Merge branch 'x86/ptrace' into x86/tsc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/uaccess.h>
35
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
43 *
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
50 *
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
54 *
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
57 *
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
64 */
65
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
73 *
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
81 */
82
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
85 *
86 * [10-Sep-98 Alan Modra] Another symlink change.
87 */
88
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
96 *
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
102 */
103 /*
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
107 */
108
109 static int __link_path_walk(const char *name, struct nameidata *nd);
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170
171 /**
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
176 *
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
181 */
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
184 {
185 umode_t mode = inode->i_mode;
186
187 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
188
189 if (current->fsuid == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask);
194 if (error == -EACCES)
195 goto check_capabilities;
196 else if (error != -EAGAIN)
197 return error;
198 }
199
200 if (in_group_p(inode->i_gid))
201 mode >>= 3;
202 }
203
204 /*
205 * If the DACs are ok we don't need any capability check.
206 */
207 if ((mask & ~mode) == 0)
208 return 0;
209
210 check_capabilities:
211 /*
212 * Read/write DACs are always overridable.
213 * Executable DACs are overridable if at least one exec bit is set.
214 */
215 if (!(mask & MAY_EXEC) || execute_ok(inode))
216 if (capable(CAP_DAC_OVERRIDE))
217 return 0;
218
219 /*
220 * Searching includes executable on directories, else just read.
221 */
222 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
223 if (capable(CAP_DAC_READ_SEARCH))
224 return 0;
225
226 return -EACCES;
227 }
228
229 int inode_permission(struct inode *inode, int mask)
230 {
231 int retval;
232
233 if (mask & MAY_WRITE) {
234 umode_t mode = inode->i_mode;
235
236 /*
237 * Nobody gets write access to a read-only fs.
238 */
239 if (IS_RDONLY(inode) &&
240 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
241 return -EROFS;
242
243 /*
244 * Nobody gets write access to an immutable file.
245 */
246 if (IS_IMMUTABLE(inode))
247 return -EACCES;
248 }
249
250 /* Ordinary permission routines do not understand MAY_APPEND. */
251 if (inode->i_op && inode->i_op->permission)
252 retval = inode->i_op->permission(inode, mask);
253 else
254 retval = generic_permission(inode, mask, NULL);
255
256 if (retval)
257 return retval;
258
259 retval = devcgroup_inode_permission(inode, mask);
260 if (retval)
261 return retval;
262
263 return security_inode_permission(inode,
264 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
265 }
266
267 /**
268 * vfs_permission - check for access rights to a given path
269 * @nd: lookup result that describes the path
270 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
271 *
272 * Used to check for read/write/execute permissions on a path.
273 * We use "fsuid" for this, letting us set arbitrary permissions
274 * for filesystem access without changing the "normal" uids which
275 * are used for other things.
276 */
277 int vfs_permission(struct nameidata *nd, int mask)
278 {
279 return inode_permission(nd->path.dentry->d_inode, mask);
280 }
281
282 /**
283 * file_permission - check for additional access rights to a given file
284 * @file: file to check access rights for
285 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
286 *
287 * Used to check for read/write/execute permissions on an already opened
288 * file.
289 *
290 * Note:
291 * Do not use this function in new code. All access checks should
292 * be done using vfs_permission().
293 */
294 int file_permission(struct file *file, int mask)
295 {
296 return inode_permission(file->f_path.dentry->d_inode, mask);
297 }
298
299 /*
300 * get_write_access() gets write permission for a file.
301 * put_write_access() releases this write permission.
302 * This is used for regular files.
303 * We cannot support write (and maybe mmap read-write shared) accesses and
304 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
305 * can have the following values:
306 * 0: no writers, no VM_DENYWRITE mappings
307 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
308 * > 0: (i_writecount) users are writing to the file.
309 *
310 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
311 * except for the cases where we don't hold i_writecount yet. Then we need to
312 * use {get,deny}_write_access() - these functions check the sign and refuse
313 * to do the change if sign is wrong. Exclusion between them is provided by
314 * the inode->i_lock spinlock.
315 */
316
317 int get_write_access(struct inode * inode)
318 {
319 spin_lock(&inode->i_lock);
320 if (atomic_read(&inode->i_writecount) < 0) {
321 spin_unlock(&inode->i_lock);
322 return -ETXTBSY;
323 }
324 atomic_inc(&inode->i_writecount);
325 spin_unlock(&inode->i_lock);
326
327 return 0;
328 }
329
330 int deny_write_access(struct file * file)
331 {
332 struct inode *inode = file->f_path.dentry->d_inode;
333
334 spin_lock(&inode->i_lock);
335 if (atomic_read(&inode->i_writecount) > 0) {
336 spin_unlock(&inode->i_lock);
337 return -ETXTBSY;
338 }
339 atomic_dec(&inode->i_writecount);
340 spin_unlock(&inode->i_lock);
341
342 return 0;
343 }
344
345 /**
346 * path_get - get a reference to a path
347 * @path: path to get the reference to
348 *
349 * Given a path increment the reference count to the dentry and the vfsmount.
350 */
351 void path_get(struct path *path)
352 {
353 mntget(path->mnt);
354 dget(path->dentry);
355 }
356 EXPORT_SYMBOL(path_get);
357
358 /**
359 * path_put - put a reference to a path
360 * @path: path to put the reference to
361 *
362 * Given a path decrement the reference count to the dentry and the vfsmount.
363 */
364 void path_put(struct path *path)
365 {
366 dput(path->dentry);
367 mntput(path->mnt);
368 }
369 EXPORT_SYMBOL(path_put);
370
371 /**
372 * release_open_intent - free up open intent resources
373 * @nd: pointer to nameidata
374 */
375 void release_open_intent(struct nameidata *nd)
376 {
377 if (nd->intent.open.file->f_path.dentry == NULL)
378 put_filp(nd->intent.open.file);
379 else
380 fput(nd->intent.open.file);
381 }
382
383 static inline struct dentry *
384 do_revalidate(struct dentry *dentry, struct nameidata *nd)
385 {
386 int status = dentry->d_op->d_revalidate(dentry, nd);
387 if (unlikely(status <= 0)) {
388 /*
389 * The dentry failed validation.
390 * If d_revalidate returned 0 attempt to invalidate
391 * the dentry otherwise d_revalidate is asking us
392 * to return a fail status.
393 */
394 if (!status) {
395 if (!d_invalidate(dentry)) {
396 dput(dentry);
397 dentry = NULL;
398 }
399 } else {
400 dput(dentry);
401 dentry = ERR_PTR(status);
402 }
403 }
404 return dentry;
405 }
406
407 /*
408 * Internal lookup() using the new generic dcache.
409 * SMP-safe
410 */
411 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
412 {
413 struct dentry * dentry = __d_lookup(parent, name);
414
415 /* lockess __d_lookup may fail due to concurrent d_move()
416 * in some unrelated directory, so try with d_lookup
417 */
418 if (!dentry)
419 dentry = d_lookup(parent, name);
420
421 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
422 dentry = do_revalidate(dentry, nd);
423
424 return dentry;
425 }
426
427 /*
428 * Short-cut version of permission(), for calling by
429 * path_walk(), when dcache lock is held. Combines parts
430 * of permission() and generic_permission(), and tests ONLY for
431 * MAY_EXEC permission.
432 *
433 * If appropriate, check DAC only. If not appropriate, or
434 * short-cut DAC fails, then call permission() to do more
435 * complete permission check.
436 */
437 static int exec_permission_lite(struct inode *inode)
438 {
439 umode_t mode = inode->i_mode;
440
441 if (inode->i_op && inode->i_op->permission)
442 return -EAGAIN;
443
444 if (current->fsuid == inode->i_uid)
445 mode >>= 6;
446 else if (in_group_p(inode->i_gid))
447 mode >>= 3;
448
449 if (mode & MAY_EXEC)
450 goto ok;
451
452 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
453 goto ok;
454
455 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
456 goto ok;
457
458 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
459 goto ok;
460
461 return -EACCES;
462 ok:
463 return security_inode_permission(inode, MAY_EXEC);
464 }
465
466 /*
467 * This is called when everything else fails, and we actually have
468 * to go to the low-level filesystem to find out what we should do..
469 *
470 * We get the directory semaphore, and after getting that we also
471 * make sure that nobody added the entry to the dcache in the meantime..
472 * SMP-safe
473 */
474 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
475 {
476 struct dentry * result;
477 struct inode *dir = parent->d_inode;
478
479 mutex_lock(&dir->i_mutex);
480 /*
481 * First re-do the cached lookup just in case it was created
482 * while we waited for the directory semaphore..
483 *
484 * FIXME! This could use version numbering or similar to
485 * avoid unnecessary cache lookups.
486 *
487 * The "dcache_lock" is purely to protect the RCU list walker
488 * from concurrent renames at this point (we mustn't get false
489 * negatives from the RCU list walk here, unlike the optimistic
490 * fast walk).
491 *
492 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
493 */
494 result = d_lookup(parent, name);
495 if (!result) {
496 struct dentry *dentry;
497
498 /* Don't create child dentry for a dead directory. */
499 result = ERR_PTR(-ENOENT);
500 if (IS_DEADDIR(dir))
501 goto out_unlock;
502
503 dentry = d_alloc(parent, name);
504 result = ERR_PTR(-ENOMEM);
505 if (dentry) {
506 result = dir->i_op->lookup(dir, dentry, nd);
507 if (result)
508 dput(dentry);
509 else
510 result = dentry;
511 }
512 out_unlock:
513 mutex_unlock(&dir->i_mutex);
514 return result;
515 }
516
517 /*
518 * Uhhuh! Nasty case: the cache was re-populated while
519 * we waited on the semaphore. Need to revalidate.
