Merge 4.14.100 into android-4.14-p
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/cpufreq_times.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/slab.h>
30 #include <linux/suspend.h>
31 #include <linux/syscore_ops.h>
32 #include <linux/tick.h>
33 #include <trace/events/power.h>
34
35 static LIST_HEAD(cpufreq_policy_list);
36
37 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
38 {
39 return cpumask_empty(policy->cpus);
40 }
41
42 /* Macros to iterate over CPU policies */
43 #define for_each_suitable_policy(__policy, __active) \
44 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
45 if ((__active) == !policy_is_inactive(__policy))
46
47 #define for_each_active_policy(__policy) \
48 for_each_suitable_policy(__policy, true)
49 #define for_each_inactive_policy(__policy) \
50 for_each_suitable_policy(__policy, false)
51
52 #define for_each_policy(__policy) \
53 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
54
55 /* Iterate over governors */
56 static LIST_HEAD(cpufreq_governor_list);
57 #define for_each_governor(__governor) \
58 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
59
60 /**
61 * The "cpufreq driver" - the arch- or hardware-dependent low
62 * level driver of CPUFreq support, and its spinlock. This lock
63 * also protects the cpufreq_cpu_data array.
64 */
65 static struct cpufreq_driver *cpufreq_driver;
66 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
67 static DEFINE_RWLOCK(cpufreq_driver_lock);
68
69 /* Flag to suspend/resume CPUFreq governors */
70 static bool cpufreq_suspended;
71
72 static inline bool has_target(void)
73 {
74 return cpufreq_driver->target_index || cpufreq_driver->target;
75 }
76
77 /* internal prototypes */
78 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
79 static int cpufreq_init_governor(struct cpufreq_policy *policy);
80 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
81 static int cpufreq_start_governor(struct cpufreq_policy *policy);
82 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
83 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
84
85 /**
86 * Two notifier lists: the "policy" list is involved in the
87 * validation process for a new CPU frequency policy; the
88 * "transition" list for kernel code that needs to handle
89 * changes to devices when the CPU clock speed changes.
90 * The mutex locks both lists.
91 */
92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
93 static struct srcu_notifier_head cpufreq_transition_notifier_list;
94
95 static bool init_cpufreq_transition_notifier_list_called;
96 static int __init init_cpufreq_transition_notifier_list(void)
97 {
98 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
99 init_cpufreq_transition_notifier_list_called = true;
100 return 0;
101 }
102 pure_initcall(init_cpufreq_transition_notifier_list);
103
104 static int off __read_mostly;
105 static int cpufreq_disabled(void)
106 {
107 return off;
108 }
109 void disable_cpufreq(void)
110 {
111 off = 1;
112 }
113 static DEFINE_MUTEX(cpufreq_governor_mutex);
114
115 bool have_governor_per_policy(void)
116 {
117 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
118 }
119 EXPORT_SYMBOL_GPL(have_governor_per_policy);
120
121 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
122 {
123 if (have_governor_per_policy())
124 return &policy->kobj;
125 else
126 return cpufreq_global_kobject;
127 }
128 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
129
130 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
131 {
132 u64 idle_time;
133 u64 cur_wall_time;
134 u64 busy_time;
135
136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
143 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
144
145 idle_time = cur_wall_time - busy_time;
146 if (wall)
147 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
148
149 return div_u64(idle_time, NSEC_PER_USEC);
150 }
151
152 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
153 {
154 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
155
156 if (idle_time == -1ULL)
157 return get_cpu_idle_time_jiffy(cpu, wall);
158 else if (!io_busy)
159 idle_time += get_cpu_iowait_time_us(cpu, wall);
160
161 return idle_time;
162 }
163 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
164
165 /*
166 * This is a generic cpufreq init() routine which can be used by cpufreq
167 * drivers of SMP systems. It will do following:
168 * - validate & show freq table passed
169 * - set policies transition latency
170 * - policy->cpus with all possible CPUs
171 */
172 int cpufreq_generic_init(struct cpufreq_policy *policy,
173 struct cpufreq_frequency_table *table,
174 unsigned int transition_latency)
175 {
176 int ret;
177
178 ret = cpufreq_table_validate_and_show(policy, table);
179 if (ret) {
180 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
181 return ret;
182 }
183
184 policy->cpuinfo.transition_latency = transition_latency;
185
186 /*
187 * The driver only supports the SMP configuration where all processors
188 * share the clock and voltage and clock.
189 */
190 cpumask_setall(policy->cpus);
191
192 return 0;
193 }
194 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
195
196 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
197 {
198 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
199
200 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
203
204 unsigned int cpufreq_generic_get(unsigned int cpu)
205 {
206 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
207
208 if (!policy || IS_ERR(policy->clk)) {
209 pr_err("%s: No %s associated to cpu: %d\n",
210 __func__, policy ? "clk" : "policy", cpu);
211 return 0;
212 }
213
214 return clk_get_rate(policy->clk) / 1000;
215 }
216 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
217
218 /**
219 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
220 *
221 * @cpu: cpu to find policy for.
222 *
223 * This returns policy for 'cpu', returns NULL if it doesn't exist.
224 * It also increments the kobject reference count to mark it busy and so would
225 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
226 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
227 * freed as that depends on the kobj count.
228 *
229 * Return: A valid policy on success, otherwise NULL on failure.
230 */
231 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
232 {
233 struct cpufreq_policy *policy = NULL;
234 unsigned long flags;
235
236 if (WARN_ON(cpu >= nr_cpu_ids))
237 return NULL;
238
239 /* get the cpufreq driver */
240 read_lock_irqsave(&cpufreq_driver_lock, flags);
241
242 if (cpufreq_driver) {
243 /* get the CPU */
244 policy = cpufreq_cpu_get_raw(cpu);
245 if (policy)
246 kobject_get(&policy->kobj);
247 }
248
249 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
250
251 return policy;
252 }
253 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
254
255 /**
256 * cpufreq_cpu_put: Decrements the usage count of a policy
257 *
258 * @policy: policy earlier returned by cpufreq_cpu_get().
259 *
260 * This decrements the kobject reference count incremented earlier by calling
261 * cpufreq_cpu_get().
262 */
263 void cpufreq_cpu_put(struct cpufreq_policy *policy)
264 {
265 kobject_put(&policy->kobj);
266 }
267 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
268
269 /*********************************************************************
270 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
271 *********************************************************************/
272
273 /**
274 * adjust_jiffies - adjust the system "loops_per_jiffy"
275 *
276 * This function alters the system "loops_per_jiffy" for the clock
277 * speed change. Note that loops_per_jiffy cannot be updated on SMP
278 * systems as each CPU might be scaled differently. So, use the arch
279 * per-CPU loops_per_jiffy value wherever possible.
280 */
281 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
282 {
283 #ifndef CONFIG_SMP
284 static unsigned long l_p_j_ref;
285 static unsigned int l_p_j_ref_freq;
286
287 if (ci->flags & CPUFREQ_CONST_LOOPS)
288 return;
289
290 if (!l_p_j_ref_freq) {
291 l_p_j_ref = loops_per_jiffy;
292 l_p_j_ref_freq = ci->old;
293 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
294 l_p_j_ref, l_p_j_ref_freq);
295 }
296 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
297 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
298 ci->new);
299 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
300 loops_per_jiffy, ci->new);
301 }
302 #endif
303 }
304
305 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
306 struct cpufreq_freqs *freqs, unsigned int state)
307 {
308 BUG_ON(irqs_disabled());
309
310 if (cpufreq_disabled())
311 return;
312
313 freqs->flags = cpufreq_driver->flags;
314 pr_debug("notification %u of frequency transition to %u kHz\n",
315 state, freqs->new);
316
317 switch (state) {
318
319 case CPUFREQ_PRECHANGE:
320 /* detect if the driver reported a value as "old frequency"
321 * which is not equal to what the cpufreq core thinks is
322 * "old frequency".
323 */
324 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
325 if ((policy) && (policy->cpu == freqs->cpu) &&
326 (policy->cur) && (policy->cur != freqs->old)) {
327 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
328 freqs->old, policy->cur);
329 freqs->old = policy->cur;
330 }
331 }
332 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
333 CPUFREQ_PRECHANGE, freqs);
334 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
335 break;
336
337 case CPUFREQ_POSTCHANGE:
338 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
339 pr_debug("FREQ: %lu - CPU: %lu\n",
340 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
341 trace_cpu_frequency(freqs->new, freqs->cpu);
342 cpufreq_stats_record_transition(policy, freqs->new);
343 cpufreq_times_record_transition(freqs);
344 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
345 CPUFREQ_POSTCHANGE, freqs);
346 if (likely(policy) && likely(policy->cpu == freqs->cpu))
347 policy->cur = freqs->new;
348 break;
349 }
350 }
351
352 /**
353 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
354 * on frequency transition.
355 *
356 * This function calls the transition notifiers and the "adjust_jiffies"
357 * function. It is called twice on all CPU frequency changes that have
358 * external effects.
