Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40
41 /*
42 * When skipping (ignoring) a block of input we read it into a "skip
43 * buffer," which is this many bytes in size.
44 */
45 #define SKIP_BUF_SIZE 1024
46
47 static void queue_con(struct ceph_connection *con);
48 static void con_work(struct work_struct *);
49 static void ceph_fault(struct ceph_connection *con);
50
51 /*
52 * Nicely render a sockaddr as a string. An array of formatted
53 * strings is used, to approximate reentrancy.
54 */
55 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
56 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
57 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
58 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
59
60 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61 static atomic_t addr_str_seq = ATOMIC_INIT(0);
62
63 static struct page *zero_page; /* used in certain error cases */
64
65 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
66 {
67 int i;
68 char *s;
69 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
70 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
71
72 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
73 s = addr_str[i];
74
75 switch (ss->ss_family) {
76 case AF_INET:
77 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
78 ntohs(in4->sin_port));
79 break;
80
81 case AF_INET6:
82 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
83 ntohs(in6->sin6_port));
84 break;
85
86 default:
87 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
88 ss->ss_family);
89 }
90
91 return s;
92 }
93 EXPORT_SYMBOL(ceph_pr_addr);
94
95 static void encode_my_addr(struct ceph_messenger *msgr)
96 {
97 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98 ceph_encode_addr(&msgr->my_enc_addr);
99 }
100
101 /*
102 * work queue for all reading and writing to/from the socket.
103 */
104 static struct workqueue_struct *ceph_msgr_wq;
105
106 void _ceph_msgr_exit(void)
107 {
108 if (ceph_msgr_wq) {
109 destroy_workqueue(ceph_msgr_wq);
110 ceph_msgr_wq = NULL;
111 }
112
113 BUG_ON(zero_page == NULL);
114 kunmap(zero_page);
115 page_cache_release(zero_page);
116 zero_page = NULL;
117 }
118
119 int ceph_msgr_init(void)
120 {
121 BUG_ON(zero_page != NULL);
122 zero_page = ZERO_PAGE(0);
123 page_cache_get(zero_page);
124
125 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
126 if (ceph_msgr_wq)
127 return 0;
128
129 pr_err("msgr_init failed to create workqueue\n");
130 _ceph_msgr_exit();
131
132 return -ENOMEM;
133 }
134 EXPORT_SYMBOL(ceph_msgr_init);
135
136 void ceph_msgr_exit(void)
137 {
138 BUG_ON(ceph_msgr_wq == NULL);
139
140 _ceph_msgr_exit();
141 }
142 EXPORT_SYMBOL(ceph_msgr_exit);
143
144 void ceph_msgr_flush(void)
145 {
146 flush_workqueue(ceph_msgr_wq);
147 }
148 EXPORT_SYMBOL(ceph_msgr_flush);
149
150
151 /*
152 * socket callback functions
153 */
154
155 /* data available on socket, or listen socket received a connect */
156 static void ceph_data_ready(struct sock *sk, int count_unused)
157 {
158 struct ceph_connection *con = sk->sk_user_data;
159
160 if (sk->sk_state != TCP_CLOSE_WAIT) {
161 dout("ceph_data_ready on %p state = %lu, queueing work\n",
162 con, con->state);
163 queue_con(con);
164 }
165 }
166
167 /* socket has buffer space for writing */
168 static void ceph_write_space(struct sock *sk)
169 {
170 struct ceph_connection *con = sk->sk_user_data;
171
172 /* only queue to workqueue if there is data we want to write,
173 * and there is sufficient space in the socket buffer to accept
174 * more data. clear SOCK_NOSPACE so that ceph_write_space()
175 * doesn't get called again until try_write() fills the socket
176 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177 * and net/core/stream.c:sk_stream_write_space().
178 */
179 if (test_bit(WRITE_PENDING, &con->state)) {
180 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
181 dout("ceph_write_space %p queueing write work\n", con);
182 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
183 queue_con(con);
184 }
185 } else {
186 dout("ceph_write_space %p nothing to write\n", con);
187 }
188 }
189
190 /* socket's state has changed */
191 static void ceph_state_change(struct sock *sk)
192 {
193 struct ceph_connection *con = sk->sk_user_data;
194
195 dout("ceph_state_change %p state = %lu sk_state = %u\n",
196 con, con->state, sk->sk_state);
197
198 if (test_bit(CLOSED, &con->state))
199 return;
200
201 switch (sk->sk_state) {
202 case TCP_CLOSE:
203 dout("ceph_state_change TCP_CLOSE\n");
204 case TCP_CLOSE_WAIT:
205 dout("ceph_state_change TCP_CLOSE_WAIT\n");
206 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
207 if (test_bit(CONNECTING, &con->state))
208 con->error_msg = "connection failed";
209 else
210 con->error_msg = "socket closed";
211 queue_con(con);
212 }
213 break;
214 case TCP_ESTABLISHED:
215 dout("ceph_state_change TCP_ESTABLISHED\n");
216 queue_con(con);
217 break;
218 default: /* Everything else is uninteresting */
219 break;
220 }
221 }
222
223 /*
224 * set up socket callbacks
225 */
226 static void set_sock_callbacks(struct socket *sock,
227 struct ceph_connection *con)
228 {
229 struct sock *sk = sock->sk;
230 sk->sk_user_data = con;
231 sk->sk_data_ready = ceph_data_ready;
232 sk->sk_write_space = ceph_write_space;
233 sk->sk_state_change = ceph_state_change;
234 }
235
236
237 /*
238 * socket helpers
239 */
240
241 /*
242 * initiate connection to a remote socket.
243 */
244 static int ceph_tcp_connect(struct ceph_connection *con)
245 {
246 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
247 struct socket *sock;
248 int ret;
249
250 BUG_ON(con->sock);
251 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
252 IPPROTO_TCP, &sock);
253 if (ret)
254 return ret;
255 sock->sk->sk_allocation = GFP_NOFS;
256
257 #ifdef CONFIG_LOCKDEP
258 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
259 #endif
260
261 set_sock_callbacks(sock, con);
262
263 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
264
265 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
266 O_NONBLOCK);
267 if (ret == -EINPROGRESS) {
268 dout("connect %s EINPROGRESS sk_state = %u\n",
269 ceph_pr_addr(&con->peer_addr.in_addr),
270 sock->sk->sk_state);
271 } else if (ret < 0) {
272 pr_err("connect %s error %d\n",
273 ceph_pr_addr(&con->peer_addr.in_addr), ret);
274 sock_release(sock);
275 con->error_msg = "connect error";
276
277 return ret;
278 }
279 con->sock = sock;
280
281 return 0;
282 }
283
284 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
285 {
286 struct kvec iov = {buf, len};
287 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
288 int r;
289
290 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
291 if (r == -EAGAIN)
292 r = 0;
293 return r;
294 }
295
296 /*
297 * write something. @more is true if caller will be sending more data
298 * shortly.
299 */
300 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
301 size_t kvlen, size_t len, int more)
302 {
303 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
304 int r;
305
306 if (more)
307 msg.msg_flags |= MSG_MORE;
308 else
309 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
310
311 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
312 if (r == -EAGAIN)
313 r = 0;
314 return r;
315 }
316
317 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
318 int offset, size_t size, int more)
319 {
320 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
321 int ret;
322
323 ret = kernel_sendpage(sock, page, offset, size, flags);
324 if (ret == -EAGAIN)
325 ret = 0;
326
327 return ret;
328 }
329
330
331 /*
332 * Shutdown/close the socket for the given connection.
333 */
334 static int con_close_socket(struct ceph_connection *con)
335 {
336 int rc;
337
338 dout("con_close_socket on %p sock %p\n", con, con->sock);
339 if (!con->sock)
340 return 0;
341 set_bit(SOCK_CLOSED, &con->state);
342 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
343 sock_release(con->sock);
344 con->sock = NULL;
345 clear_bit(SOCK_CLOSED, &con->state);
346 return rc;
347 }
348
349 /*
350 * Reset a connection. Discard all incoming and outgoing messages
351 * and clear *_seq state.
352 */
353 static void ceph_msg_remove(struct ceph_msg *msg)
354 {
355 list_del_init(&msg->list_head);
356 ceph_msg_put(msg);
357 }
358 static void ceph_msg_remove_list(struct list_head *head)
359 {
360 while (!list_empty(head)) {
361 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
362 list_head);
363 ceph_msg_remove(msg);
364 }
365 }
366
367 static void reset_connection(struct ceph_connection *con)
368 {
369 /* reset connection, out_queue, msg_ and connect_seq */
370 /* discard existing out_queue and msg_seq */
371 ceph_msg_remove_list(&con->out_queue);
372 ceph_msg_remove_list(&con->out_sent);
373
374 if (con->in_msg) {
375 ceph_msg_put(con->in_msg);
376 con->in_msg = NULL;
377 }
378
379 con->connect_seq = 0;
380 con->out_seq = 0;
381 if (con->out_msg) {
382 ceph_msg_put(con->out_msg);
383 con->out_msg = NULL;
384 }
385 con->in_seq = 0;
386 con->in_seq_acked = 0;
387 }
388
389 /*
390 * mark a peer down. drop any open connections.