520 */
521 mutex_unlock(&dir->i_mutex);
522 if (result->d_op && result->d_op->d_revalidate) {
523 result = do_revalidate(result, nd);
524 if (!result)
525 result = ERR_PTR(-ENOENT);
526 }
527 return result;
528 }
529
530 /* SMP-safe */
531 static __always_inline void
532 walk_init_root(const char *name, struct nameidata *nd)
533 {
534 struct fs_struct *fs = current->fs;
535
536 read_lock(&fs->lock);
537 nd->path = fs->root;
538 path_get(&fs->root);
539 read_unlock(&fs->lock);
540 }
541
542 /*
543 * Wrapper to retry pathname resolution whenever the underlying
544 * file system returns an ESTALE.
545 *
546 * Retry the whole path once, forcing real lookup requests
547 * instead of relying on the dcache.
548 */
549 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
550 {
551 struct path save = nd->path;
552 int result;
553
554 /* make sure the stuff we saved doesn't go away */
555 path_get(&save);
556
557 result = __link_path_walk(name, nd);
558 if (result == -ESTALE) {
559 /* nd->path had been dropped */
560 nd->path = save;
561 path_get(&nd->path);
562 nd->flags |= LOOKUP_REVAL;
563 result = __link_path_walk(name, nd);
564 }
565
566 path_put(&save);
567
568 return result;
569 }
570
571 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
572 {
573 int res = 0;
574 char *name;
575 if (IS_ERR(link))
576 goto fail;
577
578 if (*link == '/') {
579 path_put(&nd->path);
580 walk_init_root(link, nd);
581 }
582 res = link_path_walk(link, nd);
583 if (nd->depth || res || nd->last_type!=LAST_NORM)
584 return res;
585 /*
586 * If it is an iterative symlinks resolution in open_namei() we
587 * have to copy the last component. And all that crap because of
588 * bloody create() on broken symlinks. Furrfu...
589 */
590 name = __getname();
591 if (unlikely(!name)) {
592 path_put(&nd->path);
593 return -ENOMEM;
594 }
595 strcpy(name, nd->last.name);
596 nd->last.name = name;
597 return 0;
598 fail:
599 path_put(&nd->path);
600 return PTR_ERR(link);
601 }
602
603 static void path_put_conditional(struct path *path, struct nameidata *nd)
604 {
605 dput(path->dentry);
606 if (path->mnt != nd->path.mnt)
607 mntput(path->mnt);
608 }
609
610 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
611 {
612 dput(nd->path.dentry);
613 if (nd->path.mnt != path->mnt)
614 mntput(nd->path.mnt);
615 nd->path.mnt = path->mnt;
616 nd->path.dentry = path->dentry;
617 }
618
619 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
620 {
621 int error;
622 void *cookie;
623 struct dentry *dentry = path->dentry;
624
625 touch_atime(path->mnt, dentry);
626 nd_set_link(nd, NULL);
627
628 if (path->mnt != nd->path.mnt) {
629 path_to_nameidata(path, nd);
630 dget(dentry);
631 }
632 mntget(path->mnt);
633 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
634 error = PTR_ERR(cookie);
635 if (!IS_ERR(cookie)) {
636 char *s = nd_get_link(nd);
637 error = 0;
638 if (s)
639 error = __vfs_follow_link(nd, s);
640 if (dentry->d_inode->i_op->put_link)
641 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
642 }
643 path_put(path);
644
645 return error;
646 }
647
648 /*
649 * This limits recursive symlink follows to 8, while
650 * limiting consecutive symlinks to 40.
651 *
652 * Without that kind of total limit, nasty chains of consecutive
653 * symlinks can cause almost arbitrarily long lookups.
654 */
655 static inline int do_follow_link(struct path *path, struct nameidata *nd)
656 {
657 int err = -ELOOP;
658 if (current->link_count >= MAX_NESTED_LINKS)
659 goto loop;
660 if (current->total_link_count >= 40)
661 goto loop;
662 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
663 cond_resched();
664 err = security_inode_follow_link(path->dentry, nd);
665 if (err)
666 goto loop;
667 current->link_count++;
668 current->total_link_count++;
669 nd->depth++;
670 err = __do_follow_link(path, nd);
671 current->link_count--;
672 nd->depth--;
673 return err;
674 loop:
675 path_put_conditional(path, nd);
676 path_put(&nd->path);
677 return err;
678 }
679
680 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
681 {
682 struct vfsmount *parent;
683 struct dentry *mountpoint;
684 spin_lock(&vfsmount_lock);
685 parent=(*mnt)->mnt_parent;
686 if (parent == *mnt) {
687 spin_unlock(&vfsmount_lock);
688 return 0;
689 }
690 mntget(parent);
691 mountpoint=dget((*mnt)->mnt_mountpoint);
692 spin_unlock(&vfsmount_lock);
693 dput(*dentry);
694 *dentry = mountpoint;
695 mntput(*mnt);
696 *mnt = parent;
697 return 1;
698 }
699
700 /* no need for dcache_lock, as serialization is taken care in
701 * namespace.c
702 */
703 static int __follow_mount(struct path *path)
704 {
705 int res = 0;
706 while (d_mountpoint(path->dentry)) {
707 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
708 if (!mounted)
709 break;
710 dput(path->dentry);
711 if (res)
712 mntput(path->mnt);
713 path->mnt = mounted;
714 path->dentry = dget(mounted->mnt_root);
715 res = 1;
716 }
717 return res;
718 }
719
720 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
721 {
722 while (d_mountpoint(*dentry)) {
723 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
724 if (!mounted)
725 break;
726 dput(*dentry);
727 mntput(*mnt);
728 *mnt = mounted;
729 *dentry = dget(mounted->mnt_root);
730 }
731 }
732
733 /* no need for dcache_lock, as serialization is taken care in
734 * namespace.c
735 */
736 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
737 {
738 struct vfsmount *mounted;
739
740 mounted = lookup_mnt(*mnt, *dentry);
741 if (mounted) {
742 dput(*dentry);
743 mntput(*mnt);
744 *mnt = mounted;
745 *dentry = dget(mounted->mnt_root);
746 return 1;
747 }
748 return 0;
749 }
750
751 static __always_inline void follow_dotdot(struct nameidata *nd)
752 {
753 struct fs_struct *fs = current->fs;
754
755 while(1) {
756 struct vfsmount *parent;
757 struct dentry *old = nd->path.dentry;
758
759 read_lock(&fs->lock);
760 if (nd->path.dentry == fs->root.dentry &&
761 nd->path.mnt == fs->root.mnt) {
762 read_unlock(&fs->lock);
763 break;
764 }
765 read_unlock(&fs->lock);
766 spin_lock(&dcache_lock);
767 if (nd->path.dentry != nd->path.mnt->mnt_root) {
768 nd->path.dentry = dget(nd->path.dentry->d_parent);
769 spin_unlock(&dcache_lock);
770 dput(old);
771 break;
772 }
773 spin_unlock(&dcache_lock);
774 spin_lock(&vfsmount_lock);
775 parent = nd->path.mnt->mnt_parent;
776 if (parent == nd->path.mnt) {
777 spin_unlock(&vfsmount_lock);
778 break;
779 }
780 mntget(parent);
781 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
782 spin_unlock(&vfsmount_lock);
783 dput(old);
784 mntput(nd->path.mnt);
785 nd->path.mnt = parent;
786 }
787 follow_mount(&nd->path.mnt, &nd->path.dentry);
788 }
789
790 /*
791 * It's more convoluted than I'd like it to be, but... it's still fairly
792 * small and for now I'd prefer to have fast path as straight as possible.
793 * It _is_ time-critical.
794 */
795 static int do_lookup(struct nameidata *nd, struct qstr *name,
796 struct path *path)
797 {
798 struct vfsmount *mnt = nd->path.mnt;
799 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
800
801 if (!dentry)
802 goto need_lookup;
803 if (dentry->d_op && dentry->d_op->d_revalidate)
804 goto need_revalidate;
805 done:
806 path->mnt = mnt;
807 path->dentry = dentry;
808 __follow_mount(path);
809 return 0;
810
811 need_lookup:
812 dentry = real_lookup(nd->path.dentry, name, nd);
813 if (IS_ERR(dentry))
814 goto fail;
815 goto done;
816
817 need_revalidate:
818 dentry = do_revalidate(dentry, nd);
819 if (!dentry)
820 goto need_lookup;
821 if (IS_ERR(dentry))
822 goto fail;
823 goto done;
824
825 fail:
826 return PTR_ERR(dentry);
827 }
828
829 /*
830 * Name resolution.
831 * This is the basic name resolution function, turning a pathname into
832 * the final dentry. We expect 'base' to be positive and a directory.
833 *
834 * Returns 0 and nd will have valid dentry and mnt on success.
835 * Returns error and drops reference to input namei data on failure.
836 */
837 static int __link_path_walk(const char *name, struct nameidata *nd)
838 {
839 struct path next;
840 struct inode *inode;
841 int err;
842 unsigned int lookup_flags = nd->flags;
843
844 while (*name=='/')
845 name++;
846 if (!*name)
847 goto return_reval;
848
849 inode = nd->path.dentry->d_inode;
850 if (nd->depth)
851 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
852
853 /* At this point we know we have a real path component. */
854 for(;;) {
855 unsigned long hash;
856 struct qstr this;
857 unsigned int c;
858
859 nd->flags |= LOOKUP_CONTINUE;
860 err = exec_permission_lite(inode);
861 if (err == -EAGAIN)
862 err = vfs_permission(nd, MAY_EXEC);
863 if (err)
864 break;
865
866 this.name = name;
867 c = *(const unsigned char *)name;
868
869 hash = init_name_hash();
870 do {
871 name++;
872 hash = partial_name_hash(c, hash);
873 c = *(const unsigned char *)name;
874 } while (c && (c != '/'));
875 this.len = name - (const char *) this.name;
876 this.hash = end_name_hash(hash);
877
878 /* remove trailing slashes? */
879 if (!c)
880 goto last_component;
881 while (*++name == '/');
882 if (!*name)
883 goto last_with_slashes;
884
885 /*
886 * "." and ".." are special - ".." especially so because it has
887 * to be able to know about the current root directory and
888 * parent relationships.