359 */
360 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
361 struct cpufreq_freqs *freqs, unsigned int state)
362 {
363 for_each_cpu(freqs->cpu, policy->cpus)
364 __cpufreq_notify_transition(policy, freqs, state);
365 }
366
367 /* Do post notifications when there are chances that transition has failed */
368 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
369 struct cpufreq_freqs *freqs, int transition_failed)
370 {
371 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
372 if (!transition_failed)
373 return;
374
375 swap(freqs->old, freqs->new);
376 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
377 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
378 }
379
380 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
381 struct cpufreq_freqs *freqs)
382 {
383
384 /*
385 * Catch double invocations of _begin() which lead to self-deadlock.
386 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
387 * doesn't invoke _begin() on their behalf, and hence the chances of
388 * double invocations are very low. Moreover, there are scenarios
389 * where these checks can emit false-positive warnings in these
390 * drivers; so we avoid that by skipping them altogether.
391 */
392 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
393 && current == policy->transition_task);
394
395 wait:
396 wait_event(policy->transition_wait, !policy->transition_ongoing);
397
398 spin_lock(&policy->transition_lock);
399
400 if (unlikely(policy->transition_ongoing)) {
401 spin_unlock(&policy->transition_lock);
402 goto wait;
403 }
404
405 policy->transition_ongoing = true;
406 policy->transition_task = current;
407
408 spin_unlock(&policy->transition_lock);
409
410 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
411 }
412 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
413
414 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
415 struct cpufreq_freqs *freqs, int transition_failed)
416 {
417 if (unlikely(WARN_ON(!policy->transition_ongoing)))
418 return;
419
420 cpufreq_notify_post_transition(policy, freqs, transition_failed);
421
422 policy->transition_ongoing = false;
423 policy->transition_task = NULL;
424
425 wake_up(&policy->transition_wait);
426 }
427 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
428
429 /*
430 * Fast frequency switching status count. Positive means "enabled", negative
431 * means "disabled" and 0 means "not decided yet".
432 */
433 static int cpufreq_fast_switch_count;
434 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
435
436 static void cpufreq_list_transition_notifiers(void)
437 {
438 struct notifier_block *nb;
439
440 pr_info("Registered transition notifiers:\n");
441
442 mutex_lock(&cpufreq_transition_notifier_list.mutex);
443
444 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
445 pr_info("%pF\n", nb->notifier_call);
446
447 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
448 }
449
450 /**
451 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
452 * @policy: cpufreq policy to enable fast frequency switching for.
453 *
454 * Try to enable fast frequency switching for @policy.
455 *
456 * The attempt will fail if there is at least one transition notifier registered
457 * at this point, as fast frequency switching is quite fundamentally at odds
458 * with transition notifiers. Thus if successful, it will make registration of
459 * transition notifiers fail going forward.
460 */
461 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
462 {
463 lockdep_assert_held(&policy->rwsem);
464
465 if (!policy->fast_switch_possible)
466 return;
467
468 mutex_lock(&cpufreq_fast_switch_lock);
469 if (cpufreq_fast_switch_count >= 0) {
470 cpufreq_fast_switch_count++;
471 policy->fast_switch_enabled = true;
472 } else {
473 pr_warn("CPU%u: Fast frequency switching not enabled\n",
474 policy->cpu);
475 cpufreq_list_transition_notifiers();
476 }
477 mutex_unlock(&cpufreq_fast_switch_lock);
478 }
479 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
480
481 /**
482 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
483 * @policy: cpufreq policy to disable fast frequency switching for.
484 */
485 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
486 {
487 mutex_lock(&cpufreq_fast_switch_lock);
488 if (policy->fast_switch_enabled) {
489 policy->fast_switch_enabled = false;
490 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
491 cpufreq_fast_switch_count--;
492 }
493 mutex_unlock(&cpufreq_fast_switch_lock);
494 }
495 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
496
497 /**
498 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
499 * one.
500 * @target_freq: target frequency to resolve.
501 *
502 * The target to driver frequency mapping is cached in the policy.
503 *
504 * Return: Lowest driver-supported frequency greater than or equal to the
505 * given target_freq, subject to policy (min/max) and driver limitations.
506 */
507 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
508 unsigned int target_freq)
509 {
510 target_freq = clamp_val(target_freq, policy->min, policy->max);
511 policy->cached_target_freq = target_freq;
512
513 if (cpufreq_driver->target_index) {
514 int idx;
515
516 idx = cpufreq_frequency_table_target(policy, target_freq,
517 CPUFREQ_RELATION_L);
518 policy->cached_resolved_idx = idx;
519 return policy->freq_table[idx].frequency;
520 }
521
522 if (cpufreq_driver->resolve_freq)
523 return cpufreq_driver->resolve_freq(policy, target_freq);
524
525 return target_freq;
526 }
527 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
528
529 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
530 {
531 unsigned int latency;
532
533 if (policy->transition_delay_us)
534 return policy->transition_delay_us;
535
536 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
537 if (latency) {
538 /*
539 * For platforms that can change the frequency very fast (< 10
540 * us), the above formula gives a decent transition delay. But
541 * for platforms where transition_latency is in milliseconds, it
542 * ends up giving unrealistic values.
543 *
544 * Cap the default transition delay to 10 ms, which seems to be
545 * a reasonable amount of time after which we should reevaluate
546 * the frequency.
547 */
548 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
549 }
550
551 return LATENCY_MULTIPLIER;
552 }
553 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
554
555 /*********************************************************************
556 * SYSFS INTERFACE *
557 *********************************************************************/
558 static ssize_t show_boost(struct kobject *kobj,
559 struct attribute *attr, char *buf)
560 {
561 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
562 }
563
564 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
565 const char *buf, size_t count)
566 {
567 int ret, enable;
568
569 ret = sscanf(buf, "%d", &enable);
570 if (ret != 1 || enable < 0 || enable > 1)
571 return -EINVAL;
572
573 if (cpufreq_boost_trigger_state(enable)) {
574 pr_err("%s: Cannot %s BOOST!\n",
575 __func__, enable ? "enable" : "disable");
576 return -EINVAL;
577 }
578
579 pr_debug("%s: cpufreq BOOST %s\n",
580 __func__, enable ? "enabled" : "disabled");
581
582 return count;
583 }
584 define_one_global_rw(boost);
585
586 static struct cpufreq_governor *find_governor(const char *str_governor)
587 {
588 struct cpufreq_governor *t;
589
590 for_each_governor(t)
591 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
592 return t;
593
594 return NULL;
595 }
596
597 /**
598 * cpufreq_parse_governor - parse a governor string
599 */
600 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
601 struct cpufreq_governor **governor)
602 {
603 int err = -EINVAL;
604
605 if (cpufreq_driver->setpolicy) {
606 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
607 *policy = CPUFREQ_POLICY_PERFORMANCE;
608 err = 0;
609 } else if (!strncasecmp(str_governor, "powersave",
610 CPUFREQ_NAME_LEN)) {
611 *policy = CPUFREQ_POLICY_POWERSAVE;
612 err = 0;
613 }
614 } else {
615 struct cpufreq_governor *t;
616
617 mutex_lock(&cpufreq_governor_mutex);
618
619 t = find_governor(str_governor);
620
621 if (t == NULL) {
622 int ret;
623
624 mutex_unlock(&cpufreq_governor_mutex);
625 ret = request_module("cpufreq_%s", str_governor);
626 mutex_lock(&cpufreq_governor_mutex);
627
628 if (ret == 0)
629 t = find_governor(str_governor);
630 }
631
632 if (t != NULL) {
633 *governor = t;
634 err = 0;
635 }
636
637 mutex_unlock(&cpufreq_governor_mutex);
638 }
639 return err;
640 }
641
642 /**
643 * cpufreq_per_cpu_attr_read() / show_##file_name() -
644 * print out cpufreq information
645 *
646 * Write out information from cpufreq_driver->policy[cpu]; object must be
647 * "unsigned int".