391 */
392 void ceph_con_close(struct ceph_connection *con)
393 {
394 dout("con_close %p peer %s\n", con,
395 ceph_pr_addr(&con->peer_addr.in_addr));
396 set_bit(CLOSED, &con->state); /* in case there's queued work */
397 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
398 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
399 clear_bit(KEEPALIVE_PENDING, &con->state);
400 clear_bit(WRITE_PENDING, &con->state);
401 mutex_lock(&con->mutex);
402 reset_connection(con);
403 con->peer_global_seq = 0;
404 cancel_delayed_work(&con->work);
405 mutex_unlock(&con->mutex);
406 queue_con(con);
407 }
408 EXPORT_SYMBOL(ceph_con_close);
409
410 /*
411 * Reopen a closed connection, with a new peer address.
412 */
413 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
414 {
415 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
416 set_bit(OPENING, &con->state);
417 clear_bit(CLOSED, &con->state);
418 memcpy(&con->peer_addr, addr, sizeof(*addr));
419 con->delay = 0; /* reset backoff memory */
420 queue_con(con);
421 }
422 EXPORT_SYMBOL(ceph_con_open);
423
424 /*
425 * return true if this connection ever successfully opened
426 */
427 bool ceph_con_opened(struct ceph_connection *con)
428 {
429 return con->connect_seq > 0;
430 }
431
432 /*
433 * generic get/put
434 */
435 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
436 {
437 int nref = __atomic_add_unless(&con->nref, 1, 0);
438
439 dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
440
441 return nref ? con : NULL;
442 }
443
444 void ceph_con_put(struct ceph_connection *con)
445 {
446 int nref = atomic_dec_return(&con->nref);
447
448 BUG_ON(nref < 0);
449 if (nref == 0) {
450 BUG_ON(con->sock);
451 kfree(con);
452 }
453 dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
454 }
455
456 /*
457 * initialize a new connection.
458 */
459 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
460 {
461 dout("con_init %p\n", con);
462 memset(con, 0, sizeof(*con));
463 atomic_set(&con->nref, 1);
464 con->msgr = msgr;
465 mutex_init(&con->mutex);
466 INIT_LIST_HEAD(&con->out_queue);
467 INIT_LIST_HEAD(&con->out_sent);
468 INIT_DELAYED_WORK(&con->work, con_work);
469 }
470 EXPORT_SYMBOL(ceph_con_init);
471
472
473 /*
474 * We maintain a global counter to order connection attempts. Get
475 * a unique seq greater than @gt.
476 */
477 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
478 {
479 u32 ret;
480
481 spin_lock(&msgr->global_seq_lock);
482 if (msgr->global_seq < gt)
483 msgr->global_seq = gt;
484 ret = ++msgr->global_seq;
485 spin_unlock(&msgr->global_seq_lock);
486 return ret;
487 }
488
489 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
490 {
491 con->out_kvec_left = 0;
492 con->out_kvec_bytes = 0;
493 con->out_kvec_cur = &con->out_kvec[0];
494 }
495
496 static void ceph_con_out_kvec_add(struct ceph_connection *con,
497 size_t size, void *data)
498 {
499 int index;
500
501 index = con->out_kvec_left;
502 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
503
504 con->out_kvec[index].iov_len = size;
505 con->out_kvec[index].iov_base = data;
506 con->out_kvec_left++;
507 con->out_kvec_bytes += size;
508 }
509
510 /*
511 * Prepare footer for currently outgoing message, and finish things
512 * off. Assumes out_kvec* are already valid.. we just add on to the end.
513 */
514 static void prepare_write_message_footer(struct ceph_connection *con)
515 {
516 struct ceph_msg *m = con->out_msg;
517 int v = con->out_kvec_left;
518
519 dout("prepare_write_message_footer %p\n", con);
520 con->out_kvec_is_msg = true;
521 con->out_kvec[v].iov_base = &m->footer;
522 con->out_kvec[v].iov_len = sizeof(m->footer);
523 con->out_kvec_bytes += sizeof(m->footer);
524 con->out_kvec_left++;
525 con->out_more = m->more_to_follow;
526 con->out_msg_done = true;
527 }
528
529 /*
530 * Prepare headers for the next outgoing message.
531 */
532 static void prepare_write_message(struct ceph_connection *con)
533 {
534 struct ceph_msg *m;
535 u32 crc;
536
537 ceph_con_out_kvec_reset(con);
538 con->out_kvec_is_msg = true;
539 con->out_msg_done = false;
540
541 /* Sneak an ack in there first? If we can get it into the same
542 * TCP packet that's a good thing. */
543 if (con->in_seq > con->in_seq_acked) {
544 con->in_seq_acked = con->in_seq;
545 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
546 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
547 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
548 &con->out_temp_ack);
549 }
550
551 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
552 con->out_msg = m;
553
554 /* put message on sent list */
555 ceph_msg_get(m);
556 list_move_tail(&m->list_head, &con->out_sent);
557
558 /*
559 * only assign outgoing seq # if we haven't sent this message
560 * yet. if it is requeued, resend with it's original seq.
561 */
562 if (m->needs_out_seq) {
563 m->hdr.seq = cpu_to_le64(++con->out_seq);
564 m->needs_out_seq = false;
565 }
566
567 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
568 m, con->out_seq, le16_to_cpu(m->hdr.type),
569 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
570 le32_to_cpu(m->hdr.data_len),
571 m->nr_pages);
572 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
573
574 /* tag + hdr + front + middle */
575 ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
576 ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
577 ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
578
579 if (m->middle)
580 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
581 m->middle->vec.iov_base);
582
583 /* fill in crc (except data pages), footer */
584 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
585 con->out_msg->hdr.crc = cpu_to_le32(crc);
586 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
587
588 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
589 con->out_msg->footer.front_crc = cpu_to_le32(crc);
590 if (m->middle) {
591 crc = crc32c(0, m->middle->vec.iov_base,
592 m->middle->vec.iov_len);
593 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
594 } else
595 con->out_msg->footer.middle_crc = 0;
596 con->out_msg->footer.data_crc = 0;
597 dout("prepare_write_message front_crc %u data_crc %u\n",
598 le32_to_cpu(con->out_msg->footer.front_crc),
599 le32_to_cpu(con->out_msg->footer.middle_crc));
600
601 /* is there a data payload? */
602 if (le32_to_cpu(m->hdr.data_len) > 0) {
603 /* initialize page iterator */
604 con->out_msg_pos.page = 0;
605 if (m->pages)
606 con->out_msg_pos.page_pos = m->page_alignment;
607 else
608 con->out_msg_pos.page_pos = 0;
609 con->out_msg_pos.data_pos = 0;
610 con->out_msg_pos.did_page_crc = false;
611 con->out_more = 1; /* data + footer will follow */
612 } else {
613 /* no, queue up footer too and be done */
614 prepare_write_message_footer(con);
615 }
616
617 set_bit(WRITE_PENDING, &con->state);
618 }
619
620 /*
621 * Prepare an ack.
622 */
623 static void prepare_write_ack(struct ceph_connection *con)
624 {
625 dout("prepare_write_ack %p %llu -> %llu\n", con,
626 con->in_seq_acked, con->in_seq);
627 con->in_seq_acked = con->in_seq;
628
629 ceph_con_out_kvec_reset(con);
630
631 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
632
633 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
634 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
635 &con->out_temp_ack);
636
637 con->out_more = 1; /* more will follow.. eventually.. */
638 set_bit(WRITE_PENDING, &con->state);
639 }
640
641 /*
642 * Prepare to write keepalive byte.
643 */
644 static void prepare_write_keepalive(struct ceph_connection *con)
645 {
646 dout("prepare_write_keepalive %p\n", con);
647 ceph_con_out_kvec_reset(con);
648 ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
649 set_bit(WRITE_PENDING, &con->state);
650 }
651
652 /*
653 * Connection negotiation.
654 */
655
656 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
657 int *auth_proto)
658 {
659 struct ceph_auth_handshake *auth;
660
661 if (!con->ops->get_authorizer) {
662 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
663 con->out_connect.authorizer_len = 0;
664
665 return NULL;
666 }
667
668 /* Can't hold the mutex while getting authorizer */
669
670 mutex_unlock(&con->mutex);
671
672 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
673
674 mutex_lock(&con->mutex);
675
676 if (IS_ERR(auth))
677 return auth;
678 if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->state))
679 return ERR_PTR(-EAGAIN);
680
681 con->auth_reply_buf = auth->authorizer_reply_buf;
682 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
683
684
685 return auth;
686 }
687
688 /*
689 * We connected to a peer and are saying hello.
690 */
691 static void prepare_write_banner(struct ceph_connection *con)
692 {
693 ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
694 ceph_con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
695 &con->msgr->my_enc_addr);
696
697 con->out_more = 0;
698 set_bit(WRITE_PENDING, &con->state);
699 }
700
701 static int prepare_write_connect(struct ceph_connection *con)
702 {
703 unsigned int global_seq = get_global_seq(con->msgr, 0);
704 int proto;
705 int auth_proto;
706 struct ceph_auth_handshake *auth;
707
708 switch (con->peer_name.type) {
709 case CEPH_ENTITY_TYPE_MON:
710 proto = CEPH_MONC_PROTOCOL;
711 break;
712 case CEPH_ENTITY_TYPE_OSD:
713 proto = CEPH_OSDC_PROTOCOL;
714 break;
715 case CEPH_ENTITY_TYPE_MDS:
716 proto = CEPH_MDSC_PROTOCOL;
717 break;
718 default:
719 BUG();
720 }
721
722 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
723 con->connect_seq, global_seq, proto);
724
725 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
726 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
727 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
728 con->out_connect.global_seq = cpu_to_le32(global_seq);
729 con->out_connect.protocol_version = cpu_to_le32(proto);
730 con->out_connect.flags = 0;
731
732 auth_proto = CEPH_AUTH_UNKNOWN;
733 auth = get_connect_authorizer(con, &auth_proto);
734 if (IS_ERR(auth))
735 return PTR_ERR(auth);
736
737 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
738 con->out_connect.authorizer_len = auth ?