889 */
890 if (this.name[0] == '.') switch (this.len) {
891 default:
892 break;
893 case 2:
894 if (this.name[1] != '.')
895 break;
896 follow_dotdot(nd);
897 inode = nd->path.dentry->d_inode;
898 /* fallthrough */
899 case 1:
900 continue;
901 }
902 /*
903 * See if the low-level filesystem might want
904 * to use its own hash..
905 */
906 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
907 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
908 &this);
909 if (err < 0)
910 break;
911 }
912 /* This does the actual lookups.. */
913 err = do_lookup(nd, &this, &next);
914 if (err)
915 break;
916
917 err = -ENOENT;
918 inode = next.dentry->d_inode;
919 if (!inode)
920 goto out_dput;
921 err = -ENOTDIR;
922 if (!inode->i_op)
923 goto out_dput;
924
925 if (inode->i_op->follow_link) {
926 err = do_follow_link(&next, nd);
927 if (err)
928 goto return_err;
929 err = -ENOENT;
930 inode = nd->path.dentry->d_inode;
931 if (!inode)
932 break;
933 err = -ENOTDIR;
934 if (!inode->i_op)
935 break;
936 } else
937 path_to_nameidata(&next, nd);
938 err = -ENOTDIR;
939 if (!inode->i_op->lookup)
940 break;
941 continue;
942 /* here ends the main loop */
943
944 last_with_slashes:
945 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
946 last_component:
947 /* Clear LOOKUP_CONTINUE iff it was previously unset */
948 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
949 if (lookup_flags & LOOKUP_PARENT)
950 goto lookup_parent;
951 if (this.name[0] == '.') switch (this.len) {
952 default:
953 break;
954 case 2:
955 if (this.name[1] != '.')
956 break;
957 follow_dotdot(nd);
958 inode = nd->path.dentry->d_inode;
959 /* fallthrough */
960 case 1:
961 goto return_reval;
962 }
963 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
964 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
965 &this);
966 if (err < 0)
967 break;
968 }
969 err = do_lookup(nd, &this, &next);
970 if (err)
971 break;
972 inode = next.dentry->d_inode;
973 if ((lookup_flags & LOOKUP_FOLLOW)
974 && inode && inode->i_op && inode->i_op->follow_link) {
975 err = do_follow_link(&next, nd);
976 if (err)
977 goto return_err;
978 inode = nd->path.dentry->d_inode;
979 } else
980 path_to_nameidata(&next, nd);
981 err = -ENOENT;
982 if (!inode)
983 break;
984 if (lookup_flags & LOOKUP_DIRECTORY) {
985 err = -ENOTDIR;
986 if (!inode->i_op || !inode->i_op->lookup)
987 break;
988 }
989 goto return_base;
990 lookup_parent:
991 nd->last = this;
992 nd->last_type = LAST_NORM;
993 if (this.name[0] != '.')
994 goto return_base;
995 if (this.len == 1)
996 nd->last_type = LAST_DOT;
997 else if (this.len == 2 && this.name[1] == '.')
998 nd->last_type = LAST_DOTDOT;
999 else
1000 goto return_base;
1001 return_reval:
1002 /*
1003 * We bypassed the ordinary revalidation routines.
1004 * We may need to check the cached dentry for staleness.
1005 */
1006 if (nd->path.dentry && nd->path.dentry->d_sb &&
1007 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1008 err = -ESTALE;
1009 /* Note: we do not d_invalidate() */
1010 if (!nd->path.dentry->d_op->d_revalidate(
1011 nd->path.dentry, nd))
1012 break;
1013 }
1014 return_base:
1015 return 0;
1016 out_dput:
1017 path_put_conditional(&next, nd);
1018 break;
1019 }
1020 path_put(&nd->path);
1021 return_err:
1022 return err;
1023 }
1024
1025 static int path_walk(const char *name, struct nameidata *nd)
1026 {
1027 current->total_link_count = 0;
1028 return link_path_walk(name, nd);
1029 }
1030
1031 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1032 static int do_path_lookup(int dfd, const char *name,
1033 unsigned int flags, struct nameidata *nd)
1034 {
1035 int retval = 0;
1036 int fput_needed;
1037 struct file *file;
1038 struct fs_struct *fs = current->fs;
1039
1040 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1041 nd->flags = flags;
1042 nd->depth = 0;
1043
1044 if (*name=='/') {
1045 read_lock(&fs->lock);
1046 nd->path = fs->root;
1047 path_get(&fs->root);
1048 read_unlock(&fs->lock);
1049 } else if (dfd == AT_FDCWD) {
1050 read_lock(&fs->lock);
1051 nd->path = fs->pwd;
1052 path_get(&fs->pwd);
1053 read_unlock(&fs->lock);
1054 } else {
1055 struct dentry *dentry;
1056
1057 file = fget_light(dfd, &fput_needed);
1058 retval = -EBADF;
1059 if (!file)
1060 goto out_fail;
1061
1062 dentry = file->f_path.dentry;
1063
1064 retval = -ENOTDIR;
1065 if (!S_ISDIR(dentry->d_inode->i_mode))
1066 goto fput_fail;
1067
1068 retval = file_permission(file, MAY_EXEC);
1069 if (retval)
1070 goto fput_fail;
1071
1072 nd->path = file->f_path;
1073 path_get(&file->f_path);
1074
1075 fput_light(file, fput_needed);
1076 }
1077
1078 retval = path_walk(name, nd);
1079 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1080 nd->path.dentry->d_inode))
1081 audit_inode(name, nd->path.dentry);
1082 out_fail:
1083 return retval;
1084
1085 fput_fail:
1086 fput_light(file, fput_needed);
1087 goto out_fail;
1088 }
1089
1090 int path_lookup(const char *name, unsigned int flags,
1091 struct nameidata *nd)
1092 {
1093 return do_path_lookup(AT_FDCWD, name, flags, nd);
1094 }
1095
1096 int kern_path(const char *name, unsigned int flags, struct path *path)
1097 {
1098 struct nameidata nd;
1099 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1100 if (!res)
1101 *path = nd.path;
1102 return res;
1103 }
1104
1105 /**
1106 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1107 * @dentry: pointer to dentry of the base directory
1108 * @mnt: pointer to vfs mount of the base directory
1109 * @name: pointer to file name
1110 * @flags: lookup flags
1111 * @nd: pointer to nameidata
1112 */
1113 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1114 const char *name, unsigned int flags,
1115 struct nameidata *nd)
1116 {
1117 int retval;
1118
1119 /* same as do_path_lookup */
1120 nd->last_type = LAST_ROOT;
1121 nd->flags = flags;
1122 nd->depth = 0;
1123
1124 nd->path.dentry = dentry;
1125 nd->path.mnt = mnt;
1126 path_get(&nd->path);
1127
1128 retval = path_walk(name, nd);
1129 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1130 nd->path.dentry->d_inode))
1131 audit_inode(name, nd->path.dentry);
1132
1133 return retval;
1134
1135 }
1136
1137 /**
1138 * path_lookup_open - lookup a file path with open intent
1139 * @dfd: the directory to use as base, or AT_FDCWD
1140 * @name: pointer to file name
1141 * @lookup_flags: lookup intent flags
1142 * @nd: pointer to nameidata
1143 * @open_flags: open intent flags
1144 */
1145 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1146 struct nameidata *nd, int open_flags)
1147 {
1148 struct file *filp = get_empty_filp();
1149 int err;
1150
1151 if (filp == NULL)
1152 return -ENFILE;
1153 nd->intent.open.file = filp;
1154 nd->intent.open.flags = open_flags;
1155 nd->intent.open.create_mode = 0;
1156 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1157 if (IS_ERR(nd->intent.open.file)) {
1158 if (err == 0) {
1159 err = PTR_ERR(nd->intent.open.file);
1160 path_put(&nd->path);
1161 }
1162 } else if (err != 0)
1163 release_open_intent(nd);
1164 return err;
1165 }
1166
1167 static struct dentry *__lookup_hash(struct qstr *name,
1168 struct dentry *base, struct nameidata *nd)
1169 {
1170 struct dentry *dentry;
1171 struct inode *inode;
1172 int err;
1173
1174 inode = base->d_inode;
1175
1176 /*
1177 * See if the low-level filesystem might want
1178 * to use its own hash..
1179 */
1180 if (base->d_op && base->d_op->d_hash) {
1181 err = base->d_op->d_hash(base, name);
1182 dentry = ERR_PTR(err);
1183 if (err < 0)
1184 goto out;
1185 }
1186
1187 dentry = cached_lookup(base, name, nd);
1188 if (!dentry) {
1189 struct dentry *new;
1190
1191 /* Don't create child dentry for a dead directory. */
1192 dentry = ERR_PTR(-ENOENT);
1193 if (IS_DEADDIR(inode))
1194 goto out;
1195
1196 new = d_alloc(base, name);
1197 dentry = ERR_PTR(-ENOMEM);
1198 if (!new)
1199 goto out;
1200 dentry = inode->i_op->lookup(inode, new, nd);
1201 if (!dentry)
1202 dentry = new;
1203 else
1204 dput(new);
1205 }
1206 out:
1207 return dentry;
1208 }
1209
1210 /*
1211 * Restricted form of lookup. Doesn't follow links, single-component only,
1212 * needs parent already locked. Doesn't follow mounts.