648 */
649
650 #define show_one(file_name, object) \
651 static ssize_t show_##file_name \
652 (struct cpufreq_policy *policy, char *buf) \
653 { \
654 return sprintf(buf, "%u\n", policy->object); \
655 }
656
657 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
658 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
659 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
660 show_one(scaling_min_freq, min);
661 show_one(scaling_max_freq, max);
662
663 __weak unsigned int arch_freq_get_on_cpu(int cpu)
664 {
665 return 0;
666 }
667
668 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
669 {
670 ssize_t ret;
671 unsigned int freq;
672
673 freq = arch_freq_get_on_cpu(policy->cpu);
674 if (freq)
675 ret = sprintf(buf, "%u\n", freq);
676 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
677 cpufreq_driver->get)
678 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
679 else
680 ret = sprintf(buf, "%u\n", policy->cur);
681 return ret;
682 }
683
684 static int cpufreq_set_policy(struct cpufreq_policy *policy,
685 struct cpufreq_policy *new_policy);
686
687 /**
688 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
689 */
690 #define store_one(file_name, object) \
691 static ssize_t store_##file_name \
692 (struct cpufreq_policy *policy, const char *buf, size_t count) \
693 { \
694 int ret, temp; \
695 struct cpufreq_policy new_policy; \
696 \
697 memcpy(&new_policy, policy, sizeof(*policy)); \
698 new_policy.min = policy->user_policy.min; \
699 new_policy.max = policy->user_policy.max; \
700 \
701 ret = sscanf(buf, "%u", &new_policy.object); \
702 if (ret != 1) \
703 return -EINVAL; \
704 \
705 temp = new_policy.object; \
706 ret = cpufreq_set_policy(policy, &new_policy); \
707 if (!ret) \
708 policy->user_policy.object = temp; \
709 \
710 return ret ? ret : count; \
711 }
712
713 store_one(scaling_min_freq, min);
714 store_one(scaling_max_freq, max);
715
716 /**
717 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
718 */
719 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
720 char *buf)
721 {
722 unsigned int cur_freq = __cpufreq_get(policy);
723
724 if (cur_freq)
725 return sprintf(buf, "%u\n", cur_freq);
726
727 return sprintf(buf, "<unknown>\n");
728 }
729
730 /**
731 * show_scaling_governor - show the current policy for the specified CPU
732 */
733 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
734 {
735 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
736 return sprintf(buf, "powersave\n");
737 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
738 return sprintf(buf, "performance\n");
739 else if (policy->governor)
740 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
741 policy->governor->name);
742 return -EINVAL;
743 }
744
745 /**
746 * store_scaling_governor - store policy for the specified CPU
747 */
748 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
749 const char *buf, size_t count)
750 {
751 int ret;
752 char str_governor[16];
753 struct cpufreq_policy new_policy;
754
755 memcpy(&new_policy, policy, sizeof(*policy));
756
757 ret = sscanf(buf, "%15s", str_governor);
758 if (ret != 1)
759 return -EINVAL;
760
761 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
762 &new_policy.governor))
763 return -EINVAL;
764
765 ret = cpufreq_set_policy(policy, &new_policy);
766 return ret ? ret : count;
767 }
768
769 /**
770 * show_scaling_driver - show the cpufreq driver currently loaded
771 */
772 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
773 {
774 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
775 }
776
777 /**
778 * show_scaling_available_governors - show the available CPUfreq governors
779 */
780 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
781 char *buf)
782 {
783 ssize_t i = 0;
784 struct cpufreq_governor *t;
785
786 if (!has_target()) {
787 i += sprintf(buf, "performance powersave");
788 goto out;
789 }
790
791 for_each_governor(t) {
792 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
793 - (CPUFREQ_NAME_LEN + 2)))
794 goto out;
795 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
796 }
797 out:
798 i += sprintf(&buf[i], "\n");
799 return i;
800 }
801
802 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
803 {
804 ssize_t i = 0;
805 unsigned int cpu;
806
807 for_each_cpu(cpu, mask) {
808 if (i)
809 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
810 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
811 if (i >= (PAGE_SIZE - 5))
812 break;
813 }
814 i += sprintf(&buf[i], "\n");
815 return i;
816 }
817 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
818
819 /**
820 * show_related_cpus - show the CPUs affected by each transition even if
821 * hw coordination is in use
822 */
823 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
824 {
825 return cpufreq_show_cpus(policy->related_cpus, buf);
826 }
827
828 /**
829 * show_affected_cpus - show the CPUs affected by each transition
830 */
831 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
832 {
833 return cpufreq_show_cpus(policy->cpus, buf);
834 }
835
836 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
837 const char *buf, size_t count)
838 {
839 unsigned int freq = 0;
840 unsigned int ret;
841
842 if (!policy->governor || !policy->governor->store_setspeed)
843 return -EINVAL;
844
845 ret = sscanf(buf, "%u", &freq);
846 if (ret != 1)
847 return -EINVAL;
848
849 policy->governor->store_setspeed(policy, freq);
850
851 return count;
852 }
853
854 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
855 {
856 if (!policy->governor || !policy->governor->show_setspeed)
857 return sprintf(buf, "<unsupported>\n");
858
859 return policy->governor->show_setspeed(policy, buf);
860 }
861
862 /**
863 * show_bios_limit - show the current cpufreq HW/BIOS limitation
864 */
865 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
866 {
867 unsigned int limit;
868 int ret;
869 if (cpufreq_driver->bios_limit) {
870 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
871 if (!ret)
872 return sprintf(buf, "%u\n", limit);
873 }
874 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
875 }
876
877 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
878 cpufreq_freq_attr_ro(cpuinfo_min_freq);
879 cpufreq_freq_attr_ro(cpuinfo_max_freq);
880 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
881 cpufreq_freq_attr_ro(scaling_available_governors);
882 cpufreq_freq_attr_ro(scaling_driver);
883 cpufreq_freq_attr_ro(scaling_cur_freq);
884 cpufreq_freq_attr_ro(bios_limit);
885 cpufreq_freq_attr_ro(related_cpus);
886 cpufreq_freq_attr_ro(affected_cpus);
887 cpufreq_freq_attr_rw(scaling_min_freq);
888 cpufreq_freq_attr_rw(scaling_max_freq);
889 cpufreq_freq_attr_rw(scaling_governor);
890 cpufreq_freq_attr_rw(scaling_setspeed);
891
892 static struct attribute *default_attrs[] = {
893 &cpuinfo_min_freq.attr,
894 &cpuinfo_max_freq.attr,
895 &cpuinfo_transition_latency.attr,
896 &scaling_min_freq.attr,
897 &scaling_max_freq.attr,
898 &affected_cpus.attr,
899 &related_cpus.attr,
900 &scaling_governor.attr,
901 &scaling_driver.attr,
902 &scaling_available_governors.attr,
903 &scaling_setspeed.attr,
904 NULL
905 };
906
907 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
908 #define to_attr(a) container_of(a, struct freq_attr, attr)
909
910 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
911 {
912 struct cpufreq_policy *policy = to_policy(kobj);
913 struct freq_attr *fattr = to_attr(attr);
914 ssize_t ret;
915
916 down_read(&policy->rwsem);
917 ret = fattr->show(policy, buf);
918 up_read(&policy->rwsem);
919
920 return ret;
921 }
922
923 static ssize_t store(struct kobject *kobj, struct attribute *attr,
924 const char *buf, size_t count)
925 {
926 struct cpufreq_policy *policy = to_policy(kobj);
927 struct freq_attr *fattr = to_attr(attr);
928 ssize_t ret = -EINVAL;
929
930 cpus_read_lock();
931
932 if (cpu_online(policy->cpu)) {
933 down_write(&policy->rwsem);
934 ret = fattr->store(policy, buf, count);
935 up_write(&policy->rwsem);
936 }
937
938 cpus_read_unlock();
939
940 return ret;
941 }
942
943 static void cpufreq_sysfs_release(struct kobject *kobj)
944 {
945 struct cpufreq_policy *policy = to_policy(kobj);
946 pr_debug("last reference is dropped\n");
947 complete(&policy->kobj_unregister);
948 }
949
950 static const struct sysfs_ops sysfs_ops = {
951 .show = show,
952 .store = store,
953 };
954
955 static struct kobj_type ktype_cpufreq = {
956 .sysfs_ops = &sysfs_ops,
957 .default_attrs = default_attrs,
958 .release = cpufreq_sysfs_release,
959 };
960
961 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
962 {
963 struct device *dev = get_cpu_device(cpu);
964
965 if (!dev)
966 return;
967
968 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
969 return;
970
971 dev_dbg(dev, "%s: Adding symlink\n", __func__);
972 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
973 dev_err(dev, "cpufreq symlink creation failed\n");
974 }
975
976 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
977 struct device *dev)
978 {
979 dev_dbg(dev, "%s: Removing symlink\n", __func__);
980 sysfs_remove_link(&dev->kobj, "cpufreq");
981 }
982
983 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
984 {
985 struct freq_attr **drv_attr;
986 int ret = 0;
987
988 /* set up files for this cpu device */
989 drv_attr = cpufreq_driver->attr;
990 while (drv_attr && *drv_attr) {
991 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
992 if (ret)
993 return ret;
994 drv_attr++;
995 }
996 if (cpufreq_driver->get) {
997 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
998 if (ret)
999 return ret;
1000 }
1001
1002 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1003 if (ret)
1004 return ret;
1005
1006 if (cpufreq_driver->bios_limit) {
