Merge tag 'renesas-fixes-for-v4.14' of https://git.kernel.org/pub/scm/linux/kernel...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / arm64 / mm / fault.c
1 /*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
35
36 #include <asm/bug.h>
37 #include <asm/cmpxchg.h>
38 #include <asm/cpufeature.h>
39 #include <asm/exception.h>
40 #include <asm/debug-monitors.h>
41 #include <asm/esr.h>
42 #include <asm/sysreg.h>
43 #include <asm/system_misc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46
47 #include <acpi/ghes.h>
48
49 struct fault_info {
50 int (*fn)(unsigned long addr, unsigned int esr,
51 struct pt_regs *regs);
52 int sig;
53 int code;
54 const char *name;
55 };
56
57 static const struct fault_info fault_info[];
58
59 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
60 {
61 return fault_info + (esr & 63);
62 }
63
64 #ifdef CONFIG_KPROBES
65 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
66 {
67 int ret = 0;
68
69 /* kprobe_running() needs smp_processor_id() */
70 if (!user_mode(regs)) {
71 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, esr))
73 ret = 1;
74 preempt_enable();
75 }
76
77 return ret;
78 }
79 #else
80 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
81 {
82 return 0;
83 }
84 #endif
85
86 static void data_abort_decode(unsigned int esr)
87 {
88 pr_alert("Data abort info:\n");
89
90 if (esr & ESR_ELx_ISV) {
91 pr_alert(" Access size = %u byte(s)\n",
92 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
93 pr_alert(" SSE = %lu, SRT = %lu\n",
94 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
95 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
96 pr_alert(" SF = %lu, AR = %lu\n",
97 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
98 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
99 } else {
100 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
101 }
102
103 pr_alert(" CM = %lu, WnR = %lu\n",
104 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
105 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
106 }
107
108 /*
109 * Decode mem abort information
110 */
111 static void mem_abort_decode(unsigned int esr)
112 {
113 pr_alert("Mem abort info:\n");
114
115 pr_alert(" Exception class = %s, IL = %u bits\n",
116 esr_get_class_string(esr),
117 (esr & ESR_ELx_IL) ? 32 : 16);
118 pr_alert(" SET = %lu, FnV = %lu\n",
119 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
120 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
121 pr_alert(" EA = %lu, S1PTW = %lu\n",
122 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
123 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
124
125 if (esr_is_data_abort(esr))
126 data_abort_decode(esr);
127 }
128
129 /*
130 * Dump out the page tables associated with 'addr' in the currently active mm.
131 */
132 void show_pte(unsigned long addr)
133 {
134 struct mm_struct *mm;
135 pgd_t *pgd;
136
137 if (addr < TASK_SIZE) {
138 /* TTBR0 */
139 mm = current->active_mm;
140 if (mm == &init_mm) {
141 pr_alert("[%016lx] user address but active_mm is swapper\n",
142 addr);
143 return;
144 }
145 } else if (addr >= VA_START) {
146 /* TTBR1 */
147 mm = &init_mm;
148 } else {
149 pr_alert("[%016lx] address between user and kernel address ranges\n",
150 addr);
151 return;
152 }
153
154 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
155 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
156 VA_BITS, mm->pgd);
157 pgd = pgd_offset(mm, addr);
158 pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
159
160 do {
161 pud_t *pud;
162 pmd_t *pmd;
163 pte_t *pte;
164
165 if (pgd_none(*pgd) || pgd_bad(*pgd))
166 break;
167
168 pud = pud_offset(pgd, addr);
169 pr_cont(", *pud=%016llx", pud_val(*pud));
170 if (pud_none(*pud) || pud_bad(*pud))
171 break;
172
173 pmd = pmd_offset(pud, addr);
174 pr_cont(", *pmd=%016llx", pmd_val(*pmd));
175 if (pmd_none(*pmd) || pmd_bad(*pmd))
176 break;
177
178 pte = pte_offset_map(pmd, addr);
179 pr_cont(", *pte=%016llx", pte_val(*pte));
180 pte_unmap(pte);
181 } while(0);
182
183 pr_cont("\n");
184 }
185
186 /*
187 * This function sets the access flags (dirty, accessed), as well as write
188 * permission, and only to a more permissive setting.
