = policy->last_policy;
1046 else
1047 cpufreq_parse_governor(gov->name, &new_policy.policy,
1048 NULL);
1049 }
1050 /* set default policy */
1051 return cpufreq_set_policy(policy, &new_policy);
1052 }
1053
1054 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1055 {
1056 int ret = 0;
1057
1058 /* Has this CPU been taken care of already? */
1059 if (cpumask_test_cpu(cpu, policy->cpus))
1060 return 0;
1061
1062 down_write(&policy->rwsem);
1063 if (has_target())
1064 cpufreq_stop_governor(policy);
1065
1066 cpumask_set_cpu(cpu, policy->cpus);
1067
1068 if (has_target()) {
1069 ret = cpufreq_start_governor(policy);
1070 if (ret)
1071 pr_err("%s: Failed to start governor\n", __func__);
1072 }
1073 up_write(&policy->rwsem);
1074 return ret;
1075 }
1076
1077 static void handle_update(struct work_struct *work)
1078 {
1079 struct cpufreq_policy *policy =
1080 container_of(work, struct cpufreq_policy, update);
1081 unsigned int cpu = policy->cpu;
1082 pr_debug("handle_update for cpu %u called\n", cpu);
1083 cpufreq_update_policy(cpu);
1084 }
1085
1086 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1087 {
1088 struct cpufreq_policy *policy;
1089 int ret;
1090
1091 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1092 if (!policy)
1093 return NULL;
1094
1095 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1096 goto err_free_policy;
1097
1098 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1099 goto err_free_cpumask;
1100
1101 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1102 goto err_free_rcpumask;
1103
1104 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1105 cpufreq_global_kobject, "policy%u", cpu);
1106 if (ret) {
1107 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1108 goto err_free_real_cpus;
1109 }
1110
1111 INIT_LIST_HEAD(&policy->policy_list);
1112 init_rwsem(&policy->rwsem);
1113 spin_lock_init(&policy->transition_lock);
1114 init_waitqueue_head(&policy->transition_wait);
1115 init_completion(&policy->kobj_unregister);
1116 INIT_WORK(&policy->update, handle_update);
1117
1118 policy->cpu = cpu;
1119 return policy;
1120
1121 err_free_real_cpus:
1122 free_cpumask_var(policy->real_cpus);
1123 err_free_rcpumask:
1124 free_cpumask_var(policy->related_cpus);
1125 err_free_cpumask:
1126 free_cpumask_var(policy->cpus);
1127 err_free_policy:
1128 kfree(policy);
1129
1130 return NULL;
1131 }
1132
1133 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1134 {
1135 struct kobject *kobj;
1136 struct completion *cmp;
1137
1138 down_write(&policy->rwsem);
1139 cpufreq_stats_free_table(policy);
1140 kobj = &policy->kobj;
1141 cmp = &policy->kobj_unregister;
1142 up_write(&policy->rwsem);
1143 kobject_put(kobj);
1144
1145 /*
1146 * We need to make sure that the underlying kobj is
1147 * actually not referenced anymore by anybody before we
1148 * proceed with unloading.
1149 */
1150 pr_debug("waiting for dropping of refcount\n");
1151 wait_for_completion(cmp);
1152 pr_debug("wait complete\n");
1153 }
1154
1155 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1156 {
1157 unsigned long flags;
1158 int cpu;
1159
1160 /* Remove policy from list */
1161 write_lock_irqsave(&cpufreq_driver_lock, flags);
1162 list_del(&policy->policy_list);
1163
1164 for_each_cpu(cpu, policy->related_cpus)
1165 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1166 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1167
1168 cpufreq_policy_put_kobj(policy);
1169 free_cpumask_var(policy->real_cpus);
1170 free_cpumask_var(policy->related_cpus);
1171 free_cpumask_var(policy->cpus);
1172 kfree(policy);
1173 }
1174
1175 static int cpufreq_online(unsigned int cpu)
1176 {
1177 struct cpufreq_policy *policy;
1178 bool new_policy;
1179 unsigned long flags;
1180 unsigned int j;
1181 int ret;
1182
1183 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1184
1185 /* Check if this CPU already has a policy to manage it */
1186 policy = per_cpu(cpufreq_cpu_data, cpu);
1187 if (policy) {
1188 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1189 if (!policy_is_inactive(policy))
1190 return cpufreq_add_policy_cpu(policy, cpu);
1191
1192 /* This is the only online CPU for the policy. Start over. */
1193 new_policy = false;
1194 down_write(&policy->rwsem);
1195 policy->cpu = cpu;
1196 policy->governor = NULL;
1197 up_write(&policy->rwsem);
1198 } else {
1199 new_policy = true;
1200 policy = cpufreq_policy_alloc(cpu);
1201 if (!policy)
1202 return -ENOMEM;
1203 }
1204
1205 cpumask_copy(policy->cpus, cpumask_of(cpu));
1206
1207 /* call driver. From then on the cpufreq must be able
1208 * to accept all calls to ->verify and ->setpolicy for this CPU
1209 */
1210 ret = cpufreq_driver->init(policy);
1211 if (ret) {
1212 pr_debug("initialization failed\n");
1213 goto out_free_policy;
1214 }
1215
1216 down_write(&policy->rwsem);
1217
1218 if (new_policy) {
1219 /* related_cpus should at least include policy->cpus. */
1220 cpumask_copy(policy->related_cpus, policy->cpus);
1221 }
1222
1223 /*
1224 * affected cpus must always be the one, which are online. We aren't
1225 * managing offline cpus here.
