xfs: add minimum file size filtering to eofblocks scan
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_log.h"
20 #include "xfs_sb.h"
21 #include "xfs_ag.h"
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_vnodeops.h"
32 #include "xfs_trace.h"
33 #include "xfs_bmap.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38
39 void
40 xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
43 int *unwritten)
44 {
45 struct buffer_head *bh, *head;
46
47 *delalloc = *unwritten = 0;
48
49 bh = head = page_buffers(page);
50 do {
51 if (buffer_unwritten(bh))
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56 }
57
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 struct inode *inode)
61 {
62 struct xfs_inode *ip = XFS_I(inode);
63 struct xfs_mount *mp = ip->i_mount;
64
65 if (XFS_IS_REALTIME_INODE(ip))
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69 }
70
71 /*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
77 STATIC void
78 xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80 {
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
85 bh->b_end_io(bh, !ioend->io_error);
86 }
87
88 if (ioend->io_iocb) {
89 if (ioend->io_isasync) {
90 aio_complete(ioend->io_iocb, ioend->io_error ?
91 ioend->io_error : ioend->io_result, 0);
92 }
93 inode_dio_done(ioend->io_inode);
94 }
95
96 mempool_free(ioend, xfs_ioend_pool);
97 }
98
99 /*
100 * Fast and loose check if this write could update the on-disk inode size.
101 */
102 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
103 {
104 return ioend->io_offset + ioend->io_size >
105 XFS_I(ioend->io_inode)->i_d.di_size;
106 }
107
108 STATIC int
109 xfs_setfilesize_trans_alloc(
110 struct xfs_ioend *ioend)
111 {
112 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
113 struct xfs_trans *tp;
114 int error;
115
116 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
117
118 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
119 if (error) {
120 xfs_trans_cancel(tp, 0);
121 return error;
122 }
123
124 ioend->io_append_trans = tp;
125
126 /*
127 * We will pass freeze protection with a transaction. So tell lockdep
128 * we released it.
129 */
130 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
131 1, _THIS_IP_);
132 /*
133 * We hand off the transaction to the completion thread now, so
134 * clear the flag here.
135 */
136 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
137 return 0;
138 }
139
140 /*
141 * Update on-disk file size now that data has been written to disk.
142 */
143 STATIC int
144 xfs_setfilesize(
145 struct xfs_ioend *ioend)
146 {
147 struct xfs_inode *ip = XFS_I(ioend->io_inode);
148 struct xfs_trans *tp = ioend->io_append_trans;
149 xfs_fsize_t isize;
150
151 /*
152 * The transaction was allocated in the I/O submission thread,
153 * thus we need to mark ourselves as beeing in a transaction
154 * manually.
155 */
156 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
157
158 xfs_ilock(ip, XFS_ILOCK_EXCL);
159 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
160 if (!isize) {
161 xfs_iunlock(ip, XFS_ILOCK_EXCL);
162 xfs_trans_cancel(tp, 0);
163 return 0;
164 }
165
166 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
167
168 ip->i_d.di_size = isize;
169 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171
172 return xfs_trans_commit(tp, 0);
173 }
174
175 /*
176 * Schedule IO completion handling on the final put of an ioend.
177 *
178 * If there is no work to do we might as well call it a day and free the
179 * ioend right now.
180 */
181 STATIC void
182 xfs_finish_ioend(
183 struct xfs_ioend *ioend)
184 {
185 if (atomic_dec_and_test(&ioend->io_remaining)) {
186 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
187
188 if (ioend->io_type == XFS_IO_UNWRITTEN)
189 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
190 else if (ioend->io_append_trans)
191 queue_work(mp->m_data_workqueue, &ioend->io_work);
192 else
193 xfs_destroy_ioend(ioend);
194 }
195 }
196
197 /*
198 * IO write completion.
199 */
200 STATIC void
201 xfs_end_io(
202 struct work_struct *work)
203 {
204 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
205 struct xfs_inode *ip = XFS_I(ioend->io_inode);
206 int error = 0;
207
208 if (ioend->io_append_trans) {
209 /*
210 * We've got freeze protection passed with the transaction.
211 * Tell lockdep about it.
212 */
213 rwsem_acquire_read(
214 &ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
215 0, 1, _THIS_IP_);
216 }
217 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
218 ioend->io_error = -EIO;
219 goto done;
220 }
221 if (ioend->io_error)
222 goto done;
223
224 /*
225 * For unwritten extents we need to issue transactions to convert a
226 * range to normal written extens after the data I/O has finished.
227 */
228 if (ioend->io_type == XFS_IO_UNWRITTEN) {
229 /*
230 * For buffered I/O we never preallocate a transaction when
231 * doing the unwritten extent conversion, but for direct I/O
232 * we do not know if we are converting an unwritten extent
233 * or not at the point where we preallocate the transaction.
234 */
235 if (ioend->io_append_trans) {
236 ASSERT(ioend->io_isdirect);
237
238 current_set_flags_nested(
239 &ioend->io_append_trans->t_pflags, PF_FSTRANS);
240 xfs_trans_cancel(ioend->io_append_trans, 0);
241 }
242
243 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
244 ioend->io_size);
245 if (error) {
246 ioend->io_error = -error;
247 goto done;
248 }
249 } else if (ioend->io_append_trans) {
250 error = xfs_setfilesize(ioend);
251 if (error)
252 ioend->io_error = -error;
253 } else {
254 ASSERT(!xfs_ioend_is_append(ioend));
255 }
256
257 done:
258 xfs_destroy_ioend(ioend);
259 }
260
261 /*
262 * Call IO completion handling in caller context on the final put of an ioend.
263 */
264 STATIC void
265 xfs_finish_ioend_sync(
266 struct xfs_ioend *ioend)
267 {
268 if (atomic_dec_and_test(&ioend->io_remaining))
269 xfs_end_io(&ioend->io_work);
270 }
271
272 /*
273 * Allocate and initialise an IO completion structure.
274 * We need to track unwritten extent write completion here initially.
275 * We'll need to extend this for updating the ondisk inode size later
276 * (vs. incore size).
