Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170 /*
171 * This does basic POSIX ACL permission checking
172 */
173 static int acl_permission_check(struct inode *inode, int mask,
174 int (*check_acl)(struct inode *inode, int mask))
175 {
176 umode_t mode = inode->i_mode;
177
178 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179
180 if (current_fsuid() == inode->i_uid)
181 mode >>= 6;
182 else {
183 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
184 int error = check_acl(inode, mask);
185 if (error != -EAGAIN)
186 return error;
187 }
188
189 if (in_group_p(inode->i_gid))
190 mode >>= 3;
191 }
192
193 /*
194 * If the DACs are ok we don't need any capability check.
195 */
196 if ((mask & ~mode) == 0)
197 return 0;
198 return -EACCES;
199 }
200
201 /**
202 * generic_permission - check for access rights on a Posix-like filesystem
203 * @inode: inode to check access rights for
204 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
205 * @check_acl: optional callback to check for Posix ACLs
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things..
211 */
212 int generic_permission(struct inode *inode, int mask,
213 int (*check_acl)(struct inode *inode, int mask))
214 {
215 int ret;
216
217 /*
218 * Do the basic POSIX ACL permission checks.
219 */
220 ret = acl_permission_check(inode, mask, check_acl);
221 if (ret != -EACCES)
222 return ret;
223
224 /*
225 * Read/write DACs are always overridable.
226 * Executable DACs are overridable if at least one exec bit is set.
227 */
228 if (!(mask & MAY_EXEC) || execute_ok(inode))
229 if (capable(CAP_DAC_OVERRIDE))
230 return 0;
231
232 /*
233 * Searching includes executable on directories, else just read.
234 */
235 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
236 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
237 if (capable(CAP_DAC_READ_SEARCH))
238 return 0;
239
240 return -EACCES;
241 }
242
243 /**
244 * inode_permission - check for access rights to a given inode
245 * @inode: inode to check permission on
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
247 *
248 * Used to check for read/write/execute permissions on an inode.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 */
253 int inode_permission(struct inode *inode, int mask)
254 {
255 int retval;
256
257 if (mask & MAY_WRITE) {
258 umode_t mode = inode->i_mode;
259
260 /*
261 * Nobody gets write access to a read-only fs.
262 */
263 if (IS_RDONLY(inode) &&
264 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
265 return -EROFS;
266
267 /*
268 * Nobody gets write access to an immutable file.
269 */
270 if (IS_IMMUTABLE(inode))
271 return -EACCES;
272 }
273
274 if (inode->i_op->permission)
275 retval = inode->i_op->permission(inode, mask);
276 else
277 retval = generic_permission(inode, mask, inode->i_op->check_acl);
278
279 if (retval)
280 return retval;
281
282 retval = devcgroup_inode_permission(inode, mask);
283 if (retval)
284 return retval;
285
286 return security_inode_permission(inode,
287 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
288 }
289
290 /**
291 * file_permission - check for additional access rights to a given file
292 * @file: file to check access rights for
293 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
294 *
295 * Used to check for read/write/execute permissions on an already opened
296 * file.
297 *
298 * Note:
299 * Do not use this function in new code. All access checks should
300 * be done using inode_permission().
301 */
302 int file_permission(struct file *file, int mask)
303 {
304 return inode_permission(file->f_path.dentry->d_inode, mask);
305 }
306
307 /*
308 * get_write_access() gets write permission for a file.
309 * put_write_access() releases this write permission.
310 * This is used for regular files.
311 * We cannot support write (and maybe mmap read-write shared) accesses and
312 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
313 * can have the following values:
314 * 0: no writers, no VM_DENYWRITE mappings
315 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
316 * > 0: (i_writecount) users are writing to the file.
317 *
318 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
319 * except for the cases where we don't hold i_writecount yet. Then we need to
320 * use {get,deny}_write_access() - these functions check the sign and refuse
321 * to do the change if sign is wrong. Exclusion between them is provided by
322 * the inode->i_lock spinlock.
323 */
324
325 int get_write_access(struct inode * inode)
326 {
327 spin_lock(&inode->i_lock);
328 if (atomic_read(&inode->i_writecount) < 0) {
329 spin_unlock(&inode->i_lock);
330 return -ETXTBSY;
331 }
332 atomic_inc(&inode->i_writecount);
333 spin_unlock(&inode->i_lock);
334
335 return 0;
336 }
337
338 int deny_write_access(struct file * file)
339 {
340 struct inode *inode = file->f_path.dentry->d_inode;
341
342 spin_lock(&inode->i_lock);
343 if (atomic_read(&inode->i_writecount) > 0) {
344 spin_unlock(&inode->i_lock);
345 return -ETXTBSY;
346 }
347 atomic_dec(&inode->i_writecount);
348 spin_unlock(&inode->i_lock);
349
350 return 0;
351 }
352
353 /**
354 * path_get - get a reference to a path
355 * @path: path to get the reference to
356 *
357 * Given a path increment the reference count to the dentry and the vfsmount.
358 */
359 void path_get(struct path *path)
360 {
361 mntget(path->mnt);
362 dget(path->dentry);
363 }
364 EXPORT_SYMBOL(path_get);
365
366 /**
367 * path_put - put a reference to a path
368 * @path: path to put the reference to
369 *
370 * Given a path decrement the reference count to the dentry and the vfsmount.
371 */
372 void path_put(struct path *path)
373 {
374 dput(path->dentry);
375 mntput(path->mnt);
376 }
377 EXPORT_SYMBOL(path_put);
378
379 /**
380 * release_open_intent - free up open intent resources
381 * @nd: pointer to nameidata
382 */
383 void release_open_intent(struct nameidata *nd)
384 {
385 if (nd->intent.open.file->f_path.dentry == NULL)
386 put_filp(nd->intent.open.file);
387 else
388 fput(nd->intent.open.file);
389 }
390
391 static inline struct dentry *
392 do_revalidate(struct dentry *dentry, struct nameidata *nd)
393 {
394 int status = dentry->d_op->d_revalidate(dentry, nd);
395 if (unlikely(status <= 0)) {
396 /*
397 * The dentry failed validation.
398 * If d_revalidate returned 0 attempt to invalidate
399 * the dentry otherwise d_revalidate is asking us
400 * to return a fail status.
401 */
402 if (!status) {
403 if (!d_invalidate(dentry)) {
404 dput(dentry);
405 dentry = NULL;
406 }
407 } else {
408 dput(dentry);
409 dentry = ERR_PTR(status);
410 }
411 }
412 return dentry;
413 }
414
415 /*
416 * force_reval_path - force revalidation of a dentry
417 *
418 * In some situations the path walking code will trust dentries without
419 * revalidating them. This causes problems for filesystems that depend on
420 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
421 * (which indicates that it's possible for the dentry to go stale), force
422 * a d_revalidate call before proceeding.
423 *
424 * Returns 0 if the revalidation was successful. If the revalidation fails,
425 * either return the error returned by d_revalidate or -ESTALE if the
426 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
427 * invalidate the dentry. It's up to the caller to handle putting references
428 * to the path if necessary.
429 */
430 static int
431 force_reval_path(struct path *path, struct nameidata *nd)
432 {
433 int status;
434 struct dentry *dentry = path->dentry;
435
436 /*
437 * only check on filesystems where it's possible for the dentry to
438 * become stale. It's assumed that if this flag is set then the
439 * d_revalidate op will also be defined.
440 */
441 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
442 return 0;
443
444 status = dentry->d_op->d_revalidate(dentry, nd);
445 if (status > 0)
446 return 0;
447
448 if (!status) {
449 d_invalidate(dentry);
450 status = -ESTALE;
451 }
452 return status;
453 }
454
455 /*
456 * Short-cut version of permission(), for calling on directories
457 * during pathname resolution. Combines parts of permission()
458 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
459 *
460 * If appropriate, check DAC only. If not appropriate, or
461 * short-cut DAC fails, then call ->permission() to do more
462 * complete permission check.
463 */
464 static int exec_permission(struct inode *inode)
465 {
466 int ret;
467
468 if (inode->i_op->permission) {
469 ret = inode->i_op->permission(inode, MAY_EXEC);
470 if (!ret)
471 goto ok;
472 return ret;
473 }
474 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
475 if (!ret)
476 goto ok;
477
478 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
479 goto ok;
480
481 return ret;
482 ok:
483 return security_inode_permission(inode, MAY_EXEC);
484 }
485
486 static __always_inline void set_root(struct nameidata *nd)
487 {
488 if (!nd->root.mnt) {
489 struct fs_struct *fs = current->fs;
490 read_lock(&fs->lock);
491 nd->root = fs->root;
492 path_get(&nd->root);
493 read_unlock(&fs->lock);
494 }
495 }
496
497 static int link_path_walk(const char *, struct nameidata *);
498
499 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
500 {
501 int res = 0;
502 char *name;
503 if (IS_ERR(link))
504 goto fail;
505
506 if (*link == '/') {
507 set_root(nd);
508 path_put(&nd->path);
509 nd->path = nd->root;
510 path_get(&nd->root);
511 }
512
513 res = link_path_walk(link, nd);
514 if (nd->depth || res || nd->last_type!=LAST_NORM)
515 return res;
516 /*
517 * If it is an iterative symlinks resolution in open_namei() we
518 * have to copy the last component. And all that crap because of
519 * bloody create() on broken symlinks. Furrfu...