1226 */
1227 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1228
1229 if (new_policy) {
1230 policy->user_policy.min = policy->min;
1231 policy->user_policy.max = policy->max;
1232
1233 for_each_cpu(j, policy->related_cpus) {
1234 per_cpu(cpufreq_cpu_data, j) = policy;
1235 add_cpu_dev_symlink(policy, j);
1236 }
1237 } else {
1238 policy->min = policy->user_policy.min;
1239 policy->max = policy->user_policy.max;
1240 }
1241
1242 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1243 policy->cur = cpufreq_driver->get(policy->cpu);
1244 if (!policy->cur) {
1245 pr_err("%s: ->get() failed\n", __func__);
1246 goto out_exit_policy;
1247 }
1248 }
1249
1250 /*
1251 * Sometimes boot loaders set CPU frequency to a value outside of
1252 * frequency table present with cpufreq core. In such cases CPU might be
1253 * unstable if it has to run on that frequency for long duration of time
1254 * and so its better to set it to a frequency which is specified in
1255 * freq-table. This also makes cpufreq stats inconsistent as
1256 * cpufreq-stats would fail to register because current frequency of CPU
1257 * isn't found in freq-table.
1258 *
1259 * Because we don't want this change to effect boot process badly, we go
1260 * for the next freq which is >= policy->cur ('cur' must be set by now,
1261 * otherwise we will end up setting freq to lowest of the table as 'cur'
1262 * is initialized to zero).
1263 *
1264 * We are passing target-freq as "policy->cur - 1" otherwise
1265 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1266 * equal to target-freq.
1267 */
1268 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1269 && has_target()) {
1270 /* Are we running at unknown frequency ? */
1271 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1272 if (ret == -EINVAL) {
1273 /* Warn user and fix it */
1274 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1275 __func__, policy->cpu, policy->cur);
1276 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1277 CPUFREQ_RELATION_L);
1278
1279 /*
1280 * Reaching here after boot in a few seconds may not
1281 * mean that system will remain stable at "unknown"
1282 * frequency for longer duration. Hence, a BUG_ON().
1283 */
1284 BUG_ON(ret);
1285 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1286 __func__, policy->cpu, policy->cur);
1287 }
1288 }
1289
1290 if (new_policy) {
1291 ret = cpufreq_add_dev_interface(policy);
1292 if (ret)
1293 goto out_exit_policy;
1294
1295 cpufreq_stats_create_table(policy);
1296
1297 write_lock_irqsave(&cpufreq_driver_lock, flags);
1298 list_add(&policy->policy_list, &cpufreq_policy_list);
1299 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1300 }
1301
1302 ret = cpufreq_init_policy(policy);
1303 if (ret) {
1304 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1305 __func__, cpu, ret);
1306 /* cpufreq_policy_free() will notify based on this */
1307 new_policy = false;
1308 goto out_exit_policy;
1309 }
1310
1311 up_write(&policy->rwsem);
1312
1313 kobject_uevent(&policy->kobj, KOBJ_ADD);
1314
1315 /* Callback for handling stuff after policy is ready */
1316 if (cpufreq_driver->ready)
1317 cpufreq_driver->ready(policy);
1318
1319 pr_debug("initialization complete\n");
1320
1321 return 0;
1322
1323 out_exit_policy:
1324 up_write(&policy->rwsem);
1325
1326 if (cpufreq_driver->exit)
1327 cpufreq_driver->exit(policy);
1328
1329 for_each_cpu(j, policy->real_cpus)
1330 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1331
1332 out_free_policy:
1333 cpufreq_policy_free(policy);
1334 return ret;
1335 }
1336
1337 /**
1338 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1339 * @dev: CPU device.
1340 * @sif: Subsystem interface structure pointer (not used)
1341 */
1342 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1343 {
1344 struct cpufreq_policy *policy;
1345 unsigned cpu = dev->id;
1346 int ret;
1347
1348 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1349
1350 if (cpu_online(cpu)) {
1351 ret = cpufreq_online(cpu);
1352 if (ret)
1353 return ret;
1354 }
1355
1356 /* Create sysfs link on CPU registration */
1357 policy = per_cpu(cpufreq_cpu_data, cpu);
1358 if (policy)
1359 add_cpu_dev_symlink(policy, cpu);
1360
1361 return 0;
1362 }
1363
1364 static int cpufreq_offline(unsigned int cpu)
1365 {
1366 struct cpufreq_policy *policy;
1367 int ret;
1368
1369 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1370
1371 policy = cpufreq_cpu_get_raw(cpu);
1372 if (!policy) {
1373 pr_debug("%s: No cpu_data found\n", __func__);
1374 return 0;
1375 }
1376
1377 down_write(&policy->rwsem);
1378 if (has_target())
1379 cpufreq_stop_governor(policy);
1380
1381 cpumask_clear_cpu(cpu, policy->cpus);
1382
1383 if (policy_is_inactive(policy)) {
1384 if (has_target())
1385 strncpy(policy->last_governor, policy->governor->name,
1386 CPUFREQ_NAME_LEN);
1387 else
1388 policy->last_policy = policy->policy;
1389 } else if (cpu == policy->cpu) {
1390 /* Nominate new CPU */
1391 policy->cpu = cpumask_any(policy->cpus);
1392 }
1393
1394 /* Start governor again for active policy */
1395 if (!policy_is_inactive(policy)) {
1396 if (has_target()) {
1397 ret = cpufreq_start_governor(policy);
1398 if (ret)
1399 pr_err("%s: Failed to start governor\n", __func__);
1400 }
1401
1402 goto unlock;
1403 }
1404
1405 if (cpufreq_driver->stop_cpu)
1406 cpufreq_driver->stop_cpu(policy);
1407
1408 if (has_target())
1409 cpufreq_exit_governor(policy);
1410
1411 /*
1412 * Perform the ->exit() even during light-weight tear-down,
1413 * since this is a core component, and is essential for the
1414 * subsequent light-weight ->init() to succeed.