1007 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1008 if (ret)
1009 return ret;
1010 }
1011
1012 return 0;
1013 }
1014
1015 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1016 {
1017 return NULL;
1018 }
1019
1020 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1021 {
1022 struct cpufreq_governor *gov = NULL;
1023 struct cpufreq_policy new_policy;
1024
1025 memcpy(&new_policy, policy, sizeof(*policy));
1026
1027 /* Update governor of new_policy to the governor used before hotplug */
1028 gov = find_governor(policy->last_governor);
1029 if (gov) {
1030 pr_debug("Restoring governor %s for cpu %d\n",
1031 policy->governor->name, policy->cpu);
1032 } else {
1033 gov = cpufreq_default_governor();
1034 if (!gov)
1035 return -ENODATA;
1036 }
1037
1038 new_policy.governor = gov;
1039
1040 /* Use the default policy if there is no last_policy. */
1041 if (cpufreq_driver->setpolicy) {
1042 if (policy->last_policy)
1043 new_policy.policy = policy->last_policy;
1044 else
1045 cpufreq_parse_governor(gov->name, &new_policy.policy,
1046 NULL);
1047 }
1048 /* set default policy */
1049 return cpufreq_set_policy(policy, &new_policy);
1050 }
1051
1052 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1053 {
1054 int ret = 0;
1055
1056 /* Has this CPU been taken care of already? */
1057 if (cpumask_test_cpu(cpu, policy->cpus))
1058 return 0;
1059
1060 down_write(&policy->rwsem);
1061 if (has_target())
1062 cpufreq_stop_governor(policy);
1063
1064 cpumask_set_cpu(cpu, policy->cpus);
1065
1066 if (has_target()) {
1067 ret = cpufreq_start_governor(policy);
1068 if (ret)
1069 pr_err("%s: Failed to start governor\n", __func__);
1070 }
1071 up_write(&policy->rwsem);
1072 return ret;
1073 }
1074
1075 static void handle_update(struct work_struct *work)
1076 {
1077 struct cpufreq_policy *policy =
1078 container_of(work, struct cpufreq_policy, update);
1079 unsigned int cpu = policy->cpu;
1080 pr_debug("handle_update for cpu %u called\n", cpu);
1081 cpufreq_update_policy(cpu);
1082 }
1083
1084 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1085 {
1086 struct cpufreq_policy *policy;
1087 int ret;
1088
1089 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1090 if (!policy)
1091 return NULL;
1092
1093 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1094 goto err_free_policy;
1095
1096 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1097 goto err_free_cpumask;
1098
1099 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1100 goto err_free_rcpumask;
1101
1102 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1103 cpufreq_global_kobject, "policy%u", cpu);
1104 if (ret) {
1105 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1106 goto err_free_real_cpus;
1107 }
1108
1109 INIT_LIST_HEAD(&policy->policy_list);
1110 init_rwsem(&policy->rwsem);
1111 spin_lock_init(&policy->transition_lock);
1112 init_waitqueue_head(&policy->transition_wait);
1113 init_completion(&policy->kobj_unregister);
1114 INIT_WORK(&policy->update, handle_update);
1115
1116 policy->cpu = cpu;
1117 return policy;
1118
1119 err_free_real_cpus:
1120 free_cpumask_var(policy->real_cpus);
1121 err_free_rcpumask:
1122 free_cpumask_var(policy->related_cpus);
1123 err_free_cpumask:
1124 free_cpumask_var(policy->cpus);
1125 err_free_policy:
1126 kfree(policy);
1127
1128 return NULL;
1129 }
1130
1131 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1132 {
1133 struct kobject *kobj;
1134 struct completion *cmp;
1135
1136 down_write(&policy->rwsem);
1137 cpufreq_stats_free_table(policy);
1138 kobj = &policy->kobj;
1139 cmp = &policy->kobj_unregister;
1140 up_write(&policy->rwsem);
1141 kobject_put(kobj);
1142
1143 /*
1144 * We need to make sure that the underlying kobj is
1145 * actually not referenced anymore by anybody before we
1146 * proceed with unloading.
1147 */
1148 pr_debug("waiting for dropping of refcount\n");
1149 wait_for_completion(cmp);
1150 pr_debug("wait complete\n");
1151 }
1152
1153 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1154 {
1155 unsigned long flags;
1156 int cpu;
1157
1158 /* Remove policy from list */
1159 write_lock_irqsave(&cpufreq_driver_lock, flags);
1160 list_del(&policy->policy_list);
1161
1162 for_each_cpu(cpu, policy->related_cpus)
1163 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1164 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1165
1166 cpufreq_policy_put_kobj(policy);
1167 free_cpumask_var(policy->real_cpus);
1168 free_cpumask_var(policy->related_cpus);
1169 free_cpumask_var(policy->cpus);
1170 kfree(policy);
1171 }
1172
1173 static int cpufreq_online(unsigned int cpu)
1174 {
1175 struct cpufreq_policy *policy;
1176 bool new_policy;
1177 unsigned long flags;
1178 unsigned int j;
1179 int ret;
1180
1181 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1182
1183 /* Check if this CPU already has a policy to manage it */
1184 policy = per_cpu(cpufreq_cpu_data, cpu);
1185 if (policy) {
1186 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1187 if (!policy_is_inactive(policy))
1188 return cpufreq_add_policy_cpu(policy, cpu);
1189
1190 /* This is the only online CPU for the policy. Start over. */
1191 new_policy = false;
1192 down_write(&policy->rwsem);
1193 policy->cpu = cpu;
1194 policy->governor = NULL;
1195 up_write(&policy->rwsem);
1196 } else {
1197 new_policy = true;
1198 policy = cpufreq_policy_alloc(cpu);
1199 if (!policy)
1200 return -ENOMEM;
1201 }
1202
1203 cpumask_copy(policy->cpus, cpumask_of(cpu));
1204
1205 /* call driver. From then on the cpufreq must be able
1206 * to accept all calls to ->verify and ->setpolicy for this CPU
1207 */
1208 ret = cpufreq_driver->init(policy);
1209 if (ret) {
1210 pr_debug("initialization failed\n");
1211 goto out_free_policy;
1212 }
1213
1214 down_write(&policy->rwsem);
1215
1216 if (new_policy) {
1217 /* related_cpus should at least include policy->cpus. */
1218 cpumask_copy(policy->related_cpus, policy->cpus);
1219 }
1220
1221 /*
1222 * affected cpus must always be the one, which are online. We aren't
1223 * managing offline cpus here.
1224 */
1225 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1226
1227 if (new_policy) {
1228 policy->user_policy.min = policy->min;
1229 policy->user_policy.max = policy->max;
1230
1231 for_each_cpu(j, policy->related_cpus) {
1232 per_cpu(cpufreq_cpu_data, j) = policy;
1233 add_cpu_dev_symlink(policy, j);
1234 }
1235 } else {
1236 policy->min = policy->user_policy.min;
1237 policy->max = policy->user_policy.max;
1238 }
1239
1240 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1241 policy->cur = cpufreq_driver->get(policy->cpu);
1242 if (!policy->cur) {
1243 pr_err("%s: ->get() failed\n", __func__);
1244 goto out_exit_policy;
1245 }
1246 }
1247
1248 /*
1249 * Sometimes boot loaders set CPU frequency to a value outside of
1250 * frequency table present with cpufreq core. In such cases CPU might be
1251 * unstable if it has to run on that frequency for long duration of time
1252 * and so its better to set it to a frequency which is specified in
1253 * freq-table. This also makes cpufreq stats inconsistent as
1254 * cpufreq-stats would fail to register because current frequency of CPU
1255 * isn't found in freq-table.
1256 *
1257 * Because we don't want this change to effect boot process badly, we go
1258 * for the next freq which is >= policy->cur ('cur' must be set by now,
1259 * otherwise we will end up setting freq to lowest of the table as 'cur'
1260 * is initialized to zero).
1261 *
1262 * We are passing target-freq as "policy->cur - 1" otherwise
1263 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1264 * equal to target-freq.
1265 */
1266 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1267 && has_target()) {
1268 /* Are we running at unknown frequency ? */
1269 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1270 if (ret == -EINVAL) {
1271 /* Warn user and fix it */
1272 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1273 __func__, policy->cpu, policy->cur);
1274 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1275 CPUFREQ_RELATION_L);
1276
1277 /*
1278 * Reaching here after boot in a few seconds may not
1279 * mean that system will remain stable at "unknown"
1280 * frequency for longer duration. Hence, a BUG_ON().
1281 */
1282 BUG_ON(ret);
1283 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1284 __func__, policy->cpu, policy->cur);
1285 }
1286 }
1287
1288 if (new_policy) {
1289 ret = cpufreq_add_dev_interface(policy);
1290 if (ret)
1291 goto out_exit_policy;
1292
1293 cpufreq_stats_create_table(policy);
1294 cpufreq_times_create_policy(policy);
1295
1296 write_lock_irqsave(&cpufreq_driver_lock, flags);
1297 list_add(&policy->policy_list, &cpufreq_policy_list);
1298 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1299 }
1300
1301 ret = cpufreq_init_policy(policy);
1302 if (ret) {
1303 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1304 __func__, cpu, ret);
1305 /* cpufreq_policy_free() will notify based on this */
1306 new_policy = false;
1307 goto out_exit_policy;
1308 }
1309
1310 up_write(&policy->rwsem);
1311
1312 kobject_uevent(&policy->kobj, KOBJ_ADD);
1313
1314 /* Callback for handling stuff after policy is ready */
1315 if (cpufreq_driver->ready)
1316 cpufreq_driver->ready(policy);
1317
1318 pr_debug("initialization complete\n");
1319
1320 return 0;
1321
1322 out_exit_policy:
1323 for_each_cpu(j, policy->real_cpus)
1324 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1325
1326 up_write(&policy->rwsem);
1327
1328 if (cpufreq_driver->exit)
1329 cpufreq_driver->exit(policy);
1330
1331 out_free_policy:
1332 cpufreq_policy_free(policy);
1333 return ret;
1334 }
1335
1336 /**
1337 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1338 * @dev: CPU device.