1213 * SMP-safe.
1214 */
1215 static struct dentry *lookup_hash(struct nameidata *nd)
1216 {
1217 int err;
1218
1219 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1220 if (err)
1221 return ERR_PTR(err);
1222 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1223 }
1224
1225 static int __lookup_one_len(const char *name, struct qstr *this,
1226 struct dentry *base, int len)
1227 {
1228 unsigned long hash;
1229 unsigned int c;
1230
1231 this->name = name;
1232 this->len = len;
1233 if (!len)
1234 return -EACCES;
1235
1236 hash = init_name_hash();
1237 while (len--) {
1238 c = *(const unsigned char *)name++;
1239 if (c == '/' || c == '\0')
1240 return -EACCES;
1241 hash = partial_name_hash(c, hash);
1242 }
1243 this->hash = end_name_hash(hash);
1244 return 0;
1245 }
1246
1247 /**
1248 * lookup_one_len - filesystem helper to lookup single pathname component
1249 * @name: pathname component to lookup
1250 * @base: base directory to lookup from
1251 * @len: maximum length @len should be interpreted to
1252 *
1253 * Note that this routine is purely a helper for filesystem usage and should
1254 * not be called by generic code. Also note that by using this function the
1255 * nameidata argument is passed to the filesystem methods and a filesystem
1256 * using this helper needs to be prepared for that.
1257 */
1258 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1259 {
1260 int err;
1261 struct qstr this;
1262
1263 err = __lookup_one_len(name, &this, base, len);
1264 if (err)
1265 return ERR_PTR(err);
1266
1267 err = inode_permission(base->d_inode, MAY_EXEC);
1268 if (err)
1269 return ERR_PTR(err);
1270 return __lookup_hash(&this, base, NULL);
1271 }
1272
1273 /**
1274 * lookup_one_noperm - bad hack for sysfs
1275 * @name: pathname component to lookup
1276 * @base: base directory to lookup from
1277 *
1278 * This is a variant of lookup_one_len that doesn't perform any permission
1279 * checks. It's a horrible hack to work around the braindead sysfs
1280 * architecture and should not be used anywhere else.
1281 *
1282 * DON'T USE THIS FUNCTION EVER, thanks.
1283 */
1284 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1285 {
1286 int err;
1287 struct qstr this;
1288
1289 err = __lookup_one_len(name, &this, base, strlen(name));
1290 if (err)
1291 return ERR_PTR(err);
1292 return __lookup_hash(&this, base, NULL);
1293 }
1294
1295 int user_path_at(int dfd, const char __user *name, unsigned flags,
1296 struct path *path)
1297 {
1298 struct nameidata nd;
1299 char *tmp = getname(name);
1300 int err = PTR_ERR(tmp);
1301 if (!IS_ERR(tmp)) {
1302
1303 BUG_ON(flags & LOOKUP_PARENT);
1304
1305 err = do_path_lookup(dfd, tmp, flags, &nd);
1306 putname(tmp);
1307 if (!err)
1308 *path = nd.path;
1309 }
1310 return err;
1311 }
1312
1313 static int user_path_parent(int dfd, const char __user *path,
1314 struct nameidata *nd, char **name)
1315 {
1316 char *s = getname(path);
1317 int error;
1318
1319 if (IS_ERR(s))
1320 return PTR_ERR(s);
1321
1322 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1323 if (error)
1324 putname(s);
1325 else
1326 *name = s;
1327
1328 return error;
1329 }
1330
1331 /*
1332 * It's inline, so penalty for filesystems that don't use sticky bit is
1333 * minimal.
1334 */
1335 static inline int check_sticky(struct inode *dir, struct inode *inode)
1336 {
1337 if (!(dir->i_mode & S_ISVTX))
1338 return 0;
1339 if (inode->i_uid == current->fsuid)
1340 return 0;
1341 if (dir->i_uid == current->fsuid)
1342 return 0;
1343 return !capable(CAP_FOWNER);
1344 }
1345
1346 /*
1347 * Check whether we can remove a link victim from directory dir, check
1348 * whether the type of victim is right.
1349 * 1. We can't do it if dir is read-only (done in permission())
1350 * 2. We should have write and exec permissions on dir
1351 * 3. We can't remove anything from append-only dir
1352 * 4. We can't do anything with immutable dir (done in permission())
1353 * 5. If the sticky bit on dir is set we should either
1354 * a. be owner of dir, or
1355 * b. be owner of victim, or
1356 * c. have CAP_FOWNER capability
1357 * 6. If the victim is append-only or immutable we can't do antyhing with
1358 * links pointing to it.
1359 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1360 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1361 * 9. We can't remove a root or mountpoint.
1362 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1363 * nfs_async_unlink().
1364 */
1365 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1366 {
1367 int error;
1368
1369 if (!victim->d_inode)
1370 return -ENOENT;
1371
1372 BUG_ON(victim->d_parent->d_inode != dir);
1373 audit_inode_child(victim->d_name.name, victim, dir);
1374
1375 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1376 if (error)
1377 return error;
1378 if (IS_APPEND(dir))
1379 return -EPERM;
1380 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1381 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1382 return -EPERM;
1383 if (isdir) {
1384 if (!S_ISDIR(victim->d_inode->i_mode))
1385 return -ENOTDIR;
1386 if (IS_ROOT(victim))
1387 return -EBUSY;
1388 } else if (S_ISDIR(victim->d_inode->i_mode))
1389 return -EISDIR;
1390 if (IS_DEADDIR(dir))
1391 return -ENOENT;
1392 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1393 return -EBUSY;
1394 return 0;
1395 }
1396
1397 /* Check whether we can create an object with dentry child in directory
1398 * dir.
1399 * 1. We can't do it if child already exists (open has special treatment for
1400 * this case, but since we are inlined it's OK)
1401 * 2. We can't do it if dir is read-only (done in permission())
1402 * 3. We should have write and exec permissions on dir
1403 * 4. We can't do it if dir is immutable (done in permission())
1404 */
1405 static inline int may_create(struct inode *dir, struct dentry *child)
1406 {
1407 if (child->d_inode)
1408 return -EEXIST;
1409 if (IS_DEADDIR(dir))
1410 return -ENOENT;
1411 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1412 }
1413
1414 /*
1415 * O_DIRECTORY translates into forcing a directory lookup.
1416 */
1417 static inline int lookup_flags(unsigned int f)
1418 {
1419 unsigned long retval = LOOKUP_FOLLOW;
1420
1421 if (f & O_NOFOLLOW)
1422 retval &= ~LOOKUP_FOLLOW;
1423
1424 if (f & O_DIRECTORY)
1425 retval |= LOOKUP_DIRECTORY;
1426
1427 return retval;
1428 }
1429
1430 /*
1431 * p1 and p2 should be directories on the same fs.
1432 */
1433 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1434 {
1435 struct dentry *p;
1436
1437 if (p1 == p2) {
1438 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1439 return NULL;
1440 }
1441
1442 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1443
1444 p = d_ancestor(p2, p1);
1445 if (p) {
1446 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1447 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1448 return p;
1449 }
1450
1451 p = d_ancestor(p1, p2);
1452 if (p) {
1453 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1454 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1455 return p;
1456 }
1457
1458 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1459 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1460 return NULL;
1461 }
1462
1463 void unlock_rename(struct dentry *p1, struct dentry *p2)
1464 {
1465 mutex_unlock(&p1->d_inode->i_mutex);
1466 if (p1 != p2) {
1467 mutex_unlock(&p2->d_inode->i_mutex);
1468 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1469 }
1470 }
1471
1472 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1473 struct nameidata *nd)
1474 {
1475 int error = may_create(dir, dentry);
1476
1477 if (error)
1478 return error;
1479
1480 if (!dir->i_op || !dir->i_op->create)
1481 return -EACCES; /* shouldn't it be ENOSYS? */
1482 mode &= S_IALLUGO;
1483 mode |= S_IFREG;
1484 error = security_inode_create(dir, dentry, mode);
1485 if (error)
1486 return error;
1487 DQUOT_INIT(dir);
1488 error = dir->i_op->create(dir, dentry, mode, nd);
1489 if (!error)
1490 fsnotify_create(dir, dentry);
1491 return error;
1492 }
1493
1494 int may_open(struct nameidata *nd, int acc_mode, int flag)
1495 {
1496 struct dentry *dentry = nd->path.dentry;
1497 struct inode *inode = dentry->d_inode;
1498 int error;
1499
1500 if (!inode)
1501 return -ENOENT;
1502
1503 if (S_ISLNK(inode->i_mode))
1504 return -ELOOP;
1505
1506 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1507 return -EISDIR;
1508
1509 /*
1510 * FIFO's, sockets and device files are special: they don't
1511 * actually live on the filesystem itself, and as such you
1512 * can write to them even if the filesystem is read-only.
1513 */
1514 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1515 flag &= ~O_TRUNC;
1516 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1517 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1518 return -EACCES;
1519
1520 flag &= ~O_TRUNC;
1521 }
1522
1523 error = vfs_permission(nd, acc_mode);
1524 if (error)
1525 return error;
1526 /*
1527 * An append-only file must be opened in append mode for writing.