1415 */
1416 if (cpufreq_driver->exit) {
1417 cpufreq_driver->exit(policy);
1418 policy->freq_table = NULL;
1419 }
1420
1421 unlock:
1422 up_write(&policy->rwsem);
1423 return 0;
1424 }
1425
1426 /**
1427 * cpufreq_remove_dev - remove a CPU device
1428 *
1429 * Removes the cpufreq interface for a CPU device.
1430 */
1431 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1432 {
1433 unsigned int cpu = dev->id;
1434 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1435
1436 if (!policy)
1437 return;
1438
1439 if (cpu_online(cpu))
1440 cpufreq_offline(cpu);
1441
1442 cpumask_clear_cpu(cpu, policy->real_cpus);
1443 remove_cpu_dev_symlink(policy, dev);
1444
1445 if (cpumask_empty(policy->real_cpus))
1446 cpufreq_policy_free(policy);
1447 }
1448
1449 /**
1450 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1451 * in deep trouble.
1452 * @policy: policy managing CPUs
1453 * @new_freq: CPU frequency the CPU actually runs at
1454 *
1455 * We adjust to current frequency first, and need to clean up later.
1456 * So either call to cpufreq_update_policy() or schedule handle_update()).
1457 */
1458 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1459 unsigned int new_freq)
1460 {
1461 struct cpufreq_freqs freqs;
1462
1463 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1464 policy->cur, new_freq);
1465
1466 freqs.old = policy->cur;
1467 freqs.new = new_freq;
1468
1469 cpufreq_freq_transition_begin(policy, &freqs);
1470 cpufreq_freq_transition_end(policy, &freqs, 0);
1471 }
1472
1473 /**
1474 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1475 * @cpu: CPU number
1476 *
1477 * This is the last known freq, without actually getting it from the driver.
1478 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1479 */
1480 unsigned int cpufreq_quick_get(unsigned int cpu)
1481 {
1482 struct cpufreq_policy *policy;
1483 unsigned int ret_freq = 0;
1484 unsigned long flags;
1485
1486 read_lock_irqsave(&cpufreq_driver_lock, flags);
1487
1488 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1489 ret_freq = cpufreq_driver->get(cpu);
1490 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1491 return ret_freq;
1492 }
1493
1494 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1495
1496 policy = cpufreq_cpu_get(cpu);
1497 if (policy) {
1498 ret_freq = policy->cur;
1499 cpufreq_cpu_put(policy);
1500 }
1501
1502 return ret_freq;
1503 }
1504 EXPORT_SYMBOL(cpufreq_quick_get);
1505
1506 /**
1507 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1508 * @cpu: CPU number
1509 *
1510 * Just return the max possible frequency for a given CPU.
1511 */
1512 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1513 {
1514 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1515 unsigned int ret_freq = 0;
1516
1517 if (policy) {
1518 ret_freq = policy->max;
1519 cpufreq_cpu_put(policy);
1520 }
1521
1522 return ret_freq;
1523 }
1524 EXPORT_SYMBOL(cpufreq_quick_get_max);
1525
1526 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1527 {
1528 unsigned int ret_freq = 0;
1529
1530 if (!cpufreq_driver->get)
1531 return ret_freq;
1532
1533 ret_freq = cpufreq_driver->get(policy->cpu);
1534
1535 /*
1536 * Updating inactive policies is invalid, so avoid doing that. Also
1537 * if fast frequency switching is used with the given policy, the check
1538 * against policy->cur is pointless, so skip it in that case too.
1539 */
1540 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1541 return ret_freq;
1542
1543 if (ret_freq && policy->cur &&
1544 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1545 /* verify no discrepancy between actual and
1546 saved value exists */
1547 if (unlikely(ret_freq != policy->cur)) {
1548 cpufreq_out_of_sync(policy, ret_freq);
1549 schedule_work(&policy->update);
1550 }
1551 }
1552
1553 return ret_freq;
1554 }
1555
1556 /**
1557 * cpufreq_get - get the current CPU frequency (in kHz)
1558 * @cpu: CPU number
1559 *
1560 * Get the CPU current (static) CPU frequency
1561 */
1562 unsigned int cpufreq_get(unsigned int cpu)
1563 {
1564 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1565 unsigned int ret_freq = 0;
1566
1567 if (policy) {
1568 down_read(&policy->rwsem);
1569
1570 if (!policy_is_inactive(policy))
1571 ret_freq = __cpufreq_get(policy);
1572
1573 up_read(&policy->rwsem);
1574
1575 cpufreq_cpu_put(policy);
1576 }
1577
1578 return ret_freq;
1579 }
1580 EXPORT_SYMBOL(cpufreq_get);
1581
1582 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1583 {
1584 unsigned int new_freq;
1585
1586 new_freq = cpufreq_driver->get(policy->cpu);
1587 if (!new_freq)
1588 return 0;
1589
1590 if (!policy->cur) {
1591 pr_debug("cpufreq: Driver did not initialize current freq\n");
1592 policy->cur = new_freq;
1593 } else if (policy->cur != new_freq && has_target()) {
1594 cpufreq_out_of_sync(policy, new_freq);
1595 }
1596
1597 return new_freq;
1598 }
1599
1600 static struct subsys_interface cpufreq_interface = {
1601 .name = "cpufreq",
1602 .subsys = &cpu_subsys,
1603 .add_dev = cpufreq_add_dev,
1604 .remove_dev = cpufreq_remove_dev,
1605 };
1606
1607 /*
1608 * In case platform wants some specific frequency to be configured
1609 * during suspend..