520 */
521 name = __getname();
522 if (unlikely(!name)) {
523 path_put(&nd->path);
524 return -ENOMEM;
525 }
526 strcpy(name, nd->last.name);
527 nd->last.name = name;
528 return 0;
529 fail:
530 path_put(&nd->path);
531 return PTR_ERR(link);
532 }
533
534 static void path_put_conditional(struct path *path, struct nameidata *nd)
535 {
536 dput(path->dentry);
537 if (path->mnt != nd->path.mnt)
538 mntput(path->mnt);
539 }
540
541 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
542 {
543 dput(nd->path.dentry);
544 if (nd->path.mnt != path->mnt)
545 mntput(nd->path.mnt);
546 nd->path.mnt = path->mnt;
547 nd->path.dentry = path->dentry;
548 }
549
550 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
551 {
552 int error;
553 void *cookie;
554 struct dentry *dentry = path->dentry;
555
556 touch_atime(path->mnt, dentry);
557 nd_set_link(nd, NULL);
558
559 if (path->mnt != nd->path.mnt) {
560 path_to_nameidata(path, nd);
561 dget(dentry);
562 }
563 mntget(path->mnt);
564 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
565 error = PTR_ERR(cookie);
566 if (!IS_ERR(cookie)) {
567 char *s = nd_get_link(nd);
568 error = 0;
569 if (s)
570 error = __vfs_follow_link(nd, s);
571 else if (nd->last_type == LAST_BIND) {
572 error = force_reval_path(&nd->path, nd);
573 if (error)
574 path_put(&nd->path);
575 }
576 if (dentry->d_inode->i_op->put_link)
577 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
578 }
579 return error;
580 }
581
582 /*
583 * This limits recursive symlink follows to 8, while
584 * limiting consecutive symlinks to 40.
585 *
586 * Without that kind of total limit, nasty chains of consecutive
587 * symlinks can cause almost arbitrarily long lookups.
588 */
589 static inline int do_follow_link(struct path *path, struct nameidata *nd)
590 {
591 int err = -ELOOP;
592 if (current->link_count >= MAX_NESTED_LINKS)
593 goto loop;
594 if (current->total_link_count >= 40)
595 goto loop;
596 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
597 cond_resched();
598 err = security_inode_follow_link(path->dentry, nd);
599 if (err)
600 goto loop;
601 current->link_count++;
602 current->total_link_count++;
603 nd->depth++;
604 err = __do_follow_link(path, nd);
605 path_put(path);
606 current->link_count--;
607 nd->depth--;
608 return err;
609 loop:
610 path_put_conditional(path, nd);
611 path_put(&nd->path);
612 return err;
613 }
614
615 int follow_up(struct path *path)
616 {
617 struct vfsmount *parent;
618 struct dentry *mountpoint;
619 spin_lock(&vfsmount_lock);
620 parent = path->mnt->mnt_parent;
621 if (parent == path->mnt) {
622 spin_unlock(&vfsmount_lock);
623 return 0;
624 }
625 mntget(parent);
626 mountpoint = dget(path->mnt->mnt_mountpoint);
627 spin_unlock(&vfsmount_lock);
628 dput(path->dentry);
629 path->dentry = mountpoint;
630 mntput(path->mnt);
631 path->mnt = parent;
632 return 1;
633 }
634
635 /* no need for dcache_lock, as serialization is taken care in
636 * namespace.c
637 */
638 static int __follow_mount(struct path *path)
639 {
640 int res = 0;
641 while (d_mountpoint(path->dentry)) {
642 struct vfsmount *mounted = lookup_mnt(path);
643 if (!mounted)
644 break;
645 dput(path->dentry);
646 if (res)
647 mntput(path->mnt);
648 path->mnt = mounted;
649 path->dentry = dget(mounted->mnt_root);
650 res = 1;
651 }
652 return res;
653 }
654
655 static void follow_mount(struct path *path)
656 {
657 while (d_mountpoint(path->dentry)) {
658 struct vfsmount *mounted = lookup_mnt(path);
659 if (!mounted)
660 break;
661 dput(path->dentry);
662 mntput(path->mnt);
663 path->mnt = mounted;
664 path->dentry = dget(mounted->mnt_root);
665 }
666 }
667
668 /* no need for dcache_lock, as serialization is taken care in
669 * namespace.c
670 */
671 int follow_down(struct path *path)
672 {
673 struct vfsmount *mounted;
674
675 mounted = lookup_mnt(path);
676 if (mounted) {
677 dput(path->dentry);
678 mntput(path->mnt);
679 path->mnt = mounted;
680 path->dentry = dget(mounted->mnt_root);
681 return 1;
682 }
683 return 0;
684 }
685
686 static __always_inline void follow_dotdot(struct nameidata *nd)
687 {
688 set_root(nd);
689
690 while(1) {
691 struct vfsmount *parent;
692 struct dentry *old = nd->path.dentry;
693
694 if (nd->path.dentry == nd->root.dentry &&
695 nd->path.mnt == nd->root.mnt) {
696 break;
697 }
698 spin_lock(&dcache_lock);
699 if (nd->path.dentry != nd->path.mnt->mnt_root) {
700 nd->path.dentry = dget(nd->path.dentry->d_parent);
701 spin_unlock(&dcache_lock);
702 dput(old);
703 break;
704 }
705 spin_unlock(&dcache_lock);
706 spin_lock(&vfsmount_lock);
707 parent = nd->path.mnt->mnt_parent;
708 if (parent == nd->path.mnt) {
709 spin_unlock(&vfsmount_lock);
710 break;
711 }
712 mntget(parent);
713 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
714 spin_unlock(&vfsmount_lock);
715 dput(old);
716 mntput(nd->path.mnt);
717 nd->path.mnt = parent;
718 }
719 follow_mount(&nd->path);
720 }
721
722 /*
723 * It's more convoluted than I'd like it to be, but... it's still fairly
724 * small and for now I'd prefer to have fast path as straight as possible.
725 * It _is_ time-critical.
726 */
727 static int do_lookup(struct nameidata *nd, struct qstr *name,
728 struct path *path)
729 {
730 struct vfsmount *mnt = nd->path.mnt;
731 struct dentry *dentry, *parent;
732 struct inode *dir;
733 /*
734 * See if the low-level filesystem might want
735 * to use its own hash..
736 */
737 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
738 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
739 if (err < 0)
740 return err;
741 }
742
743 dentry = __d_lookup(nd->path.dentry, name);
744 if (!dentry)
745 goto need_lookup;
746 if (dentry->d_op && dentry->d_op->d_revalidate)
747 goto need_revalidate;
748 done:
749 path->mnt = mnt;
750 path->dentry = dentry;
751 __follow_mount(path);
752 return 0;
753
754 need_lookup:
755 parent = nd->path.dentry;
756 dir = parent->d_inode;
757
758 mutex_lock(&dir->i_mutex);
759 /*
760 * First re-do the cached lookup just in case it was created
761 * while we waited for the directory semaphore..
762 *
763 * FIXME! This could use version numbering or similar to
764 * avoid unnecessary cache lookups.
765 *
766 * The "dcache_lock" is purely to protect the RCU list walker
767 * from concurrent renames at this point (we mustn't get false
768 * negatives from the RCU list walk here, unlike the optimistic
769 * fast walk).
770 *
771 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
772 */
773 dentry = d_lookup(parent, name);
774 if (!dentry) {
775 struct dentry *new;
776
777 /* Don't create child dentry for a dead directory. */
778 dentry = ERR_PTR(-ENOENT);
779 if (IS_DEADDIR(dir))
780 goto out_unlock;
781
782 new = d_alloc(parent, name);
783 dentry = ERR_PTR(-ENOMEM);
784 if (new) {
785 dentry = dir->i_op->lookup(dir, new, nd);
786 if (dentry)
787 dput(new);
788 else
789 dentry = new;
790 }
791 out_unlock:
792 mutex_unlock(&dir->i_mutex);
793 if (IS_ERR(dentry))
794 goto fail;
795 goto done;
796 }
797
798 /*
799 * Uhhuh! Nasty case: the cache was re-populated while
800 * we waited on the semaphore. Need to revalidate.
801 */
802 mutex_unlock(&dir->i_mutex);
803 if (dentry->d_op && dentry->d_op->d_revalidate) {
804 dentry = do_revalidate(dentry, nd);
805 if (!dentry)
806 dentry = ERR_PTR(-ENOENT);
807 }
808 if (IS_ERR(dentry))
809 goto fail;
810 goto done;
811
812 need_revalidate:
813 dentry = do_revalidate(dentry, nd);
814 if (!dentry)
815 goto need_lookup;
816 if (IS_ERR(dentry))
817 goto fail;
818 goto done;
819
820 fail:
821 return PTR_ERR(dentry);
822 }
823
824 /*
825 * Name resolution.
826 * This is the basic name resolution function, turning a pathname into
827 * the final dentry. We expect 'base' to be positive and a directory.
828 *
829 * Returns 0 and nd will have valid dentry and mnt on success.
830 * Returns error and drops reference to input namei data on failure.
831 */
832 static int link_path_walk(const char *name, struct nameidata *nd)
833 {
834 struct path next;
835 struct inode *inode;
836 int err;
837 unsigned int lookup_flags = nd->flags;
838
839 while (*name=='/')
840 name++;
841 if (!*name)
842 goto return_reval;
843
844 inode = nd->path.dentry->d_inode;
845 if (nd->depth)
846 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
847
848 /* At this point we know we have a real path component. */
849 for(;;) {
850 unsigned long hash;
851 struct qstr this;
852 unsigned int c;
853
854 nd->flags |= LOOKUP_CONTINUE;
855 err = exec_permission(inode);
856 if (err)
857 break;
858
859 this.name = name;
860 c = *(const unsigned char *)name;
861
862 hash = init_name_hash();
863 do {
864 name++;
865 hash = partial_name_hash(c, hash);
866 c = *(const unsigned char *)name;
867 } while (c && (c != '/'));
868 this.len = name - (const char *) this.name;
869 this.hash = end_name_hash(hash);
870
871 /* remove trailing slashes? */
872 if (!c)
873 goto last_component;
874 while (*++name == '/');
875 if (!*name)
876 goto last_with_slashes;
877
878 /*
879 * "." and ".." are special - ".." especially so because it has
880 * to be able to know about the current root directory and
881 * parent relationships.
882 */
883 if (this.name[0] == '.') switch (this.len) {
884 default:
885 break;
886 case 2:
887 if (this.name[1] != '.')