189 *
190 * It needs to cope with hardware update of the accessed/dirty state by other
191 * agents in the system and can safely skip the __sync_icache_dcache() call as,
192 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
193 *
194 * Returns whether or not the PTE actually changed.
195 */
196 int ptep_set_access_flags(struct vm_area_struct *vma,
197 unsigned long address, pte_t *ptep,
198 pte_t entry, int dirty)
199 {
200 pteval_t old_pteval, pteval;
201
202 if (pte_same(*ptep, entry))
203 return 0;
204
205 /* only preserve the access flags and write permission */
206 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
207
208 /*
209 * Setting the flags must be done atomically to avoid racing with the
210 * hardware update of the access/dirty state. The PTE_RDONLY bit must
211 * be set to the most permissive (lowest value) of *ptep and entry
212 * (calculated as: a & b == ~(~a | ~b)).
213 */
214 pte_val(entry) ^= PTE_RDONLY;
215 pteval = READ_ONCE(pte_val(*ptep));
216 do {
217 old_pteval = pteval;
218 pteval ^= PTE_RDONLY;
219 pteval |= pte_val(entry);
220 pteval ^= PTE_RDONLY;
221 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
222 } while (pteval != old_pteval);
223
224 flush_tlb_fix_spurious_fault(vma, address);
225 return 1;
226 }
227
228 static bool is_el1_instruction_abort(unsigned int esr)
229 {
230 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
231 }
232
233 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
234 unsigned long addr)
235 {
236 unsigned int ec = ESR_ELx_EC(esr);
237 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
238
239 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
240 return false;
241
242 if (fsc_type == ESR_ELx_FSC_PERM)
243 return true;
244
245 if (addr < USER_DS && system_uses_ttbr0_pan())
246 return fsc_type == ESR_ELx_FSC_FAULT &&
247 (regs->pstate & PSR_PAN_BIT);
248
249 return false;
250 }
251
252 /*
253 * The kernel tried to access some page that wasn't present.
254 */
255 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
256 struct pt_regs *regs)
257 {
258 const char *msg;
259
260 /*
261 * Are we prepared to handle this kernel fault?
262 * We are almost certainly not prepared to handle instruction faults.
263 */
264 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
265 return;
266
267 /*
268 * No handler, we'll have to terminate things with extreme prejudice.
269 */
270 bust_spinlocks(1);
271
272 if (is_permission_fault(esr, regs, addr)) {
273 if (esr & ESR_ELx_WNR)
274 msg = "write to read-only memory";
275 else
276 msg = "read from unreadable memory";
277 } else if (addr < PAGE_SIZE) {
278 msg = "NULL pointer dereference";
279 } else {
280 msg = "paging request";
281 }
282
283 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
284 addr);
285
286 mem_abort_decode(esr);
287
288 show_pte(addr);
289 die("Oops", regs, esr);
290 bust_spinlocks(0);
291 do_exit(SIGKILL);
292 }
293
294 /*
295 * Something tried to access memory that isn't in our memory map. User mode
296 * accesses just cause a SIGSEGV
297 */
298 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
299 unsigned int esr, unsigned int sig, int code,
300 struct pt_regs *regs, int fault)
301 {
302 struct siginfo si;
303 const struct fault_info *inf;
304 unsigned int lsb = 0;
305
306 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
307 inf = esr_to_fault_info(esr);
308 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
309 tsk->comm, task_pid_nr(tsk), inf->name, sig,
310 addr, esr);
311 print_vma_addr(KERN_CONT ", in ", regs->pc);
312 pr_cont("\n");
313 __show_regs(regs);
314 }
315
316 tsk->thread.fault_address = addr;
317 tsk->thread.fault_code = esr;
318 si.si_signo = sig;
319 si.si_errno = 0;
320 si.si_code = code;
321 si.si_addr = (void __user *)addr;
322 /*
323 * Either small page or large page may be poisoned.
324 * In other words, VM_FAULT_HWPOISON_LARGE and
325 * VM_FAULT_HWPOISON are mutually exclusive.