1610 */
1611 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1612 {
1613 int ret;
1614
1615 if (!policy->suspend_freq) {
1616 pr_debug("%s: suspend_freq not defined\n", __func__);
1617 return 0;
1618 }
1619
1620 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1621 policy->suspend_freq);
1622
1623 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1624 CPUFREQ_RELATION_H);
1625 if (ret)
1626 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1627 __func__, policy->suspend_freq, ret);
1628
1629 return ret;
1630 }
1631 EXPORT_SYMBOL(cpufreq_generic_suspend);
1632
1633 /**
1634 * cpufreq_suspend() - Suspend CPUFreq governors
1635 *
1636 * Called during system wide Suspend/Hibernate cycles for suspending governors
1637 * as some platforms can't change frequency after this point in suspend cycle.
1638 * Because some of the devices (like: i2c, regulators, etc) they use for
1639 * changing frequency are suspended quickly after this point.
1640 */
1641 void cpufreq_suspend(void)
1642 {
1643 struct cpufreq_policy *policy;
1644
1645 if (!cpufreq_driver)
1646 return;
1647
1648 if (!has_target() && !cpufreq_driver->suspend)
1649 goto suspend;
1650
1651 pr_debug("%s: Suspending Governors\n", __func__);
1652
1653 for_each_active_policy(policy) {
1654 if (has_target()) {
1655 down_write(&policy->rwsem);
1656 cpufreq_stop_governor(policy);
1657 up_write(&policy->rwsem);
1658 }
1659
1660 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1661 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1662 policy);
1663 }
1664
1665 suspend:
1666 cpufreq_suspended = true;
1667 }
1668
1669 /**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
1674 */
1675 void cpufreq_resume(void)
1676 {
1677 struct cpufreq_policy *policy;
1678 int ret;
1679
1680 if (!cpufreq_driver)
1681 return;
1682
1683 cpufreq_suspended = false;
1684
1685 if (!has_target() && !cpufreq_driver->resume)
1686 return;
1687
1688 pr_debug("%s: Resuming Governors\n", __func__);
1689
1690 for_each_active_policy(policy) {
1691 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1692 pr_err("%s: Failed to resume driver: %p\n", __func__,
1693 policy);
1694 } else if (has_target()) {
1695 down_write(&policy->rwsem);
1696 ret = cpufreq_start_governor(policy);
1697 up_write(&policy->rwsem);
1698
1699 if (ret)
1700 pr_err("%s: Failed to start governor for policy: %p\n",
1701 __func__, policy);
1702 }
1703 }
1704 }
1705
1706 /**
1707 * cpufreq_get_current_driver - return current driver's name
1708 *
1709 * Return the name string of the currently loaded cpufreq driver
1710 * or NULL, if none.
1711 */
1712 const char *cpufreq_get_current_driver(void)
1713 {
1714 if (cpufreq_driver)
1715 return cpufreq_driver->name;
1716
1717 return NULL;
1718 }
1719 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1720
1721 /**
1722 * cpufreq_get_driver_data - return current driver data
1723 *
1724 * Return the private data of the currently loaded cpufreq
1725 * driver, or NULL if no cpufreq driver is loaded.
1726 */
1727 void *cpufreq_get_driver_data(void)
1728 {
1729 if (cpufreq_driver)
1730 return cpufreq_driver->driver_data;
1731
1732 return NULL;
1733 }
1734 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1735
1736 /*********************************************************************
1737 * NOTIFIER LISTS INTERFACE *
1738 *********************************************************************/
1739
1740 /**
1741 * cpufreq_register_notifier - register a driver with cpufreq
1742 * @nb: notifier function to register
1743 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1744 *
1745 * Add a driver to one of two lists: either a list of drivers that
1746 * are notified about clock rate changes (once before and once after
1747 * the transition), or a list of drivers that are notified about
1748 * changes in cpufreq policy.
1749 *
1750 * This function may sleep, and has the same return conditions as
1751 * blocking_notifier_chain_register.
1752 */
1753 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1754 {
1755 int ret;
1756
1757 if (cpufreq_disabled())
1758 return -EINVAL;
1759
1760 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1761
1762 switch (list) {
1763 case CPUFREQ_TRANSITION_NOTIFIER:
1764 mutex_lock(&cpufreq_fast_switch_lock);
1765
1766 if (cpufreq_fast_switch_count > 0) {
1767 mutex_unlock(&cpufreq_fast_switch_lock);
1768 return -EBUSY;
1769 }
1770 ret = srcu_notifier_chain_register(
1771 &cpufreq_transition_notifier_list, nb);
1772 if (!ret)
1773 cpufreq_fast_switch_count--;
1774
1775 mutex_unlock(&cpufreq_fast_switch_lock);
1776 break;
1777 case CPUFREQ_POLICY_NOTIFIER:
1778 ret = blocking_notifier_chain_register(
1779 &cpufreq_policy_notifier_list, nb);
1780 break;
1781 default:
1782 ret = -EINVAL;
1783 }
1784
1785 return ret;
1786 }
1787 EXPORT_SYMBOL(cpufreq_register_notifier);
1788
1789 /**
1790 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1791 * @nb: notifier block to be unregistered
1792 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1793 *
1794 * Remove a driver from the CPU frequency notifier list.
1795 *
1796 * This function may sleep, and has the same return conditions as
1797 * blocking_notifier_chain_unregister.