888 break;
889 follow_dotdot(nd);
890 inode = nd->path.dentry->d_inode;
891 /* fallthrough */
892 case 1:
893 continue;
894 }
895 /* This does the actual lookups.. */
896 err = do_lookup(nd, &this, &next);
897 if (err)
898 break;
899
900 err = -ENOENT;
901 inode = next.dentry->d_inode;
902 if (!inode)
903 goto out_dput;
904
905 if (inode->i_op->follow_link) {
906 err = do_follow_link(&next, nd);
907 if (err)
908 goto return_err;
909 err = -ENOENT;
910 inode = nd->path.dentry->d_inode;
911 if (!inode)
912 break;
913 } else
914 path_to_nameidata(&next, nd);
915 err = -ENOTDIR;
916 if (!inode->i_op->lookup)
917 break;
918 continue;
919 /* here ends the main loop */
920
921 last_with_slashes:
922 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
923 last_component:
924 /* Clear LOOKUP_CONTINUE iff it was previously unset */
925 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
926 if (lookup_flags & LOOKUP_PARENT)
927 goto lookup_parent;
928 if (this.name[0] == '.') switch (this.len) {
929 default:
930 break;
931 case 2:
932 if (this.name[1] != '.')
933 break;
934 follow_dotdot(nd);
935 inode = nd->path.dentry->d_inode;
936 /* fallthrough */
937 case 1:
938 goto return_reval;
939 }
940 err = do_lookup(nd, &this, &next);
941 if (err)
942 break;
943 inode = next.dentry->d_inode;
944 if ((lookup_flags & LOOKUP_FOLLOW)
945 && inode && inode->i_op->follow_link) {
946 err = do_follow_link(&next, nd);
947 if (err)
948 goto return_err;
949 inode = nd->path.dentry->d_inode;
950 } else
951 path_to_nameidata(&next, nd);
952 err = -ENOENT;
953 if (!inode)
954 break;
955 if (lookup_flags & LOOKUP_DIRECTORY) {
956 err = -ENOTDIR;
957 if (!inode->i_op->lookup)
958 break;
959 }
960 goto return_base;
961 lookup_parent:
962 nd->last = this;
963 nd->last_type = LAST_NORM;
964 if (this.name[0] != '.')
965 goto return_base;
966 if (this.len == 1)
967 nd->last_type = LAST_DOT;
968 else if (this.len == 2 && this.name[1] == '.')
969 nd->last_type = LAST_DOTDOT;
970 else
971 goto return_base;
972 return_reval:
973 /*
974 * We bypassed the ordinary revalidation routines.
975 * We may need to check the cached dentry for staleness.
976 */
977 if (nd->path.dentry && nd->path.dentry->d_sb &&
978 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
979 err = -ESTALE;
980 /* Note: we do not d_invalidate() */
981 if (!nd->path.dentry->d_op->d_revalidate(
982 nd->path.dentry, nd))
983 break;
984 }
985 return_base:
986 return 0;
987 out_dput:
988 path_put_conditional(&next, nd);
989 break;
990 }
991 path_put(&nd->path);
992 return_err:
993 return err;
994 }
995
996 static int path_walk(const char *name, struct nameidata *nd)
997 {
998 struct path save = nd->path;
999 int result;
1000
1001 current->total_link_count = 0;
1002
1003 /* make sure the stuff we saved doesn't go away */
1004 path_get(&save);
1005
1006 result = link_path_walk(name, nd);
1007 if (result == -ESTALE) {
1008 /* nd->path had been dropped */
1009 current->total_link_count = 0;
1010 nd->path = save;
1011 path_get(&nd->path);
1012 nd->flags |= LOOKUP_REVAL;
1013 result = link_path_walk(name, nd);
1014 }
1015
1016 path_put(&save);
1017
1018 return result;
1019 }
1020
1021 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1022 {
1023 int retval = 0;
1024 int fput_needed;
1025 struct file *file;
1026
1027 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1028 nd->flags = flags;
1029 nd->depth = 0;
1030 nd->root.mnt = NULL;
1031
1032 if (*name=='/') {
1033 set_root(nd);
1034 nd->path = nd->root;
1035 path_get(&nd->root);
1036 } else if (dfd == AT_FDCWD) {
1037 struct fs_struct *fs = current->fs;
1038 read_lock(&fs->lock);
1039 nd->path = fs->pwd;
1040 path_get(&fs->pwd);
1041 read_unlock(&fs->lock);
1042 } else {
1043 struct dentry *dentry;
1044
1045 file = fget_light(dfd, &fput_needed);
1046 retval = -EBADF;
1047 if (!file)
1048 goto out_fail;
1049
1050 dentry = file->f_path.dentry;
1051
1052 retval = -ENOTDIR;
1053 if (!S_ISDIR(dentry->d_inode->i_mode))
1054 goto fput_fail;
1055
1056 retval = file_permission(file, MAY_EXEC);
1057 if (retval)
1058 goto fput_fail;
1059
1060 nd->path = file->f_path;
1061 path_get(&file->f_path);
1062
1063 fput_light(file, fput_needed);
1064 }
1065 return 0;
1066
1067 fput_fail:
1068 fput_light(file, fput_needed);
1069 out_fail:
1070 return retval;
1071 }
1072
1073 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1074 static int do_path_lookup(int dfd, const char *name,
1075 unsigned int flags, struct nameidata *nd)
1076 {
1077 int retval = path_init(dfd, name, flags, nd);
1078 if (!retval)
1079 retval = path_walk(name, nd);
1080 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1081 nd->path.dentry->d_inode))
1082 audit_inode(name, nd->path.dentry);
1083 if (nd->root.mnt) {
1084 path_put(&nd->root);
1085 nd->root.mnt = NULL;
1086 }
1087 return retval;
1088 }
1089
1090 int path_lookup(const char *name, unsigned int flags,
1091 struct nameidata *nd)
1092 {
1093 return do_path_lookup(AT_FDCWD, name, flags, nd);
1094 }
1095
1096 int kern_path(const char *name, unsigned int flags, struct path *path)
1097 {
1098 struct nameidata nd;
1099 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1100 if (!res)
1101 *path = nd.path;
1102 return res;
1103 }
1104
1105 /**
1106 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1107 * @dentry: pointer to dentry of the base directory
1108 * @mnt: pointer to vfs mount of the base directory
1109 * @name: pointer to file name
1110 * @flags: lookup flags
1111 * @nd: pointer to nameidata
1112 */
1113 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1114 const char *name, unsigned int flags,
1115 struct nameidata *nd)
1116 {
1117 int retval;
1118
1119 /* same as do_path_lookup */
1120 nd->last_type = LAST_ROOT;
1121 nd->flags = flags;
1122 nd->depth = 0;
1123
1124 nd->path.dentry = dentry;
1125 nd->path.mnt = mnt;
1126 path_get(&nd->path);
1127 nd->root = nd->path;
1128 path_get(&nd->root);
1129
1130 retval = path_walk(name, nd);
1131 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1132 nd->path.dentry->d_inode))
1133 audit_inode(name, nd->path.dentry);
1134
1135 path_put(&nd->root);
1136 nd->root.mnt = NULL;
1137
1138 return retval;
1139 }
1140
1141 static struct dentry *__lookup_hash(struct qstr *name,
1142 struct dentry *base, struct nameidata *nd)
1143 {
1144 struct dentry *dentry;
1145 struct inode *inode;
1146 int err;
1147
1148 inode = base->d_inode;
1149
1150 /*
1151 * See if the low-level filesystem might want
1152 * to use its own hash..
1153 */
1154 if (base->d_op && base->d_op->d_hash) {
1155 err = base->d_op->d_hash(base, name);
1156 dentry = ERR_PTR(err);
1157 if (err < 0)
1158 goto out;
1159 }
1160
1161 dentry = __d_lookup(base, name);
1162
1163 /* lockess __d_lookup may fail due to concurrent d_move()
1164 * in some unrelated directory, so try with d_lookup
1165 */
1166 if (!dentry)
1167 dentry = d_lookup(base, name);
1168
1169 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1170 dentry = do_revalidate(dentry, nd);
1171
1172 if (!dentry) {
1173 struct dentry *new;
1174
1175 /* Don't create child dentry for a dead directory. */
1176 dentry = ERR_PTR(-ENOENT);
1177 if (IS_DEADDIR(inode))
1178 goto out;
1179
1180 new = d_alloc(base, name);
1181 dentry = ERR_PTR(-ENOMEM);
1182 if (!new)
1183 goto out;
1184 dentry = inode->i_op->lookup(inode, new, nd);
1185 if (!dentry)
1186 dentry = new;
1187 else
1188 dput(new);
1189 }
1190 out:
1191 return dentry;
1192 }
1193
1194 /*
1195 * Restricted form of lookup. Doesn't follow links, single-component only,
1196 * needs parent already locked. Doesn't follow mounts.
1197 * SMP-safe.
1198 */
1199 static struct dentry *lookup_hash(struct nameidata *nd)
1200 {
1201 int err;
1202
1203 err = exec_permission(nd->path.dentry->d_inode);
1204 if (err)
1205 return ERR_PTR(err);
1206 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1207 }
1208
1209 static int __lookup_one_len(const char *name, struct qstr *this,
1210 struct dentry *base, int len)
1211 {
1212 unsigned long hash;
1213 unsigned int c;
1214
1215 this->name = name;
1216 this->len = len;
1217 if (!len)
1218 return -EACCES;
1219
1220 hash = init_name_hash();
1221 while (len--) {
1222 c = *(const unsigned char *)name++;
1223 if (c == '/' || c == '\0')
1224 return -EACCES;
1225 hash = partial_name_hash(c, hash);
1226 }
1227 this->hash = end_name_hash(hash);
1228 return 0;
1229 }
1230
1231 /**
1232 * lookup_one_len - filesystem helper to lookup single pathname component
1233 * @name: pathname component to lookup
1234 * @base: base directory to lookup from
1235 * @len: maximum length @len should be interpreted to
1236 *
1237 * Note that this routine is purely a helper for filesystem usage and should
1238 * not be called by generic code. Also note that by using this function the
1239 * nameidata argument is passed to the filesystem methods and a filesystem
1240 * using this helper needs to be prepared for that.