277 */
278 STATIC xfs_ioend_t *
279 xfs_alloc_ioend(
280 struct inode *inode,
281 unsigned int type)
282 {
283 xfs_ioend_t *ioend;
284
285 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
286
287 /*
288 * Set the count to 1 initially, which will prevent an I/O
289 * completion callback from happening before we have started
290 * all the I/O from calling the completion routine too early.
291 */
292 atomic_set(&ioend->io_remaining, 1);
293 ioend->io_isasync = 0;
294 ioend->io_isdirect = 0;
295 ioend->io_error = 0;
296 ioend->io_list = NULL;
297 ioend->io_type = type;
298 ioend->io_inode = inode;
299 ioend->io_buffer_head = NULL;
300 ioend->io_buffer_tail = NULL;
301 ioend->io_offset = 0;
302 ioend->io_size = 0;
303 ioend->io_iocb = NULL;
304 ioend->io_result = 0;
305 ioend->io_append_trans = NULL;
306
307 INIT_WORK(&ioend->io_work, xfs_end_io);
308 return ioend;
309 }
310
311 STATIC int
312 xfs_map_blocks(
313 struct inode *inode,
314 loff_t offset,
315 struct xfs_bmbt_irec *imap,
316 int type,
317 int nonblocking)
318 {
319 struct xfs_inode *ip = XFS_I(inode);
320 struct xfs_mount *mp = ip->i_mount;
321 ssize_t count = 1 << inode->i_blkbits;
322 xfs_fileoff_t offset_fsb, end_fsb;
323 int error = 0;
324 int bmapi_flags = XFS_BMAPI_ENTIRE;
325 int nimaps = 1;
326
327 if (XFS_FORCED_SHUTDOWN(mp))
328 return -XFS_ERROR(EIO);
329
330 if (type == XFS_IO_UNWRITTEN)
331 bmapi_flags |= XFS_BMAPI_IGSTATE;
332
333 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
334 if (nonblocking)
335 return -XFS_ERROR(EAGAIN);
336 xfs_ilock(ip, XFS_ILOCK_SHARED);
337 }
338
339 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
340 (ip->i_df.if_flags & XFS_IFEXTENTS));
341 ASSERT(offset <= mp->m_super->s_maxbytes);
342
343 if (offset + count > mp->m_super->s_maxbytes)
344 count = mp->m_super->s_maxbytes - offset;
345 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
346 offset_fsb = XFS_B_TO_FSBT(mp, offset);
347 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
348 imap, &nimaps, bmapi_flags);
349 xfs_iunlock(ip, XFS_ILOCK_SHARED);
350
351 if (error)
352 return -XFS_ERROR(error);
353
354 if (type == XFS_IO_DELALLOC &&
355 (!nimaps || isnullstartblock(imap->br_startblock))) {
356 error = xfs_iomap_write_allocate(ip, offset, count, imap);
357 if (!error)
358 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
359 return -XFS_ERROR(error);
360 }
361
362 #ifdef DEBUG
363 if (type == XFS_IO_UNWRITTEN) {
364 ASSERT(nimaps);
365 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
366 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
367 }
368 #endif
369 if (nimaps)
370 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
371 return 0;
372 }
373
374 STATIC int
375 xfs_imap_valid(
376 struct inode *inode,
377 struct xfs_bmbt_irec *imap,
378 xfs_off_t offset)
379 {
380 offset >>= inode->i_blkbits;
381
382 return offset >= imap->br_startoff &&
383 offset < imap->br_startoff + imap->br_blockcount;
384 }
385
386 /*
387 * BIO completion handler for buffered IO.
388 */
389 STATIC void
390 xfs_end_bio(
391 struct bio *bio,
392 int error)
393 {
394 xfs_ioend_t *ioend = bio->bi_private;
395
396 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
397 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
398
399 /* Toss bio and pass work off to an xfsdatad thread */
400 bio->bi_private = NULL;
401 bio->bi_end_io = NULL;
402 bio_put(bio);
403
404 xfs_finish_ioend(ioend);
405 }
406
407 STATIC void
408 xfs_submit_ioend_bio(
409 struct writeback_control *wbc,
410 xfs_ioend_t *ioend,
411 struct bio *bio)
412 {
413 atomic_inc(&ioend->io_remaining);
414 bio->bi_private = ioend;
415 bio->bi_end_io = xfs_end_bio;
416 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
417 }
418
419 STATIC struct bio *
420 xfs_alloc_ioend_bio(
421 struct buffer_head *bh)
422 {
423 int nvecs = bio_get_nr_vecs(bh->b_bdev);
424 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
425
426 ASSERT(bio->bi_private == NULL);
427 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
428 bio->bi_bdev = bh->b_bdev;
429 return bio;
430 }
431
432 STATIC void
433 xfs_start_buffer_writeback(
434 struct buffer_head *bh)
435 {
436 ASSERT(buffer_mapped(bh));
437 ASSERT(buffer_locked(bh));
438 ASSERT(!buffer_delay(bh));
439 ASSERT(!buffer_unwritten(bh));
440
441 mark_buffer_async_write(bh);
442 set_buffer_uptodate(bh);
443 clear_buffer_dirty(bh);
444 }
445
446 STATIC void
447 xfs_start_page_writeback(
448 struct page *page,
449 int clear_dirty,
450 int buffers)
451 {
452 ASSERT(PageLocked(page));
453 ASSERT(!PageWriteback(page));
454 if (clear_dirty)
455 clear_page_dirty_for_io(page);
456 set_page_writeback(page);
457 unlock_page(page);
458 /* If no buffers on the page are to be written, finish it here */
459 if (!buffers)
460 end_page_writeback(page);
461 }
462
463 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
464 {
465 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
466 }
467
468 /*
469 * Submit all of the bios for all of the ioends we have saved up, covering the
470 * initial writepage page and also any probed pages.
471 *
472 * Because we may have multiple ioends spanning a page, we need to start
473 * writeback on all the buffers before we submit them for I/O. If we mark the
474 * buffers as we got, then we can end up with a page that only has buffers
475 * marked async write and I/O complete on can occur before we mark the other
476 * buffers async write.