1798 */
1799 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1800 {
1801 int ret;
1802
1803 if (cpufreq_disabled())
1804 return -EINVAL;
1805
1806 switch (list) {
1807 case CPUFREQ_TRANSITION_NOTIFIER:
1808 mutex_lock(&cpufreq_fast_switch_lock);
1809
1810 ret = srcu_notifier_chain_unregister(
1811 &cpufreq_transition_notifier_list, nb);
1812 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1813 cpufreq_fast_switch_count++;
1814
1815 mutex_unlock(&cpufreq_fast_switch_lock);
1816 break;
1817 case CPUFREQ_POLICY_NOTIFIER:
1818 ret = blocking_notifier_chain_unregister(
1819 &cpufreq_policy_notifier_list, nb);
1820 break;
1821 default:
1822 ret = -EINVAL;
1823 }
1824
1825 return ret;
1826 }
1827 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1828
1829
1830 /*********************************************************************
1831 * GOVERNORS *
1832 *********************************************************************/
1833
1834 /**
1835 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1836 * @policy: cpufreq policy to switch the frequency for.
1837 * @target_freq: New frequency to set (may be approximate).
1838 *
1839 * Carry out a fast frequency switch without sleeping.
1840 *
1841 * The driver's ->fast_switch() callback invoked by this function must be
1842 * suitable for being called from within RCU-sched read-side critical sections
1843 * and it is expected to select the minimum available frequency greater than or
1844 * equal to @target_freq (CPUFREQ_RELATION_L).
1845 *
1846 * This function must not be called if policy->fast_switch_enabled is unset.
1847 *
1848 * Governors calling this function must guarantee that it will never be invoked
1849 * twice in parallel for the same policy and that it will never be called in
1850 * parallel with either ->target() or ->target_index() for the same policy.
1851 *
1852 * Returns the actual frequency set for the CPU.
1853 *
1854 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1855 * error condition, the hardware configuration must be preserved.
1856 */
1857 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1858 unsigned int target_freq)
1859 {
1860 target_freq = clamp_val(target_freq, policy->min, policy->max);
1861
1862 return cpufreq_driver->fast_switch(policy, target_freq);
1863 }
1864 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1865
1866 /* Must set freqs->new to intermediate frequency */
1867 static int __target_intermediate(struct cpufreq_policy *policy,
1868 struct cpufreq_freqs *freqs, int index)
1869 {
1870 int ret;
1871
1872 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1873
1874 /* We don't need to switch to intermediate freq */
1875 if (!freqs->new)
1876 return 0;
1877
1878 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1879 __func__, policy->cpu, freqs->old, freqs->new);
1880
1881 cpufreq_freq_transition_begin(policy, freqs);
1882 ret = cpufreq_driver->target_intermediate(policy, index);
1883 cpufreq_freq_transition_end(policy, freqs, ret);
1884
1885 if (ret)
1886 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1887 __func__, ret);
1888
1889 return ret;
1890 }
1891
1892 static int __target_index(struct cpufreq_policy *policy, int index)
1893 {
1894 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1895 unsigned int intermediate_freq = 0;
1896 unsigned int newfreq = policy->freq_table[index].frequency;
1897 int retval = -EINVAL;
1898 bool notify;
1899
1900 if (newfreq == policy->cur)
1901 return 0;
1902
1903 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1904 if (notify) {
1905 /* Handle switching to intermediate frequency */
1906 if (cpufreq_driver->get_intermediate) {
1907 retval = __target_intermediate(policy, &freqs, index);
1908 if (retval)
1909 return retval;
1910
1911 intermediate_freq = freqs.new;
1912 /* Set old freq to intermediate */
1913 if (intermediate_freq)
1914 freqs.old = freqs.new;
1915 }
1916
1917 freqs.new = newfreq;
1918 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1919 __func__, policy->cpu, freqs.old, freqs.new);
1920
1921 cpufreq_freq_transition_begin(policy, &freqs);
1922 }
1923
1924 retval = cpufreq_driver->target_index(policy, index);
1925 if (retval)
1926 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1927 retval);
1928
1929 if (notify) {
1930 cpufreq_freq_transition_end(policy, &freqs, retval);
1931
1932 /*
1933 * Failed after setting to intermediate freq? Driver should have
1934 * reverted back to initial frequency and so should we. Check
1935 * here for intermediate_freq instead of get_intermediate, in
1936 * case we haven't switched to intermediate freq at all.
1937 */
1938 if (unlikely(retval && intermediate_freq)) {
1939 freqs.old = intermediate_freq;
1940 freqs.new = policy->restore_freq;
1941 cpufreq_freq_transition_begin(policy, &freqs);
1942 cpufreq_freq_transition_end(policy, &freqs, 0);
1943 }
1944 }
1945
1946 return retval;
1947 }
1948
1949 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1950 unsigned int target_freq,
1951 unsigned int relation)
1952 {
1953 unsigned int old_target_freq = target_freq;
1954 int index;
1955
1956 if (cpufreq_disabled())
1957 return -ENODEV;
1958
1959 /* Make sure that target_freq is within supported range */
1960 target_freq = clamp_val(target_freq, policy->min, policy->max);
1961
1962 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1963 policy->cpu, target_freq, relation, old_target_freq);
1964
1965 /*
1966 * This might look like a redundant call as we are checking it again
1967 * after finding index. But it is left intentionally for cases where
1968 * exactly same freq is called again and so we can save on few function
1969 * calls.
1970 */
1971 if (target_freq == policy->cur)
1972 return 0;
1973
1974 /* Save last value to restore later on errors */
1975 policy->restore_freq = policy->cur;
1976
1977 if (cpufreq_driver->target)
1978 return cpufreq_driver->target(policy, target_freq, relation);
1979
1980 if (!cpufreq_driver->target_index)
1981 return -EINVAL;
1982
1983 index = cpufreq_frequency_table_target(policy, target_freq, relation);
1984
1985 return __target_index(policy, index);
1986 }
1987 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1988
1989 int cpufreq_driver_target(struct cpufreq_policy *policy,
1990 unsigned int target_freq,
1991 unsigned int relation)
1992 {
1993 int ret = -EINVAL;
1994
1995 down_write(&policy->rwsem);
1996
1997 ret = __cpufreq_driver_target(policy, target_freq, relation);
1998
1999 up_write(&policy->rwsem);
2000
2001 return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2004
2005 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2006 {
2007 return NULL;
2008 }
2009
2010 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2011 {
2012 int ret;
2013
2014 /* Don't start any governor operations if we are entering suspend */
2015 if (cpufreq_suspended)
2016 return 0;
2017 /*
2018 * Governor might not be initiated here if ACPI _PPC changed
2019 * notification happened, so check it.