1241 */
1242 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1243 {
1244 int err;
1245 struct qstr this;
1246
1247 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1248
1249 err = __lookup_one_len(name, &this, base, len);
1250 if (err)
1251 return ERR_PTR(err);
1252
1253 err = exec_permission(base->d_inode);
1254 if (err)
1255 return ERR_PTR(err);
1256 return __lookup_hash(&this, base, NULL);
1257 }
1258
1259 int user_path_at(int dfd, const char __user *name, unsigned flags,
1260 struct path *path)
1261 {
1262 struct nameidata nd;
1263 char *tmp = getname(name);
1264 int err = PTR_ERR(tmp);
1265 if (!IS_ERR(tmp)) {
1266
1267 BUG_ON(flags & LOOKUP_PARENT);
1268
1269 err = do_path_lookup(dfd, tmp, flags, &nd);
1270 putname(tmp);
1271 if (!err)
1272 *path = nd.path;
1273 }
1274 return err;
1275 }
1276
1277 static int user_path_parent(int dfd, const char __user *path,
1278 struct nameidata *nd, char **name)
1279 {
1280 char *s = getname(path);
1281 int error;
1282
1283 if (IS_ERR(s))
1284 return PTR_ERR(s);
1285
1286 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1287 if (error)
1288 putname(s);
1289 else
1290 *name = s;
1291
1292 return error;
1293 }
1294
1295 /*
1296 * It's inline, so penalty for filesystems that don't use sticky bit is
1297 * minimal.
1298 */
1299 static inline int check_sticky(struct inode *dir, struct inode *inode)
1300 {
1301 uid_t fsuid = current_fsuid();
1302
1303 if (!(dir->i_mode & S_ISVTX))
1304 return 0;
1305 if (inode->i_uid == fsuid)
1306 return 0;
1307 if (dir->i_uid == fsuid)
1308 return 0;
1309 return !capable(CAP_FOWNER);
1310 }
1311
1312 /*
1313 * Check whether we can remove a link victim from directory dir, check
1314 * whether the type of victim is right.
1315 * 1. We can't do it if dir is read-only (done in permission())
1316 * 2. We should have write and exec permissions on dir
1317 * 3. We can't remove anything from append-only dir
1318 * 4. We can't do anything with immutable dir (done in permission())
1319 * 5. If the sticky bit on dir is set we should either
1320 * a. be owner of dir, or
1321 * b. be owner of victim, or
1322 * c. have CAP_FOWNER capability
1323 * 6. If the victim is append-only or immutable we can't do antyhing with
1324 * links pointing to it.
1325 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1326 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1327 * 9. We can't remove a root or mountpoint.
1328 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1329 * nfs_async_unlink().
1330 */
1331 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1332 {
1333 int error;
1334
1335 if (!victim->d_inode)
1336 return -ENOENT;
1337
1338 BUG_ON(victim->d_parent->d_inode != dir);
1339 audit_inode_child(victim->d_name.name, victim, dir);
1340
1341 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1342 if (error)
1343 return error;
1344 if (IS_APPEND(dir))
1345 return -EPERM;
1346 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1347 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1348 return -EPERM;
1349 if (isdir) {
1350 if (!S_ISDIR(victim->d_inode->i_mode))
1351 return -ENOTDIR;
1352 if (IS_ROOT(victim))
1353 return -EBUSY;
1354 } else if (S_ISDIR(victim->d_inode->i_mode))
1355 return -EISDIR;
1356 if (IS_DEADDIR(dir))
1357 return -ENOENT;
1358 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1359 return -EBUSY;
1360 return 0;
1361 }
1362
1363 /* Check whether we can create an object with dentry child in directory
1364 * dir.
1365 * 1. We can't do it if child already exists (open has special treatment for
1366 * this case, but since we are inlined it's OK)
1367 * 2. We can't do it if dir is read-only (done in permission())
1368 * 3. We should have write and exec permissions on dir
1369 * 4. We can't do it if dir is immutable (done in permission())
1370 */
1371 static inline int may_create(struct inode *dir, struct dentry *child)
1372 {
1373 if (child->d_inode)
1374 return -EEXIST;
1375 if (IS_DEADDIR(dir))
1376 return -ENOENT;
1377 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1378 }
1379
1380 /*
1381 * O_DIRECTORY translates into forcing a directory lookup.
1382 */
1383 static inline int lookup_flags(unsigned int f)
1384 {
1385 unsigned long retval = LOOKUP_FOLLOW;
1386
1387 if (f & O_NOFOLLOW)
1388 retval &= ~LOOKUP_FOLLOW;
1389
1390 if (f & O_DIRECTORY)
1391 retval |= LOOKUP_DIRECTORY;
1392
1393 return retval;
1394 }
1395
1396 /*
1397 * p1 and p2 should be directories on the same fs.
1398 */
1399 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1400 {
1401 struct dentry *p;
1402
1403 if (p1 == p2) {
1404 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1405 return NULL;
1406 }
1407
1408 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1409
1410 p = d_ancestor(p2, p1);
1411 if (p) {
1412 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1413 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1414 return p;
1415 }
1416
1417 p = d_ancestor(p1, p2);
1418 if (p) {
1419 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1420 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1421 return p;
1422 }
1423
1424 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1425 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1426 return NULL;
1427 }
1428
1429 void unlock_rename(struct dentry *p1, struct dentry *p2)
1430 {
1431 mutex_unlock(&p1->d_inode->i_mutex);
1432 if (p1 != p2) {
1433 mutex_unlock(&p2->d_inode->i_mutex);
1434 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1435 }
1436 }
1437
1438 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1439 struct nameidata *nd)
1440 {
1441 int error = may_create(dir, dentry);
1442
1443 if (error)
1444 return error;
1445
1446 if (!dir->i_op->create)
1447 return -EACCES; /* shouldn't it be ENOSYS? */
1448 mode &= S_IALLUGO;
1449 mode |= S_IFREG;
1450 error = security_inode_create(dir, dentry, mode);
1451 if (error)
1452 return error;
1453 vfs_dq_init(dir);
1454 error = dir->i_op->create(dir, dentry, mode, nd);
1455 if (!error)
1456 fsnotify_create(dir, dentry);
1457 return error;
1458 }
1459
1460 int may_open(struct path *path, int acc_mode, int flag)
1461 {
1462 struct dentry *dentry = path->dentry;
1463 struct inode *inode = dentry->d_inode;
1464 int error;
1465
1466 if (!inode)
1467 return -ENOENT;
1468
1469 switch (inode->i_mode & S_IFMT) {
1470 case S_IFLNK:
1471 return -ELOOP;
1472 case S_IFDIR:
1473 if (acc_mode & MAY_WRITE)
1474 return -EISDIR;
1475 break;
1476 case S_IFBLK:
1477 case S_IFCHR:
1478 if (path->mnt->mnt_flags & MNT_NODEV)
1479 return -EACCES;
1480 /*FALLTHRU*/
1481 case S_IFIFO:
1482 case S_IFSOCK:
1483 flag &= ~O_TRUNC;
1484 break;
1485 }
1486
1487 error = inode_permission(inode, acc_mode);
1488 if (error)
1489 return error;
1490
1491 /*
1492 * An append-only file must be opened in append mode for writing.
1493 */
1494 if (IS_APPEND(inode)) {
1495 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1496 return -EPERM;
1497 if (flag & O_TRUNC)
1498 return -EPERM;
1499 }
1500
1501 /* O_NOATIME can only be set by the owner or superuser */
1502 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1503 return -EPERM;
1504
1505 /*
1506 * Ensure there are no outstanding leases on the file.
1507 */
1508 return break_lease(inode, flag);
1509 }
1510
1511 static int handle_truncate(struct path *path)
1512 {
1513 struct inode *inode = path->dentry->d_inode;
1514 int error = get_write_access(inode);
1515 if (error)
1516 return error;
1517 /*
1518 * Refuse to truncate files with mandatory locks held on them.
1519 */
1520 error = locks_verify_locked(inode);
1521 if (!error)
1522 error = security_path_truncate(path, 0,
1523 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1524 if (!error) {
1525 error = do_truncate(path->dentry, 0,
1526 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1527 NULL);
1528 }
1529 put_write_access(inode);
1530 return error;
1531 }
1532
1533 /*
1534 * Be careful about ever adding any more callers of this
1535 * function. Its flags must be in the namei format, not
1536 * what get passed to sys_open().
1537 */
1538 static int __open_namei_create(struct nameidata *nd, struct path *path,
1539 int flag, int mode)
1540 {
1541 int error;
1542 struct dentry *dir = nd->path.dentry;
1543
1544 if (!IS_POSIXACL(dir->d_inode))
1545 mode &= ~current_umask();
1546 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1547 if (error)
1548 goto out_unlock;
1549 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1550 out_unlock:
1551 mutex_unlock(&dir->d_inode->i_mutex);
1552 dput(nd->path.dentry);
1553 nd->path.dentry = path->dentry;
1554 if (error)
1555 return error;
1556 /* Don't check for write permission, don't truncate */
1557 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1558 }
1559
1560 /*
1561 * Note that while the flag value (low two bits) for sys_open means:
1562 * 00 - read-only
1563 * 01 - write-only
1564 * 10 - read-write
1565 * 11 - special
1566 * it is changed into
1567 * 00 - no permissions needed
1568 * 01 - read-permission
1569 * 10 - write-permission
1570 * 11 - read-write
1571 * for the internal routines (ie open_namei()/follow_link() etc)
1572 * This is more logical, and also allows the 00 "no perm needed"
1573 * to be used for symlinks (where the permissions are checked
1574 * later).
1575 *
1576 */
1577 static inline int open_to_namei_flags(int flag)
1578 {
1579 if ((flag+1) & O_ACCMODE)
1580 flag++;
1581 return flag;
1582 }
1583
1584 static int open_will_truncate(int flag, struct inode *inode)
1585 {
1586 /*
1587 * We'll never write to the fs underlying
1588 * a device file.
1589 */
1590 if (special_file(inode->i_mode))
1591 return 0;
1592 return (flag & O_TRUNC);
1593 }
1594
1595 /*
1596 * Note that the low bits of the passed in "open_flag"
1597 * are not the same as in the local variable "flag". See
1598 * open_to_namei_flags() for more details.