1339 * @sif: Subsystem interface structure pointer (not used)
1340 */
1341 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1342 {
1343 struct cpufreq_policy *policy;
1344 unsigned cpu = dev->id;
1345 int ret;
1346
1347 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1348
1349 if (cpu_online(cpu)) {
1350 ret = cpufreq_online(cpu);
1351 if (ret)
1352 return ret;
1353 }
1354
1355 /* Create sysfs link on CPU registration */
1356 policy = per_cpu(cpufreq_cpu_data, cpu);
1357 if (policy)
1358 add_cpu_dev_symlink(policy, cpu);
1359
1360 return 0;
1361 }
1362
1363 static int cpufreq_offline(unsigned int cpu)
1364 {
1365 struct cpufreq_policy *policy;
1366 int ret;
1367
1368 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1369
1370 policy = cpufreq_cpu_get_raw(cpu);
1371 if (!policy) {
1372 pr_debug("%s: No cpu_data found\n", __func__);
1373 return 0;
1374 }
1375
1376 down_write(&policy->rwsem);
1377 if (has_target())
1378 cpufreq_stop_governor(policy);
1379
1380 cpumask_clear_cpu(cpu, policy->cpus);
1381
1382 if (policy_is_inactive(policy)) {
1383 if (has_target())
1384 strncpy(policy->last_governor, policy->governor->name,
1385 CPUFREQ_NAME_LEN);
1386 else
1387 policy->last_policy = policy->policy;
1388 } else if (cpu == policy->cpu) {
1389 /* Nominate new CPU */
1390 policy->cpu = cpumask_any(policy->cpus);
1391 }
1392
1393 /* Start governor again for active policy */
1394 if (!policy_is_inactive(policy)) {
1395 if (has_target()) {
1396 ret = cpufreq_start_governor(policy);
1397 if (ret)
1398 pr_err("%s: Failed to start governor\n", __func__);
1399 }
1400
1401 goto unlock;
1402 }
1403
1404 if (cpufreq_driver->stop_cpu)
1405 cpufreq_driver->stop_cpu(policy);
1406
1407 if (has_target())
1408 cpufreq_exit_governor(policy);
1409
1410 /*
1411 * Perform the ->exit() even during light-weight tear-down,
1412 * since this is a core component, and is essential for the
1413 * subsequent light-weight ->init() to succeed.
1414 */
1415 if (cpufreq_driver->exit) {
1416 cpufreq_driver->exit(policy);
1417 policy->freq_table = NULL;
1418 }
1419
1420 unlock:
1421 up_write(&policy->rwsem);
1422 return 0;
1423 }
1424
1425 /**
1426 * cpufreq_remove_dev - remove a CPU device
1427 *
1428 * Removes the cpufreq interface for a CPU device.
1429 */
1430 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1431 {
1432 unsigned int cpu = dev->id;
1433 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1434
1435 if (!policy)
1436 return;
1437
1438 if (cpu_online(cpu))
1439 cpufreq_offline(cpu);
1440
1441 cpumask_clear_cpu(cpu, policy->real_cpus);
1442 remove_cpu_dev_symlink(policy, dev);
1443
1444 if (cpumask_empty(policy->real_cpus))
1445 cpufreq_policy_free(policy);
1446 }
1447
1448 /**
1449 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1450 * in deep trouble.
1451 * @policy: policy managing CPUs
1452 * @new_freq: CPU frequency the CPU actually runs at
1453 *
1454 * We adjust to current frequency first, and need to clean up later.
1455 * So either call to cpufreq_update_policy() or schedule handle_update()).
1456 */
1457 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1458 unsigned int new_freq)
1459 {
1460 struct cpufreq_freqs freqs;
1461
1462 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1463 policy->cur, new_freq);
1464
1465 freqs.old = policy->cur;
1466 freqs.new = new_freq;
1467
1468 cpufreq_freq_transition_begin(policy, &freqs);
1469 cpufreq_freq_transition_end(policy, &freqs, 0);
1470 }
1471
1472 /**
1473 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1474 * @cpu: CPU number
1475 *
1476 * This is the last known freq, without actually getting it from the driver.
1477 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1478 */
1479 unsigned int cpufreq_quick_get(unsigned int cpu)
1480 {
1481 struct cpufreq_policy *policy;
1482 unsigned int ret_freq = 0;
1483 unsigned long flags;
1484
1485 read_lock_irqsave(&cpufreq_driver_lock, flags);
1486
1487 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1488 ret_freq = cpufreq_driver->get(cpu);
1489 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1490 return ret_freq;
1491 }
1492
1493 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1494
1495 policy = cpufreq_cpu_get(cpu);
1496 if (policy) {
1497 ret_freq = policy->cur;
1498 cpufreq_cpu_put(policy);
1499 }
1500
1501 return ret_freq;
1502 }
1503 EXPORT_SYMBOL(cpufreq_quick_get);
1504
1505 /**
1506 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1507 * @cpu: CPU number
1508 *
1509 * Just return the max possible frequency for a given CPU.
1510 */
1511 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1512 {
1513 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1514 unsigned int ret_freq = 0;
1515
1516 if (policy) {
1517 ret_freq = policy->max;
1518 cpufreq_cpu_put(policy);
1519 }
1520
1521 return ret_freq;
1522 }
1523 EXPORT_SYMBOL(cpufreq_quick_get_max);
1524
1525 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1526 {
1527 unsigned int ret_freq = 0;
1528
1529 if (!cpufreq_driver->get)
1530 return ret_freq;
1531
1532 ret_freq = cpufreq_driver->get(policy->cpu);
1533
1534 /*
1535 * Updating inactive policies is invalid, so avoid doing that. Also
1536 * if fast frequency switching is used with the given policy, the check
1537 * against policy->cur is pointless, so skip it in that case too.
1538 */
1539 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1540 return ret_freq;
1541
1542 if (ret_freq && policy->cur &&
1543 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1544 /* verify no discrepancy between actual and
1545 saved value exists */
1546 if (unlikely(ret_freq != policy->cur)) {
1547 cpufreq_out_of_sync(policy, ret_freq);
1548 schedule_work(&policy->update);
1549 }
1550 }
1551
1552 return ret_freq;
1553 }
1554
1555 /**
1556 * cpufreq_get - get the current CPU frequency (in kHz)
1557 * @cpu: CPU number
1558 *
1559 * Get the CPU current (static) CPU frequency
1560 */
1561 unsigned int cpufreq_get(unsigned int cpu)
1562 {
1563 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1564 unsigned int ret_freq = 0;
1565
1566 if (policy) {
1567 down_read(&policy->rwsem);
1568
1569 if (!policy_is_inactive(policy))
1570 ret_freq = __cpufreq_get(policy);
1571
1572 up_read(&policy->rwsem);
1573
1574 cpufreq_cpu_put(policy);
1575 }
1576
1577 return ret_freq;
1578 }
1579 EXPORT_SYMBOL(cpufreq_get);
1580
1581 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1582 {
1583 unsigned int new_freq;
1584
1585 new_freq = cpufreq_driver->get(policy->cpu);
1586 if (!new_freq)
1587 return 0;
1588
1589 if (!policy->cur) {
1590 pr_debug("cpufreq: Driver did not initialize current freq\n");
1591 policy->cur = new_freq;
1592 } else if (policy->cur != new_freq && has_target()) {
1593 cpufreq_out_of_sync(policy, new_freq);
1594 }
1595
1596 return new_freq;
1597 }
1598
1599 static struct subsys_interface cpufreq_interface = {
1600 .name = "cpufreq",
1601 .subsys = &cpu_subsys,
1602 .add_dev = cpufreq_add_dev,
1603 .remove_dev = cpufreq_remove_dev,
1604 };
1605
1606 /*
1607 * In case platform wants some specific frequency to be configured
1608 * during suspend..
1609 */
1610 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1611 {
1612 int ret;
1613
1614 if (!policy->suspend_freq) {
1615 pr_debug("%s: suspend_freq not defined\n", __func__);
1616 return 0;
1617 }
1618
1619 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1620 policy->suspend_freq);
1621
1622 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1623 CPUFREQ_RELATION_H);
1624 if (ret)
1625 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1626 __func__, policy->suspend_freq, ret);
1627
1628 return ret;
1629 }
1630 EXPORT_SYMBOL(cpufreq_generic_suspend);
1631
1632 /**
1633 * cpufreq_suspend() - Suspend CPUFreq governors
1634 *
1635 * Called during system wide Suspend/Hibernate cycles for suspending governors
1636 * as some platforms can't change frequency after this point in suspend cycle.
1637 * Because some of the devices (like: i2c, regulators, etc) they use for
1638 * changing frequency are suspended quickly after this point.
1639 */
1640 void cpufreq_suspend(void)
1641 {
1642 struct cpufreq_policy *policy;
1643
1644 if (!cpufreq_driver)
1645 return;
1646
1647 if (!has_target() && !cpufreq_driver->suspend)
1648 goto suspend;
1649
1650 pr_debug("%s: Suspending Governors\n", __func__);
1651
1652 for_each_active_policy(policy) {
1653 if (has_target()) {
1654 down_write(&policy->rwsem);
1655 cpufreq_stop_governor(policy);
1656 up_write(&policy->rwsem);
1657 }
1658
1659 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1660 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1661 policy);
1662 }
1663
1664 suspend:
1665 cpufreq_suspended = true;
1666 }
1667
1668 /**
1669 * cpufreq_resume() - Resume CPUFreq governors
1670 *
1671 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1672 * are suspended with cpufreq_suspend().