326 */
327 if (fault & VM_FAULT_HWPOISON_LARGE)
328 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
329 else if (fault & VM_FAULT_HWPOISON)
330 lsb = PAGE_SHIFT;
331 si.si_addr_lsb = lsb;
332
333 force_sig_info(sig, &si, tsk);
334 }
335
336 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
337 {
338 struct task_struct *tsk = current;
339 const struct fault_info *inf;
340
341 /*
342 * If we are in kernel mode at this point, we have no context to
343 * handle this fault with.
344 */
345 if (user_mode(regs)) {
346 inf = esr_to_fault_info(esr);
347 __do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
348 } else
349 __do_kernel_fault(addr, esr, regs);
350 }
351
352 #define VM_FAULT_BADMAP 0x010000
353 #define VM_FAULT_BADACCESS 0x020000
354
355 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
356 unsigned int mm_flags, unsigned long vm_flags,
357 struct task_struct *tsk)
358 {
359 struct vm_area_struct *vma;
360 int fault;
361
362 vma = find_vma(mm, addr);
363 fault = VM_FAULT_BADMAP;
364 if (unlikely(!vma))
365 goto out;
366 if (unlikely(vma->vm_start > addr))
367 goto check_stack;
368
369 /*
370 * Ok, we have a good vm_area for this memory access, so we can handle
371 * it.
372 */
373 good_area:
374 /*
375 * Check that the permissions on the VMA allow for the fault which
376 * occurred.
377 */
378 if (!(vma->vm_flags & vm_flags)) {
379 fault = VM_FAULT_BADACCESS;
380 goto out;
381 }
382
383 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
384
385 check_stack:
386 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
387 goto good_area;
388 out:
389 return fault;
390 }
391
392 static bool is_el0_instruction_abort(unsigned int esr)
393 {
394 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
395 }
396
397 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
398 struct pt_regs *regs)
399 {
400 struct task_struct *tsk;
401 struct mm_struct *mm;
402 int fault, sig, code, major = 0;
403 unsigned long vm_flags = VM_READ | VM_WRITE;
404 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
405
406 if (notify_page_fault(regs, esr))
407 return 0;
408
409 tsk = current;
410 mm = tsk->mm;
411
412 /*
413 * If we're in an interrupt or have no user context, we must not take
414 * the fault.
415 */
416 if (faulthandler_disabled() || !mm)
417 goto no_context;
418
419 if (user_mode(regs))
420 mm_flags |= FAULT_FLAG_USER;
421
422 if (is_el0_instruction_abort(esr)) {
423 vm_flags = VM_EXEC;
424 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
425 vm_flags = VM_WRITE;
426 mm_flags |= FAULT_FLAG_WRITE;
427 }
428
429 if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
430 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
431 if (regs->orig_addr_limit == KERNEL_DS)
432 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
433
434 if (is_el1_instruction_abort(esr))
435 die("Attempting to execute userspace memory", regs, esr);
436
437 if (!search_exception_tables(regs->pc))
438 die("Accessing user space memory outside uaccess.h routines", regs, esr);
439 }
440
441 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
442
443 /*
444 * As per x86, we may deadlock here. However, since the kernel only
445 * validly references user space from well defined areas of the code,
446 * we can bug out early if this is from code which shouldn't.
447 */
448 if (!down_read_trylock(&mm->mmap_sem)) {
449 if (!user_mode(regs) && !search_exception_tables(regs->pc))
450 goto no_context;
451 retry:
452 down_read(&mm->mmap_sem);
453 } else {
454 /*
455 * The above down_read_trylock() might have succeeded in which
456 * case, we'll have missed the might_sleep() from down_read().
457 */
458 might_sleep();
459 #ifdef CONFIG_DEBUG_VM
460 if (!user_mode(regs) && !search_exception_tables(regs->pc))
461 goto no_context;
462 #endif
463 }
464
465 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
466 major |= fault & VM_FAULT_MAJOR;
467
468 if (fault & VM_FAULT_RETRY) {
469 /*
470 * If we need to retry but a fatal signal is pending,
471 * handle the signal first. We do not need to release
472 * the mmap_sem because it would already be released
473 * in __lock_page_or_retry in mm/filemap.c.