1599 */
1600 struct file *do_filp_open(int dfd, const char *pathname,
1601 int open_flag, int mode, int acc_mode)
1602 {
1603 struct file *filp;
1604 struct nameidata nd;
1605 int error;
1606 struct path path, save;
1607 struct dentry *dir;
1608 int count = 0;
1609 int will_truncate;
1610 int flag = open_to_namei_flags(open_flag);
1611
1612 /*
1613 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1614 * check for O_DSYNC if the need any syncing at all we enforce it's
1615 * always set instead of having to deal with possibly weird behaviour
1616 * for malicious applications setting only __O_SYNC.
1617 */
1618 if (open_flag & __O_SYNC)
1619 open_flag |= O_DSYNC;
1620
1621 if (!acc_mode)
1622 acc_mode = MAY_OPEN | ACC_MODE(flag);
1623
1624 /* O_TRUNC implies we need access checks for write permissions */
1625 if (flag & O_TRUNC)
1626 acc_mode |= MAY_WRITE;
1627
1628 /* Allow the LSM permission hook to distinguish append
1629 access from general write access. */
1630 if (flag & O_APPEND)
1631 acc_mode |= MAY_APPEND;
1632
1633 /*
1634 * The simplest case - just a plain lookup.
1635 */
1636 if (!(flag & O_CREAT)) {
1637 filp = get_empty_filp();
1638
1639 if (filp == NULL)
1640 return ERR_PTR(-ENFILE);
1641 nd.intent.open.file = filp;
1642 filp->f_flags = open_flag;
1643 nd.intent.open.flags = flag;
1644 nd.intent.open.create_mode = 0;
1645 error = do_path_lookup(dfd, pathname,
1646 lookup_flags(flag)|LOOKUP_OPEN, &nd);
1647 if (IS_ERR(nd.intent.open.file)) {
1648 if (error == 0) {
1649 error = PTR_ERR(nd.intent.open.file);
1650 path_put(&nd.path);
1651 }
1652 } else if (error)
1653 release_open_intent(&nd);
1654 if (error)
1655 return ERR_PTR(error);
1656 goto ok;
1657 }
1658
1659 /*
1660 * Create - we need to know the parent.
1661 */
1662 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1663 if (error)
1664 return ERR_PTR(error);
1665 error = path_walk(pathname, &nd);
1666 if (error) {
1667 if (nd.root.mnt)
1668 path_put(&nd.root);
1669 return ERR_PTR(error);
1670 }
1671 if (unlikely(!audit_dummy_context()))
1672 audit_inode(pathname, nd.path.dentry);
1673
1674 /*
1675 * We have the parent and last component. First of all, check
1676 * that we are not asked to creat(2) an obvious directory - that
1677 * will not do.
1678 */
1679 error = -EISDIR;
1680 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1681 goto exit_parent;
1682
1683 error = -ENFILE;
1684 filp = get_empty_filp();
1685 if (filp == NULL)
1686 goto exit_parent;
1687 nd.intent.open.file = filp;
1688 filp->f_flags = open_flag;
1689 nd.intent.open.flags = flag;
1690 nd.intent.open.create_mode = mode;
1691 dir = nd.path.dentry;
1692 nd.flags &= ~LOOKUP_PARENT;
1693 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1694 if (flag & O_EXCL)
1695 nd.flags |= LOOKUP_EXCL;
1696 mutex_lock(&dir->d_inode->i_mutex);
1697 path.dentry = lookup_hash(&nd);
1698 path.mnt = nd.path.mnt;
1699
1700 do_last:
1701 error = PTR_ERR(path.dentry);
1702 if (IS_ERR(path.dentry)) {
1703 mutex_unlock(&dir->d_inode->i_mutex);
1704 goto exit;
1705 }
1706
1707 if (IS_ERR(nd.intent.open.file)) {
1708 error = PTR_ERR(nd.intent.open.file);
1709 goto exit_mutex_unlock;
1710 }
1711
1712 /* Negative dentry, just create the file */
1713 if (!path.dentry->d_inode) {
1714 /*
1715 * This write is needed to ensure that a
1716 * ro->rw transition does not occur between
1717 * the time when the file is created and when
1718 * a permanent write count is taken through
1719 * the 'struct file' in nameidata_to_filp().
1720 */
1721 error = mnt_want_write(nd.path.mnt);
1722 if (error)
1723 goto exit_mutex_unlock;
1724 error = __open_namei_create(&nd, &path, flag, mode);
1725 if (error) {
1726 mnt_drop_write(nd.path.mnt);
1727 goto exit;
1728 }
1729 filp = nameidata_to_filp(&nd);
1730 mnt_drop_write(nd.path.mnt);
1731 if (nd.root.mnt)
1732 path_put(&nd.root);
1733 if (!IS_ERR(filp)) {
1734 error = ima_path_check(&filp->f_path, filp->f_mode &
1735 (MAY_READ | MAY_WRITE | MAY_EXEC));
1736 if (error) {
1737 fput(filp);
1738 filp = ERR_PTR(error);
1739 }
1740 }
1741 return filp;
1742 }
1743
1744 /*
1745 * It already exists.
1746 */
1747 mutex_unlock(&dir->d_inode->i_mutex);
1748 audit_inode(pathname, path.dentry);
1749
1750 error = -EEXIST;
1751 if (flag & O_EXCL)
1752 goto exit_dput;
1753
1754 if (__follow_mount(&path)) {
1755 error = -ELOOP;
1756 if (flag & O_NOFOLLOW)
1757 goto exit_dput;
1758 }
1759
1760 error = -ENOENT;
1761 if (!path.dentry->d_inode)
1762 goto exit_dput;
1763 if (path.dentry->d_inode->i_op->follow_link)
1764 goto do_link;
1765
1766 path_to_nameidata(&path, &nd);
1767 error = -EISDIR;
1768 if (S_ISDIR(path.dentry->d_inode->i_mode))
1769 goto exit;
1770 ok:
1771 /*
1772 * Consider:
1773 * 1. may_open() truncates a file
1774 * 2. a rw->ro mount transition occurs
1775 * 3. nameidata_to_filp() fails due to
1776 * the ro mount.
1777 * That would be inconsistent, and should
1778 * be avoided. Taking this mnt write here
1779 * ensures that (2) can not occur.
1780 */
1781 will_truncate = open_will_truncate(flag, nd.path.dentry->d_inode);
1782 if (will_truncate) {
1783 error = mnt_want_write(nd.path.mnt);
1784 if (error)
1785 goto exit;
1786 }
1787 error = may_open(&nd.path, acc_mode, flag);
1788 if (error) {
1789 if (will_truncate)
1790 mnt_drop_write(nd.path.mnt);
1791 goto exit;
1792 }
1793 filp = nameidata_to_filp(&nd);
1794 if (!IS_ERR(filp)) {
1795 error = ima_path_check(&filp->f_path, filp->f_mode &
1796 (MAY_READ | MAY_WRITE | MAY_EXEC));
1797 if (error) {
1798 fput(filp);
1799 filp = ERR_PTR(error);
1800 }
1801 }
1802 if (!IS_ERR(filp)) {
1803 if (acc_mode & MAY_WRITE)
1804 vfs_dq_init(nd.path.dentry->d_inode);
1805
1806 if (will_truncate) {
1807 error = handle_truncate(&nd.path);
1808 if (error) {
1809 fput(filp);
1810 filp = ERR_PTR(error);
1811 }
1812 }
1813 }
1814 /*
1815 * It is now safe to drop the mnt write
1816 * because the filp has had a write taken
1817 * on its behalf.
1818 */
1819 if (will_truncate)
1820 mnt_drop_write(nd.path.mnt);
1821 if (nd.root.mnt)
1822 path_put(&nd.root);
1823 return filp;
1824
1825 exit_mutex_unlock:
1826 mutex_unlock(&dir->d_inode->i_mutex);
1827 exit_dput:
1828 path_put_conditional(&path, &nd);
1829 exit:
1830 if (!IS_ERR(nd.intent.open.file))
1831 release_open_intent(&nd);
1832 exit_parent:
1833 if (nd.root.mnt)
1834 path_put(&nd.root);
1835 path_put(&nd.path);
1836 return ERR_PTR(error);
1837
1838 do_link:
1839 error = -ELOOP;
1840 if (flag & O_NOFOLLOW)
1841 goto exit_dput;
1842 /*
1843 * This is subtle. Instead of calling do_follow_link() we do the
1844 * thing by hands. The reason is that this way we have zero link_count
1845 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1846 * After that we have the parent and last component, i.e.
1847 * we are in the same situation as after the first path_walk().
1848 * Well, almost - if the last component is normal we get its copy
1849 * stored in nd->last.name and we will have to putname() it when we
1850 * are done. Procfs-like symlinks just set LAST_BIND.
1851 */
1852 nd.flags |= LOOKUP_PARENT;
1853 error = security_inode_follow_link(path.dentry, &nd);
1854 if (error)
1855 goto exit_dput;
1856 save = nd.path;
1857 path_get(&save);
1858 error = __do_follow_link(&path, &nd);
1859 if (error == -ESTALE) {
1860 /* nd.path had been dropped */
1861 nd.path = save;
1862 path_get(&nd.path);
1863 nd.flags |= LOOKUP_REVAL;
1864 error = __do_follow_link(&path, &nd);
1865 }
1866 path_put(&save);
1867 path_put(&path);
1868 if (error) {
1869 /* Does someone understand code flow here? Or it is only
1870 * me so stupid? Anathema to whoever designed this non-sense
1871 * with "intent.open".
1872 */
1873 release_open_intent(&nd);
1874 if (nd.root.mnt)
1875 path_put(&nd.root);
1876 return ERR_PTR(error);
1877 }
1878 nd.flags &= ~LOOKUP_PARENT;
1879 if (nd.last_type == LAST_BIND)
1880 goto ok;
1881 error = -EISDIR;
1882 if (nd.last_type != LAST_NORM)
1883 goto exit;
1884 if (nd.last.name[nd.last.len]) {
1885 __putname(nd.last.name);
1886 goto exit;
1887 }
1888 error = -ELOOP;
1889 if (count++==32) {
1890 __putname(nd.last.name);
1891 goto exit;
1892 }
1893 dir = nd.path.dentry;
1894 mutex_lock(&dir->d_inode->i_mutex);
1895 path.dentry = lookup_hash(&nd);
1896 path.mnt = nd.path.mnt;
1897 __putname(nd.last.name);
1898 goto do_last;
1899 }
1900
1901 /**
1902 * filp_open - open file and return file pointer
1903 *
1904 * @filename: path to open
1905 * @flags: open flags as per the open(2) second argument
1906 * @mode: mode for the new file if O_CREAT is set, else ignored
1907 *
1908 * This is the helper to open a file from kernelspace if you really
1909 * have to. But in generally you should not do this, so please move
1910 * along, nothing to see here..