1528 */
1529 if (IS_APPEND(inode)) {
1530 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1531 return -EPERM;
1532 if (flag & O_TRUNC)
1533 return -EPERM;
1534 }
1535
1536 /* O_NOATIME can only be set by the owner or superuser */
1537 if (flag & O_NOATIME)
1538 if (!is_owner_or_cap(inode))
1539 return -EPERM;
1540
1541 /*
1542 * Ensure there are no outstanding leases on the file.
1543 */
1544 error = break_lease(inode, flag);
1545 if (error)
1546 return error;
1547
1548 if (flag & O_TRUNC) {
1549 error = get_write_access(inode);
1550 if (error)
1551 return error;
1552
1553 /*
1554 * Refuse to truncate files with mandatory locks held on them.
1555 */
1556 error = locks_verify_locked(inode);
1557 if (!error) {
1558 DQUOT_INIT(inode);
1559
1560 error = do_truncate(dentry, 0,
1561 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1562 NULL);
1563 }
1564 put_write_access(inode);
1565 if (error)
1566 return error;
1567 } else
1568 if (flag & FMODE_WRITE)
1569 DQUOT_INIT(inode);
1570
1571 return 0;
1572 }
1573
1574 /*
1575 * Be careful about ever adding any more callers of this
1576 * function. Its flags must be in the namei format, not
1577 * what get passed to sys_open().
1578 */
1579 static int __open_namei_create(struct nameidata *nd, struct path *path,
1580 int flag, int mode)
1581 {
1582 int error;
1583 struct dentry *dir = nd->path.dentry;
1584
1585 if (!IS_POSIXACL(dir->d_inode))
1586 mode &= ~current->fs->umask;
1587 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1588 mutex_unlock(&dir->d_inode->i_mutex);
1589 dput(nd->path.dentry);
1590 nd->path.dentry = path->dentry;
1591 if (error)
1592 return error;
1593 /* Don't check for write permission, don't truncate */
1594 return may_open(nd, 0, flag & ~O_TRUNC);
1595 }
1596
1597 /*
1598 * Note that while the flag value (low two bits) for sys_open means:
1599 * 00 - read-only
1600 * 01 - write-only
1601 * 10 - read-write
1602 * 11 - special
1603 * it is changed into
1604 * 00 - no permissions needed
1605 * 01 - read-permission
1606 * 10 - write-permission
1607 * 11 - read-write
1608 * for the internal routines (ie open_namei()/follow_link() etc)
1609 * This is more logical, and also allows the 00 "no perm needed"
1610 * to be used for symlinks (where the permissions are checked
1611 * later).
1612 *
1613 */
1614 static inline int open_to_namei_flags(int flag)
1615 {
1616 if ((flag+1) & O_ACCMODE)
1617 flag++;
1618 return flag;
1619 }
1620
1621 static int open_will_write_to_fs(int flag, struct inode *inode)
1622 {
1623 /*
1624 * We'll never write to the fs underlying
1625 * a device file.
1626 */
1627 if (special_file(inode->i_mode))
1628 return 0;
1629 return (flag & O_TRUNC);
1630 }
1631
1632 /*
1633 * Note that the low bits of the passed in "open_flag"
1634 * are not the same as in the local variable "flag". See
1635 * open_to_namei_flags() for more details.
1636 */
1637 struct file *do_filp_open(int dfd, const char *pathname,
1638 int open_flag, int mode)
1639 {
1640 struct file *filp;
1641 struct nameidata nd;
1642 int acc_mode, error;
1643 struct path path;
1644 struct dentry *dir;
1645 int count = 0;
1646 int will_write;
1647 int flag = open_to_namei_flags(open_flag);
1648
1649 acc_mode = MAY_OPEN | ACC_MODE(flag);
1650
1651 /* O_TRUNC implies we need access checks for write permissions */
1652 if (flag & O_TRUNC)
1653 acc_mode |= MAY_WRITE;
1654
1655 /* Allow the LSM permission hook to distinguish append
1656 access from general write access. */
1657 if (flag & O_APPEND)
1658 acc_mode |= MAY_APPEND;
1659
1660 /*
1661 * The simplest case - just a plain lookup.
1662 */
1663 if (!(flag & O_CREAT)) {
1664 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1665 &nd, flag);
1666 if (error)
1667 return ERR_PTR(error);
1668 goto ok;
1669 }
1670
1671 /*
1672 * Create - we need to know the parent.
1673 */
1674 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1675 if (error)
1676 return ERR_PTR(error);
1677
1678 /*
1679 * We have the parent and last component. First of all, check
1680 * that we are not asked to creat(2) an obvious directory - that
1681 * will not do.
1682 */
1683 error = -EISDIR;
1684 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1685 goto exit_parent;
1686
1687 error = -ENFILE;
1688 filp = get_empty_filp();
1689 if (filp == NULL)
1690 goto exit_parent;
1691 nd.intent.open.file = filp;
1692 nd.intent.open.flags = flag;
1693 nd.intent.open.create_mode = mode;
1694 dir = nd.path.dentry;
1695 nd.flags &= ~LOOKUP_PARENT;
1696 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1697 if (flag & O_EXCL)
1698 nd.flags |= LOOKUP_EXCL;
1699 mutex_lock(&dir->d_inode->i_mutex);
1700 path.dentry = lookup_hash(&nd);
1701 path.mnt = nd.path.mnt;
1702
1703 do_last:
1704 error = PTR_ERR(path.dentry);
1705 if (IS_ERR(path.dentry)) {
1706 mutex_unlock(&dir->d_inode->i_mutex);
1707 goto exit;
1708 }
1709
1710 if (IS_ERR(nd.intent.open.file)) {
1711 error = PTR_ERR(nd.intent.open.file);
1712 goto exit_mutex_unlock;
1713 }
1714
1715 /* Negative dentry, just create the file */
1716 if (!path.dentry->d_inode) {
1717 /*
1718 * This write is needed to ensure that a
1719 * ro->rw transition does not occur between
1720 * the time when the file is created and when
1721 * a permanent write count is taken through
1722 * the 'struct file' in nameidata_to_filp().
1723 */
1724 error = mnt_want_write(nd.path.mnt);
1725 if (error)
1726 goto exit_mutex_unlock;
1727 error = __open_namei_create(&nd, &path, flag, mode);
1728 if (error) {
1729 mnt_drop_write(nd.path.mnt);
1730 goto exit;
1731 }
1732 filp = nameidata_to_filp(&nd, open_flag);
1733 mnt_drop_write(nd.path.mnt);
1734 return filp;
1735 }
1736
1737 /*
1738 * It already exists.
1739 */
1740 mutex_unlock(&dir->d_inode->i_mutex);
1741 audit_inode(pathname, path.dentry);
1742
1743 error = -EEXIST;
1744 if (flag & O_EXCL)
1745 goto exit_dput;
1746
1747 if (__follow_mount(&path)) {
1748 error = -ELOOP;
1749 if (flag & O_NOFOLLOW)
1750 goto exit_dput;
1751 }
1752
1753 error = -ENOENT;
1754 if (!path.dentry->d_inode)
1755 goto exit_dput;
1756 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1757 goto do_link;
1758
1759 path_to_nameidata(&path, &nd);
1760 error = -EISDIR;
1761 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1762 goto exit;
1763 ok:
1764 /*
1765 * Consider:
1766 * 1. may_open() truncates a file
1767 * 2. a rw->ro mount transition occurs
1768 * 3. nameidata_to_filp() fails due to
1769 * the ro mount.
1770 * That would be inconsistent, and should
1771 * be avoided. Taking this mnt write here
1772 * ensures that (2) can not occur.
1773 */
1774 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1775 if (will_write) {
1776 error = mnt_want_write(nd.path.mnt);
1777 if (error)
1778 goto exit;
1779 }
1780 error = may_open(&nd, acc_mode, flag);
1781 if (error) {
1782 if (will_write)
1783 mnt_drop_write(nd.path.mnt);
1784 goto exit;
1785 }
1786 filp = nameidata_to_filp(&nd, open_flag);
1787 /*
1788 * It is now safe to drop the mnt write
1789 * because the filp has had a write taken
1790 * on its behalf.
1791 */
1792 if (will_write)
1793 mnt_drop_write(nd.path.mnt);
1794 return filp;
1795
1796 exit_mutex_unlock:
1797 mutex_unlock(&dir->d_inode->i_mutex);
1798 exit_dput:
1799 path_put_conditional(&path, &nd);
1800 exit:
1801 if (!IS_ERR(nd.intent.open.file))
1802 release_open_intent(&nd);
1803 exit_parent:
1804 path_put(&nd.path);
1805 return ERR_PTR(error);
1806
1807 do_link:
1808 error = -ELOOP;
1809 if (flag & O_NOFOLLOW)
1810 goto exit_dput;
1811 /*
1812 * This is subtle. Instead of calling do_follow_link() we do the
1813 * thing by hands. The reason is that this way we have zero link_count
1814 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1815 * After that we have the parent and last component, i.e.
1816 * we are in the same situation as after the first path_walk().
1817 * Well, almost - if the last component is normal we get its copy
1818 * stored in nd->last.name and we will have to putname() it when we
1819 * are done. Procfs-like symlinks just set LAST_BIND.
1820 */
1821 nd.flags |= LOOKUP_PARENT;
1822 error = security_inode_follow_link(path.dentry, &nd);
1823 if (error)
1824 goto exit_dput;
1825 error = __do_follow_link(&path, &nd);
1826 if (error) {
1827 /* Does someone understand code flow here? Or it is only
1828 * me so stupid? Anathema to whoever designed this non-sense
1829 * with "intent.open".