739 cpu_to_le32(auth->authorizer_buf_len) : 0;
740
741 ceph_con_out_kvec_add(con, sizeof (con->out_connect),
742 &con->out_connect);
743 if (auth && auth->authorizer_buf_len)
744 ceph_con_out_kvec_add(con, auth->authorizer_buf_len,
745 auth->authorizer_buf);
746
747 con->out_more = 0;
748 set_bit(WRITE_PENDING, &con->state);
749
750 return 0;
751 }
752
753 /*
754 * write as much of pending kvecs to the socket as we can.
755 * 1 -> done
756 * 0 -> socket full, but more to do
757 * <0 -> error
758 */
759 static int write_partial_kvec(struct ceph_connection *con)
760 {
761 int ret;
762
763 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
764 while (con->out_kvec_bytes > 0) {
765 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
766 con->out_kvec_left, con->out_kvec_bytes,
767 con->out_more);
768 if (ret <= 0)
769 goto out;
770 con->out_kvec_bytes -= ret;
771 if (con->out_kvec_bytes == 0)
772 break; /* done */
773
774 /* account for full iov entries consumed */
775 while (ret >= con->out_kvec_cur->iov_len) {
776 BUG_ON(!con->out_kvec_left);
777 ret -= con->out_kvec_cur->iov_len;
778 con->out_kvec_cur++;
779 con->out_kvec_left--;
780 }
781 /* and for a partially-consumed entry */
782 if (ret) {
783 con->out_kvec_cur->iov_len -= ret;
784 con->out_kvec_cur->iov_base += ret;
785 }
786 }
787 con->out_kvec_left = 0;
788 con->out_kvec_is_msg = false;
789 ret = 1;
790 out:
791 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
792 con->out_kvec_bytes, con->out_kvec_left, ret);
793 return ret; /* done! */
794 }
795
796 #ifdef CONFIG_BLOCK
797 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
798 {
799 if (!bio) {
800 *iter = NULL;
801 *seg = 0;
802 return;
803 }
804 *iter = bio;
805 *seg = bio->bi_idx;
806 }
807
808 static void iter_bio_next(struct bio **bio_iter, int *seg)
809 {
810 if (*bio_iter == NULL)
811 return;
812
813 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
814
815 (*seg)++;
816 if (*seg == (*bio_iter)->bi_vcnt)
817 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
818 }
819 #endif
820
821 /*
822 * Write as much message data payload as we can. If we finish, queue
823 * up the footer.
824 * 1 -> done, footer is now queued in out_kvec[].
825 * 0 -> socket full, but more to do
826 * <0 -> error
827 */
828 static int write_partial_msg_pages(struct ceph_connection *con)
829 {
830 struct ceph_msg *msg = con->out_msg;
831 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
832 size_t len;
833 bool do_datacrc = !con->msgr->nocrc;
834 int ret;
835 int total_max_write;
836 int in_trail = 0;
837 size_t trail_len = (msg->trail ? msg->trail->length : 0);
838
839 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
840 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
841 con->out_msg_pos.page_pos);
842
843 #ifdef CONFIG_BLOCK
844 if (msg->bio && !msg->bio_iter)
845 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
846 #endif
847
848 while (data_len > con->out_msg_pos.data_pos) {
849 struct page *page = NULL;
850 int max_write = PAGE_SIZE;
851 int bio_offset = 0;
852
853 total_max_write = data_len - trail_len -
854 con->out_msg_pos.data_pos;
855
856 /*
857 * if we are calculating the data crc (the default), we need
858 * to map the page. if our pages[] has been revoked, use the
859 * zero page.
860 */
861
862 /* have we reached the trail part of the data? */
863 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
864 in_trail = 1;
865
866 total_max_write = data_len - con->out_msg_pos.data_pos;
867
868 page = list_first_entry(&msg->trail->head,
869 struct page, lru);
870 max_write = PAGE_SIZE;
871 } else if (msg->pages) {
872 page = msg->pages[con->out_msg_pos.page];
873 } else if (msg->pagelist) {
874 page = list_first_entry(&msg->pagelist->head,
875 struct page, lru);
876 #ifdef CONFIG_BLOCK
877 } else if (msg->bio) {
878 struct bio_vec *bv;
879
880 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
881 page = bv->bv_page;
882 bio_offset = bv->bv_offset;
883 max_write = bv->bv_len;
884 #endif
885 } else {
886 page = zero_page;
887 }
888 len = min_t(int, max_write - con->out_msg_pos.page_pos,
889 total_max_write);
890
891 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
892 void *base;
893 u32 crc;
894 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
895 char *kaddr;
896
897 kaddr = kmap(page);
898 BUG_ON(kaddr == NULL);
899 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
900 crc = crc32c(tmpcrc, base, len);
901 con->out_msg->footer.data_crc = cpu_to_le32(crc);
902 con->out_msg_pos.did_page_crc = true;
903 }
904 ret = ceph_tcp_sendpage(con->sock, page,
905 con->out_msg_pos.page_pos + bio_offset,
906 len, 1);
907
908 if (do_datacrc)
909 kunmap(page);
910
911 if (ret <= 0)
912 goto out;
913
914 con->out_msg_pos.data_pos += ret;
915 con->out_msg_pos.page_pos += ret;
916 if (ret == len) {
917 con->out_msg_pos.page_pos = 0;
918 con->out_msg_pos.page++;
919 con->out_msg_pos.did_page_crc = false;
920 if (in_trail)
921 list_move_tail(&page->lru,
922 &msg->trail->head);
923 else if (msg->pagelist)
924 list_move_tail(&page->lru,
925 &msg->pagelist->head);
926 #ifdef CONFIG_BLOCK
927 else if (msg->bio)
928 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
929 #endif
930 }
931 }
932
933 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
934
935 /* prepare and queue up footer, too */
936 if (!do_datacrc)
937 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
938 ceph_con_out_kvec_reset(con);
939 prepare_write_message_footer(con);
940 ret = 1;
941 out:
942 return ret;
943 }
944
945 /*
946 * write some zeros
947 */
948 static int write_partial_skip(struct ceph_connection *con)
949 {
950 int ret;
951
952 while (con->out_skip > 0) {
953 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
954
955 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
956 if (ret <= 0)
957 goto out;
958 con->out_skip -= ret;
959 }
960 ret = 1;
961 out:
962 return ret;
963 }
964
965 /*
966 * Prepare to read connection handshake, or an ack.
967 */
968 static void prepare_read_banner(struct ceph_connection *con)
969 {
970 dout("prepare_read_banner %p\n", con);
971 con->in_base_pos = 0;
972 }
973
974 static void prepare_read_connect(struct ceph_connection *con)
975 {
976 dout("prepare_read_connect %p\n", con);
977 con->in_base_pos = 0;
978 }
979
980 static void prepare_read_ack(struct ceph_connection *con)
981 {
982 dout("prepare_read_ack %p\n", con);
983 con->in_base_pos = 0;
984 }
985
986 static void prepare_read_tag(struct ceph_connection *con)
987 {
988 dout("prepare_read_tag %p\n", con);
989 con->in_base_pos = 0;
990 con->in_tag = CEPH_MSGR_TAG_READY;
991 }
992
993 /*
994 * Prepare to read a message.
995 */
996 static int prepare_read_message(struct ceph_connection *con)
997 {
998 dout("prepare_read_message %p\n", con);
999 BUG_ON(con->in_msg != NULL);
1000 con->in_base_pos = 0;
1001 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1002 return 0;
1003 }
1004
1005
1006 static int read_partial(struct ceph_connection *con,
1007 int end, int size, void *object)
1008 {
1009 while (con->in_base_pos < end) {
1010 int left = end - con->in_base_pos;
1011 int have = size - left;
1012 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1013 if (ret <= 0)
1014 return ret;
1015 con->in_base_pos += ret;
1016 }
1017 return 1;
1018 }
1019
1020
1021 /*
1022 * Read all or part of the connect-side handshake on a new connection
1023 */
1024 static int read_partial_banner(struct ceph_connection *con)
1025 {
1026 int size;
1027 int end;
1028 int ret;
1029
1030 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1031
1032 /* peer's banner */
1033 size = strlen(CEPH_BANNER);
1034 end = size;
1035 ret = read_partial(con, end, size, con->in_banner);
1036 if (ret <= 0)
1037 goto out;
1038
1039 size = sizeof (con->actual_peer_addr);
1040 end += size;
1041 ret = read_partial(con, end, size, &con->actual_peer_addr);
1042 if (ret <= 0)
1043 goto out;
1044
1045 size = sizeof (con->peer_addr_for_me);
1046 end += size;
1047 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1048 if (ret <= 0)
1049 goto out;
1050
1051 out:
1052 return ret;
1053 }
1054
1055 static int read_partial_connect(struct ceph_connection *con)
1056 {
1057 int size;
1058 int end;
1059 int ret;
1060
1061 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1062
1063 size = sizeof (con->in_reply);
1064 end = size;
1065 ret = read_partial(con, end, size, &con->in_reply);
1066 if (ret <= 0)
1067 goto out;
1068
1069 size = le32_to_cpu(con->in_reply.authorizer_len);
1070 end += size;
1071 ret = read_partial(con, end, size, con->auth_reply_buf);
1072 if (ret <= 0)
1073 goto out;
1074
1075 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1076 con, (int)con->in_reply.tag,
1077 le32_to_cpu(con->in_reply.connect_seq),
1078 le32_to_cpu(con->in_reply.global_seq));
1079 out:
1080 return ret;
1081
1082 }
1083
1084 /*
1085 * Verify the hello banner looks okay.