477 *
478 * The end result of this is that we trip a bug in end_page_writeback() because
479 * we call it twice for the one page as the code in end_buffer_async_write()
480 * assumes that all buffers on the page are started at the same time.
481 *
482 * The fix is two passes across the ioend list - one to start writeback on the
483 * buffer_heads, and then submit them for I/O on the second pass.
484 */
485 STATIC void
486 xfs_submit_ioend(
487 struct writeback_control *wbc,
488 xfs_ioend_t *ioend)
489 {
490 xfs_ioend_t *head = ioend;
491 xfs_ioend_t *next;
492 struct buffer_head *bh;
493 struct bio *bio;
494 sector_t lastblock = 0;
495
496 /* Pass 1 - start writeback */
497 do {
498 next = ioend->io_list;
499 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
500 xfs_start_buffer_writeback(bh);
501 } while ((ioend = next) != NULL);
502
503 /* Pass 2 - submit I/O */
504 ioend = head;
505 do {
506 next = ioend->io_list;
507 bio = NULL;
508
509 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
510
511 if (!bio) {
512 retry:
513 bio = xfs_alloc_ioend_bio(bh);
514 } else if (bh->b_blocknr != lastblock + 1) {
515 xfs_submit_ioend_bio(wbc, ioend, bio);
516 goto retry;
517 }
518
519 if (bio_add_buffer(bio, bh) != bh->b_size) {
520 xfs_submit_ioend_bio(wbc, ioend, bio);
521 goto retry;
522 }
523
524 lastblock = bh->b_blocknr;
525 }
526 if (bio)
527 xfs_submit_ioend_bio(wbc, ioend, bio);
528 xfs_finish_ioend(ioend);
529 } while ((ioend = next) != NULL);
530 }
531
532 /*
533 * Cancel submission of all buffer_heads so far in this endio.
534 * Toss the endio too. Only ever called for the initial page
535 * in a writepage request, so only ever one page.
536 */
537 STATIC void
538 xfs_cancel_ioend(
539 xfs_ioend_t *ioend)
540 {
541 xfs_ioend_t *next;
542 struct buffer_head *bh, *next_bh;
543
544 do {
545 next = ioend->io_list;
546 bh = ioend->io_buffer_head;
547 do {
548 next_bh = bh->b_private;
549 clear_buffer_async_write(bh);
550 unlock_buffer(bh);
551 } while ((bh = next_bh) != NULL);
552
553 mempool_free(ioend, xfs_ioend_pool);
554 } while ((ioend = next) != NULL);
555 }
556
557 /*
558 * Test to see if we've been building up a completion structure for
559 * earlier buffers -- if so, we try to append to this ioend if we
560 * can, otherwise we finish off any current ioend and start another.
561 * Return true if we've finished the given ioend.
562 */
563 STATIC void
564 xfs_add_to_ioend(
565 struct inode *inode,
566 struct buffer_head *bh,
567 xfs_off_t offset,
568 unsigned int type,
569 xfs_ioend_t **result,
570 int need_ioend)
571 {
572 xfs_ioend_t *ioend = *result;
573
574 if (!ioend || need_ioend || type != ioend->io_type) {
575 xfs_ioend_t *previous = *result;
576
577 ioend = xfs_alloc_ioend(inode, type);
578 ioend->io_offset = offset;
579 ioend->io_buffer_head = bh;
580 ioend->io_buffer_tail = bh;
581 if (previous)
582 previous->io_list = ioend;
583 *result = ioend;
584 } else {
585 ioend->io_buffer_tail->b_private = bh;
586 ioend->io_buffer_tail = bh;
587 }
588
589 bh->b_private = NULL;
590 ioend->io_size += bh->b_size;
591 }
592
593 STATIC void
594 xfs_map_buffer(
595 struct inode *inode,
596 struct buffer_head *bh,
597 struct xfs_bmbt_irec *imap,
598 xfs_off_t offset)
599 {
600 sector_t bn;
601 struct xfs_mount *m = XFS_I(inode)->i_mount;
602 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
603 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
604
605 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
606 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
607
608 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
609 ((offset - iomap_offset) >> inode->i_blkbits);
610
611 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
612
613 bh->b_blocknr = bn;
614 set_buffer_mapped(bh);
615 }
616
617 STATIC void
618 xfs_map_at_offset(
619 struct inode *inode,
620 struct buffer_head *bh,
621 struct xfs_bmbt_irec *imap,
622 xfs_off_t offset)
623 {
624 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
626
627 xfs_map_buffer(inode, bh, imap, offset);
628 set_buffer_mapped(bh);
629 clear_buffer_delay(bh);
630 clear_buffer_unwritten(bh);
631 }
632
633 /*
634 * Test if a given page is suitable for writing as part of an unwritten
635 * or delayed allocate extent.
636 */
637 STATIC int
638 xfs_check_page_type(
639 struct page *page,
640 unsigned int type)
641 {
642 if (PageWriteback(page))
643 return 0;
644
645 if (page->mapping && page_has_buffers(page)) {
646 struct buffer_head *bh, *head;
647 int acceptable = 0;
648
649 bh = head = page_buffers(page);
650 do {
651 if (buffer_unwritten(bh))
652 acceptable += (type == XFS_IO_UNWRITTEN);
653 else if (buffer_delay(bh))
654 acceptable += (type == XFS_IO_DELALLOC);
655 else if (buffer_dirty(bh) && buffer_mapped(bh))
656 acceptable += (type == XFS_IO_OVERWRITE);
657 else
658 break;
659 } while ((bh = bh->b_this_page) != head);
660
661 if (acceptable)
662 return 1;
663 }
664
665 return 0;
666 }
667
668 /*
669 * Allocate & map buffers for page given the extent map. Write it out.
670 * except for the original page of a writepage, this is called on
671 * delalloc/unwritten pages only, for the original page it is possible
672 * that the page has no mapping at all.