1830 */
1831 release_open_intent(&nd);
1832 return ERR_PTR(error);
1833 }
1834 nd.flags &= ~LOOKUP_PARENT;
1835 if (nd.last_type == LAST_BIND)
1836 goto ok;
1837 error = -EISDIR;
1838 if (nd.last_type != LAST_NORM)
1839 goto exit;
1840 if (nd.last.name[nd.last.len]) {
1841 __putname(nd.last.name);
1842 goto exit;
1843 }
1844 error = -ELOOP;
1845 if (count++==32) {
1846 __putname(nd.last.name);
1847 goto exit;
1848 }
1849 dir = nd.path.dentry;
1850 mutex_lock(&dir->d_inode->i_mutex);
1851 path.dentry = lookup_hash(&nd);
1852 path.mnt = nd.path.mnt;
1853 __putname(nd.last.name);
1854 goto do_last;
1855 }
1856
1857 /**
1858 * filp_open - open file and return file pointer
1859 *
1860 * @filename: path to open
1861 * @flags: open flags as per the open(2) second argument
1862 * @mode: mode for the new file if O_CREAT is set, else ignored
1863 *
1864 * This is the helper to open a file from kernelspace if you really
1865 * have to. But in generally you should not do this, so please move
1866 * along, nothing to see here..
1867 */
1868 struct file *filp_open(const char *filename, int flags, int mode)
1869 {
1870 return do_filp_open(AT_FDCWD, filename, flags, mode);
1871 }
1872 EXPORT_SYMBOL(filp_open);
1873
1874 /**
1875 * lookup_create - lookup a dentry, creating it if it doesn't exist
1876 * @nd: nameidata info
1877 * @is_dir: directory flag
1878 *
1879 * Simple function to lookup and return a dentry and create it
1880 * if it doesn't exist. Is SMP-safe.
1881 *
1882 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1883 */
1884 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1885 {
1886 struct dentry *dentry = ERR_PTR(-EEXIST);
1887
1888 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1889 /*
1890 * Yucky last component or no last component at all?
1891 * (foo/., foo/.., /////)
1892 */
1893 if (nd->last_type != LAST_NORM)
1894 goto fail;
1895 nd->flags &= ~LOOKUP_PARENT;
1896 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1897 nd->intent.open.flags = O_EXCL;
1898
1899 /*
1900 * Do the final lookup.
1901 */
1902 dentry = lookup_hash(nd);
1903 if (IS_ERR(dentry))
1904 goto fail;
1905
1906 if (dentry->d_inode)
1907 goto eexist;
1908 /*
1909 * Special case - lookup gave negative, but... we had foo/bar/
1910 * From the vfs_mknod() POV we just have a negative dentry -
1911 * all is fine. Let's be bastards - you had / on the end, you've
1912 * been asking for (non-existent) directory. -ENOENT for you.
1913 */
1914 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1915 dput(dentry);
1916 dentry = ERR_PTR(-ENOENT);
1917 }
1918 return dentry;
1919 eexist:
1920 dput(dentry);
1921 dentry = ERR_PTR(-EEXIST);
1922 fail:
1923 return dentry;
1924 }
1925 EXPORT_SYMBOL_GPL(lookup_create);
1926
1927 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1928 {
1929 int error = may_create(dir, dentry);
1930
1931 if (error)
1932 return error;
1933
1934 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1935 return -EPERM;
1936
1937 if (!dir->i_op || !dir->i_op->mknod)
1938 return -EPERM;
1939
1940 error = devcgroup_inode_mknod(mode, dev);
1941 if (error)
1942 return error;
1943
1944 error = security_inode_mknod(dir, dentry, mode, dev);
1945 if (error)
1946 return error;
1947
1948 DQUOT_INIT(dir);
1949 error = dir->i_op->mknod(dir, dentry, mode, dev);
1950 if (!error)
1951 fsnotify_create(dir, dentry);
1952 return error;
1953 }
1954
1955 static int may_mknod(mode_t mode)
1956 {
1957 switch (mode & S_IFMT) {
1958 case S_IFREG:
1959 case S_IFCHR:
1960 case S_IFBLK:
1961 case S_IFIFO:
1962 case S_IFSOCK:
1963 case 0: /* zero mode translates to S_IFREG */
1964 return 0;
1965 case S_IFDIR:
1966 return -EPERM;
1967 default:
1968 return -EINVAL;
1969 }
1970 }
1971
1972 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1973 unsigned dev)
1974 {
1975 int error;
1976 char *tmp;
1977 struct dentry *dentry;
1978 struct nameidata nd;
1979
1980 if (S_ISDIR(mode))
1981 return -EPERM;
1982
1983 error = user_path_parent(dfd, filename, &nd, &tmp);
1984 if (error)
1985 return error;
1986
1987 dentry = lookup_create(&nd, 0);
1988 if (IS_ERR(dentry)) {
1989 error = PTR_ERR(dentry);
1990 goto out_unlock;
1991 }
1992 if (!IS_POSIXACL(nd.path.dentry->d_inode))
1993 mode &= ~current->fs->umask;
1994 error = may_mknod(mode);
1995 if (error)
1996 goto out_dput;
1997 error = mnt_want_write(nd.path.mnt);
1998 if (error)
1999 goto out_dput;
2000 switch (mode & S_IFMT) {
2001 case 0: case S_IFREG:
2002 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2003 break;
2004 case S_IFCHR: case S_IFBLK:
2005 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2006 new_decode_dev(dev));
2007 break;
2008 case S_IFIFO: case S_IFSOCK:
2009 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2010 break;
2011 }
2012 mnt_drop_write(nd.path.mnt);
2013 out_dput:
2014 dput(dentry);
2015 out_unlock:
2016 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2017 path_put(&nd.path);
2018 putname(tmp);
2019
2020 return error;
2021 }
2022
2023 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2024 {
2025 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2026 }
2027
2028 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2029 {
2030 int error = may_create(dir, dentry);
2031
2032 if (error)
2033 return error;
2034
2035 if (!dir->i_op || !dir->i_op->mkdir)
2036 return -EPERM;
2037
2038 mode &= (S_IRWXUGO|S_ISVTX);
2039 error = security_inode_mkdir(dir, dentry, mode);
2040 if (error)
2041 return error;
2042
2043 DQUOT_INIT(dir);
2044 error = dir->i_op->mkdir(dir, dentry, mode);
2045 if (!error)
2046 fsnotify_mkdir(dir, dentry);
2047 return error;
2048 }
2049
2050 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2051 {
2052 int error = 0;
2053 char * tmp;
2054 struct dentry *dentry;
2055 struct nameidata nd;
2056
2057 error = user_path_parent(dfd, pathname, &nd, &tmp);
2058 if (error)
2059 goto out_err;
2060
2061 dentry = lookup_create(&nd, 1);
2062 error = PTR_ERR(dentry);
2063 if (IS_ERR(dentry))
2064 goto out_unlock;
2065
2066 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2067 mode &= ~current->fs->umask;
2068 error = mnt_want_write(nd.path.mnt);
2069 if (error)
2070 goto out_dput;
2071 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2072 mnt_drop_write(nd.path.mnt);
2073 out_dput:
2074 dput(dentry);
2075 out_unlock:
2076 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2077 path_put(&nd.path);
2078 putname(tmp);
2079 out_err:
2080 return error;
2081 }
2082
2083 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2084 {
2085 return sys_mkdirat(AT_FDCWD, pathname, mode);
2086 }
2087
2088 /*
2089 * We try to drop the dentry early: we should have
2090 * a usage count of 2 if we're the only user of this
2091 * dentry, and if that is true (possibly after pruning
2092 * the dcache), then we drop the dentry now.
2093 *
2094 * A low-level filesystem can, if it choses, legally
2095 * do a
2096 *
2097 * if (!d_unhashed(dentry))
2098 * return -EBUSY;
2099 *
2100 * if it cannot handle the case of removing a directory
2101 * that is still in use by something else..
2102 */
2103 void dentry_unhash(struct dentry *dentry)
2104 {
2105 dget(dentry);
2106 shrink_dcache_parent(dentry);
2107 spin_lock(&dcache_lock);
2108 spin_lock(&dentry->d_lock);
2109 if (atomic_read(&dentry->d_count) == 2)
2110 __d_drop(dentry);
2111 spin_unlock(&dentry->d_lock);
2112 spin_unlock(&dcache_lock);
2113 }
2114
2115 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2116 {
2117 int error = may_delete(dir, dentry, 1);
2118
2119 if (error)
2120 return error;
2121
2122 if (!dir->i_op || !dir->i_op->rmdir)
2123 return -EPERM;
2124
2125 DQUOT_INIT(dir);
2126
2127 mutex_lock(&dentry->d_inode->i_mutex);
2128 dentry_unhash(dentry);
2129 if (d_mountpoint(dentry))
2130 error = -EBUSY;
2131 else {
2132 error = security_inode_rmdir(dir, dentry);
2133 if (!error) {
2134 error = dir->i_op->rmdir(dir, dentry);
2135 if (!error)
2136 dentry->d_inode->i_flags |= S_DEAD;
2137 }
2138 }
2139 mutex_unlock(&dentry->d_inode->i_mutex);
2140 if (!error) {
2141 d_delete(dentry);
2142 }
2143 dput(dentry);
2144
2145 return error;
2146 }
2147
2148 static long do_rmdir(int dfd, const char __user *pathname)
2149 {
2150 int error = 0;
2151 char * name;
2152 struct dentry *dentry;
2153 struct nameidata nd;
2154
2155 error = user_path_parent(dfd, pathname, &nd, &name);
2156 if (error)
2157 return error;
2158
2159 switch(nd.last_type) {
2160 case LAST_DOTDOT:
2161 error = -ENOTEMPTY;
2162 goto exit1;
2163 case LAST_DOT:
2164 error = -EINVAL;
2165 goto exit1;
2166 case LAST_ROOT:
2167 error = -EBUSY;
2168 goto exit1;
2169 }
2170
2171 nd.flags &= ~LOOKUP_PARENT;
2172
2173 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2174 dentry = lookup_hash(&nd);
2175 error = PTR_ERR(dentry);
2176 if (IS_ERR(dentry))
2177 goto exit2;
2178 error = mnt_want_write(nd.path.mnt);
2179 if (error)
2180 goto exit3;
2181 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2182 mnt_drop_write(nd.path.mnt);
2183 exit3:
2184 dput(dentry);
2185 exit2:
2186 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2187 exit1:
2188 path_put(&nd.path);
2189 putname(name);
2190 return error;
2191 }
2192
2193 asmlinkage long sys_rmdir(const char __user *pathname)
2194 {
2195 return do_rmdir(AT_FDCWD, pathname);
2196 }
2197
2198 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2199 {
2200 int error = may_delete(dir, dentry, 0);
2201
2202 if (error)
2203 return error;
2204
2205 if (!dir->i_op || !dir->i_op->unlink)
2206 return -EPERM;
2207
2208 DQUOT_INIT(dir);
2209
2210 mutex_lock(&dentry->d_inode->i_mutex);
2211 if (d_mountpoint(dentry))
2212 error = -EBUSY;
2213 else {
2214 error = security_inode_unlink(dir, dentry);
2215 if (!error)
2216 error = dir->i_op->unlink(dir, dentry);
2217 }
2218 mutex_unlock(&dentry->d_inode->i_mutex);
2219
2220 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2221 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2222 fsnotify_link_count(dentry->d_inode);
2223 d_delete(dentry);
2224 }
2225
2226 return error;
2227 }
2228
2229 /*
2230 * Make sure that the actual truncation of the file will occur outside its
2231 * directory's i_mutex. Truncate can take a long time if there is a lot of
2232 * writeout happening, and we don't want to prevent access to the directory
2233 * while waiting on the I/O.