1086 */
1087 static int verify_hello(struct ceph_connection *con)
1088 {
1089 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1090 pr_err("connect to %s got bad banner\n",
1091 ceph_pr_addr(&con->peer_addr.in_addr));
1092 con->error_msg = "protocol error, bad banner";
1093 return -1;
1094 }
1095 return 0;
1096 }
1097
1098 static bool addr_is_blank(struct sockaddr_storage *ss)
1099 {
1100 switch (ss->ss_family) {
1101 case AF_INET:
1102 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1103 case AF_INET6:
1104 return
1105 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1106 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1107 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1108 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1109 }
1110 return false;
1111 }
1112
1113 static int addr_port(struct sockaddr_storage *ss)
1114 {
1115 switch (ss->ss_family) {
1116 case AF_INET:
1117 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1118 case AF_INET6:
1119 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1120 }
1121 return 0;
1122 }
1123
1124 static void addr_set_port(struct sockaddr_storage *ss, int p)
1125 {
1126 switch (ss->ss_family) {
1127 case AF_INET:
1128 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1129 break;
1130 case AF_INET6:
1131 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1132 break;
1133 }
1134 }
1135
1136 /*
1137 * Unlike other *_pton function semantics, zero indicates success.
1138 */
1139 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1140 char delim, const char **ipend)
1141 {
1142 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1143 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1144
1145 memset(ss, 0, sizeof(*ss));
1146
1147 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1148 ss->ss_family = AF_INET;
1149 return 0;
1150 }
1151
1152 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1153 ss->ss_family = AF_INET6;
1154 return 0;
1155 }
1156
1157 return -EINVAL;
1158 }
1159
1160 /*
1161 * Extract hostname string and resolve using kernel DNS facility.
1162 */
1163 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1164 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1165 struct sockaddr_storage *ss, char delim, const char **ipend)
1166 {
1167 const char *end, *delim_p;
1168 char *colon_p, *ip_addr = NULL;
1169 int ip_len, ret;
1170
1171 /*
1172 * The end of the hostname occurs immediately preceding the delimiter or
1173 * the port marker (':') where the delimiter takes precedence.
1174 */
1175 delim_p = memchr(name, delim, namelen);
1176 colon_p = memchr(name, ':', namelen);
1177
1178 if (delim_p && colon_p)
1179 end = delim_p < colon_p ? delim_p : colon_p;
1180 else if (!delim_p && colon_p)
1181 end = colon_p;
1182 else {
1183 end = delim_p;
1184 if (!end) /* case: hostname:/ */
1185 end = name + namelen;
1186 }
1187
1188 if (end <= name)
1189 return -EINVAL;
1190
1191 /* do dns_resolve upcall */
1192 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1193 if (ip_len > 0)
1194 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1195 else
1196 ret = -ESRCH;
1197
1198 kfree(ip_addr);
1199
1200 *ipend = end;
1201
1202 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1203 ret, ret ? "failed" : ceph_pr_addr(ss));
1204
1205 return ret;
1206 }
1207 #else
1208 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1209 struct sockaddr_storage *ss, char delim, const char **ipend)
1210 {
1211 return -EINVAL;
1212 }
1213 #endif
1214
1215 /*
1216 * Parse a server name (IP or hostname). If a valid IP address is not found
1217 * then try to extract a hostname to resolve using userspace DNS upcall.
1218 */
1219 static int ceph_parse_server_name(const char *name, size_t namelen,
1220 struct sockaddr_storage *ss, char delim, const char **ipend)
1221 {
1222 int ret;
1223
1224 ret = ceph_pton(name, namelen, ss, delim, ipend);
1225 if (ret)
1226 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1227
1228 return ret;
1229 }
1230
1231 /*
1232 * Parse an ip[:port] list into an addr array. Use the default
1233 * monitor port if a port isn't specified.
1234 */
1235 int ceph_parse_ips(const char *c, const char *end,
1236 struct ceph_entity_addr *addr,
1237 int max_count, int *count)
1238 {
1239 int i, ret = -EINVAL;
1240 const char *p = c;
1241
1242 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1243 for (i = 0; i < max_count; i++) {
1244 const char *ipend;
1245 struct sockaddr_storage *ss = &addr[i].in_addr;
1246 int port;
1247 char delim = ',';
1248
1249 if (*p == '[') {
1250 delim = ']';
1251 p++;
1252 }
1253
1254 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1255 if (ret)
1256 goto bad;
1257 ret = -EINVAL;
1258
1259 p = ipend;
1260
1261 if (delim == ']') {
1262 if (*p != ']') {
1263 dout("missing matching ']'\n");
1264 goto bad;
1265 }
1266 p++;
1267 }
1268
1269 /* port? */
1270 if (p < end && *p == ':') {
1271 port = 0;
1272 p++;
1273 while (p < end && *p >= '0' && *p <= '9') {
1274 port = (port * 10) + (*p - '0');
1275 p++;
1276 }
1277 if (port > 65535 || port == 0)
1278 goto bad;
1279 } else {
1280 port = CEPH_MON_PORT;
1281 }
1282
1283 addr_set_port(ss, port);
1284
1285 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1286
1287 if (p == end)
1288 break;
1289 if (*p != ',')
1290 goto bad;
1291 p++;
1292 }
1293
1294 if (p != end)
1295 goto bad;
1296
1297 if (count)
1298 *count = i + 1;
1299 return 0;
1300
1301 bad:
1302 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1303 return ret;
1304 }
1305 EXPORT_SYMBOL(ceph_parse_ips);
1306
1307 static int process_banner(struct ceph_connection *con)
1308 {
1309 dout("process_banner on %p\n", con);
1310
1311 if (verify_hello(con) < 0)
1312 return -1;
1313
1314 ceph_decode_addr(&con->actual_peer_addr);
1315 ceph_decode_addr(&con->peer_addr_for_me);
1316
1317 /*
1318 * Make sure the other end is who we wanted. note that the other
1319 * end may not yet know their ip address, so if it's 0.0.0.0, give
1320 * them the benefit of the doubt.
1321 */
1322 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1323 sizeof(con->peer_addr)) != 0 &&
1324 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1325 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1326 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1327 ceph_pr_addr(&con->peer_addr.in_addr),
1328 (int)le32_to_cpu(con->peer_addr.nonce),
1329 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1330 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1331 con->error_msg = "wrong peer at address";
1332 return -1;
1333 }
1334
1335 /*
1336 * did we learn our address?
1337 */
1338 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1339 int port = addr_port(&con->msgr->inst.addr.in_addr);
1340
1341 memcpy(&con->msgr->inst.addr.in_addr,
1342 &con->peer_addr_for_me.in_addr,
1343 sizeof(con->peer_addr_for_me.in_addr));
1344 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1345 encode_my_addr(con->msgr);
1346 dout("process_banner learned my addr is %s\n",
1347 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1348 }
1349
1350 set_bit(NEGOTIATING, &con->state);
1351 prepare_read_connect(con);
1352 return 0;
1353 }
1354
1355 static void fail_protocol(struct ceph_connection *con)
1356 {
1357 reset_connection(con);
1358 set_bit(CLOSED, &con->state); /* in case there's queued work */
1359
1360 mutex_unlock(&con->mutex);
1361 if (con->ops->bad_proto)
1362 con->ops->bad_proto(con);
1363 mutex_lock(&con->mutex);
1364 }
1365
1366 static int process_connect(struct ceph_connection *con)
1367 {
1368 u64 sup_feat = con->msgr->supported_features;
1369 u64 req_feat = con->msgr->required_features;
1370 u64 server_feat = le64_to_cpu(con->in_reply.features);
1371 int ret;
1372
1373 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1374
1375 switch (con->in_reply.tag) {
1376 case CEPH_MSGR_TAG_FEATURES:
1377 pr_err("%s%lld %s feature set mismatch,"
1378 " my %llx < server's %llx, missing %llx\n",
1379 ENTITY_NAME(con->peer_name),
1380 ceph_pr_addr(&con->peer_addr.in_addr),
1381 sup_feat, server_feat, server_feat & ~sup_feat);
1382 con->error_msg = "missing required protocol features";
1383 fail_protocol(con);
1384 return -1;
1385
1386 case CEPH_MSGR_TAG_BADPROTOVER:
1387 pr_err("%s%lld %s protocol version mismatch,"
1388 " my %d != server's %d\n",
1389 ENTITY_NAME(con->peer_name),
1390 ceph_pr_addr(&con->peer_addr.in_addr),
1391 le32_to_cpu(con->out_connect.protocol_version),
1392 le32_to_cpu(con->in_reply.protocol_version));
1393 con->error_msg = "protocol version mismatch";
1394 fail_protocol(con);
1395 return -1;
1396
1397 case CEPH_MSGR_TAG_BADAUTHORIZER:
1398 con->auth_retry++;
1399 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1400 con->auth_retry);
1401 if (con->auth_retry == 2) {
1402 con->error_msg = "connect authorization failure";
1403 return -1;
1404 }
1405 con->auth_retry = 1;
1406 ceph_con_out_kvec_reset(con);
1407 ret = prepare_write_connect(con);
1408 if (ret < 0)
1409 return ret;
1410 prepare_read_connect(con);
1411 break;
1412
1413 case CEPH_MSGR_TAG_RESETSESSION:
1414 /*
1415 * If we connected with a large connect_seq but the peer
1416 * has no record of a session with us (no connection, or
1417 * connect_seq == 0), they will send RESETSESION to indicate
1418 * that they must have reset their session, and may have
1419 * dropped messages.