2020 */
2021 if (!policy->governor)
2022 return -EINVAL;
2023
2024 /* Platform doesn't want dynamic frequency switching ? */
2025 if (policy->governor->dynamic_switching &&
2026 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2027 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2028
2029 if (gov) {
2030 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2031 policy->governor->name, gov->name);
2032 policy->governor = gov;
2033 } else {
2034 return -EINVAL;
2035 }
2036 }
2037
2038 if (!try_module_get(policy->governor->owner))
2039 return -EINVAL;
2040
2041 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2042
2043 if (policy->governor->init) {
2044 ret = policy->governor->init(policy);
2045 if (ret) {
2046 module_put(policy->governor->owner);
2047 return ret;
2048 }
2049 }
2050
2051 return 0;
2052 }
2053
2054 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2055 {
2056 if (cpufreq_suspended || !policy->governor)
2057 return;
2058
2059 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2060
2061 if (policy->governor->exit)
2062 policy->governor->exit(policy);
2063
2064 module_put(policy->governor->owner);
2065 }
2066
2067 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2068 {
2069 int ret;
2070
2071 if (cpufreq_suspended)
2072 return 0;
2073
2074 if (!policy->governor)
2075 return -EINVAL;
2076
2077 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2078
2079 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2080 cpufreq_update_current_freq(policy);
2081
2082 if (policy->governor->start) {
2083 ret = policy->governor->start(policy);
2084 if (ret)
2085 return ret;
2086 }
2087
2088 if (policy->governor->limits)
2089 policy->governor->limits(policy);
2090
2091 return 0;
2092 }
2093
2094 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2095 {
2096 if (cpufreq_suspended || !policy->governor)
2097 return;
2098
2099 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2100
2101 if (policy->governor->stop)
2102 policy->governor->stop(policy);
2103 }
2104
2105 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2106 {
2107 if (cpufreq_suspended || !policy->governor)
2108 return;
2109
2110 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2111
2112 if (policy->governor->limits)
2113 policy->governor->limits(policy);
2114 }
2115
2116 int cpufreq_register_governor(struct cpufreq_governor *governor)
2117 {
2118 int err;
2119
2120 if (!governor)
2121 return -EINVAL;
2122
2123 if (cpufreq_disabled())
2124 return -ENODEV;
2125
2126 mutex_lock(&cpufreq_governor_mutex);
2127
2128 err = -EBUSY;
2129 if (!find_governor(governor->name)) {
2130 err = 0;
2131 list_add(&governor->governor_list, &cpufreq_governor_list);
2132 }
2133
2134 mutex_unlock(&cpufreq_governor_mutex);
2135 return err;
2136 }
2137 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2138
2139 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2140 {
2141 struct cpufreq_policy *policy;
2142 unsigned long flags;
2143
2144 if (!governor)
2145 return;
2146
2147 if (cpufreq_disabled())
2148 return;
2149
2150 /* clear last_governor for all inactive policies */
2151 read_lock_irqsave(&cpufreq_driver_lock, flags);
2152 for_each_inactive_policy(policy) {
2153 if (!strcmp(policy->last_governor, governor->name)) {
2154 policy->governor = NULL;
2155 strcpy(policy->last_governor, "\0");
2156 }
2157 }
2158 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2159
2160 mutex_lock(&cpufreq_governor_mutex);
2161 list_del(&governor->governor_list);
2162 mutex_unlock(&cpufreq_governor_mutex);
2163 return;
2164 }
2165 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2166
2167
2168 /*********************************************************************
2169 * POLICY INTERFACE *
2170 *********************************************************************/
2171
2172 /**
2173 * cpufreq_get_policy - get the current cpufreq_policy
2174 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2175 * is written
2176 *
2177 * Reads the current cpufreq policy.
2178 */
2179 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2180 {
2181 struct cpufreq_policy *cpu_policy;
2182 if (!policy)
2183 return -EINVAL;
2184
2185 cpu_policy = cpufreq_cpu_get(cpu);
2186 if (!cpu_policy)
2187 return -EINVAL;
2188
2189 memcpy(policy, cpu_policy, sizeof(*policy));
2190
2191 cpufreq_cpu_put(cpu_policy);
2192 return 0;
2193 }
2194 EXPORT_SYMBOL(cpufreq_get_policy);
2195
2196 /*
2197 * policy : current policy.
2198 * new_policy: policy to be set.
2199 */
2200 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2201 struct cpufreq_policy *new_policy)
2202 {
2203 struct cpufreq_governor *old_gov;
2204 int ret;
2205
2206 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2207 new_policy->cpu, new_policy->min, new_policy->max);
2208
2209 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2210
2211 /*
2212 * This check works well when we store new min/max freq attributes,
2213 * because new_policy is a copy of policy with one field updated.