2234 */
2235 static long do_unlinkat(int dfd, const char __user *pathname)
2236 {
2237 int error;
2238 char *name;
2239 struct dentry *dentry;
2240 struct nameidata nd;
2241 struct inode *inode = NULL;
2242
2243 error = user_path_parent(dfd, pathname, &nd, &name);
2244 if (error)
2245 return error;
2246
2247 error = -EISDIR;
2248 if (nd.last_type != LAST_NORM)
2249 goto exit1;
2250
2251 nd.flags &= ~LOOKUP_PARENT;
2252
2253 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2254 dentry = lookup_hash(&nd);
2255 error = PTR_ERR(dentry);
2256 if (!IS_ERR(dentry)) {
2257 /* Why not before? Because we want correct error value */
2258 if (nd.last.name[nd.last.len])
2259 goto slashes;
2260 inode = dentry->d_inode;
2261 if (inode)
2262 atomic_inc(&inode->i_count);
2263 error = mnt_want_write(nd.path.mnt);
2264 if (error)
2265 goto exit2;
2266 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2267 mnt_drop_write(nd.path.mnt);
2268 exit2:
2269 dput(dentry);
2270 }
2271 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2272 if (inode)
2273 iput(inode); /* truncate the inode here */
2274 exit1:
2275 path_put(&nd.path);
2276 putname(name);
2277 return error;
2278
2279 slashes:
2280 error = !dentry->d_inode ? -ENOENT :
2281 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2282 goto exit2;
2283 }
2284
2285 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2286 {
2287 if ((flag & ~AT_REMOVEDIR) != 0)
2288 return -EINVAL;
2289
2290 if (flag & AT_REMOVEDIR)
2291 return do_rmdir(dfd, pathname);
2292
2293 return do_unlinkat(dfd, pathname);
2294 }
2295
2296 asmlinkage long sys_unlink(const char __user *pathname)
2297 {
2298 return do_unlinkat(AT_FDCWD, pathname);
2299 }
2300
2301 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2302 {
2303 int error = may_create(dir, dentry);
2304
2305 if (error)
2306 return error;
2307
2308 if (!dir->i_op || !dir->i_op->symlink)
2309 return -EPERM;
2310
2311 error = security_inode_symlink(dir, dentry, oldname);
2312 if (error)
2313 return error;
2314
2315 DQUOT_INIT(dir);
2316 error = dir->i_op->symlink(dir, dentry, oldname);
2317 if (!error)
2318 fsnotify_create(dir, dentry);
2319 return error;
2320 }
2321
2322 asmlinkage long sys_symlinkat(const char __user *oldname,
2323 int newdfd, const char __user *newname)
2324 {
2325 int error;
2326 char *from;
2327 char *to;
2328 struct dentry *dentry;
2329 struct nameidata nd;
2330
2331 from = getname(oldname);
2332 if (IS_ERR(from))
2333 return PTR_ERR(from);
2334
2335 error = user_path_parent(newdfd, newname, &nd, &to);
2336 if (error)
2337 goto out_putname;
2338
2339 dentry = lookup_create(&nd, 0);
2340 error = PTR_ERR(dentry);
2341 if (IS_ERR(dentry))
2342 goto out_unlock;
2343
2344 error = mnt_want_write(nd.path.mnt);
2345 if (error)
2346 goto out_dput;
2347 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2348 mnt_drop_write(nd.path.mnt);
2349 out_dput:
2350 dput(dentry);
2351 out_unlock:
2352 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2353 path_put(&nd.path);
2354 putname(to);
2355 out_putname:
2356 putname(from);
2357 return error;
2358 }
2359
2360 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2361 {
2362 return sys_symlinkat(oldname, AT_FDCWD, newname);
2363 }
2364
2365 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2366 {
2367 struct inode *inode = old_dentry->d_inode;
2368 int error;
2369
2370 if (!inode)
2371 return -ENOENT;
2372
2373 error = may_create(dir, new_dentry);
2374 if (error)
2375 return error;
2376
2377 if (dir->i_sb != inode->i_sb)
2378 return -EXDEV;
2379
2380 /*
2381 * A link to an append-only or immutable file cannot be created.
2382 */
2383 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2384 return -EPERM;
2385 if (!dir->i_op || !dir->i_op->link)
2386 return -EPERM;
2387 if (S_ISDIR(inode->i_mode))
2388 return -EPERM;
2389
2390 error = security_inode_link(old_dentry, dir, new_dentry);
2391 if (error)
2392 return error;
2393
2394 mutex_lock(&inode->i_mutex);
2395 DQUOT_INIT(dir);
2396 error = dir->i_op->link(old_dentry, dir, new_dentry);
2397 mutex_unlock(&inode->i_mutex);
2398 if (!error)
2399 fsnotify_link(dir, inode, new_dentry);
2400 return error;
2401 }
2402
2403 /*
2404 * Hardlinks are often used in delicate situations. We avoid
2405 * security-related surprises by not following symlinks on the
2406 * newname. --KAB
2407 *
2408 * We don't follow them on the oldname either to be compatible
2409 * with linux 2.0, and to avoid hard-linking to directories
2410 * and other special files. --ADM
2411 */
2412 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2413 int newdfd, const char __user *newname,
2414 int flags)
2415 {
2416 struct dentry *new_dentry;
2417 struct nameidata nd;
2418 struct path old_path;
2419 int error;
2420 char *to;
2421
2422 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2423 return -EINVAL;
2424
2425 error = user_path_at(olddfd, oldname,
2426 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2427 &old_path);
2428 if (error)
2429 return error;
2430
2431 error = user_path_parent(newdfd, newname, &nd, &to);
2432 if (error)
2433 goto out;
2434 error = -EXDEV;
2435 if (old_path.mnt != nd.path.mnt)
2436 goto out_release;
2437 new_dentry = lookup_create(&nd, 0);
2438 error = PTR_ERR(new_dentry);
2439 if (IS_ERR(new_dentry))
2440 goto out_unlock;
2441 error = mnt_want_write(nd.path.mnt);
2442 if (error)
2443 goto out_dput;
2444 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2445 mnt_drop_write(nd.path.mnt);
2446 out_dput:
2447 dput(new_dentry);
2448 out_unlock:
2449 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2450 out_release:
2451 path_put(&nd.path);
2452 putname(to);
2453 out:
2454 path_put(&old_path);
2455
2456 return error;
2457 }
2458
2459 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2460 {
2461 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2462 }
2463
2464 /*
2465 * The worst of all namespace operations - renaming directory. "Perverted"
2466 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2467 * Problems:
2468 * a) we can get into loop creation. Check is done in is_subdir().
2469 * b) race potential - two innocent renames can create a loop together.
2470 * That's where 4.4 screws up. Current fix: serialization on
2471 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2472 * story.
2473 * c) we have to lock _three_ objects - parents and victim (if it exists).
2474 * And that - after we got ->i_mutex on parents (until then we don't know
2475 * whether the target exists). Solution: try to be smart with locking
2476 * order for inodes. We rely on the fact that tree topology may change
2477 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2478 * move will be locked. Thus we can rank directories by the tree
2479 * (ancestors first) and rank all non-directories after them.
2480 * That works since everybody except rename does "lock parent, lookup,
2481 * lock child" and rename is under ->s_vfs_rename_mutex.
2482 * HOWEVER, it relies on the assumption that any object with ->lookup()
2483 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2484 * we'd better make sure that there's no link(2) for them.
2485 * d) some filesystems don't support opened-but-unlinked directories,
2486 * either because of layout or because they are not ready to deal with
2487 * all cases correctly. The latter will be fixed (taking this sort of
2488 * stuff into VFS), but the former is not going away. Solution: the same
2489 * trick as in rmdir().