474 */
475 if (fatal_signal_pending(current)) {
476 if (!user_mode(regs))
477 goto no_context;
478 return 0;
479 }
480
481 /*
482 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
483 * starvation.
484 */
485 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
486 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
487 mm_flags |= FAULT_FLAG_TRIED;
488 goto retry;
489 }
490 }
491 up_read(&mm->mmap_sem);
492
493 /*
494 * Handle the "normal" (no error) case first.
495 */
496 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
497 VM_FAULT_BADACCESS)))) {
498 /*
499 * Major/minor page fault accounting is only done
500 * once. If we go through a retry, it is extremely
501 * likely that the page will be found in page cache at
502 * that point.
503 */
504 if (major) {
505 tsk->maj_flt++;
506 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
507 addr);
508 } else {
509 tsk->min_flt++;
510 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
511 addr);
512 }
513
514 return 0;
515 }
516
517 /*
518 * If we are in kernel mode at this point, we have no context to
519 * handle this fault with.
520 */
521 if (!user_mode(regs))
522 goto no_context;
523
524 if (fault & VM_FAULT_OOM) {
525 /*
526 * We ran out of memory, call the OOM killer, and return to
527 * userspace (which will retry the fault, or kill us if we got
528 * oom-killed).
529 */
530 pagefault_out_of_memory();
531 return 0;
532 }
533
534 if (fault & VM_FAULT_SIGBUS) {
535 /*
536 * We had some memory, but were unable to successfully fix up
537 * this page fault.
538 */
539 sig = SIGBUS;
540 code = BUS_ADRERR;
541 } else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
542 sig = SIGBUS;
543 code = BUS_MCEERR_AR;
544 } else {
545 /*
546 * Something tried to access memory that isn't in our memory
547 * map.
548 */
549 sig = SIGSEGV;
550 code = fault == VM_FAULT_BADACCESS ?
551 SEGV_ACCERR : SEGV_MAPERR;
552 }
553
554 __do_user_fault(tsk, addr, esr, sig, code, regs, fault);
555 return 0;
556
557 no_context:
558 __do_kernel_fault(addr, esr, regs);
559 return 0;
560 }
561
562 /*
563 * First Level Translation Fault Handler
564 *
565 * We enter here because the first level page table doesn't contain a valid
566 * entry for the address.
567 *
568 * If the address is in kernel space (>= TASK_SIZE), then we are probably
569 * faulting in the vmalloc() area.
570 *
571 * If the init_task's first level page tables contains the relevant entry, we
572 * copy the it to this task. If not, we send the process a signal, fixup the
573 * exception, or oops the kernel.
574 *
575 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
576 * or a critical region, and should only copy the information from the master
577 * page table, nothing more.
578 */
579 static int __kprobes do_translation_fault(unsigned long addr,
580 unsigned int esr,
581 struct pt_regs *regs)
582 {
583 if (addr < TASK_SIZE)
584 return do_page_fault(addr, esr, regs);
585
586 do_bad_area(addr, esr, regs);
587 return 0;
588 }
589
590 static int do_alignment_fault(unsigned long addr, unsigned int esr,
591 struct pt_regs *regs)
592 {
593 do_bad_area(addr, esr, regs);
594 return 0;
595 }
596
597 /*
598 * This abort handler always returns "fault".
599 */
600 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
601 {
602 return 1;
603 }
604
605 /*
606 * This abort handler deals with Synchronous External Abort.
607 * It calls notifiers, and then returns "fault".
608 */
609 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
610 {
611 struct siginfo info;
612 const struct fault_info *inf;
613 int ret = 0;
614
615 inf = esr_to_fault_info(esr);
616 pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
617 inf->name, esr, addr);
618
619 /*
620 * Synchronous aborts may interrupt code which had interrupts masked.
621 * Before calling out into the wider kernel tell the interested
622 * subsystems.