1673 */
1674 void cpufreq_resume(void)
1675 {
1676 struct cpufreq_policy *policy;
1677 int ret;
1678
1679 if (!cpufreq_driver)
1680 return;
1681
1682 cpufreq_suspended = false;
1683
1684 if (!has_target() && !cpufreq_driver->resume)
1685 return;
1686
1687 pr_debug("%s: Resuming Governors\n", __func__);
1688
1689 for_each_active_policy(policy) {
1690 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1691 pr_err("%s: Failed to resume driver: %p\n", __func__,
1692 policy);
1693 } else if (has_target()) {
1694 down_write(&policy->rwsem);
1695 ret = cpufreq_start_governor(policy);
1696 up_write(&policy->rwsem);
1697
1698 if (ret)
1699 pr_err("%s: Failed to start governor for policy: %p\n",
1700 __func__, policy);
1701 }
1702 }
1703 }
1704
1705 /**
1706 * cpufreq_get_current_driver - return current driver's name
1707 *
1708 * Return the name string of the currently loaded cpufreq driver
1709 * or NULL, if none.
1710 */
1711 const char *cpufreq_get_current_driver(void)
1712 {
1713 if (cpufreq_driver)
1714 return cpufreq_driver->name;
1715
1716 return NULL;
1717 }
1718 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1719
1720 /**
1721 * cpufreq_get_driver_data - return current driver data
1722 *
1723 * Return the private data of the currently loaded cpufreq
1724 * driver, or NULL if no cpufreq driver is loaded.
1725 */
1726 void *cpufreq_get_driver_data(void)
1727 {
1728 if (cpufreq_driver)
1729 return cpufreq_driver->driver_data;
1730
1731 return NULL;
1732 }
1733 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1734
1735 /*********************************************************************
1736 * NOTIFIER LISTS INTERFACE *
1737 *********************************************************************/
1738
1739 /**
1740 * cpufreq_register_notifier - register a driver with cpufreq
1741 * @nb: notifier function to register
1742 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1743 *
1744 * Add a driver to one of two lists: either a list of drivers that
1745 * are notified about clock rate changes (once before and once after
1746 * the transition), or a list of drivers that are notified about
1747 * changes in cpufreq policy.
1748 *
1749 * This function may sleep, and has the same return conditions as
1750 * blocking_notifier_chain_register.
1751 */
1752 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1753 {
1754 int ret;
1755
1756 if (cpufreq_disabled())
1757 return -EINVAL;
1758
1759 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1760
1761 switch (list) {
1762 case CPUFREQ_TRANSITION_NOTIFIER:
1763 mutex_lock(&cpufreq_fast_switch_lock);
1764
1765 if (cpufreq_fast_switch_count > 0) {
1766 mutex_unlock(&cpufreq_fast_switch_lock);
1767 return -EBUSY;
1768 }
1769 ret = srcu_notifier_chain_register(
1770 &cpufreq_transition_notifier_list, nb);
1771 if (!ret)
1772 cpufreq_fast_switch_count--;
1773
1774 mutex_unlock(&cpufreq_fast_switch_lock);
1775 break;
1776 case CPUFREQ_POLICY_NOTIFIER:
1777 ret = blocking_notifier_chain_register(
1778 &cpufreq_policy_notifier_list, nb);
1779 break;
1780 default:
1781 ret = -EINVAL;
1782 }
1783
1784 return ret;
1785 }
1786 EXPORT_SYMBOL(cpufreq_register_notifier);
1787
1788 /**
1789 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1790 * @nb: notifier block to be unregistered
1791 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1792 *
1793 * Remove a driver from the CPU frequency notifier list.
1794 *
1795 * This function may sleep, and has the same return conditions as
1796 * blocking_notifier_chain_unregister.
1797 */
1798 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1799 {
1800 int ret;
1801
1802 if (cpufreq_disabled())
1803 return -EINVAL;
1804
1805 switch (list) {
1806 case CPUFREQ_TRANSITION_NOTIFIER:
1807 mutex_lock(&cpufreq_fast_switch_lock);
1808
1809 ret = srcu_notifier_chain_unregister(
1810 &cpufreq_transition_notifier_list, nb);
1811 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1812 cpufreq_fast_switch_count++;
1813
1814 mutex_unlock(&cpufreq_fast_switch_lock);
1815 break;
1816 case CPUFREQ_POLICY_NOTIFIER:
1817 ret = blocking_notifier_chain_unregister(
1818 &cpufreq_policy_notifier_list, nb);
1819 break;
1820 default:
1821 ret = -EINVAL;
1822 }
1823
1824 return ret;
1825 }
1826 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1827
1828
1829 /*********************************************************************
1830 * GOVERNORS *
1831 *********************************************************************/
1832
1833 /**
1834 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1835 * @policy: cpufreq policy to switch the frequency for.
1836 * @target_freq: New frequency to set (may be approximate).
1837 *
1838 * Carry out a fast frequency switch without sleeping.
1839 *
1840 * The driver's ->fast_switch() callback invoked by this function must be
1841 * suitable for being called from within RCU-sched read-side critical sections
1842 * and it is expected to select the minimum available frequency greater than or
1843 * equal to @target_freq (CPUFREQ_RELATION_L).
1844 *
1845 * This function must not be called if policy->fast_switch_enabled is unset.
1846 *
1847 * Governors calling this function must guarantee that it will never be invoked
1848 * twice in parallel for the same policy and that it will never be called in
1849 * parallel with either ->target() or ->target_index() for the same policy.
1850 *
1851 * Returns the actual frequency set for the CPU.
1852 *
1853 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1854 * error condition, the hardware configuration must be preserved.
1855 */
1856 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1857 unsigned int target_freq)
1858 {
1859 target_freq = clamp_val(target_freq, policy->min, policy->max);
1860
1861 return cpufreq_driver->fast_switch(policy, target_freq);
1862 }
1863 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1864
1865 /* Must set freqs->new to intermediate frequency */
1866 static int __target_intermediate(struct cpufreq_policy *policy,
1867 struct cpufreq_freqs *freqs, int index)
1868 {
1869 int ret;
1870
1871 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1872
1873 /* We don't need to switch to intermediate freq */
1874 if (!freqs->new)
1875 return 0;
1876
1877 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1878 __func__, policy->cpu, freqs->old, freqs->new);
1879
1880 cpufreq_freq_transition_begin(policy, freqs);
1881 ret = cpufreq_driver->target_intermediate(policy, index);
1882 cpufreq_freq_transition_end(policy, freqs, ret);
1883
1884 if (ret)
1885 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1886 __func__, ret);
1887
1888 return ret;
1889 }
1890
1891 static int __target_index(struct cpufreq_policy *policy, int index)
1892 {
1893 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1894 unsigned int intermediate_freq = 0;
1895 unsigned int newfreq = policy->freq_table[index].frequency;
1896 int retval = -EINVAL;
1897 bool notify;
1898
1899 if (newfreq == policy->cur)
1900 return 0;
1901
1902 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1903 if (notify) {
1904 /* Handle switching to intermediate frequency */
1905 if (cpufreq_driver->get_intermediate) {
1906 retval = __target_intermediate(policy, &freqs, index);
1907 if (retval)
1908 return retval;
1909
1910 intermediate_freq = freqs.new;
1911 /* Set old freq to intermediate */
1912 if (intermediate_freq)
1913 freqs.old = freqs.new;
1914 }
1915
1916 freqs.new = newfreq;
1917 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1918 __func__, policy->cpu, freqs.old, freqs.new);
1919
1920 cpufreq_freq_transition_begin(policy, &freqs);
1921 }
1922
1923 retval = cpufreq_driver->target_index(policy, index);
1924 if (retval)
1925 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1926 retval);
1927
1928 if (notify) {
1929 cpufreq_freq_transition_end(policy, &freqs, retval);
1930
1931 /*
1932 * Failed after setting to intermediate freq? Driver should have
1933 * reverted back to initial frequency and so should we. Check
1934 * here for intermediate_freq instead of get_intermediate, in
1935 * case we haven't switched to intermediate freq at all.
1936 */
1937 if (unlikely(retval && intermediate_freq)) {
1938 freqs.old = intermediate_freq;
1939 freqs.new = policy->restore_freq;
1940 cpufreq_freq_transition_begin(policy, &freqs);
1941 cpufreq_freq_transition_end(policy, &freqs, 0);
1942 }
1943 }
1944
1945 return retval;
1946 }
1947
1948 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1949 unsigned int target_freq,
1950 unsigned int relation)
1951 {
1952 unsigned int old_target_freq = target_freq;
1953 int index;
1954
1955 if (cpufreq_disabled())
1956 return -ENODEV;
1957
1958 /* Make sure that target_freq is within supported range */
1959 target_freq = clamp_val(target_freq, policy->min, policy->max);
1960
1961 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1962 policy->cpu, target_freq, relation, old_target_freq);
1963
1964 /*
1965 * This might look like a redundant call as we are checking it again
1966 * after finding index. But it is left intentionally for cases where
1967 * exactly same freq is called again and so we can save on few function
1968 * calls.