673 */
674 STATIC int
675 xfs_convert_page(
676 struct inode *inode,
677 struct page *page,
678 loff_t tindex,
679 struct xfs_bmbt_irec *imap,
680 xfs_ioend_t **ioendp,
681 struct writeback_control *wbc)
682 {
683 struct buffer_head *bh, *head;
684 xfs_off_t end_offset;
685 unsigned long p_offset;
686 unsigned int type;
687 int len, page_dirty;
688 int count = 0, done = 0, uptodate = 1;
689 xfs_off_t offset = page_offset(page);
690
691 if (page->index != tindex)
692 goto fail;
693 if (!trylock_page(page))
694 goto fail;
695 if (PageWriteback(page))
696 goto fail_unlock_page;
697 if (page->mapping != inode->i_mapping)
698 goto fail_unlock_page;
699 if (!xfs_check_page_type(page, (*ioendp)->io_type))
700 goto fail_unlock_page;
701
702 /*
703 * page_dirty is initially a count of buffers on the page before
704 * EOF and is decremented as we move each into a cleanable state.
705 *
706 * Derivation:
707 *
708 * End offset is the highest offset that this page should represent.
709 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
710 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
711 * hence give us the correct page_dirty count. On any other page,
712 * it will be zero and in that case we need page_dirty to be the
713 * count of buffers on the page.
714 */
715 end_offset = min_t(unsigned long long,
716 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
717 i_size_read(inode));
718
719 len = 1 << inode->i_blkbits;
720 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
721 PAGE_CACHE_SIZE);
722 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
723 page_dirty = p_offset / len;
724
725 bh = head = page_buffers(page);
726 do {
727 if (offset >= end_offset)
728 break;
729 if (!buffer_uptodate(bh))
730 uptodate = 0;
731 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
732 done = 1;
733 continue;
734 }
735
736 if (buffer_unwritten(bh) || buffer_delay(bh) ||
737 buffer_mapped(bh)) {
738 if (buffer_unwritten(bh))
739 type = XFS_IO_UNWRITTEN;
740 else if (buffer_delay(bh))
741 type = XFS_IO_DELALLOC;
742 else
743 type = XFS_IO_OVERWRITE;
744
745 if (!xfs_imap_valid(inode, imap, offset)) {
746 done = 1;
747 continue;
748 }
749
750 lock_buffer(bh);
751 if (type != XFS_IO_OVERWRITE)
752 xfs_map_at_offset(inode, bh, imap, offset);
753 xfs_add_to_ioend(inode, bh, offset, type,
754 ioendp, done);
755
756 page_dirty--;
757 count++;
758 } else {
759 done = 1;
760 }
761 } while (offset += len, (bh = bh->b_this_page) != head);
762
763 if (uptodate && bh == head)
764 SetPageUptodate(page);
765
766 if (count) {
767 if (--wbc->nr_to_write <= 0 &&
768 wbc->sync_mode == WB_SYNC_NONE)
769 done = 1;
770 }
771 xfs_start_page_writeback(page, !page_dirty, count);
772
773 return done;
774 fail_unlock_page:
775 unlock_page(page);
776 fail:
777 return 1;
778 }
779
780 /*
781 * Convert & write out a cluster of pages in the same extent as defined
782 * by mp and following the start page.
783 */
784 STATIC void
785 xfs_cluster_write(
786 struct inode *inode,
787 pgoff_t tindex,
788 struct xfs_bmbt_irec *imap,
789 xfs_ioend_t **ioendp,
790 struct writeback_control *wbc,
791 pgoff_t tlast)
792 {
793 struct pagevec pvec;
794 int done = 0, i;
795
796 pagevec_init(&pvec, 0);
797 while (!done && tindex <= tlast) {
798 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
799
800 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
801 break;
802
803 for (i = 0; i < pagevec_count(&pvec); i++) {
804 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
805 imap, ioendp, wbc);
806 if (done)
807 break;
808 }
809
810 pagevec_release(&pvec);
811 cond_resched();
812 }
813 }
814
815 STATIC void
816 xfs_vm_invalidatepage(
817 struct page *page,
818 unsigned long offset)
819 {
820 trace_xfs_invalidatepage(page->mapping->host, page, offset);
821 block_invalidatepage(page, offset);
822 }
823
824 /*
825 * If the page has delalloc buffers on it, we need to punch them out before we
826 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
827 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
828 * is done on that same region - the delalloc extent is returned when none is
829 * supposed to be there.
830 *
831 * We prevent this by truncating away the delalloc regions on the page before
832 * invalidating it. Because they are delalloc, we can do this without needing a
833 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
834 * truncation without a transaction as there is no space left for block
835 * reservation (typically why we see a ENOSPC in writeback).
836 *
837 * This is not a performance critical path, so for now just do the punching a
838 * buffer head at a time.
839 */
840 STATIC void
841 xfs_aops_discard_page(
842 struct page *page)
843 {
844 struct inode *inode = page->mapping->host;
845 struct xfs_inode *ip = XFS_I(inode);
846 struct buffer_head *bh, *head;
847 loff_t offset = page_offset(page);
848
849 if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
850 goto out_invalidate;
851
852 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
853 goto out_invalidate;
854
855 xfs_alert(ip->i_mount,
856 "page discard on page %p, inode 0x%llx, offset %llu.",
857 page, ip->i_ino, offset);
858
859 xfs_ilock(ip, XFS_ILOCK_EXCL);
860 bh = head = page_buffers(page);
861 do {
862 int error;
863 xfs_fileoff_t start_fsb;
864
865 if (!buffer_delay(bh))
866 goto next_buffer;
867
868 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
869 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
870 if (error) {
871 /* something screwed, just bail */
872 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
873 xfs_alert(ip->i_mount,
874 "page discard unable to remove delalloc mapping.");
875 }
876 break;
877 }
878 next_buffer:
879 offset += 1 << inode->i_blkbits;
880
881 } while ((bh = bh->b_this_page) != head);
882
883 xfs_iunlock(ip, XFS_ILOCK_EXCL);
884 out_invalidate:
885 xfs_vm_invalidatepage(page, 0);
886 return;
887 }
888
889 /*
890 * Write out a dirty page.