1420 */
1421 dout("process_connect got RESET peer seq %u\n",
1422 le32_to_cpu(con->in_connect.connect_seq));
1423 pr_err("%s%lld %s connection reset\n",
1424 ENTITY_NAME(con->peer_name),
1425 ceph_pr_addr(&con->peer_addr.in_addr));
1426 reset_connection(con);
1427 ceph_con_out_kvec_reset(con);
1428 ret = prepare_write_connect(con);
1429 if (ret < 0)
1430 return ret;
1431 prepare_read_connect(con);
1432
1433 /* Tell ceph about it. */
1434 mutex_unlock(&con->mutex);
1435 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1436 if (con->ops->peer_reset)
1437 con->ops->peer_reset(con);
1438 mutex_lock(&con->mutex);
1439 if (test_bit(CLOSED, &con->state) ||
1440 test_bit(OPENING, &con->state))
1441 return -EAGAIN;
1442 break;
1443
1444 case CEPH_MSGR_TAG_RETRY_SESSION:
1445 /*
1446 * If we sent a smaller connect_seq than the peer has, try
1447 * again with a larger value.
1448 */
1449 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1450 le32_to_cpu(con->out_connect.connect_seq),
1451 le32_to_cpu(con->in_connect.connect_seq));
1452 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1453 ceph_con_out_kvec_reset(con);
1454 ret = prepare_write_connect(con);
1455 if (ret < 0)
1456 return ret;
1457 prepare_read_connect(con);
1458 break;
1459
1460 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1461 /*
1462 * If we sent a smaller global_seq than the peer has, try
1463 * again with a larger value.
1464 */
1465 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1466 con->peer_global_seq,
1467 le32_to_cpu(con->in_connect.global_seq));
1468 get_global_seq(con->msgr,
1469 le32_to_cpu(con->in_connect.global_seq));
1470 ceph_con_out_kvec_reset(con);
1471 ret = prepare_write_connect(con);
1472 if (ret < 0)
1473 return ret;
1474 prepare_read_connect(con);
1475 break;
1476
1477 case CEPH_MSGR_TAG_READY:
1478 if (req_feat & ~server_feat) {
1479 pr_err("%s%lld %s protocol feature mismatch,"
1480 " my required %llx > server's %llx, need %llx\n",
1481 ENTITY_NAME(con->peer_name),
1482 ceph_pr_addr(&con->peer_addr.in_addr),
1483 req_feat, server_feat, req_feat & ~server_feat);
1484 con->error_msg = "missing required protocol features";
1485 fail_protocol(con);
1486 return -1;
1487 }
1488 clear_bit(CONNECTING, &con->state);
1489 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1490 con->connect_seq++;
1491 con->peer_features = server_feat;
1492 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1493 con->peer_global_seq,
1494 le32_to_cpu(con->in_reply.connect_seq),
1495 con->connect_seq);
1496 WARN_ON(con->connect_seq !=
1497 le32_to_cpu(con->in_reply.connect_seq));
1498
1499 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1500 set_bit(LOSSYTX, &con->state);
1501
1502 prepare_read_tag(con);
1503 break;
1504
1505 case CEPH_MSGR_TAG_WAIT:
1506 /*
1507 * If there is a connection race (we are opening
1508 * connections to each other), one of us may just have
1509 * to WAIT. This shouldn't happen if we are the
1510 * client.
1511 */
1512 pr_err("process_connect got WAIT as client\n");
1513 con->error_msg = "protocol error, got WAIT as client";
1514 return -1;
1515
1516 default:
1517 pr_err("connect protocol error, will retry\n");
1518 con->error_msg = "protocol error, garbage tag during connect";
1519 return -1;
1520 }
1521 return 0;
1522 }
1523
1524
1525 /*
1526 * read (part of) an ack
1527 */
1528 static int read_partial_ack(struct ceph_connection *con)
1529 {
1530 int size = sizeof (con->in_temp_ack);
1531 int end = size;
1532
1533 return read_partial(con, end, size, &con->in_temp_ack);
1534 }
1535
1536
1537 /*
1538 * We can finally discard anything that's been acked.
1539 */
1540 static void process_ack(struct ceph_connection *con)
1541 {
1542 struct ceph_msg *m;
1543 u64 ack = le64_to_cpu(con->in_temp_ack);
1544 u64 seq;
1545
1546 while (!list_empty(&con->out_sent)) {
1547 m = list_first_entry(&con->out_sent, struct ceph_msg,
1548 list_head);
1549 seq = le64_to_cpu(m->hdr.seq);
1550 if (seq > ack)
1551 break;
1552 dout("got ack for seq %llu type %d at %p\n", seq,
1553 le16_to_cpu(m->hdr.type), m);
1554 m->ack_stamp = jiffies;
1555 ceph_msg_remove(m);
1556 }
1557 prepare_read_tag(con);
1558 }
1559
1560
1561
1562
1563 static int read_partial_message_section(struct ceph_connection *con,
1564 struct kvec *section,
1565 unsigned int sec_len, u32 *crc)
1566 {
1567 int ret, left;
1568
1569 BUG_ON(!section);
1570
1571 while (section->iov_len < sec_len) {
1572 BUG_ON(section->iov_base == NULL);
1573 left = sec_len - section->iov_len;
1574 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1575 section->iov_len, left);
1576 if (ret <= 0)
1577 return ret;
1578 section->iov_len += ret;
1579 }
1580 if (section->iov_len == sec_len)
1581 *crc = crc32c(0, section->iov_base, section->iov_len);
1582
1583 return 1;
1584 }
1585
1586 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1587 struct ceph_msg_header *hdr,
1588 int *skip);
1589
1590
1591 static int read_partial_message_pages(struct ceph_connection *con,
1592 struct page **pages,
1593 unsigned int data_len, bool do_datacrc)
1594 {
1595 void *p;
1596 int ret;
1597 int left;
1598
1599 left = min((int)(data_len - con->in_msg_pos.data_pos),
1600 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1601 /* (page) data */
1602 BUG_ON(pages == NULL);
1603 p = kmap(pages[con->in_msg_pos.page]);
1604 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1605 left);
1606 if (ret > 0 && do_datacrc)
1607 con->in_data_crc =
1608 crc32c(con->in_data_crc,
1609 p + con->in_msg_pos.page_pos, ret);
1610 kunmap(pages[con->in_msg_pos.page]);
1611 if (ret <= 0)
1612 return ret;
1613 con->in_msg_pos.data_pos += ret;
1614 con->in_msg_pos.page_pos += ret;
1615 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1616 con->in_msg_pos.page_pos = 0;
1617 con->in_msg_pos.page++;
1618 }
1619
1620 return ret;
1621 }
1622
1623 #ifdef CONFIG_BLOCK
1624 static int read_partial_message_bio(struct ceph_connection *con,
1625 struct bio **bio_iter, int *bio_seg,
1626 unsigned int data_len, bool do_datacrc)
1627 {
1628 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1629 void *p;
1630 int ret, left;
1631
1632 if (IS_ERR(bv))
1633 return PTR_ERR(bv);
1634
1635 left = min((int)(data_len - con->in_msg_pos.data_pos),
1636 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1637
1638 p = kmap(bv->bv_page) + bv->bv_offset;
1639
1640 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1641 left);
1642 if (ret > 0 && do_datacrc)
1643 con->in_data_crc =
1644 crc32c(con->in_data_crc,
1645 p + con->in_msg_pos.page_pos, ret);
1646 kunmap(bv->bv_page);
1647 if (ret <= 0)
1648 return ret;
1649 con->in_msg_pos.data_pos += ret;
1650 con->in_msg_pos.page_pos += ret;
1651 if (con->in_msg_pos.page_pos == bv->bv_len) {
1652 con->in_msg_pos.page_pos = 0;
1653 iter_bio_next(bio_iter, bio_seg);
1654 }
1655
1656 return ret;
1657 }
1658 #endif
1659
1660 /*
1661 * read (part of) a message.