1911 */
1912 struct file *filp_open(const char *filename, int flags, int mode)
1913 {
1914 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1915 }
1916 EXPORT_SYMBOL(filp_open);
1917
1918 /**
1919 * lookup_create - lookup a dentry, creating it if it doesn't exist
1920 * @nd: nameidata info
1921 * @is_dir: directory flag
1922 *
1923 * Simple function to lookup and return a dentry and create it
1924 * if it doesn't exist. Is SMP-safe.
1925 *
1926 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1927 */
1928 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1929 {
1930 struct dentry *dentry = ERR_PTR(-EEXIST);
1931
1932 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1933 /*
1934 * Yucky last component or no last component at all?
1935 * (foo/., foo/.., /////)
1936 */
1937 if (nd->last_type != LAST_NORM)
1938 goto fail;
1939 nd->flags &= ~LOOKUP_PARENT;
1940 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1941 nd->intent.open.flags = O_EXCL;
1942
1943 /*
1944 * Do the final lookup.
1945 */
1946 dentry = lookup_hash(nd);
1947 if (IS_ERR(dentry))
1948 goto fail;
1949
1950 if (dentry->d_inode)
1951 goto eexist;
1952 /*
1953 * Special case - lookup gave negative, but... we had foo/bar/
1954 * From the vfs_mknod() POV we just have a negative dentry -
1955 * all is fine. Let's be bastards - you had / on the end, you've
1956 * been asking for (non-existent) directory. -ENOENT for you.
1957 */
1958 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1959 dput(dentry);
1960 dentry = ERR_PTR(-ENOENT);
1961 }
1962 return dentry;
1963 eexist:
1964 dput(dentry);
1965 dentry = ERR_PTR(-EEXIST);
1966 fail:
1967 return dentry;
1968 }
1969 EXPORT_SYMBOL_GPL(lookup_create);
1970
1971 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1972 {
1973 int error = may_create(dir, dentry);
1974
1975 if (error)
1976 return error;
1977
1978 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1979 return -EPERM;
1980
1981 if (!dir->i_op->mknod)
1982 return -EPERM;
1983
1984 error = devcgroup_inode_mknod(mode, dev);
1985 if (error)
1986 return error;
1987
1988 error = security_inode_mknod(dir, dentry, mode, dev);
1989 if (error)
1990 return error;
1991
1992 vfs_dq_init(dir);
1993 error = dir->i_op->mknod(dir, dentry, mode, dev);
1994 if (!error)
1995 fsnotify_create(dir, dentry);
1996 return error;
1997 }
1998
1999 static int may_mknod(mode_t mode)
2000 {
2001 switch (mode & S_IFMT) {
2002 case S_IFREG:
2003 case S_IFCHR:
2004 case S_IFBLK:
2005 case S_IFIFO:
2006 case S_IFSOCK:
2007 case 0: /* zero mode translates to S_IFREG */
2008 return 0;
2009 case S_IFDIR:
2010 return -EPERM;
2011 default:
2012 return -EINVAL;
2013 }
2014 }
2015
2016 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2017 unsigned, dev)
2018 {
2019 int error;
2020 char *tmp;
2021 struct dentry *dentry;
2022 struct nameidata nd;
2023
2024 if (S_ISDIR(mode))
2025 return -EPERM;
2026
2027 error = user_path_parent(dfd, filename, &nd, &tmp);
2028 if (error)
2029 return error;
2030
2031 dentry = lookup_create(&nd, 0);
2032 if (IS_ERR(dentry)) {
2033 error = PTR_ERR(dentry);
2034 goto out_unlock;
2035 }
2036 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2037 mode &= ~current_umask();
2038 error = may_mknod(mode);
2039 if (error)
2040 goto out_dput;
2041 error = mnt_want_write(nd.path.mnt);
2042 if (error)
2043 goto out_dput;
2044 error = security_path_mknod(&nd.path, dentry, mode, dev);
2045 if (error)
2046 goto out_drop_write;
2047 switch (mode & S_IFMT) {
2048 case 0: case S_IFREG:
2049 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2050 break;
2051 case S_IFCHR: case S_IFBLK:
2052 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2053 new_decode_dev(dev));
2054 break;
2055 case S_IFIFO: case S_IFSOCK:
2056 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2057 break;
2058 }
2059 out_drop_write:
2060 mnt_drop_write(nd.path.mnt);
2061 out_dput:
2062 dput(dentry);
2063 out_unlock:
2064 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2065 path_put(&nd.path);
2066 putname(tmp);
2067
2068 return error;
2069 }
2070
2071 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2072 {
2073 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2074 }
2075
2076 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2077 {
2078 int error = may_create(dir, dentry);
2079
2080 if (error)
2081 return error;
2082
2083 if (!dir->i_op->mkdir)
2084 return -EPERM;
2085
2086 mode &= (S_IRWXUGO|S_ISVTX);
2087 error = security_inode_mkdir(dir, dentry, mode);
2088 if (error)
2089 return error;
2090
2091 vfs_dq_init(dir);
2092 error = dir->i_op->mkdir(dir, dentry, mode);
2093 if (!error)
2094 fsnotify_mkdir(dir, dentry);
2095 return error;
2096 }
2097
2098 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2099 {
2100 int error = 0;
2101 char * tmp;
2102 struct dentry *dentry;
2103 struct nameidata nd;
2104
2105 error = user_path_parent(dfd, pathname, &nd, &tmp);
2106 if (error)
2107 goto out_err;
2108
2109 dentry = lookup_create(&nd, 1);
2110 error = PTR_ERR(dentry);
2111 if (IS_ERR(dentry))
2112 goto out_unlock;
2113
2114 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2115 mode &= ~current_umask();
2116 error = mnt_want_write(nd.path.mnt);
2117 if (error)
2118 goto out_dput;
2119 error = security_path_mkdir(&nd.path, dentry, mode);
2120 if (error)
2121 goto out_drop_write;
2122 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2123 out_drop_write:
2124 mnt_drop_write(nd.path.mnt);
2125 out_dput:
2126 dput(dentry);
2127 out_unlock:
2128 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2129 path_put(&nd.path);
2130 putname(tmp);
2131 out_err:
2132 return error;
2133 }
2134
2135 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2136 {
2137 return sys_mkdirat(AT_FDCWD, pathname, mode);
2138 }
2139
2140 /*
2141 * We try to drop the dentry early: we should have
2142 * a usage count of 2 if we're the only user of this
2143 * dentry, and if that is true (possibly after pruning
2144 * the dcache), then we drop the dentry now.
2145 *
2146 * A low-level filesystem can, if it choses, legally
2147 * do a
2148 *
2149 * if (!d_unhashed(dentry))
2150 * return -EBUSY;
2151 *
2152 * if it cannot handle the case of removing a directory
2153 * that is still in use by something else..
2154 */
2155 void dentry_unhash(struct dentry *dentry)
2156 {
2157 dget(dentry);
2158 shrink_dcache_parent(dentry);
2159 spin_lock(&dcache_lock);
2160 spin_lock(&dentry->d_lock);
2161 if (atomic_read(&dentry->d_count) == 2)
2162 __d_drop(dentry);
2163 spin_unlock(&dentry->d_lock);
2164 spin_unlock(&dcache_lock);
2165 }
2166
2167 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2168 {
2169 int error = may_delete(dir, dentry, 1);
2170
2171 if (error)
2172 return error;
2173
2174 if (!dir->i_op->rmdir)
2175 return -EPERM;
2176
2177 vfs_dq_init(dir);
2178
2179 mutex_lock(&dentry->d_inode->i_mutex);
2180 dentry_unhash(dentry);
2181 if (d_mountpoint(dentry))
2182 error = -EBUSY;
2183 else {
2184 error = security_inode_rmdir(dir, dentry);
2185 if (!error) {
2186 error = dir->i_op->rmdir(dir, dentry);
2187 if (!error)
2188 dentry->d_inode->i_flags |= S_DEAD;
2189 }
2190 }
2191 mutex_unlock(&dentry->d_inode->i_mutex);
2192 if (!error) {
2193 d_delete(dentry);
2194 }
2195 dput(dentry);
2196
2197 return error;
2198 }
2199
2200 static long do_rmdir(int dfd, const char __user *pathname)
2201 {
2202 int error = 0;
2203 char * name;
2204 struct dentry *dentry;
2205 struct nameidata nd;
2206
2207 error = user_path_parent(dfd, pathname, &nd, &name);
2208 if (error)
2209 return error;
2210
2211 switch(nd.last_type) {
2212 case LAST_DOTDOT:
2213 error = -ENOTEMPTY;
2214 goto exit1;
2215 case LAST_DOT:
2216 error = -EINVAL;
2217 goto exit1;
2218 case LAST_ROOT:
2219 error = -EBUSY;
2220 goto exit1;
2221 }
2222
2223 nd.flags &= ~LOOKUP_PARENT;
2224
2225 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2226 dentry = lookup_hash(&nd);
2227 error = PTR_ERR(dentry);
2228 if (IS_ERR(dentry))
2229 goto exit2;
2230 error = mnt_want_write(nd.path.mnt);
2231 if (error)
2232 goto exit3;
2233 error = security_path_rmdir(&nd.path, dentry);
2234 if (error)
2235 goto exit4;
2236 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2237 exit4:
2238 mnt_drop_write(nd.path.mnt);
2239 exit3:
2240 dput(dentry);
2241 exit2:
2242 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2243 exit1:
2244 path_put(&nd.path);
2245 putname(name);
2246 return error;
2247 }
2248
2249 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2250 {
2251 return do_rmdir(AT_FDCWD, pathname);
2252 }
2253
2254 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2255 {
2256 int error = may_delete(dir, dentry, 0);
2257
2258 if (error)
2259 return error;
2260
2261 if (!dir->i_op->unlink)
2262 return -EPERM;
2263
2264 vfs_dq_init(dir);
2265
2266 mutex_lock(&dentry->d_inode->i_mutex);
2267 if (d_mountpoint(dentry))
2268 error = -EBUSY;
2269 else {
2270 error = security_inode_unlink(dir, dentry);
2271 if (!error)
2272 error = dir->i_op->unlink(dir, dentry);
2273 }
2274 mutex_unlock(&dentry->d_inode->i_mutex);
2275
2276 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2277 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2278 fsnotify_link_count(dentry->d_inode);
2279 d_delete(dentry);
2280 }
2281
2282 return error;
2283 }
2284
2285 /*
2286 * Make sure that the actual truncation of the file will occur outside its
2287 * directory's i_mutex. Truncate can take a long time if there is a lot of
2288 * writeout happening, and we don't want to prevent access to the directory
2289 * while waiting on the I/O.