1969 */
1970 if (target_freq == policy->cur)
1971 return 0;
1972
1973 /* Save last value to restore later on errors */
1974 policy->restore_freq = policy->cur;
1975
1976 if (cpufreq_driver->target)
1977 return cpufreq_driver->target(policy, target_freq, relation);
1978
1979 if (!cpufreq_driver->target_index)
1980 return -EINVAL;
1981
1982 index = cpufreq_frequency_table_target(policy, target_freq, relation);
1983
1984 return __target_index(policy, index);
1985 }
1986 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1987
1988 int cpufreq_driver_target(struct cpufreq_policy *policy,
1989 unsigned int target_freq,
1990 unsigned int relation)
1991 {
1992 int ret = -EINVAL;
1993
1994 down_write(&policy->rwsem);
1995
1996 ret = __cpufreq_driver_target(policy, target_freq, relation);
1997
1998 up_write(&policy->rwsem);
1999
2000 return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2003
2004 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2005 {
2006 return NULL;
2007 }
2008
2009 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2010 {
2011 int ret;
2012
2013 /* Don't start any governor operations if we are entering suspend */
2014 if (cpufreq_suspended)
2015 return 0;
2016 /*
2017 * Governor might not be initiated here if ACPI _PPC changed
2018 * notification happened, so check it.
2019 */
2020 if (!policy->governor)
2021 return -EINVAL;
2022
2023 /* Platform doesn't want dynamic frequency switching ? */
2024 if (policy->governor->dynamic_switching &&
2025 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2026 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2027
2028 if (gov) {
2029 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2030 policy->governor->name, gov->name);
2031 policy->governor = gov;
2032 } else {
2033 return -EINVAL;
2034 }
2035 }
2036
2037 if (!try_module_get(policy->governor->owner))
2038 return -EINVAL;
2039
2040 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2041
2042 if (policy->governor->init) {
2043 ret = policy->governor->init(policy);
2044 if (ret) {
2045 module_put(policy->governor->owner);
2046 return ret;
2047 }
2048 }
2049
2050 return 0;
2051 }
2052
2053 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2054 {
2055 if (cpufreq_suspended || !policy->governor)
2056 return;
2057
2058 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2059
2060 if (policy->governor->exit)
2061 policy->governor->exit(policy);
2062
2063 module_put(policy->governor->owner);
2064 }
2065
2066 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2067 {
2068 int ret;
2069
2070 if (cpufreq_suspended)
2071 return 0;
2072
2073 if (!policy->governor)
2074 return -EINVAL;
2075
2076 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2077
2078 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2079 cpufreq_update_current_freq(policy);
2080
2081 if (policy->governor->start) {
2082 ret = policy->governor->start(policy);
2083 if (ret)
2084 return ret;
2085 }
2086
2087 if (policy->governor->limits)
2088 policy->governor->limits(policy);
2089
2090 return 0;
2091 }
2092
2093 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2094 {
2095 if (cpufreq_suspended || !policy->governor)
2096 return;
2097
2098 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2099
2100 if (policy->governor->stop)
2101 policy->governor->stop(policy);
2102 }
2103
2104 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2105 {
2106 if (cpufreq_suspended || !policy->governor)
2107 return;
2108
2109 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2110
2111 if (policy->governor->limits)
2112 policy->governor->limits(policy);
2113 }
2114
2115 int cpufreq_register_governor(struct cpufreq_governor *governor)
2116 {
2117 int err;
2118
2119 if (!governor)
2120 return -EINVAL;
2121
2122 if (cpufreq_disabled())
2123 return -ENODEV;
2124
2125 mutex_lock(&cpufreq_governor_mutex);
2126
2127 err = -EBUSY;
2128 if (!find_governor(governor->name)) {
2129 err = 0;
2130 list_add(&governor->governor_list, &cpufreq_governor_list);
2131 }
2132
2133 mutex_unlock(&cpufreq_governor_mutex);
2134 return err;
2135 }
2136 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2137
2138 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2139 {
2140 struct cpufreq_policy *policy;
2141 unsigned long flags;
2142
2143 if (!governor)
2144 return;
2145
2146 if (cpufreq_disabled())
2147 return;
2148
2149 /* clear last_governor for all inactive policies */
2150 read_lock_irqsave(&cpufreq_driver_lock, flags);
2151 for_each_inactive_policy(policy) {
2152 if (!strcmp(policy->last_governor, governor->name)) {
2153 policy->governor = NULL;
2154 strcpy(policy->last_governor, "\0");
2155 }
2156 }
2157 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2158
2159 mutex_lock(&cpufreq_governor_mutex);
2160 list_del(&governor->governor_list);
2161 mutex_unlock(&cpufreq_governor_mutex);
2162 return;
2163 }
2164 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2165
2166
2167 /*********************************************************************
2168 * POLICY INTERFACE *
2169 *********************************************************************/
2170
2171 /**
2172 * cpufreq_get_policy - get the current cpufreq_policy
2173 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2174 * is written
2175 *
2176 * Reads the current cpufreq policy.
2177 */
2178 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2179 {
2180 struct cpufreq_policy *cpu_policy;
2181 if (!policy)
2182 return -EINVAL;
2183
2184 cpu_policy = cpufreq_cpu_get(cpu);
2185 if (!cpu_policy)
2186 return -EINVAL;
2187
2188 memcpy(policy, cpu_policy, sizeof(*policy));
2189
2190 cpufreq_cpu_put(cpu_policy);
2191 return 0;
2192 }
2193 EXPORT_SYMBOL(cpufreq_get_policy);
2194
2195 /*
2196 * policy : current policy.
2197 * new_policy: policy to be set.
2198 */
2199 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2200 struct cpufreq_policy *new_policy)
2201 {
2202 struct cpufreq_governor *old_gov;
2203 int ret;
2204
2205 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2206 new_policy->cpu, new_policy->min, new_policy->max);
2207
2208 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2209
2210 /*
2211 * This check works well when we store new min/max freq attributes,
2212 * because new_policy is a copy of policy with one field updated.
2213 */
2214 if (new_policy->min > new_policy->max)
2215 return -EINVAL;
2216
2217 /* verify the cpu speed can be set within this limit */
2218 ret = cpufreq_driver->verify(new_policy);
2219 if (ret)
2220 return ret;
2221
2222 /* adjust if necessary - all reasons */
2223 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2224 CPUFREQ_ADJUST, new_policy);
2225
2226 /*
2227 * verify the cpu speed can be set within this limit, which might be
2228 * different to the first one
2229 */
2230 ret = cpufreq_driver->verify(new_policy);
2231 if (ret)
2232 return ret;
2233
2234 /* notification of the new policy */
2235 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2236 CPUFREQ_NOTIFY, new_policy);
2237
2238 policy->min = new_policy->min;
2239 policy->max = new_policy->max;
2240
2241 arch_set_max_freq_scale(policy->cpus, policy->max);
2242
2243 trace_cpu_frequency_limits(policy->max, policy->min, policy->cpu);
2244
2245 policy->cached_target_freq = UINT_MAX;
2246
2247 pr_debug("new min and max freqs are %u - %u kHz\n",
2248 policy->min, policy->max);
2249
2250 if (cpufreq_driver->setpolicy) {
2251 policy->policy = new_policy->policy;
2252 pr_debug("setting range\n");
2253 return cpufreq_driver->setpolicy(new_policy);
2254 }
2255
2256 if (new_policy->governor == policy->governor) {
2257 pr_debug("cpufreq: governor limits update\n");
2258 cpufreq_governor_limits(policy);
2259 return 0;
2260 }
2261
2262 pr_debug("governor switch\n");
2263
2264 /* save old, working values */
2265 old_gov = policy->governor;
2266 /* end old governor */
2267 if (old_gov) {
2268 cpufreq_stop_governor(policy);
2269 cpufreq_exit_governor(policy);
2270 }
2271
2272 /* start new governor */
2273 policy->governor = new_policy->governor;
2274 ret = cpufreq_init_governor(policy);
2275 if (!ret) {
2276 ret = cpufreq_start_governor(policy);
2277 if (!ret) {
2278 pr_debug("cpufreq: governor change\n");
2279 return 0;
2280 }
2281 cpufreq_exit_governor(policy);
2282 }
2283
2284 /* new governor failed, so re-start old one */
2285 pr_debug("starting governor %s failed\n", policy->governor->name);
2286 if (old_gov) {
2287 policy->governor = old_gov;
2288 if (cpufreq_init_governor(policy))
2289 policy->governor = NULL;
2290 else
2291 cpufreq_start_governor(policy);
2292 }
2293
2294 return ret;
2295 }
2296
2297 /**
2298 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2299 * @cpu: CPU which shall be re-evaluated
2300 *
2301 * Useful for policy notifiers which have different necessities
2302 * at different times.