1662 */
1663 static int read_partial_message(struct ceph_connection *con)
1664 {
1665 struct ceph_msg *m = con->in_msg;
1666 int size;
1667 int end;
1668 int ret;
1669 unsigned int front_len, middle_len, data_len;
1670 bool do_datacrc = !con->msgr->nocrc;
1671 int skip;
1672 u64 seq;
1673 u32 crc;
1674
1675 dout("read_partial_message con %p msg %p\n", con, m);
1676
1677 /* header */
1678 size = sizeof (con->in_hdr);
1679 end = size;
1680 ret = read_partial(con, end, size, &con->in_hdr);
1681 if (ret <= 0)
1682 return ret;
1683
1684 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1685 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1686 pr_err("read_partial_message bad hdr "
1687 " crc %u != expected %u\n",
1688 crc, con->in_hdr.crc);
1689 return -EBADMSG;
1690 }
1691
1692 front_len = le32_to_cpu(con->in_hdr.front_len);
1693 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1694 return -EIO;
1695 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1696 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1697 return -EIO;
1698 data_len = le32_to_cpu(con->in_hdr.data_len);
1699 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1700 return -EIO;
1701
1702 /* verify seq# */
1703 seq = le64_to_cpu(con->in_hdr.seq);
1704 if ((s64)seq - (s64)con->in_seq < 1) {
1705 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1706 ENTITY_NAME(con->peer_name),
1707 ceph_pr_addr(&con->peer_addr.in_addr),
1708 seq, con->in_seq + 1);
1709 con->in_base_pos = -front_len - middle_len - data_len -
1710 sizeof(m->footer);
1711 con->in_tag = CEPH_MSGR_TAG_READY;
1712 return 0;
1713 } else if ((s64)seq - (s64)con->in_seq > 1) {
1714 pr_err("read_partial_message bad seq %lld expected %lld\n",
1715 seq, con->in_seq + 1);
1716 con->error_msg = "bad message sequence # for incoming message";
1717 return -EBADMSG;
1718 }
1719
1720 /* allocate message? */
1721 if (!con->in_msg) {
1722 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1723 con->in_hdr.front_len, con->in_hdr.data_len);
1724 skip = 0;
1725 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1726 if (skip) {
1727 /* skip this message */
1728 dout("alloc_msg said skip message\n");
1729 BUG_ON(con->in_msg);
1730 con->in_base_pos = -front_len - middle_len - data_len -
1731 sizeof(m->footer);
1732 con->in_tag = CEPH_MSGR_TAG_READY;
1733 con->in_seq++;
1734 return 0;
1735 }
1736 if (!con->in_msg) {
1737 con->error_msg =
1738 "error allocating memory for incoming message";
1739 return -ENOMEM;
1740 }
1741 m = con->in_msg;
1742 m->front.iov_len = 0; /* haven't read it yet */
1743 if (m->middle)
1744 m->middle->vec.iov_len = 0;
1745
1746 con->in_msg_pos.page = 0;
1747 if (m->pages)
1748 con->in_msg_pos.page_pos = m->page_alignment;
1749 else
1750 con->in_msg_pos.page_pos = 0;
1751 con->in_msg_pos.data_pos = 0;
1752 }
1753
1754 /* front */
1755 ret = read_partial_message_section(con, &m->front, front_len,
1756 &con->in_front_crc);
1757 if (ret <= 0)
1758 return ret;
1759
1760 /* middle */
1761 if (m->middle) {
1762 ret = read_partial_message_section(con, &m->middle->vec,
1763 middle_len,
1764 &con->in_middle_crc);
1765 if (ret <= 0)
1766 return ret;
1767 }
1768 #ifdef CONFIG_BLOCK
1769 if (m->bio && !m->bio_iter)
1770 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1771 #endif
1772
1773 /* (page) data */
1774 while (con->in_msg_pos.data_pos < data_len) {
1775 if (m->pages) {
1776 ret = read_partial_message_pages(con, m->pages,
1777 data_len, do_datacrc);
1778 if (ret <= 0)
1779 return ret;
1780 #ifdef CONFIG_BLOCK
1781 } else if (m->bio) {
1782
1783 ret = read_partial_message_bio(con,
1784 &m->bio_iter, &m->bio_seg,
1785 data_len, do_datacrc);
1786 if (ret <= 0)
1787 return ret;
1788 #endif
1789 } else {
1790 BUG_ON(1);
1791 }
1792 }
1793
1794 /* footer */
1795 size = sizeof (m->footer);
1796 end += size;
1797 ret = read_partial(con, end, size, &m->footer);
1798 if (ret <= 0)
1799 return ret;
1800
1801 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1802 m, front_len, m->footer.front_crc, middle_len,
1803 m->footer.middle_crc, data_len, m->footer.data_crc);
1804
1805 /* crc ok? */
1806 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1807 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1808 m, con->in_front_crc, m->footer.front_crc);
1809 return -EBADMSG;
1810 }
1811 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1812 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1813 m, con->in_middle_crc, m->footer.middle_crc);
1814 return -EBADMSG;
1815 }
1816 if (do_datacrc &&
1817 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1818 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1819 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1820 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1821 return -EBADMSG;
1822 }
1823
1824 return 1; /* done! */
1825 }
1826
1827 /*
1828 * Process message. This happens in the worker thread. The callback should
1829 * be careful not to do anything that waits on other incoming messages or it
1830 * may deadlock.
1831 */
1832 static void process_message(struct ceph_connection *con)
1833 {
1834 struct ceph_msg *msg;
1835
1836 msg = con->in_msg;
1837 con->in_msg = NULL;
1838
1839 /* if first message, set peer_name */
1840 if (con->peer_name.type == 0)
1841 con->peer_name = msg->hdr.src;
1842
1843 con->in_seq++;
1844 mutex_unlock(&con->mutex);
1845
1846 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1847 msg, le64_to_cpu(msg->hdr.seq),
1848 ENTITY_NAME(msg->hdr.src),
1849 le16_to_cpu(msg->hdr.type),
1850 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1851 le32_to_cpu(msg->hdr.front_len),
1852 le32_to_cpu(msg->hdr.data_len),
1853 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1854 con->ops->dispatch(con, msg);
1855
1856 mutex_lock(&con->mutex);
1857 prepare_read_tag(con);
1858 }
1859
1860
1861 /*
1862 * Write something to the socket. Called in a worker thread when the
1863 * socket appears to be writeable and we have something ready to send.
1864 */
1865 static int try_write(struct ceph_connection *con)
1866 {
1867 int ret = 1;
1868
1869 dout("try_write start %p state %lu nref %d\n", con, con->state,
1870 atomic_read(&con->nref));
1871
1872 more:
1873 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1874
1875 /* open the socket first? */
1876 if (con->sock == NULL) {
1877 ceph_con_out_kvec_reset(con);
1878 prepare_write_banner(con);
1879 ret = prepare_write_connect(con);
1880 if (ret < 0)
1881 goto out;
1882 prepare_read_banner(con);
1883 set_bit(CONNECTING, &con->state);
1884 clear_bit(NEGOTIATING, &con->state);
1885
1886 BUG_ON(con->in_msg);
1887 con->in_tag = CEPH_MSGR_TAG_READY;
1888 dout("try_write initiating connect on %p new state %lu\n",
1889 con, con->state);
1890 ret = ceph_tcp_connect(con);
1891 if (ret < 0) {
1892 con->error_msg = "connect error";
1893 goto out;
1894 }
1895 }
1896
1897 more_kvec:
1898 /* kvec data queued? */
1899 if (con->out_skip) {
1900 ret = write_partial_skip(con);
1901 if (ret <= 0)
1902 goto out;
1903 }
1904 if (con->out_kvec_left) {
1905 ret = write_partial_kvec(con);
1906 if (ret <= 0)
1907 goto out;
1908 }
1909
1910 /* msg pages? */
1911 if (con->out_msg) {
1912 if (con->out_msg_done) {
1913 ceph_msg_put(con->out_msg);
1914 con->out_msg = NULL; /* we're done with this one */
1915 goto do_next;
1916 }
1917
1918 ret = write_partial_msg_pages(con);
1919 if (ret == 1)
1920 goto more_kvec; /* we need to send the footer, too! */
1921 if (ret == 0)
1922 goto out;
1923 if (ret < 0) {
1924 dout("try_write write_partial_msg_pages err %d\n",
1925 ret);
1926 goto out;
1927 }
1928 }
1929
1930 do_next:
1931 if (!test_bit(CONNECTING, &con->state)) {
1932 /* is anything else pending? */
1933 if (!list_empty(&con->out_queue)) {
1934 prepare_write_message(con);
1935 goto more;
1936 }
1937 if (con->in_seq > con->in_seq_acked) {
1938 prepare_write_ack(con);
1939 goto more;
1940 }
1941 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1942 prepare_write_keepalive(con);
1943 goto more;
1944 }
1945 }
1946
1947 /* Nothing to do! */
1948 clear_bit(WRITE_PENDING, &con->state);
1949 dout("try_write nothing else to write.\n");
1950 ret = 0;
1951 out:
1952 dout("try_write done on %p ret %d\n", con, ret);
1953 return ret;
1954 }
1955
1956
1957
1958 /*
1959 * Read what we can from the socket.
1960 */
1961 static int try_read(struct ceph_connection *con)
1962 {
1963 int ret = -1;
1964
1965 if (!con->sock)
1966 return 0;
1967
1968 if (test_bit(STANDBY, &con->state))
1969 return 0;
1970
1971 dout("try_read start on %p\n", con);
1972
1973 more:
1974 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1975 con->in_base_pos);
1976
1977 /*
1978 * process_connect and process_message drop and re-take
1979 * con->mutex. make sure we handle a racing close or reopen.
1980 */
1981 if (test_bit(CLOSED, &con->state) ||
1982 test_bit(OPENING, &con->state)) {
1983 ret = -EAGAIN;
1984 goto out;
1985 }
1986
1987 if (test_bit(CONNECTING, &con->state)) {
1988 if (!test_bit(NEGOTIATING, &con->state)) {
1989 dout("try_read connecting\n");
1990 ret = read_partial_banner(con);
1991 if (ret <= 0)
1992 goto out;
1993 ret = process_banner(con);
1994 if (ret < 0)
1995 goto out;
1996 }
1997 ret = read_partial_connect(con);
1998 if (ret <= 0)
1999 goto out;
2000 ret = process_connect(con);
2001 if (ret < 0)
2002 goto out;
2003 goto more;
2004 }
2005
2006 if (con->in_base_pos < 0) {
2007 /*
2008 * skipping + discarding content.
2009 *
2010 * FIXME: there must be a better way to do this!