2290 */
2291 static long do_unlinkat(int dfd, const char __user *pathname)
2292 {
2293 int error;
2294 char *name;
2295 struct dentry *dentry;
2296 struct nameidata nd;
2297 struct inode *inode = NULL;
2298
2299 error = user_path_parent(dfd, pathname, &nd, &name);
2300 if (error)
2301 return error;
2302
2303 error = -EISDIR;
2304 if (nd.last_type != LAST_NORM)
2305 goto exit1;
2306
2307 nd.flags &= ~LOOKUP_PARENT;
2308
2309 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2310 dentry = lookup_hash(&nd);
2311 error = PTR_ERR(dentry);
2312 if (!IS_ERR(dentry)) {
2313 /* Why not before? Because we want correct error value */
2314 if (nd.last.name[nd.last.len])
2315 goto slashes;
2316 inode = dentry->d_inode;
2317 if (inode)
2318 atomic_inc(&inode->i_count);
2319 error = mnt_want_write(nd.path.mnt);
2320 if (error)
2321 goto exit2;
2322 error = security_path_unlink(&nd.path, dentry);
2323 if (error)
2324 goto exit3;
2325 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2326 exit3:
2327 mnt_drop_write(nd.path.mnt);
2328 exit2:
2329 dput(dentry);
2330 }
2331 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2332 if (inode)
2333 iput(inode); /* truncate the inode here */
2334 exit1:
2335 path_put(&nd.path);
2336 putname(name);
2337 return error;
2338
2339 slashes:
2340 error = !dentry->d_inode ? -ENOENT :
2341 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2342 goto exit2;
2343 }
2344
2345 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2346 {
2347 if ((flag & ~AT_REMOVEDIR) != 0)
2348 return -EINVAL;
2349
2350 if (flag & AT_REMOVEDIR)
2351 return do_rmdir(dfd, pathname);
2352
2353 return do_unlinkat(dfd, pathname);
2354 }
2355
2356 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2357 {
2358 return do_unlinkat(AT_FDCWD, pathname);
2359 }
2360
2361 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2362 {
2363 int error = may_create(dir, dentry);
2364
2365 if (error)
2366 return error;
2367
2368 if (!dir->i_op->symlink)
2369 return -EPERM;
2370
2371 error = security_inode_symlink(dir, dentry, oldname);
2372 if (error)
2373 return error;
2374
2375 vfs_dq_init(dir);
2376 error = dir->i_op->symlink(dir, dentry, oldname);
2377 if (!error)
2378 fsnotify_create(dir, dentry);
2379 return error;
2380 }
2381
2382 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2383 int, newdfd, const char __user *, newname)
2384 {
2385 int error;
2386 char *from;
2387 char *to;
2388 struct dentry *dentry;
2389 struct nameidata nd;
2390
2391 from = getname(oldname);
2392 if (IS_ERR(from))
2393 return PTR_ERR(from);
2394
2395 error = user_path_parent(newdfd, newname, &nd, &to);
2396 if (error)
2397 goto out_putname;
2398
2399 dentry = lookup_create(&nd, 0);
2400 error = PTR_ERR(dentry);
2401 if (IS_ERR(dentry))
2402 goto out_unlock;
2403
2404 error = mnt_want_write(nd.path.mnt);
2405 if (error)
2406 goto out_dput;
2407 error = security_path_symlink(&nd.path, dentry, from);
2408 if (error)
2409 goto out_drop_write;
2410 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2411 out_drop_write:
2412 mnt_drop_write(nd.path.mnt);
2413 out_dput:
2414 dput(dentry);
2415 out_unlock:
2416 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2417 path_put(&nd.path);
2418 putname(to);
2419 out_putname:
2420 putname(from);
2421 return error;
2422 }
2423
2424 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2425 {
2426 return sys_symlinkat(oldname, AT_FDCWD, newname);
2427 }
2428
2429 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2430 {
2431 struct inode *inode = old_dentry->d_inode;
2432 int error;
2433
2434 if (!inode)
2435 return -ENOENT;
2436
2437 error = may_create(dir, new_dentry);
2438 if (error)
2439 return error;
2440
2441 if (dir->i_sb != inode->i_sb)
2442 return -EXDEV;
2443
2444 /*
2445 * A link to an append-only or immutable file cannot be created.
2446 */
2447 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2448 return -EPERM;
2449 if (!dir->i_op->link)
2450 return -EPERM;
2451 if (S_ISDIR(inode->i_mode))
2452 return -EPERM;
2453
2454 error = security_inode_link(old_dentry, dir, new_dentry);
2455 if (error)
2456 return error;
2457
2458 mutex_lock(&inode->i_mutex);
2459 vfs_dq_init(dir);
2460 error = dir->i_op->link(old_dentry, dir, new_dentry);
2461 mutex_unlock(&inode->i_mutex);
2462 if (!error)
2463 fsnotify_link(dir, inode, new_dentry);
2464 return error;
2465 }
2466
2467 /*
2468 * Hardlinks are often used in delicate situations. We avoid
2469 * security-related surprises by not following symlinks on the
2470 * newname. --KAB
2471 *
2472 * We don't follow them on the oldname either to be compatible
2473 * with linux 2.0, and to avoid hard-linking to directories
2474 * and other special files. --ADM
2475 */
2476 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2477 int, newdfd, const char __user *, newname, int, flags)
2478 {
2479 struct dentry *new_dentry;
2480 struct nameidata nd;
2481 struct path old_path;
2482 int error;
2483 char *to;
2484
2485 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2486 return -EINVAL;
2487
2488 error = user_path_at(olddfd, oldname,
2489 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2490 &old_path);
2491 if (error)
2492 return error;
2493
2494 error = user_path_parent(newdfd, newname, &nd, &to);
2495 if (error)
2496 goto out;
2497 error = -EXDEV;
2498 if (old_path.mnt != nd.path.mnt)
2499 goto out_release;
2500 new_dentry = lookup_create(&nd, 0);
2501 error = PTR_ERR(new_dentry);
2502 if (IS_ERR(new_dentry))
2503 goto out_unlock;
2504 error = mnt_want_write(nd.path.mnt);
2505 if (error)
2506 goto out_dput;
2507 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2508 if (error)
2509 goto out_drop_write;
2510 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2511 out_drop_write:
2512 mnt_drop_write(nd.path.mnt);
2513 out_dput:
2514 dput(new_dentry);
2515 out_unlock:
2516 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2517 out_release:
2518 path_put(&nd.path);
2519 putname(to);
2520 out:
2521 path_put(&old_path);
2522
2523 return error;
2524 }
2525
2526 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2527 {
2528 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2529 }
2530
2531 /*
2532 * The worst of all namespace operations - renaming directory. "Perverted"
2533 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2534 * Problems:
2535 * a) we can get into loop creation. Check is done in is_subdir().
2536 * b) race potential - two innocent renames can create a loop together.
2537 * That's where 4.4 screws up. Current fix: serialization on
2538 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2539 * story.
2540 * c) we have to lock _three_ objects - parents and victim (if it exists).
2541 * And that - after we got ->i_mutex on parents (until then we don't know
2542 * whether the target exists). Solution: try to be smart with locking
2543 * order for inodes. We rely on the fact that tree topology may change
2544 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2545 * move will be locked. Thus we can rank directories by the tree
2546 * (ancestors first) and rank all non-directories after them.
2547 * That works since everybody except rename does "lock parent, lookup,
2548 * lock child" and rename is under ->s_vfs_rename_mutex.
2549 * HOWEVER, it relies on the assumption that any object with ->lookup()
2550 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2551 * we'd better make sure that there's no link(2) for them.
2552 * d) some filesystems don't support opened-but-unlinked directories,
2553 * either because of layout or because they are not ready to deal with
2554 * all cases correctly. The latter will be fixed (taking this sort of
2555 * stuff into VFS), but the former is not going away. Solution: the same
2556 * trick as in rmdir().
2557 * e) conversion from fhandle to dentry may come in the wrong moment - when
2558 * we are removing the target. Solution: we will have to grab ->i_mutex
2559 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2560 * ->i_mutex on parents, which works but leads to some truely excessive
2561 * locking].
2562 */
2563 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2564 struct inode *new_dir, struct dentry *new_dentry)
2565 {
2566 int error = 0;
2567 struct inode *target;
2568
2569 /*
2570 * If we are going to change the parent - check write permissions,
2571 * we'll need to flip '..'.