2214 */
2215 if (new_policy->min > new_policy->max)
2216 return -EINVAL;
2217
2218 /* verify the cpu speed can be set within this limit */
2219 ret = cpufreq_driver->verify(new_policy);
2220 if (ret)
2221 return ret;
2222
2223 /* adjust if necessary - all reasons */
2224 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2225 CPUFREQ_ADJUST, new_policy);
2226
2227 /*
2228 * verify the cpu speed can be set within this limit, which might be
2229 * different to the first one
2230 */
2231 ret = cpufreq_driver->verify(new_policy);
2232 if (ret)
2233 return ret;
2234
2235 /* notification of the new policy */
2236 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2237 CPUFREQ_NOTIFY, new_policy);
2238
2239 policy->min = new_policy->min;
2240 policy->max = new_policy->max;
2241 trace_cpu_frequency_limits(policy->max, policy->min, policy->cpu);
2242
2243 policy->cached_target_freq = UINT_MAX;
2244
2245 pr_debug("new min and max freqs are %u - %u kHz\n",
2246 policy->min, policy->max);
2247
2248 if (cpufreq_driver->setpolicy) {
2249 policy->policy = new_policy->policy;
2250 pr_debug("setting range\n");
2251 return cpufreq_driver->setpolicy(new_policy);
2252 }
2253
2254 if (new_policy->governor == policy->governor) {
2255 pr_debug("cpufreq: governor limits update\n");
2256 cpufreq_governor_limits(policy);
2257 return 0;
2258 }
2259
2260 pr_debug("governor switch\n");
2261
2262 /* save old, working values */
2263 old_gov = policy->governor;
2264 /* end old governor */
2265 if (old_gov) {
2266 cpufreq_stop_governor(policy);
2267 cpufreq_exit_governor(policy);
2268 }
2269
2270 /* start new governor */
2271 policy->governor = new_policy->governor;
2272 ret = cpufreq_init_governor(policy);
2273 if (!ret) {
2274 ret = cpufreq_start_governor(policy);
2275 if (!ret) {
2276 pr_debug("cpufreq: governor change\n");
2277 return 0;
2278 }
2279 cpufreq_exit_governor(policy);
2280 }
2281
2282 /* new governor failed, so re-start old one */
2283 pr_debug("starting governor %s failed\n", policy->governor->name);
2284 if (old_gov) {
2285 policy->governor = old_gov;
2286 if (cpufreq_init_governor(policy))
2287 policy->governor = NULL;
2288 else
2289 cpufreq_start_governor(policy);
2290 }
2291
2292 return ret;
2293 }
2294
2295 /**
2296 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2297 * @cpu: CPU which shall be re-evaluated
2298 *
2299 * Useful for policy notifiers which have different necessities
2300 * at different times.
2301 */
2302 void cpufreq_update_policy(unsigned int cpu)
2303 {
2304 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2305 struct cpufreq_policy new_policy;
2306
2307 if (!policy)
2308 return;
2309
2310 down_write(&policy->rwsem);
2311
2312 if (policy_is_inactive(policy))
2313 goto unlock;
2314
2315 pr_debug("updating policy for CPU %u\n", cpu);
2316 memcpy(&new_policy, policy, sizeof(*policy));
2317 new_policy.min = policy->user_policy.min;
2318 new_policy.max = policy->user_policy.max;
2319
2320 /*
2321 * BIOS might change freq behind our back
2322 * -> ask driver for current freq and notify governors about a change
2323 */
2324 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2325 if (cpufreq_suspended)
2326 goto unlock;
2327
2328 new_policy.cur = cpufreq_update_current_freq(policy);
2329 if (WARN_ON(!new_policy.cur))
2330 goto unlock;
2331 }
2332
2333 cpufreq_set_policy(policy, &new_policy);
2334
2335 unlock:
2336 up_write(&policy->rwsem);
2337
2338 cpufreq_cpu_put(policy);
2339 }
2340 EXPORT_SYMBOL(cpufreq_update_policy);
2341
2342 /*********************************************************************
2343 * BOOST *
2344 *********************************************************************/
2345 static int cpufreq_boost_set_sw(int state)
2346 {
2347 struct cpufreq_policy *policy;
2348 int ret = -EINVAL;
2349
2350 for_each_active_policy(policy) {
2351 if (!policy->freq_table)
2352 continue;
2353
2354 ret = cpufreq_frequency_table_cpuinfo(policy,
2355 policy->freq_table);
2356 if (ret) {
2357 pr_err("%s: Policy frequency update failed\n",
2358 __func__);
2359 break;
2360 }
2361
2362 down_write(&policy->rwsem);
2363 policy->user_policy.max = policy->max;
2364 cpufreq_governor_limits(policy);
2365 up_write(&policy->rwsem);
2366 }
2367
2368 return ret;
2369 }
2370
2371 int cpufreq_boost_trigger_state(int state)
2372 {
2373 unsigned long flags;
2374 int ret = 0;
2375
2376 if (cpufreq_driver->boost_enabled == state)
2377 return 0;
2378
2379 write_lock_irqsave(&cpufreq_driver_lock, flags);
2380 cpufreq_driver->boost_enabled = state;
2381 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2382
2383 ret = cpufreq_driver->set_boost(state);
2384 if (ret) {
2385 write_lock_irqsave(&cpufreq_driver_lock, flags);
2386 cpufreq_driver->boost_enabled = !state;
2387 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2388
2389 pr_err("%s: Cannot %s BOOST\n",
2390 __func__, state ? "enable" : "disable");
2391 }
2392
2393 return ret;
2394 }
2395
2396 static bool cpufreq_boost_supported(void)
2397 {
2398 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2399 }
2400
2401 static int create_boost_sysfs_file(void)
2402 {
2403 int ret;
2404
2405 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2406 if (ret)
2407 pr_err("%s: cannot register global BOOST sysfs file\n",
2408 __func__);
2409
2410 return ret;
2411 }
2412
2413 static void remove_boost_sysfs_file(void)
2414 {
2415 if (cpufreq_boost_supported())
2416 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2417 }
2418
2419 int cpufreq_enable_boost_support(void)
2420 {
2421 if (!cpufreq_driver)
2422 return -EINVAL;
2423
2424 if (cpufreq_boost_supported())
2425 return 0;
2426
2427 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2428
2429 /* This will get removed on driver unregister */
2430 return create_boost_sysfs_file();
2431 }
2432 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2433
2434 int cpufreq_boost_enabled(void)
2435 {
2436 return cpufreq_driver->boost_enabled;
2437 }
2438 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2439
2440 /*********************************************************************
2441 * FREQUENCY INVARIANT ACCOUNTING SUPPORT *
2442 *********************************************************************/
2443
2444 __weak void arch_set_freq_scale(struct cpumask *cpus,
2445 unsigned long cur_freq,
2446 unsigned long max_freq)
2447 {
2448 }
2449 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
2450
2451 /*********************************************************************
2452 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2453 *********************************************************************/
2454 static enum cpuhp_state hp_online;
2455
2456 static int cpuhp_cpufreq_online(unsigned int cpu)
2457 {
2458 cpufreq_online(cpu);
2459
2460 return 0;
2461 }
2462
2463 static int cpuhp_cpufreq_offline(unsigned int cpu)
2464 {
2465 cpufreq_offline(cpu);
2466
2467 return 0;
2468 }
2469
2470 /**
2471 * cpufreq_register_driver - register a CPU Frequency driver
2472 * @driver_data: A struct cpufreq_driver containing the values#
2473 * submitted by the CPU Frequency driver.