891 *
892 * For delalloc space on the page we need to allocate space and flush it.
893 * For unwritten space on the page we need to start the conversion to
894 * regular allocated space.
895 * For any other dirty buffer heads on the page we should flush them.
896 */
897 STATIC int
898 xfs_vm_writepage(
899 struct page *page,
900 struct writeback_control *wbc)
901 {
902 struct inode *inode = page->mapping->host;
903 struct buffer_head *bh, *head;
904 struct xfs_bmbt_irec imap;
905 xfs_ioend_t *ioend = NULL, *iohead = NULL;
906 loff_t offset;
907 unsigned int type;
908 __uint64_t end_offset;
909 pgoff_t end_index, last_index;
910 ssize_t len;
911 int err, imap_valid = 0, uptodate = 1;
912 int count = 0;
913 int nonblocking = 0;
914
915 trace_xfs_writepage(inode, page, 0);
916
917 ASSERT(page_has_buffers(page));
918
919 /*
920 * Refuse to write the page out if we are called from reclaim context.
921 *
922 * This avoids stack overflows when called from deeply used stacks in
923 * random callers for direct reclaim or memcg reclaim. We explicitly
924 * allow reclaim from kswapd as the stack usage there is relatively low.
925 *
926 * This should never happen except in the case of a VM regression so
927 * warn about it.
928 */
929 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
930 PF_MEMALLOC))
931 goto redirty;
932
933 /*
934 * Given that we do not allow direct reclaim to call us, we should
935 * never be called while in a filesystem transaction.
936 */
937 if (WARN_ON(current->flags & PF_FSTRANS))
938 goto redirty;
939
940 /* Is this page beyond the end of the file? */
941 offset = i_size_read(inode);
942 end_index = offset >> PAGE_CACHE_SHIFT;
943 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
944 if (page->index >= end_index) {
945 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
946
947 /*
948 * Just skip the page if it is fully outside i_size, e.g. due
949 * to a truncate operation that is in progress.
950 */
951 if (page->index >= end_index + 1 || offset_into_page == 0) {
952 unlock_page(page);
953 return 0;
954 }
955
956 /*
957 * The page straddles i_size. It must be zeroed out on each
958 * and every writepage invocation because it may be mmapped.
959 * "A file is mapped in multiples of the page size. For a file
960 * that is not a multiple of the page size, the remaining
961 * memory is zeroed when mapped, and writes to that region are
962 * not written out to the file."
963 */
964 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
965 }
966
967 end_offset = min_t(unsigned long long,
968 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
969 offset);
970 len = 1 << inode->i_blkbits;
971
972 bh = head = page_buffers(page);
973 offset = page_offset(page);
974 type = XFS_IO_OVERWRITE;
975
976 if (wbc->sync_mode == WB_SYNC_NONE)
977 nonblocking = 1;
978
979 do {
980 int new_ioend = 0;
981
982 if (offset >= end_offset)
983 break;
984 if (!buffer_uptodate(bh))
985 uptodate = 0;
986
987 /*
988 * set_page_dirty dirties all buffers in a page, independent
989 * of their state. The dirty state however is entirely
990 * meaningless for holes (!mapped && uptodate), so skip
991 * buffers covering holes here.
992 */
993 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
994 imap_valid = 0;
995 continue;
996 }
997
998 if (buffer_unwritten(bh)) {
999 if (type != XFS_IO_UNWRITTEN) {
1000 type = XFS_IO_UNWRITTEN;
1001 imap_valid = 0;
1002 }
1003 } else if (buffer_delay(bh)) {
1004 if (type != XFS_IO_DELALLOC) {
1005 type = XFS_IO_DELALLOC;
1006 imap_valid = 0;
1007 }
1008 } else if (buffer_uptodate(bh)) {
1009 if (type != XFS_IO_OVERWRITE) {
1010 type = XFS_IO_OVERWRITE;
1011 imap_valid = 0;
1012 }
1013 } else {
1014 if (PageUptodate(page))
1015 ASSERT(buffer_mapped(bh));
1016 /*
1017 * This buffer is not uptodate and will not be
1018 * written to disk. Ensure that we will put any
1019 * subsequent writeable buffers into a new
1020 * ioend.
1021 */
1022 imap_valid = 0;
1023 continue;
1024 }
1025
1026 if (imap_valid)
1027 imap_valid = xfs_imap_valid(inode, &imap, offset);
1028 if (!imap_valid) {
1029 /*
1030 * If we didn't have a valid mapping then we need to
1031 * put the new mapping into a separate ioend structure.
1032 * This ensures non-contiguous extents always have
1033 * separate ioends, which is particularly important
1034 * for unwritten extent conversion at I/O completion
1035 * time.
1036 */
1037 new_ioend = 1;
1038 err = xfs_map_blocks(inode, offset, &imap, type,
1039 nonblocking);
1040 if (err)
1041 goto error;
1042 imap_valid = xfs_imap_valid(inode, &imap, offset);
1043 }
1044 if (imap_valid) {
1045 lock_buffer(bh);
1046 if (type != XFS_IO_OVERWRITE)
1047 xfs_map_at_offset(inode, bh, &imap, offset);
1048 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1049 new_ioend);
1050 count++;
1051 }
1052
1053 if (!iohead)
1054 iohead = ioend;
1055
1056 } while (offset += len, ((bh = bh->b_this_page) != head));
1057
1058 if (uptodate && bh == head)
1059 SetPageUptodate(page);
1060
1061 xfs_start_page_writeback(page, 1, count);
1062
1063 if (ioend && imap_valid) {
1064 xfs_off_t end_index;
1065
1066 end_index = imap.br_startoff + imap.br_blockcount;
1067
1068 /* to bytes */
1069 end_index <<= inode->i_blkbits;
1070
1071 /* to pages */
1072 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1073
1074 /* check against file size */
1075 if (end_index > last_index)
1076 end_index = last_index;
1077
1078 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1079 wbc, end_index);
1080 }
1081
1082 if (iohead) {
1083 /*
1084 * Reserve log space if we might write beyond the on-disk
1085 * inode size.