2011 */
2012 static char buf[SKIP_BUF_SIZE];
2013 int skip = min((int) sizeof (buf), -con->in_base_pos);
2014
2015 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2016 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2017 if (ret <= 0)
2018 goto out;
2019 con->in_base_pos += ret;
2020 if (con->in_base_pos)
2021 goto more;
2022 }
2023 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2024 /*
2025 * what's next?
2026 */
2027 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2028 if (ret <= 0)
2029 goto out;
2030 dout("try_read got tag %d\n", (int)con->in_tag);
2031 switch (con->in_tag) {
2032 case CEPH_MSGR_TAG_MSG:
2033 prepare_read_message(con);
2034 break;
2035 case CEPH_MSGR_TAG_ACK:
2036 prepare_read_ack(con);
2037 break;
2038 case CEPH_MSGR_TAG_CLOSE:
2039 set_bit(CLOSED, &con->state); /* fixme */
2040 goto out;
2041 default:
2042 goto bad_tag;
2043 }
2044 }
2045 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2046 ret = read_partial_message(con);
2047 if (ret <= 0) {
2048 switch (ret) {
2049 case -EBADMSG:
2050 con->error_msg = "bad crc";
2051 ret = -EIO;
2052 break;
2053 case -EIO:
2054 con->error_msg = "io error";
2055 break;
2056 }
2057 goto out;
2058 }
2059 if (con->in_tag == CEPH_MSGR_TAG_READY)
2060 goto more;
2061 process_message(con);
2062 goto more;
2063 }
2064 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2065 ret = read_partial_ack(con);
2066 if (ret <= 0)
2067 goto out;
2068 process_ack(con);
2069 goto more;
2070 }
2071
2072 out:
2073 dout("try_read done on %p ret %d\n", con, ret);
2074 return ret;
2075
2076 bad_tag:
2077 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2078 con->error_msg = "protocol error, garbage tag";
2079 ret = -1;
2080 goto out;
2081 }
2082
2083
2084 /*
2085 * Atomically queue work on a connection. Bump @con reference to
2086 * avoid races with connection teardown.
2087 */
2088 static void queue_con(struct ceph_connection *con)
2089 {
2090 if (test_bit(DEAD, &con->state)) {
2091 dout("queue_con %p ignoring: DEAD\n",
2092 con);
2093 return;
2094 }
2095
2096 if (!con->ops->get(con)) {
2097 dout("queue_con %p ref count 0\n", con);
2098 return;
2099 }
2100
2101 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2102 dout("queue_con %p - already queued\n", con);
2103 con->ops->put(con);
2104 } else {
2105 dout("queue_con %p\n", con);
2106 }
2107 }
2108
2109 /*
2110 * Do some work on a connection. Drop a connection ref when we're done.
2111 */
2112 static void con_work(struct work_struct *work)
2113 {
2114 struct ceph_connection *con = container_of(work, struct ceph_connection,
2115 work.work);
2116 int ret;
2117
2118 mutex_lock(&con->mutex);
2119 restart:
2120 if (test_and_clear_bit(BACKOFF, &con->state)) {
2121 dout("con_work %p backing off\n", con);
2122 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2123 round_jiffies_relative(con->delay))) {
2124 dout("con_work %p backoff %lu\n", con, con->delay);
2125 mutex_unlock(&con->mutex);
2126 return;
2127 } else {
2128 con->ops->put(con);
2129 dout("con_work %p FAILED to back off %lu\n", con,
2130 con->delay);
2131 }
2132 }
2133
2134 if (test_bit(STANDBY, &con->state)) {
2135 dout("con_work %p STANDBY\n", con);
2136 goto done;
2137 }
2138 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2139 dout("con_work CLOSED\n");
2140 con_close_socket(con);
2141 goto done;
2142 }
2143 if (test_and_clear_bit(OPENING, &con->state)) {
2144 /* reopen w/ new peer */
2145 dout("con_work OPENING\n");
2146 con_close_socket(con);
2147 }
2148
2149 if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2150 goto fault;
2151
2152 ret = try_read(con);
2153 if (ret == -EAGAIN)
2154 goto restart;
2155 if (ret < 0)
2156 goto fault;
2157
2158 ret = try_write(con);
2159 if (ret == -EAGAIN)
2160 goto restart;
2161 if (ret < 0)
2162 goto fault;
2163
2164 done:
2165 mutex_unlock(&con->mutex);
2166 done_unlocked:
2167 con->ops->put(con);
2168 return;
2169
2170 fault:
2171 mutex_unlock(&con->mutex);
2172 ceph_fault(con); /* error/fault path */
2173 goto done_unlocked;
2174 }
2175
2176
2177 /*
2178 * Generic error/fault handler. A retry mechanism is used with
2179 * exponential backoff
2180 */
2181 static void ceph_fault(struct ceph_connection *con)
2182 {
2183 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2184 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2185 dout("fault %p state %lu to peer %s\n",
2186 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2187
2188 if (test_bit(LOSSYTX, &con->state)) {
2189 dout("fault on LOSSYTX channel\n");
2190 goto out;
2191 }
2192
2193 mutex_lock(&con->mutex);
2194 if (test_bit(CLOSED, &con->state))
2195 goto out_unlock;
2196
2197 con_close_socket(con);
2198
2199 if (con->in_msg) {
2200 ceph_msg_put(con->in_msg);
2201 con->in_msg = NULL;
2202 }
2203
2204 /* Requeue anything that hasn't been acked */
2205 list_splice_init(&con->out_sent, &con->out_queue);
2206
2207 /* If there are no messages queued or keepalive pending, place
2208 * the connection in a STANDBY state */
2209 if (list_empty(&con->out_queue) &&
2210 !test_bit(KEEPALIVE_PENDING, &con->state)) {
2211 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2212 clear_bit(WRITE_PENDING, &con->state);
2213 set_bit(STANDBY, &con->state);
2214 } else {
2215 /* retry after a delay. */
2216 if (con->delay == 0)
2217 con->delay = BASE_DELAY_INTERVAL;
2218 else if (con->delay < MAX_DELAY_INTERVAL)
2219 con->delay *= 2;
2220 con->ops->get(con);
2221 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2222 round_jiffies_relative(con->delay))) {
2223 dout("fault queued %p delay %lu\n", con, con->delay);
2224 } else {
2225 con->ops->put(con);
2226 dout("fault failed to queue %p delay %lu, backoff\n",
2227 con, con->delay);
2228 /*
2229 * In many cases we see a socket state change
2230 * while con_work is running and end up
2231 * queuing (non-delayed) work, such that we
2232 * can't backoff with a delay. Set a flag so
2233 * that when con_work restarts we schedule the
2234 * delay then.
2235 */
2236 set_bit(BACKOFF, &con->state);
2237 }
2238 }
2239
2240 out_unlock:
2241 mutex_unlock(&con->mutex);
2242 out:
2243 /*
2244 * in case we faulted due to authentication, invalidate our
2245 * current tickets so that we can get new ones.
2246 */
2247 if (con->auth_retry && con->ops->invalidate_authorizer) {
2248 dout("calling invalidate_authorizer()\n");
2249 con->ops->invalidate_authorizer(con);
2250 }
2251
2252 if (con->ops->fault)
2253 con->ops->fault(con);
2254 }
2255
2256
2257
2258 /*
2259 * create a new messenger instance
2260 */
2261 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2262 u32 supported_features,
2263 u32 required_features)
2264 {
2265 struct ceph_messenger *msgr;
2266
2267 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2268 if (msgr == NULL)
2269 return ERR_PTR(-ENOMEM);
2270
2271 msgr->supported_features = supported_features;
2272 msgr->required_features = required_features;
2273
2274 spin_lock_init(&msgr->global_seq_lock);
2275
2276 if (myaddr)
2277 msgr->inst.addr = *myaddr;
2278
2279 /* select a random nonce */
2280 msgr->inst.addr.type = 0;
2281 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2282 encode_my_addr(msgr);
2283
2284 dout("messenger_create %p\n", msgr);
2285 return msgr;
2286 }
2287 EXPORT_SYMBOL(ceph_messenger_create);
2288
2289 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2290 {
2291 dout("destroy %p\n", msgr);
2292 kfree(msgr);
2293 dout("destroyed messenger %p\n", msgr);
2294 }
2295 EXPORT_SYMBOL(ceph_messenger_destroy);
2296
2297 static void clear_standby(struct ceph_connection *con)
2298 {
2299 /* come back from STANDBY? */
2300 if (test_and_clear_bit(STANDBY, &con->state)) {
2301 mutex_lock(&con->mutex);
2302 dout("clear_standby %p and ++connect_seq\n", con);
2303 con->connect_seq++;
2304 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2305 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2306 mutex_unlock(&con->mutex);
2307 }
2308 }
2309
2310 /*
2311 * Queue up an outgoing message on the given connection.