2474 *
2475 * Registers a CPU Frequency driver to this core code. This code
2476 * returns zero on success, -EEXIST when another driver got here first
2477 * (and isn't unregistered in the meantime).
2478 *
2479 */
2480 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2481 {
2482 unsigned long flags;
2483 int ret;
2484
2485 if (cpufreq_disabled())
2486 return -ENODEV;
2487
2488 if (!driver_data || !driver_data->verify || !driver_data->init ||
2489 !(driver_data->setpolicy || driver_data->target_index ||
2490 driver_data->target) ||
2491 (driver_data->setpolicy && (driver_data->target_index ||
2492 driver_data->target)) ||
2493 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2494 return -EINVAL;
2495
2496 pr_debug("trying to register driver %s\n", driver_data->name);
2497
2498 /* Protect against concurrent CPU online/offline. */
2499 cpus_read_lock();
2500
2501 write_lock_irqsave(&cpufreq_driver_lock, flags);
2502 if (cpufreq_driver) {
2503 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2504 ret = -EEXIST;
2505 goto out;
2506 }
2507 cpufreq_driver = driver_data;
2508 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2509
2510 if (driver_data->setpolicy)
2511 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2512
2513 if (cpufreq_boost_supported()) {
2514 ret = create_boost_sysfs_file();
2515 if (ret)
2516 goto err_null_driver;
2517 }
2518
2519 ret = subsys_interface_register(&cpufreq_interface);
2520 if (ret)
2521 goto err_boost_unreg;
2522
2523 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2524 list_empty(&cpufreq_policy_list)) {
2525 /* if all ->init() calls failed, unregister */
2526 ret = -ENODEV;
2527 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2528 driver_data->name);
2529 goto err_if_unreg;
2530 }
2531
2532 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2533 "cpufreq:online",
2534 cpuhp_cpufreq_online,
2535 cpuhp_cpufreq_offline);
2536 if (ret < 0)
2537 goto err_if_unreg;
2538 hp_online = ret;
2539 ret = 0;
2540
2541 pr_debug("driver %s up and running\n", driver_data->name);
2542 goto out;
2543
2544 err_if_unreg:
2545 subsys_interface_unregister(&cpufreq_interface);
2546 err_boost_unreg:
2547 remove_boost_sysfs_file();
2548 err_null_driver:
2549 write_lock_irqsave(&cpufreq_driver_lock, flags);
2550 cpufreq_driver = NULL;
2551 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2552 out:
2553 cpus_read_unlock();
2554 return ret;
2555 }
2556 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2557
2558 /**
2559 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2560 *
2561 * Unregister the current CPUFreq driver. Only call this if you have
2562 * the right to do so, i.e. if you have succeeded in initialising before!
2563 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2564 * currently not initialised.
2565 */
2566 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2567 {
2568 unsigned long flags;
2569
2570 if (!cpufreq_driver || (driver != cpufreq_driver))
2571 return -EINVAL;
2572
2573 pr_debug("unregistering driver %s\n", driver->name);
2574
2575 /* Protect against concurrent cpu hotplug */
2576 cpus_read_lock();
2577 subsys_interface_unregister(&cpufreq_interface);
2578 remove_boost_sysfs_file();
2579 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2580
2581 write_lock_irqsave(&cpufreq_driver_lock, flags);
2582
2583 cpufreq_driver = NULL;
2584
2585 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2586 cpus_read_unlock();
2587
2588 return 0;
2589 }
2590 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2591
2592 /*
2593 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2594 * or mutexes when secondary CPUs are halted.
2595 */
2596 static struct syscore_ops cpufreq_syscore_ops = {
2597 .shutdown = cpufreq_suspend,
2598 };
2599
2600 struct kobject *cpufreq_global_kobject;
2601 EXPORT_SYMBOL(cpufreq_global_kobject);
2602
2603 static int __init cpufreq_core_init(void)
2604 {
2605 if (cpufreq_disabled())
2606 return -ENODEV;
2607
2608 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2609 BUG_ON(!cpufreq_global_kobject);
2610
2611 register_syscore_ops(&cpufreq_syscore_ops);
2612
2613 return 0;
2614 }
2615 module_param(off, int, 0444);
2616 core_initcall(cpufreq_core_init);