1086 */
1087 if (ioend->io_type != XFS_IO_UNWRITTEN &&
1088 xfs_ioend_is_append(ioend)) {
1089 err = xfs_setfilesize_trans_alloc(ioend);
1090 if (err)
1091 goto error;
1092 }
1093
1094 xfs_submit_ioend(wbc, iohead);
1095 }
1096
1097 return 0;
1098
1099 error:
1100 if (iohead)
1101 xfs_cancel_ioend(iohead);
1102
1103 if (err == -EAGAIN)
1104 goto redirty;
1105
1106 xfs_aops_discard_page(page);
1107 ClearPageUptodate(page);
1108 unlock_page(page);
1109 return err;
1110
1111 redirty:
1112 redirty_page_for_writepage(wbc, page);
1113 unlock_page(page);
1114 return 0;
1115 }
1116
1117 STATIC int
1118 xfs_vm_writepages(
1119 struct address_space *mapping,
1120 struct writeback_control *wbc)
1121 {
1122 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1123 return generic_writepages(mapping, wbc);
1124 }
1125
1126 /*
1127 * Called to move a page into cleanable state - and from there
1128 * to be released. The page should already be clean. We always
1129 * have buffer heads in this call.
1130 *
1131 * Returns 1 if the page is ok to release, 0 otherwise.
1132 */
1133 STATIC int
1134 xfs_vm_releasepage(
1135 struct page *page,
1136 gfp_t gfp_mask)
1137 {
1138 int delalloc, unwritten;
1139
1140 trace_xfs_releasepage(page->mapping->host, page, 0);
1141
1142 xfs_count_page_state(page, &delalloc, &unwritten);
1143
1144 if (WARN_ON(delalloc))
1145 return 0;
1146 if (WARN_ON(unwritten))
1147 return 0;
1148
1149 return try_to_free_buffers(page);
1150 }
1151
1152 STATIC int
1153 __xfs_get_blocks(
1154 struct inode *inode,
1155 sector_t iblock,
1156 struct buffer_head *bh_result,
1157 int create,
1158 int direct)
1159 {
1160 struct xfs_inode *ip = XFS_I(inode);
1161 struct xfs_mount *mp = ip->i_mount;
1162 xfs_fileoff_t offset_fsb, end_fsb;
1163 int error = 0;
1164 int lockmode = 0;
1165 struct xfs_bmbt_irec imap;
1166 int nimaps = 1;
1167 xfs_off_t offset;
1168 ssize_t size;
1169 int new = 0;
1170
1171 if (XFS_FORCED_SHUTDOWN(mp))
1172 return -XFS_ERROR(EIO);
1173
1174 offset = (xfs_off_t)iblock << inode->i_blkbits;
1175 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1176 size = bh_result->b_size;
1177
1178 if (!create && direct && offset >= i_size_read(inode))
1179 return 0;
1180
1181 /*
1182 * Direct I/O is usually done on preallocated files, so try getting
1183 * a block mapping without an exclusive lock first. For buffered
1184 * writes we already have the exclusive iolock anyway, so avoiding
1185 * a lock roundtrip here by taking the ilock exclusive from the
1186 * beginning is a useful micro optimization.
1187 */
1188 if (create && !direct) {
1189 lockmode = XFS_ILOCK_EXCL;
1190 xfs_ilock(ip, lockmode);
1191 } else {
1192 lockmode = xfs_ilock_map_shared(ip);
1193 }
1194
1195 ASSERT(offset <= mp->m_super->s_maxbytes);
1196 if (offset + size > mp->m_super->s_maxbytes)
1197 size = mp->m_super->s_maxbytes - offset;
1198 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1199 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1200
1201 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1202 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1203 if (error)
1204 goto out_unlock;
1205
1206 if (create &&
1207 (!nimaps ||
1208 (imap.br_startblock == HOLESTARTBLOCK ||
1209 imap.br_startblock == DELAYSTARTBLOCK))) {
1210 if (direct || xfs_get_extsz_hint(ip)) {
1211 /*
1212 * Drop the ilock in preparation for starting the block
1213 * allocation transaction. It will be retaken
1214 * exclusively inside xfs_iomap_write_direct for the
1215 * actual allocation.
1216 */
1217 xfs_iunlock(ip, lockmode);
1218 error = xfs_iomap_write_direct(ip, offset, size,
1219 &imap, nimaps);
1220 if (error)
1221 return -error;
1222 new = 1;
1223 } else {
1224 /*
1225 * Delalloc reservations do not require a transaction,
1226 * we can go on without dropping the lock here. If we
1227 * are allocating a new delalloc block, make sure that
1228 * we set the new flag so that we mark the buffer new so
1229 * that we know that it is newly allocated if the write
1230 * fails.
1231 */
1232 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1233 new = 1;
1234 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1235 if (error)
1236 goto out_unlock;
1237
1238 xfs_iunlock(ip, lockmode);
1239 }
1240
1241 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1242 } else if (nimaps) {
1243 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1244 xfs_iunlock(ip, lockmode);
1245 } else {
1246 trace_xfs_get_blocks_notfound(ip, offset, size);
1247 goto out_unlock;
1248 }
1249
1250 if (imap.br_startblock != HOLESTARTBLOCK &&
1251 imap.br_startblock != DELAYSTARTBLOCK) {
1252 /*
1253 * For unwritten extents do not report a disk address on
1254 * the read case (treat as if we're reading into a hole).
1255 */
1256 if (create || !ISUNWRITTEN(&imap))
1257 xfs_map_buffer(inode, bh_result, &imap, offset);
1258 if (create && ISUNWRITTEN(&imap)) {
1259 if (direct)
1260 bh_result->b_private = inode;
1261 set_buffer_unwritten(bh_result);
1262 }
1263 }
1264
1265 /*
1266 * If this is a realtime file, data may be on a different device.
1267 * to that pointed to from the buffer_head b_bdev currently.