2303 */
2304 void cpufreq_update_policy(unsigned int cpu)
2305 {
2306 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2307 struct cpufreq_policy new_policy;
2308
2309 if (!policy)
2310 return;
2311
2312 down_write(&policy->rwsem);
2313
2314 if (policy_is_inactive(policy))
2315 goto unlock;
2316
2317 pr_debug("updating policy for CPU %u\n", cpu);
2318 memcpy(&new_policy, policy, sizeof(*policy));
2319 new_policy.min = policy->user_policy.min;
2320 new_policy.max = policy->user_policy.max;
2321
2322 /*
2323 * BIOS might change freq behind our back
2324 * -> ask driver for current freq and notify governors about a change
2325 */
2326 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2327 if (cpufreq_suspended)
2328 goto unlock;
2329
2330 new_policy.cur = cpufreq_update_current_freq(policy);
2331 if (WARN_ON(!new_policy.cur))
2332 goto unlock;
2333 }
2334
2335 cpufreq_set_policy(policy, &new_policy);
2336
2337 unlock:
2338 up_write(&policy->rwsem);
2339
2340 cpufreq_cpu_put(policy);
2341 }
2342 EXPORT_SYMBOL(cpufreq_update_policy);
2343
2344 /*********************************************************************
2345 * BOOST *
2346 *********************************************************************/
2347 static int cpufreq_boost_set_sw(int state)
2348 {
2349 struct cpufreq_policy *policy;
2350 int ret = -EINVAL;
2351
2352 for_each_active_policy(policy) {
2353 if (!policy->freq_table)
2354 continue;
2355
2356 ret = cpufreq_frequency_table_cpuinfo(policy,
2357 policy->freq_table);
2358 if (ret) {
2359 pr_err("%s: Policy frequency update failed\n",
2360 __func__);
2361 break;
2362 }
2363
2364 down_write(&policy->rwsem);
2365 policy->user_policy.max = policy->max;
2366 cpufreq_governor_limits(policy);
2367 up_write(&policy->rwsem);
2368 }
2369
2370 return ret;
2371 }
2372
2373 int cpufreq_boost_trigger_state(int state)
2374 {
2375 unsigned long flags;
2376 int ret = 0;
2377
2378 if (cpufreq_driver->boost_enabled == state)
2379 return 0;
2380
2381 write_lock_irqsave(&cpufreq_driver_lock, flags);
2382 cpufreq_driver->boost_enabled = state;
2383 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2384
2385 ret = cpufreq_driver->set_boost(state);
2386 if (ret) {
2387 write_lock_irqsave(&cpufreq_driver_lock, flags);
2388 cpufreq_driver->boost_enabled = !state;
2389 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2390
2391 pr_err("%s: Cannot %s BOOST\n",
2392 __func__, state ? "enable" : "disable");
2393 }
2394
2395 return ret;
2396 }
2397
2398 static bool cpufreq_boost_supported(void)
2399 {
2400 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2401 }
2402
2403 static int create_boost_sysfs_file(void)
2404 {
2405 int ret;
2406
2407 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2408 if (ret)
2409 pr_err("%s: cannot register global BOOST sysfs file\n",
2410 __func__);
2411
2412 return ret;
2413 }
2414
2415 static void remove_boost_sysfs_file(void)
2416 {
2417 if (cpufreq_boost_supported())
2418 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2419 }
2420
2421 int cpufreq_enable_boost_support(void)
2422 {
2423 if (!cpufreq_driver)
2424 return -EINVAL;
2425
2426 if (cpufreq_boost_supported())
2427 return 0;
2428
2429 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2430
2431 /* This will get removed on driver unregister */
2432 return create_boost_sysfs_file();
2433 }
2434 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2435
2436 int cpufreq_boost_enabled(void)
2437 {
2438 return cpufreq_driver->boost_enabled;
2439 }
2440 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2441
2442 /*********************************************************************
2443 * FREQUENCY INVARIANT ACCOUNTING SUPPORT *
2444 *********************************************************************/
2445
2446 __weak void arch_set_freq_scale(struct cpumask *cpus,
2447 unsigned long cur_freq,
2448 unsigned long max_freq)
2449 {
2450 }
2451 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
2452
2453 __weak void arch_set_max_freq_scale(struct cpumask *cpus,
2454 unsigned long policy_max_freq)
2455 {
2456 }
2457 EXPORT_SYMBOL_GPL(arch_set_max_freq_scale);
2458
2459 /*********************************************************************
2460 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2461 *********************************************************************/
2462 static enum cpuhp_state hp_online;
2463
2464 static int cpuhp_cpufreq_online(unsigned int cpu)
2465 {
2466 cpufreq_online(cpu);
2467
2468 return 0;
2469 }
2470
2471 static int cpuhp_cpufreq_offline(unsigned int cpu)
2472 {
2473 cpufreq_offline(cpu);
2474
2475 return 0;
2476 }
2477
2478 /**
2479 * cpufreq_register_driver - register a CPU Frequency driver
2480 * @driver_data: A struct cpufreq_driver containing the values#
2481 * submitted by the CPU Frequency driver.
2482 *
2483 * Registers a CPU Frequency driver to this core code. This code
2484 * returns zero on success, -EEXIST when another driver got here first
2485 * (and isn't unregistered in the meantime).
2486 *
2487 */
2488 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2489 {
2490 unsigned long flags;
2491 int ret;
2492
2493 if (cpufreq_disabled())
2494 return -ENODEV;
2495
2496 if (!driver_data || !driver_data->verify || !driver_data->init ||
2497 !(driver_data->setpolicy || driver_data->target_index ||
2498 driver_data->target) ||
2499 (driver_data->setpolicy && (driver_data->target_index ||
2500 driver_data->target)) ||
2501 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2502 return -EINVAL;
2503
2504 pr_debug("trying to register driver %s\n", driver_data->name);
2505
2506 /* Protect against concurrent CPU online/offline. */
2507 cpus_read_lock();
2508
2509 write_lock_irqsave(&cpufreq_driver_lock, flags);
2510 if (cpufreq_driver) {
2511 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2512 ret = -EEXIST;
2513 goto out;
2514 }
2515 cpufreq_driver = driver_data;
2516 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2517
2518 if (driver_data->setpolicy)
2519 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2520
2521 if (cpufreq_boost_supported()) {
2522 ret = create_boost_sysfs_file();
2523 if (ret)
2524 goto err_null_driver;
2525 }
2526
2527 ret = subsys_interface_register(&cpufreq_interface);
2528 if (ret)
2529 goto err_boost_unreg;
2530
2531 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2532 list_empty(&cpufreq_policy_list)) {
2533 /* if all ->init() calls failed, unregister */
2534 ret = -ENODEV;
2535 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2536 driver_data->name);
2537 goto err_if_unreg;
2538 }
2539
2540 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2541 "cpufreq:online",
2542 cpuhp_cpufreq_online,
2543 cpuhp_cpufreq_offline);
2544 if (ret < 0)
2545 goto err_if_unreg;
2546 hp_online = ret;
2547 ret = 0;
2548
2549 pr_debug("driver %s up and running\n", driver_data->name);
2550 goto out;
2551
2552 err_if_unreg:
2553 subsys_interface_unregister(&cpufreq_interface);
2554 err_boost_unreg:
2555 remove_boost_sysfs_file();
2556 err_null_driver:
2557 write_lock_irqsave(&cpufreq_driver_lock, flags);
2558 cpufreq_driver = NULL;
2559 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2560 out:
2561 cpus_read_unlock();
2562 return ret;
2563 }
2564 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2565
2566 /**
2567 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2568 *
2569 * Unregister the current CPUFreq driver. Only call this if you have
2570 * the right to do so, i.e. if you have succeeded in initialising before!
2571 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2572 * currently not initialised.
2573 */
2574 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2575 {
2576 unsigned long flags;
2577
2578 if (!cpufreq_driver || (driver != cpufreq_driver))
2579 return -EINVAL;
2580
2581 pr_debug("unregistering driver %s\n", driver->name);
2582
2583 /* Protect against concurrent cpu hotplug */
2584 cpus_read_lock();
2585 subsys_interface_unregister(&cpufreq_interface);
2586 remove_boost_sysfs_file();
2587 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2588
2589 write_lock_irqsave(&cpufreq_driver_lock, flags);
2590
2591 cpufreq_driver = NULL;
2592
2593 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2594 cpus_read_unlock();
2595
2596 return 0;
2597 }
2598 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2599
2600 /*
2601 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2602 * or mutexes when secondary CPUs are halted.
2603 */
2604 static struct syscore_ops cpufreq_syscore_ops = {
2605 .shutdown = cpufreq_suspend,
2606 };
2607
2608 struct kobject *cpufreq_global_kobject;
2609 EXPORT_SYMBOL(cpufreq_global_kobject);
2610
2611 static int __init cpufreq_core_init(void)
2612 {
2613 if (cpufreq_disabled())
2614 return -ENODEV;
2615
2616 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2617 BUG_ON(!cpufreq_global_kobject);
2618
2619 register_syscore_ops(&cpufreq_syscore_ops);
2620
2621 return 0;
2622 }
2623 module_param(off, int, 0444);
2624 core_initcall(cpufreq_core_init);