623 */
624 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
625 if (interrupts_enabled(regs))
626 nmi_enter();
627
628 ret = ghes_notify_sea();
629
630 if (interrupts_enabled(regs))
631 nmi_exit();
632 }
633
634 info.si_signo = SIGBUS;
635 info.si_errno = 0;
636 info.si_code = 0;
637 if (esr & ESR_ELx_FnV)
638 info.si_addr = NULL;
639 else
640 info.si_addr = (void __user *)addr;
641 arm64_notify_die("", regs, &info, esr);
642
643 return ret;
644 }
645
646 static const struct fault_info fault_info[] = {
647 { do_bad, SIGBUS, 0, "ttbr address size fault" },
648 { do_bad, SIGBUS, 0, "level 1 address size fault" },
649 { do_bad, SIGBUS, 0, "level 2 address size fault" },
650 { do_bad, SIGBUS, 0, "level 3 address size fault" },
651 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
652 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
653 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
654 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
655 { do_bad, SIGBUS, 0, "unknown 8" },
656 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
657 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
658 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
659 { do_bad, SIGBUS, 0, "unknown 12" },
660 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
661 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
662 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
663 { do_sea, SIGBUS, 0, "synchronous external abort" },
664 { do_bad, SIGBUS, 0, "unknown 17" },
665 { do_bad, SIGBUS, 0, "unknown 18" },
666 { do_bad, SIGBUS, 0, "unknown 19" },
667 { do_sea, SIGBUS, 0, "level 0 (translation table walk)" },
668 { do_sea, SIGBUS, 0, "level 1 (translation table walk)" },
669 { do_sea, SIGBUS, 0, "level 2 (translation table walk)" },
670 { do_sea, SIGBUS, 0, "level 3 (translation table walk)" },
671 { do_sea, SIGBUS, 0, "synchronous parity or ECC error" },
672 { do_bad, SIGBUS, 0, "unknown 25" },
673 { do_bad, SIGBUS, 0, "unknown 26" },
674 { do_bad, SIGBUS, 0, "unknown 27" },
675 { do_sea, SIGBUS, 0, "level 0 synchronous parity error (translation table walk)" },
676 { do_sea, SIGBUS, 0, "level 1 synchronous parity error (translation table walk)" },
677 { do_sea, SIGBUS, 0, "level 2 synchronous parity error (translation table walk)" },
678 { do_sea, SIGBUS, 0, "level 3 synchronous parity error (translation table walk)" },
679 { do_bad, SIGBUS, 0, "unknown 32" },
680 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
681 { do_bad, SIGBUS, 0, "unknown 34" },
682 { do_bad, SIGBUS, 0, "unknown 35" },
683 { do_bad, SIGBUS, 0, "unknown 36" },
684 { do_bad, SIGBUS, 0, "unknown 37" },
685 { do_bad, SIGBUS, 0, "unknown 38" },
686 { do_bad, SIGBUS, 0, "unknown 39" },
687 { do_bad, SIGBUS, 0, "unknown 40" },
688 { do_bad, SIGBUS, 0, "unknown 41" },
689 { do_bad, SIGBUS, 0, "unknown 42" },
690 { do_bad, SIGBUS, 0, "unknown 43" },
691 { do_bad, SIGBUS, 0, "unknown 44" },
692 { do_bad, SIGBUS, 0, "unknown 45" },
693 { do_bad, SIGBUS, 0, "unknown 46" },
694 { do_bad, SIGBUS, 0, "unknown 47" },
695 { do_bad, SIGBUS, 0, "TLB conflict abort" },
696 { do_bad, SIGBUS, 0, "unknown 49" },
697 { do_bad, SIGBUS, 0, "unknown 50" },
698 { do_bad, SIGBUS, 0, "unknown 51" },
699 { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
700 { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" },
701 { do_bad, SIGBUS, 0, "unknown 54" },
702 { do_bad, SIGBUS, 0, "unknown 55" },
703 { do_bad, SIGBUS, 0, "unknown 56" },
704 { do_bad, SIGBUS, 0, "unknown 57" },
705 { do_bad, SIGBUS, 0, "unknown 58" },
706 { do_bad, SIGBUS, 0, "unknown 59" },
707 { do_bad, SIGBUS, 0, "unknown 60" },
708 { do_bad, SIGBUS, 0, "section domain fault" },
709 { do_bad, SIGBUS, 0, "page domain fault" },
710 { do_bad, SIGBUS, 0, "unknown 63" },
711 };
712
713 /*
714 * Handle Synchronous External Aborts that occur in a guest kernel.