1268 */
1269 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1270
1271 /*
1272 * If we previously allocated a block out beyond eof and we are now
1273 * coming back to use it then we will need to flag it as new even if it
1274 * has a disk address.
1275 *
1276 * With sub-block writes into unwritten extents we also need to mark
1277 * the buffer as new so that the unwritten parts of the buffer gets
1278 * correctly zeroed.
1279 */
1280 if (create &&
1281 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1282 (offset >= i_size_read(inode)) ||
1283 (new || ISUNWRITTEN(&imap))))
1284 set_buffer_new(bh_result);
1285
1286 if (imap.br_startblock == DELAYSTARTBLOCK) {
1287 BUG_ON(direct);
1288 if (create) {
1289 set_buffer_uptodate(bh_result);
1290 set_buffer_mapped(bh_result);
1291 set_buffer_delay(bh_result);
1292 }
1293 }
1294
1295 /*
1296 * If this is O_DIRECT or the mpage code calling tell them how large
1297 * the mapping is, so that we can avoid repeated get_blocks calls.
1298 */
1299 if (direct || size > (1 << inode->i_blkbits)) {
1300 xfs_off_t mapping_size;
1301
1302 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1303 mapping_size <<= inode->i_blkbits;
1304
1305 ASSERT(mapping_size > 0);
1306 if (mapping_size > size)
1307 mapping_size = size;
1308 if (mapping_size > LONG_MAX)
1309 mapping_size = LONG_MAX;
1310
1311 bh_result->b_size = mapping_size;
1312 }
1313
1314 return 0;
1315
1316 out_unlock:
1317 xfs_iunlock(ip, lockmode);
1318 return -error;
1319 }
1320
1321 int
1322 xfs_get_blocks(
1323 struct inode *inode,
1324 sector_t iblock,
1325 struct buffer_head *bh_result,
1326 int create)
1327 {
1328 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1329 }
1330
1331 STATIC int
1332 xfs_get_blocks_direct(
1333 struct inode *inode,
1334 sector_t iblock,
1335 struct buffer_head *bh_result,
1336 int create)
1337 {
1338 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1339 }
1340
1341 /*
1342 * Complete a direct I/O write request.
1343 *
1344 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1345 * need to issue a transaction to convert the range from unwritten to written
1346 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1347 * to do this and we are done. But in case this was a successful AIO
1348 * request this handler is called from interrupt context, from which we
1349 * can't start transactions. In that case offload the I/O completion to
1350 * the workqueues we also use for buffered I/O completion.
1351 */
1352 STATIC void
1353 xfs_end_io_direct_write(
1354 struct kiocb *iocb,
1355 loff_t offset,
1356 ssize_t size,
1357 void *private,
1358 int ret,
1359 bool is_async)
1360 {
1361 struct xfs_ioend *ioend = iocb->private;
1362
1363 /*
1364 * While the generic direct I/O code updates the inode size, it does
1365 * so only after the end_io handler is called, which means our
1366 * end_io handler thinks the on-disk size is outside the in-core
1367 * size. To prevent this just update it a little bit earlier here.
1368 */
1369 if (offset + size > i_size_read(ioend->io_inode))
1370 i_size_write(ioend->io_inode, offset + size);
1371
1372 /*
1373 * blockdev_direct_IO can return an error even after the I/O
1374 * completion handler was called. Thus we need to protect
1375 * against double-freeing.
1376 */
1377 iocb->private = NULL;
1378
1379 ioend->io_offset = offset;
1380 ioend->io_size = size;
1381 ioend->io_iocb = iocb;
1382 ioend->io_result = ret;
1383 if (private && size > 0)
1384 ioend->io_type = XFS_IO_UNWRITTEN;
1385
1386 if (is_async) {
1387 ioend->io_isasync = 1;
1388 xfs_finish_ioend(ioend);
1389 } else {
1390 xfs_finish_ioend_sync(ioend);
1391 }
1392 }
1393
1394 STATIC ssize_t
1395 xfs_vm_direct_IO(
1396 int rw,
1397 struct kiocb *iocb,
1398 const struct iovec *iov,
1399 loff_t offset,
1400 unsigned long nr_segs)
1401 {
1402 struct inode *inode = iocb->ki_filp->f_mapping->host;
1403 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1404 struct xfs_ioend *ioend = NULL;
1405 ssize_t ret;
1406
1407 if (rw & WRITE) {
1408 size_t size = iov_length(iov, nr_segs);
1409
1410 /*
1411 * We need to preallocate a transaction for a size update
1412 * here. In the case that this write both updates the size
1413 * and converts at least on unwritten extent we will cancel
1414 * the still clean transaction after the I/O has finished.
1415 */
1416 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1417 if (offset + size > XFS_I(inode)->i_d.di_size) {
1418 ret = xfs_setfilesize_trans_alloc(ioend);
1419 if (ret)
1420 goto out_destroy_ioend;
1421 ioend->io_isdirect = 1;
1422 }
1423
1424 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1425 offset, nr_segs,
1426 xfs_get_blocks_direct,
1427 xfs_end_io_direct_write, NULL, 0);
1428 if (ret != -EIOCBQUEUED && iocb->private)
1429 goto out_trans_cancel;
1430 } else {
1431 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1432 offset, nr_segs,
1433 xfs_get_blocks_direct,
1434 NULL, NULL, 0);
1435 }
1436
1437 return ret;
1438
1439 out_trans_cancel:
1440 if (ioend->io_append_trans) {
1441 current_set_flags_nested(&ioend->io_append_trans->t_pflags,
1442 PF_FSTRANS);
1443 rwsem_acquire_read(
1444 &inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
1445 0, 1, _THIS_IP_);
1446 xfs_trans_cancel(ioend->io_append_trans, 0);
1447 }
1448 out_destroy_ioend:
1449 xfs_destroy_ioend(ioend);
1450 return ret;
1451 }
1452
1453 /*
1454 * Punch out the delalloc blocks we have already allocated.
1455 *
1456 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1457 * as the page is still locked at this point.