2572 */
2573 if (new_dir != old_dir) {
2574 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2575 if (error)
2576 return error;
2577 }
2578
2579 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2580 if (error)
2581 return error;
2582
2583 target = new_dentry->d_inode;
2584 if (target) {
2585 mutex_lock(&target->i_mutex);
2586 dentry_unhash(new_dentry);
2587 }
2588 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2589 error = -EBUSY;
2590 else
2591 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2592 if (target) {
2593 if (!error)
2594 target->i_flags |= S_DEAD;
2595 mutex_unlock(&target->i_mutex);
2596 if (d_unhashed(new_dentry))
2597 d_rehash(new_dentry);
2598 dput(new_dentry);
2599 }
2600 if (!error)
2601 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2602 d_move(old_dentry,new_dentry);
2603 return error;
2604 }
2605
2606 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2607 struct inode *new_dir, struct dentry *new_dentry)
2608 {
2609 struct inode *target;
2610 int error;
2611
2612 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2613 if (error)
2614 return error;
2615
2616 dget(new_dentry);
2617 target = new_dentry->d_inode;
2618 if (target)
2619 mutex_lock(&target->i_mutex);
2620 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2621 error = -EBUSY;
2622 else
2623 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2624 if (!error) {
2625 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2626 d_move(old_dentry, new_dentry);
2627 }
2628 if (target)
2629 mutex_unlock(&target->i_mutex);
2630 dput(new_dentry);
2631 return error;
2632 }
2633
2634 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2635 struct inode *new_dir, struct dentry *new_dentry)
2636 {
2637 int error;
2638 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2639 const char *old_name;
2640
2641 if (old_dentry->d_inode == new_dentry->d_inode)
2642 return 0;
2643
2644 error = may_delete(old_dir, old_dentry, is_dir);
2645 if (error)
2646 return error;
2647
2648 if (!new_dentry->d_inode)
2649 error = may_create(new_dir, new_dentry);
2650 else
2651 error = may_delete(new_dir, new_dentry, is_dir);
2652 if (error)
2653 return error;
2654
2655 if (!old_dir->i_op->rename)
2656 return -EPERM;
2657
2658 vfs_dq_init(old_dir);
2659 vfs_dq_init(new_dir);
2660
2661 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2662
2663 if (is_dir)
2664 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2665 else
2666 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2667 if (!error) {
2668 const char *new_name = old_dentry->d_name.name;
2669 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2670 new_dentry->d_inode, old_dentry);
2671 }
2672 fsnotify_oldname_free(old_name);
2673
2674 return error;
2675 }
2676
2677 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2678 int, newdfd, const char __user *, newname)
2679 {
2680 struct dentry *old_dir, *new_dir;
2681 struct dentry *old_dentry, *new_dentry;
2682 struct dentry *trap;
2683 struct nameidata oldnd, newnd;
2684 char *from;
2685 char *to;
2686 int error;
2687
2688 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2689 if (error)
2690 goto exit;
2691
2692 error = user_path_parent(newdfd, newname, &newnd, &to);
2693 if (error)
2694 goto exit1;
2695
2696 error = -EXDEV;
2697 if (oldnd.path.mnt != newnd.path.mnt)
2698 goto exit2;
2699
2700 old_dir = oldnd.path.dentry;
2701 error = -EBUSY;
2702 if (oldnd.last_type != LAST_NORM)
2703 goto exit2;
2704
2705 new_dir = newnd.path.dentry;
2706 if (newnd.last_type != LAST_NORM)
2707 goto exit2;
2708
2709 oldnd.flags &= ~LOOKUP_PARENT;
2710 newnd.flags &= ~LOOKUP_PARENT;
2711 newnd.flags |= LOOKUP_RENAME_TARGET;
2712
2713 trap = lock_rename(new_dir, old_dir);
2714
2715 old_dentry = lookup_hash(&oldnd);
2716 error = PTR_ERR(old_dentry);
2717 if (IS_ERR(old_dentry))
2718 goto exit3;
2719 /* source must exist */
2720 error = -ENOENT;
2721 if (!old_dentry->d_inode)
2722 goto exit4;
2723 /* unless the source is a directory trailing slashes give -ENOTDIR */
2724 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2725 error = -ENOTDIR;
2726 if (oldnd.last.name[oldnd.last.len])
2727 goto exit4;
2728 if (newnd.last.name[newnd.last.len])
2729 goto exit4;
2730 }
2731 /* source should not be ancestor of target */
2732 error = -EINVAL;
2733 if (old_dentry == trap)
2734 goto exit4;
2735 new_dentry = lookup_hash(&newnd);
2736 error = PTR_ERR(new_dentry);
2737 if (IS_ERR(new_dentry))
2738 goto exit4;
2739 /* target should not be an ancestor of source */
2740 error = -ENOTEMPTY;
2741 if (new_dentry == trap)
2742 goto exit5;
2743
2744 error = mnt_want_write(oldnd.path.mnt);
2745 if (error)
2746 goto exit5;
2747 error = security_path_rename(&oldnd.path, old_dentry,
2748 &newnd.path, new_dentry);
2749 if (error)
2750 goto exit6;
2751 error = vfs_rename(old_dir->d_inode, old_dentry,
2752 new_dir->d_inode, new_dentry);
2753 exit6:
2754 mnt_drop_write(oldnd.path.mnt);
2755 exit5:
2756 dput(new_dentry);
2757 exit4:
2758 dput(old_dentry);
2759 exit3:
2760 unlock_rename(new_dir, old_dir);
2761 exit2:
2762 path_put(&newnd.path);
2763 putname(to);
2764 exit1:
2765 path_put(&oldnd.path);
2766 putname(from);
2767 exit:
2768 return error;
2769 }
2770
2771 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2772 {
2773 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2774 }
2775
2776 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2777 {
2778 int len;
2779
2780 len = PTR_ERR(link);
2781 if (IS_ERR(link))
2782 goto out;
2783
2784 len = strlen(link);
2785 if (len > (unsigned) buflen)
2786 len = buflen;
2787 if (copy_to_user(buffer, link, len))
2788 len = -EFAULT;
2789 out:
2790 return len;
2791 }
2792
2793 /*
2794 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2795 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2796 * using) it for any given inode is up to filesystem.
2797 */
2798 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2799 {
2800 struct nameidata nd;
2801 void *cookie;
2802 int res;
2803
2804 nd.depth = 0;
2805 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2806 if (IS_ERR(cookie))
2807 return PTR_ERR(cookie);
2808
2809 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2810 if (dentry->d_inode->i_op->put_link)
2811 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2812 return res;
2813 }
2814
2815 int vfs_follow_link(struct nameidata *nd, const char *link)
2816 {
2817 return __vfs_follow_link(nd, link);
2818 }
2819
2820 /* get the link contents into pagecache */
2821 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2822 {
2823 char *kaddr;
2824 struct page *page;
2825 struct address_space *mapping = dentry->d_inode->i_mapping;
2826 page = read_mapping_page(mapping, 0, NULL);
2827 if (IS_ERR(page))
2828 return (char*)page;
2829 *ppage = page;
2830 kaddr = kmap(page);
2831 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2832 return kaddr;
2833 }
2834
2835 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2836 {
2837 struct page *page = NULL;
2838 char *s = page_getlink(dentry, &page);
2839 int res = vfs_readlink(dentry,buffer,buflen,s);
2840 if (page) {
2841 kunmap(page);
2842 page_cache_release(page);
2843 }
2844 return res;
2845 }
2846
2847 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2848 {
2849 struct page *page = NULL;
2850 nd_set_link(nd, page_getlink(dentry, &page));
2851 return page;
2852 }
2853
2854 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2855 {
2856 struct page *page = cookie;
2857
2858 if (page) {
2859 kunmap(page);
2860 page_cache_release(page);
2861 }
2862 }
2863
2864 /*
2865 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2866 */
2867 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2868 {
2869 struct address_space *mapping = inode->i_mapping;
2870 struct page *page;
2871 void *fsdata;
2872 int err;
2873 char *kaddr;
2874 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2875 if (nofs)
2876 flags |= AOP_FLAG_NOFS;
2877
2878 retry:
2879 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2880 flags, &page, &fsdata);
2881 if (err)
2882 goto fail;
2883
2884 kaddr = kmap_atomic(page, KM_USER0);
2885 memcpy(kaddr, symname, len-1);
2886 kunmap_atomic(kaddr, KM_USER0);
2887
2888 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2889 page, fsdata);
2890 if (err < 0)
2891 goto fail;
2892 if (err < len-1)
2893 goto retry;
2894
2895 mark_inode_dirty(inode);
2896 return 0;
2897 fail:
2898 return err;
2899 }
2900
2901 int page_symlink(struct inode *inode, const char *symname, int len)
2902 {
2903 return __page_symlink(inode, symname, len,
2904 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2905 }
2906
2907 const struct inode_operations page_symlink_inode_operations = {
2908 .readlink = generic_readlink,
2909 .follow_link = page_follow_link_light,
2910 .put_link = page_put_link,
2911 };
2912
2913 EXPORT_SYMBOL(user_path_at);
2914 EXPORT_SYMBOL(follow_down);
2915 EXPORT_SYMBOL(follow_up);
2916 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2917 EXPORT_SYMBOL(getname);
2918 EXPORT_SYMBOL(lock_rename);
2919 EXPORT_SYMBOL(lookup_one_len);
2920 EXPORT_SYMBOL(page_follow_link_light);
2921 EXPORT_SYMBOL(page_put_link);
2922 EXPORT_SYMBOL(page_readlink);
2923 EXPORT_SYMBOL(__page_symlink);
2924 EXPORT_SYMBOL(page_symlink);
2925 EXPORT_SYMBOL(page_symlink_inode_operations);
2926 EXPORT_SYMBOL(path_lookup);
2927 EXPORT_SYMBOL(kern_path);
2928 EXPORT_SYMBOL(vfs_path_lookup);
2929 EXPORT_SYMBOL(inode_permission);
2930 EXPORT_SYMBOL(file_permission);
2931 EXPORT_SYMBOL(unlock_rename);
2932 EXPORT_SYMBOL(vfs_create);
2933 EXPORT_SYMBOL(vfs_follow_link);
2934 EXPORT_SYMBOL(vfs_link);
2935 EXPORT_SYMBOL(vfs_mkdir);
2936 EXPORT_SYMBOL(vfs_mknod);
2937 EXPORT_SYMBOL(generic_permission);
2938 EXPORT_SYMBOL(vfs_readlink);
2939 EXPORT_SYMBOL(vfs_rename);
2940 EXPORT_SYMBOL(vfs_rmdir);
2941 EXPORT_SYMBOL(vfs_symlink);
2942 EXPORT_SYMBOL(vfs_unlink);
2943 EXPORT_SYMBOL(dentry_unhash);
2944 EXPORT_SYMBOL(generic_readlink);