2312 */
2313 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2314 {
2315 if (test_bit(CLOSED, &con->state)) {
2316 dout("con_send %p closed, dropping %p\n", con, msg);
2317 ceph_msg_put(msg);
2318 return;
2319 }
2320
2321 /* set src+dst */
2322 msg->hdr.src = con->msgr->inst.name;
2323
2324 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2325
2326 msg->needs_out_seq = true;
2327
2328 /* queue */
2329 mutex_lock(&con->mutex);
2330 BUG_ON(!list_empty(&msg->list_head));
2331 list_add_tail(&msg->list_head, &con->out_queue);
2332 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2333 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2334 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2335 le32_to_cpu(msg->hdr.front_len),
2336 le32_to_cpu(msg->hdr.middle_len),
2337 le32_to_cpu(msg->hdr.data_len));
2338 mutex_unlock(&con->mutex);
2339
2340 /* if there wasn't anything waiting to send before, queue
2341 * new work */
2342 clear_standby(con);
2343 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2344 queue_con(con);
2345 }
2346 EXPORT_SYMBOL(ceph_con_send);
2347
2348 /*
2349 * Revoke a message that was previously queued for send
2350 */
2351 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2352 {
2353 mutex_lock(&con->mutex);
2354 if (!list_empty(&msg->list_head)) {
2355 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2356 list_del_init(&msg->list_head);
2357 ceph_msg_put(msg);
2358 msg->hdr.seq = 0;
2359 }
2360 if (con->out_msg == msg) {
2361 dout("con_revoke %p msg %p - was sending\n", con, msg);
2362 con->out_msg = NULL;
2363 if (con->out_kvec_is_msg) {
2364 con->out_skip = con->out_kvec_bytes;
2365 con->out_kvec_is_msg = false;
2366 }
2367 ceph_msg_put(msg);
2368 msg->hdr.seq = 0;
2369 }
2370 mutex_unlock(&con->mutex);
2371 }
2372
2373 /*
2374 * Revoke a message that we may be reading data into
2375 */
2376 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2377 {
2378 mutex_lock(&con->mutex);
2379 if (con->in_msg && con->in_msg == msg) {
2380 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2381 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2382 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2383
2384 /* skip rest of message */
2385 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2386 con->in_base_pos = con->in_base_pos -
2387 sizeof(struct ceph_msg_header) -
2388 front_len -
2389 middle_len -
2390 data_len -
2391 sizeof(struct ceph_msg_footer);
2392 ceph_msg_put(con->in_msg);
2393 con->in_msg = NULL;
2394 con->in_tag = CEPH_MSGR_TAG_READY;
2395 con->in_seq++;
2396 } else {
2397 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2398 con, con->in_msg, msg);
2399 }
2400 mutex_unlock(&con->mutex);
2401 }
2402
2403 /*
2404 * Queue a keepalive byte to ensure the tcp connection is alive.
2405 */
2406 void ceph_con_keepalive(struct ceph_connection *con)
2407 {
2408 dout("con_keepalive %p\n", con);
2409 clear_standby(con);
2410 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2411 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2412 queue_con(con);
2413 }
2414 EXPORT_SYMBOL(ceph_con_keepalive);
2415
2416
2417 /*
2418 * construct a new message with given type, size
2419 * the new msg has a ref count of 1.
2420 */
2421 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2422 bool can_fail)
2423 {
2424 struct ceph_msg *m;
2425
2426 m = kmalloc(sizeof(*m), flags);
2427 if (m == NULL)
2428 goto out;
2429 kref_init(&m->kref);
2430 INIT_LIST_HEAD(&m->list_head);
2431
2432 m->hdr.tid = 0;
2433 m->hdr.type = cpu_to_le16(type);
2434 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2435 m->hdr.version = 0;
2436 m->hdr.front_len = cpu_to_le32(front_len);
2437 m->hdr.middle_len = 0;
2438 m->hdr.data_len = 0;
2439 m->hdr.data_off = 0;
2440 m->hdr.reserved = 0;
2441 m->footer.front_crc = 0;
2442 m->footer.middle_crc = 0;
2443 m->footer.data_crc = 0;
2444 m->footer.flags = 0;
2445 m->front_max = front_len;
2446 m->front_is_vmalloc = false;
2447 m->more_to_follow = false;
2448 m->ack_stamp = 0;
2449 m->pool = NULL;
2450
2451 /* middle */
2452 m->middle = NULL;
2453
2454 /* data */
2455 m->nr_pages = 0;
2456 m->page_alignment = 0;
2457 m->pages = NULL;
2458 m->pagelist = NULL;
2459 m->bio = NULL;
2460 m->bio_iter = NULL;
2461 m->bio_seg = 0;
2462 m->trail = NULL;
2463
2464 /* front */
2465 if (front_len) {
2466 if (front_len > PAGE_CACHE_SIZE) {
2467 m->front.iov_base = __vmalloc(front_len, flags,
2468 PAGE_KERNEL);
2469 m->front_is_vmalloc = true;
2470 } else {
2471 m->front.iov_base = kmalloc(front_len, flags);
2472 }
2473 if (m->front.iov_base == NULL) {
2474 dout("ceph_msg_new can't allocate %d bytes\n",
2475 front_len);
2476 goto out2;
2477 }
2478 } else {
2479 m->front.iov_base = NULL;
2480 }
2481 m->front.iov_len = front_len;
2482
2483 dout("ceph_msg_new %p front %d\n", m, front_len);
2484 return m;
2485
2486 out2:
2487 ceph_msg_put(m);
2488 out:
2489 if (!can_fail) {
2490 pr_err("msg_new can't create type %d front %d\n", type,
2491 front_len);
2492 WARN_ON(1);
2493 } else {
2494 dout("msg_new can't create type %d front %d\n", type,
2495 front_len);
2496 }
2497 return NULL;
2498 }
2499 EXPORT_SYMBOL(ceph_msg_new);
2500
2501 /*
2502 * Allocate "middle" portion of a message, if it is needed and wasn't
2503 * allocated by alloc_msg. This allows us to read a small fixed-size
2504 * per-type header in the front and then gracefully fail (i.e.,
2505 * propagate the error to the caller based on info in the front) when
2506 * the middle is too large.
2507 */
2508 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2509 {
2510 int type = le16_to_cpu(msg->hdr.type);
2511 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2512
2513 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2514 ceph_msg_type_name(type), middle_len);
2515 BUG_ON(!middle_len);
2516 BUG_ON(msg->middle);
2517
2518 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2519 if (!msg->middle)
2520 return -ENOMEM;
2521 return 0;
2522 }
2523
2524 /*
2525 * Generic message allocator, for incoming messages.
2526 */
2527 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2528 struct ceph_msg_header *hdr,
2529 int *skip)
2530 {
2531 int type = le16_to_cpu(hdr->type);
2532 int front_len = le32_to_cpu(hdr->front_len);
2533 int middle_len = le32_to_cpu(hdr->middle_len);
2534 struct ceph_msg *msg = NULL;
2535 int ret;
2536
2537 if (con->ops->alloc_msg) {
2538 mutex_unlock(&con->mutex);
2539 msg = con->ops->alloc_msg(con, hdr, skip);
2540 mutex_lock(&con->mutex);
2541 if (!msg || *skip)
2542 return NULL;
2543 }
2544 if (!msg) {
2545 *skip = 0;
2546 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2547 if (!msg) {
2548 pr_err("unable to allocate msg type %d len %d\n",
2549 type, front_len);
2550 return NULL;
2551 }
2552 msg->page_alignment = le16_to_cpu(hdr->data_off);
2553 }
2554 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2555
2556 if (middle_len && !msg->middle) {
2557 ret = ceph_alloc_middle(con, msg);
2558 if (ret < 0) {
2559 ceph_msg_put(msg);
2560 return NULL;
2561 }
2562 }
2563
2564 return msg;
2565 }
2566
2567
2568 /*
2569 * Free a generically kmalloc'd message.
2570 */
2571 void ceph_msg_kfree(struct ceph_msg *m)
2572 {
2573 dout("msg_kfree %p\n", m);
2574 if (m->front_is_vmalloc)
2575 vfree(m->front.iov_base);
2576 else
2577 kfree(m->front.iov_base);
2578 kfree(m);
2579 }
2580
2581 /*
2582 * Drop a msg ref. Destroy as needed.
2583 */
2584 void ceph_msg_last_put(struct kref *kref)
2585 {
2586 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2587
2588 dout("ceph_msg_put last one on %p\n", m);
2589 WARN_ON(!list_empty(&m->list_head));
2590
2591 /* drop middle, data, if any */
2592 if (m->middle) {
2593 ceph_buffer_put(m->middle);
2594 m->middle = NULL;
2595 }
2596 m->nr_pages = 0;
2597 m->pages = NULL;
2598
2599 if (m->pagelist) {
2600 ceph_pagelist_release(m->pagelist);
2601 kfree(m->pagelist);
2602 m->pagelist = NULL;
2603 }
2604
2605 m->trail = NULL;
2606
2607 if (m->pool)
2608 ceph_msgpool_put(m->pool, m);
2609 else
2610 ceph_msg_kfree(m);
2611 }
2612 EXPORT_SYMBOL(ceph_msg_last_put);
2613
2614 void ceph_msg_dump(struct ceph_msg *msg)
2615 {
2616 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2617 msg->front_max, msg->nr_pages);
2618 print_hex_dump(KERN_DEBUG, "header: ",
2619 DUMP_PREFIX_OFFSET, 16, 1,
2620 &msg->hdr, sizeof(msg->hdr), true);
2621 print_hex_dump(KERN_DEBUG, " front: ",
2622 DUMP_PREFIX_OFFSET, 16, 1,
2623 msg->front.iov_base, msg->front.iov_len, true);
2624 if (msg->middle)
2625 print_hex_dump(KERN_DEBUG, "middle: ",
2626 DUMP_PREFIX_OFFSET, 16, 1,
2627 msg->middle->vec.iov_base,
2628 msg->middle->vec.iov_len, true);
2629 print_hex_dump(KERN_DEBUG, "footer: ",
2630 DUMP_PREFIX_OFFSET, 16, 1,
2631 &msg->footer, sizeof(msg->footer), true);
2632 }
2633 EXPORT_SYMBOL(ceph_msg_dump);