1458 */
1459 STATIC void
1460 xfs_vm_kill_delalloc_range(
1461 struct inode *inode,
1462 loff_t start,
1463 loff_t end)
1464 {
1465 struct xfs_inode *ip = XFS_I(inode);
1466 xfs_fileoff_t start_fsb;
1467 xfs_fileoff_t end_fsb;
1468 int error;
1469
1470 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1471 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1472 if (end_fsb <= start_fsb)
1473 return;
1474
1475 xfs_ilock(ip, XFS_ILOCK_EXCL);
1476 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1477 end_fsb - start_fsb);
1478 if (error) {
1479 /* something screwed, just bail */
1480 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1481 xfs_alert(ip->i_mount,
1482 "xfs_vm_write_failed: unable to clean up ino %lld",
1483 ip->i_ino);
1484 }
1485 }
1486 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1487 }
1488
1489 STATIC void
1490 xfs_vm_write_failed(
1491 struct inode *inode,
1492 struct page *page,
1493 loff_t pos,
1494 unsigned len)
1495 {
1496 loff_t block_offset = pos & PAGE_MASK;
1497 loff_t block_start;
1498 loff_t block_end;
1499 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1500 loff_t to = from + len;
1501 struct buffer_head *bh, *head;
1502
1503 ASSERT(block_offset + from == pos);
1504
1505 head = page_buffers(page);
1506 block_start = 0;
1507 for (bh = head; bh != head || !block_start;
1508 bh = bh->b_this_page, block_start = block_end,
1509 block_offset += bh->b_size) {
1510 block_end = block_start + bh->b_size;
1511
1512 /* skip buffers before the write */
1513 if (block_end <= from)
1514 continue;
1515
1516 /* if the buffer is after the write, we're done */
1517 if (block_start >= to)
1518 break;
1519
1520 if (!buffer_delay(bh))
1521 continue;
1522
1523 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1524 continue;
1525
1526 xfs_vm_kill_delalloc_range(inode, block_offset,
1527 block_offset + bh->b_size);
1528 }
1529
1530 }
1531
1532 /*
1533 * This used to call block_write_begin(), but it unlocks and releases the page
1534 * on error, and we need that page to be able to punch stale delalloc blocks out
1535 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1536 * the appropriate point.
1537 */
1538 STATIC int
1539 xfs_vm_write_begin(
1540 struct file *file,
1541 struct address_space *mapping,
1542 loff_t pos,
1543 unsigned len,
1544 unsigned flags,
1545 struct page **pagep,
1546 void **fsdata)
1547 {
1548 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1549 struct page *page;
1550 int status;
1551
1552 ASSERT(len <= PAGE_CACHE_SIZE);
1553
1554 page = grab_cache_page_write_begin(mapping, index,
1555 flags | AOP_FLAG_NOFS);
1556 if (!page)
1557 return -ENOMEM;
1558
1559 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1560 if (unlikely(status)) {
1561 struct inode *inode = mapping->host;
1562
1563 xfs_vm_write_failed(inode, page, pos, len);
1564 unlock_page(page);
1565
1566 if (pos + len > i_size_read(inode))
1567 truncate_pagecache(inode, pos + len, i_size_read(inode));
1568
1569 page_cache_release(page);
1570 page = NULL;
1571 }
1572
1573 *pagep = page;
1574 return status;
1575 }
1576
1577 /*
1578 * On failure, we only need to kill delalloc blocks beyond EOF because they
1579 * will never be written. For blocks within EOF, generic_write_end() zeros them
1580 * so they are safe to leave alone and be written with all the other valid data.
1581 */
1582 STATIC int
1583 xfs_vm_write_end(
1584 struct file *file,
1585 struct address_space *mapping,
1586 loff_t pos,
1587 unsigned len,
1588 unsigned copied,
1589 struct page *page,
1590 void *fsdata)
1591 {
1592 int ret;
1593
1594 ASSERT(len <= PAGE_CACHE_SIZE);
1595
1596 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1597 if (unlikely(ret < len)) {
1598 struct inode *inode = mapping->host;
1599 size_t isize = i_size_read(inode);
1600 loff_t to = pos + len;
1601
1602 if (to > isize) {
1603 truncate_pagecache(inode, to, isize);
1604 xfs_vm_kill_delalloc_range(inode, isize, to);
1605 }
1606 }
1607 return ret;
1608 }
1609
1610 STATIC sector_t
1611 xfs_vm_bmap(
1612 struct address_space *mapping,
1613 sector_t block)
1614 {
1615 struct inode *inode = (struct inode *)mapping->host;
1616 struct xfs_inode *ip = XFS_I(inode);
1617
1618 trace_xfs_vm_bmap(XFS_I(inode));
1619 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1620 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1621 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1622 return generic_block_bmap(mapping, block, xfs_get_blocks);
1623 }
1624
1625 STATIC int
1626 xfs_vm_readpage(
1627 struct file *unused,
1628 struct page *page)
1629 {
1630 return mpage_readpage(page, xfs_get_blocks);
1631 }
1632
1633 STATIC int
1634 xfs_vm_readpages(
1635 struct file *unused,
1636 struct address_space *mapping,
1637 struct list_head *pages,
1638 unsigned nr_pages)
1639 {
1640 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1641 }
1642
1643 const struct address_space_operations xfs_address_space_operations = {
1644 .readpage = xfs_vm_readpage,
1645 .readpages = xfs_vm_readpages,
1646 .writepage = xfs_vm_writepage,
1647 .writepages = xfs_vm_writepages,
1648 .releasepage = xfs_vm_releasepage,
1649 .invalidatepage = xfs_vm_invalidatepage,
1650 .write_begin = xfs_vm_write_begin,
1651 .write_end = xfs_vm_write_end,
1652 .bmap = xfs_vm_bmap,
1653 .direct_IO = xfs_vm_direct_IO,
1654 .migratepage = buffer_migrate_page,
1655 .is_partially_uptodate = block_is_partially_uptodate,
1656 .error_remove_page = generic_error_remove_page,
1657 };