715 *
716 * The return value will be zero if the SEA was successfully handled
717 * and non-zero if there was an error processing the error or there was
718 * no error to process.
719 */
720 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
721 {
722 int ret = -ENOENT;
723
724 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
725 ret = ghes_notify_sea();
726
727 return ret;
728 }
729
730 /*
731 * Dispatch a data abort to the relevant handler.
732 */
733 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
734 struct pt_regs *regs)
735 {
736 const struct fault_info *inf = esr_to_fault_info(esr);
737 struct siginfo info;
738
739 if (!inf->fn(addr, esr, regs))
740 return;
741
742 pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
743 inf->name, esr, addr);
744
745 mem_abort_decode(esr);
746
747 info.si_signo = inf->sig;
748 info.si_errno = 0;
749 info.si_code = inf->code;
750 info.si_addr = (void __user *)addr;
751 arm64_notify_die("", regs, &info, esr);
752 }
753
754 /*
755 * Handle stack alignment exceptions.
756 */
757 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
758 unsigned int esr,
759 struct pt_regs *regs)
760 {
761 struct siginfo info;
762 struct task_struct *tsk = current;
763
764 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
765 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
766 tsk->comm, task_pid_nr(tsk),
767 esr_get_class_string(esr), (void *)regs->pc,
768 (void *)regs->sp);
769
770 info.si_signo = SIGBUS;
771 info.si_errno = 0;
772 info.si_code = BUS_ADRALN;
773 info.si_addr = (void __user *)addr;
774 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
775 }
776
777 int __init early_brk64(unsigned long addr, unsigned int esr,
778 struct pt_regs *regs);
779
780 /*
781 * __refdata because early_brk64 is __init, but the reference to it is
782 * clobbered at arch_initcall time.
783 * See traps.c and debug-monitors.c:debug_traps_init().
784 */
785 static struct fault_info __refdata debug_fault_info[] = {
786 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
787 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
788 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
789 { do_bad, SIGBUS, 0, "unknown 3" },
790 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
791 { do_bad, SIGTRAP, 0, "aarch32 vector catch" },
792 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
793 { do_bad, SIGBUS, 0, "unknown 7" },
794 };
795
796 void __init hook_debug_fault_code(int nr,
797 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
798 int sig, int code, const char *name)
799 {
800 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
801
802 debug_fault_info[nr].fn = fn;
803 debug_fault_info[nr].sig = sig;
804 debug_fault_info[nr].code = code;
805 debug_fault_info[nr].name = name;
806 }
807
808 asmlinkage int __exception do_debug_exception(unsigned long addr,
809 unsigned int esr,
810 struct pt_regs *regs)
811 {
812 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
813 struct siginfo info;
814 int rv;
815
816 /*
817 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
818 * already disabled to preserve the last enabled/disabled addresses.
819 */
820 if (interrupts_enabled(regs))
821 trace_hardirqs_off();
822
823 if (!inf->fn(addr, esr, regs)) {
824 rv = 1;
825 } else {
826 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
827 inf->name, esr, addr);
828
829 info.si_signo = inf->sig;
830 info.si_errno = 0;
831 info.si_code = inf->code;
832 info.si_addr = (void __user *)addr;
833 arm64_notify_die("", regs, &info, 0);
834 rv = 0;
835 }
836
837 if (interrupts_enabled(regs))
838 trace_hardirqs_on();
839
840 return rv;
841 }
842 NOKPROBE_SYMBOL(do_debug_exception);
843
844 #ifdef CONFIG_ARM64_PAN
845 int cpu_enable_pan(void *__unused)
846 {
847 /*
848 * We modify PSTATE. This won't work from irq context as the PSTATE
849 * is discarded once we return from the exception.
850 */
851 WARN_ON_ONCE(in_interrupt());
852
853 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
854 asm(SET_PSTATE_PAN(1));
855 return 0;
856 }
857 #endif /* CONFIG_ARM64_PAN */