2490 * e) conversion from fhandle to dentry may come in the wrong moment - when
2491 * we are removing the target. Solution: we will have to grab ->i_mutex
2492 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2493 * ->i_mutex on parents, which works but leads to some truely excessive
2494 * locking].
2495 */
2496 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2497 struct inode *new_dir, struct dentry *new_dentry)
2498 {
2499 int error = 0;
2500 struct inode *target;
2501
2502 /*
2503 * If we are going to change the parent - check write permissions,
2504 * we'll need to flip '..'.
2505 */
2506 if (new_dir != old_dir) {
2507 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2508 if (error)
2509 return error;
2510 }
2511
2512 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2513 if (error)
2514 return error;
2515
2516 target = new_dentry->d_inode;
2517 if (target) {
2518 mutex_lock(&target->i_mutex);
2519 dentry_unhash(new_dentry);
2520 }
2521 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2522 error = -EBUSY;
2523 else
2524 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2525 if (target) {
2526 if (!error)
2527 target->i_flags |= S_DEAD;
2528 mutex_unlock(&target->i_mutex);
2529 if (d_unhashed(new_dentry))
2530 d_rehash(new_dentry);
2531 dput(new_dentry);
2532 }
2533 if (!error)
2534 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2535 d_move(old_dentry,new_dentry);
2536 return error;
2537 }
2538
2539 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2540 struct inode *new_dir, struct dentry *new_dentry)
2541 {
2542 struct inode *target;
2543 int error;
2544
2545 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2546 if (error)
2547 return error;
2548
2549 dget(new_dentry);
2550 target = new_dentry->d_inode;
2551 if (target)
2552 mutex_lock(&target->i_mutex);
2553 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2554 error = -EBUSY;
2555 else
2556 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2557 if (!error) {
2558 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2559 d_move(old_dentry, new_dentry);
2560 }
2561 if (target)
2562 mutex_unlock(&target->i_mutex);
2563 dput(new_dentry);
2564 return error;
2565 }
2566
2567 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2568 struct inode *new_dir, struct dentry *new_dentry)
2569 {
2570 int error;
2571 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2572 const char *old_name;
2573
2574 if (old_dentry->d_inode == new_dentry->d_inode)
2575 return 0;
2576
2577 error = may_delete(old_dir, old_dentry, is_dir);
2578 if (error)
2579 return error;
2580
2581 if (!new_dentry->d_inode)
2582 error = may_create(new_dir, new_dentry);
2583 else
2584 error = may_delete(new_dir, new_dentry, is_dir);
2585 if (error)
2586 return error;
2587
2588 if (!old_dir->i_op || !old_dir->i_op->rename)
2589 return -EPERM;
2590
2591 DQUOT_INIT(old_dir);
2592 DQUOT_INIT(new_dir);
2593
2594 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2595
2596 if (is_dir)
2597 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2598 else
2599 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2600 if (!error) {
2601 const char *new_name = old_dentry->d_name.name;
2602 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2603 new_dentry->d_inode, old_dentry);
2604 }
2605 fsnotify_oldname_free(old_name);
2606
2607 return error;
2608 }
2609
2610 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2611 int newdfd, const char __user *newname)
2612 {
2613 struct dentry *old_dir, *new_dir;
2614 struct dentry *old_dentry, *new_dentry;
2615 struct dentry *trap;
2616 struct nameidata oldnd, newnd;
2617 char *from;
2618 char *to;
2619 int error;
2620
2621 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2622 if (error)
2623 goto exit;
2624
2625 error = user_path_parent(newdfd, newname, &newnd, &to);
2626 if (error)
2627 goto exit1;
2628
2629 error = -EXDEV;
2630 if (oldnd.path.mnt != newnd.path.mnt)
2631 goto exit2;
2632
2633 old_dir = oldnd.path.dentry;
2634 error = -EBUSY;
2635 if (oldnd.last_type != LAST_NORM)
2636 goto exit2;
2637
2638 new_dir = newnd.path.dentry;
2639 if (newnd.last_type != LAST_NORM)
2640 goto exit2;
2641
2642 oldnd.flags &= ~LOOKUP_PARENT;
2643 newnd.flags &= ~LOOKUP_PARENT;
2644 newnd.flags |= LOOKUP_RENAME_TARGET;
2645
2646 trap = lock_rename(new_dir, old_dir);
2647
2648 old_dentry = lookup_hash(&oldnd);
2649 error = PTR_ERR(old_dentry);
2650 if (IS_ERR(old_dentry))
2651 goto exit3;
2652 /* source must exist */
2653 error = -ENOENT;
2654 if (!old_dentry->d_inode)
2655 goto exit4;
2656 /* unless the source is a directory trailing slashes give -ENOTDIR */
2657 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2658 error = -ENOTDIR;
2659 if (oldnd.last.name[oldnd.last.len])
2660 goto exit4;
2661 if (newnd.last.name[newnd.last.len])
2662 goto exit4;
2663 }
2664 /* source should not be ancestor of target */
2665 error = -EINVAL;
2666 if (old_dentry == trap)
2667 goto exit4;
2668 new_dentry = lookup_hash(&newnd);
2669 error = PTR_ERR(new_dentry);
2670 if (IS_ERR(new_dentry))
2671 goto exit4;
2672 /* target should not be an ancestor of source */
2673 error = -ENOTEMPTY;
2674 if (new_dentry == trap)
2675 goto exit5;
2676
2677 error = mnt_want_write(oldnd.path.mnt);
2678 if (error)
2679 goto exit5;
2680 error = vfs_rename(old_dir->d_inode, old_dentry,
2681 new_dir->d_inode, new_dentry);
2682 mnt_drop_write(oldnd.path.mnt);
2683 exit5:
2684 dput(new_dentry);
2685 exit4:
2686 dput(old_dentry);
2687 exit3:
2688 unlock_rename(new_dir, old_dir);
2689 exit2:
2690 path_put(&newnd.path);
2691 putname(to);
2692 exit1:
2693 path_put(&oldnd.path);
2694 putname(from);
2695 exit:
2696 return error;
2697 }
2698
2699 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2700 {
2701 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2702 }
2703
2704 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2705 {
2706 int len;
2707
2708 len = PTR_ERR(link);
2709 if (IS_ERR(link))
2710 goto out;
2711
2712 len = strlen(link);
2713 if (len > (unsigned) buflen)
2714 len = buflen;
2715 if (copy_to_user(buffer, link, len))
2716 len = -EFAULT;
2717 out:
2718 return len;
2719 }
2720
2721 /*
2722 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2723 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2724 * using) it for any given inode is up to filesystem.
2725 */
2726 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2727 {
2728 struct nameidata nd;
2729 void *cookie;
2730 int res;
2731
2732 nd.depth = 0;
2733 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2734 if (IS_ERR(cookie))
2735 return PTR_ERR(cookie);
2736
2737 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2738 if (dentry->d_inode->i_op->put_link)
2739 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2740 return res;
2741 }
2742
2743 int vfs_follow_link(struct nameidata *nd, const char *link)
2744 {
2745 return __vfs_follow_link(nd, link);
2746 }
2747
2748 /* get the link contents into pagecache */
2749 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2750 {
2751 struct page * page;
2752 struct address_space *mapping = dentry->d_inode->i_mapping;
2753 page = read_mapping_page(mapping, 0, NULL);
2754 if (IS_ERR(page))
2755 return (char*)page;
2756 *ppage = page;
2757 return kmap(page);
2758 }
2759
2760 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2761 {
2762 struct page *page = NULL;
2763 char *s = page_getlink(dentry, &page);
2764 int res = vfs_readlink(dentry,buffer,buflen,s);
2765 if (page) {
2766 kunmap(page);
2767 page_cache_release(page);
2768 }
2769 return res;
2770 }
2771
2772 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2773 {
2774 struct page *page = NULL;
2775 nd_set_link(nd, page_getlink(dentry, &page));
2776 return page;
2777 }
2778
2779 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2780 {
2781 struct page *page = cookie;
2782
2783 if (page) {
2784 kunmap(page);
2785 page_cache_release(page);
2786 }
2787 }
2788
2789 int __page_symlink(struct inode *inode, const char *symname, int len,
2790 gfp_t gfp_mask)
2791 {
2792 struct address_space *mapping = inode->i_mapping;
2793 struct page *page;
2794 void *fsdata;
2795 int err;
2796 char *kaddr;
2797
2798 retry:
2799 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2800 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2801 if (err)
2802 goto fail;
2803
2804 kaddr = kmap_atomic(page, KM_USER0);
2805 memcpy(kaddr, symname, len-1);
2806 kunmap_atomic(kaddr, KM_USER0);
2807
2808 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2809 page, fsdata);
2810 if (err < 0)
2811 goto fail;
2812 if (err < len-1)
2813 goto retry;
2814
2815 mark_inode_dirty(inode);
2816 return 0;
2817 fail:
2818 return err;
2819 }
2820
2821 int page_symlink(struct inode *inode, const char *symname, int len)
2822 {
2823 return __page_symlink(inode, symname, len,
2824 mapping_gfp_mask(inode->i_mapping));
2825 }
2826
2827 const struct inode_operations page_symlink_inode_operations = {
2828 .readlink = generic_readlink,
2829 .follow_link = page_follow_link_light,
2830 .put_link = page_put_link,
2831 };
2832
2833 EXPORT_SYMBOL(user_path_at);
2834 EXPORT_SYMBOL(follow_down);
2835 EXPORT_SYMBOL(follow_up);
2836 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2837 EXPORT_SYMBOL(getname);
2838 EXPORT_SYMBOL(lock_rename);
2839 EXPORT_SYMBOL(lookup_one_len);
2840 EXPORT_SYMBOL(page_follow_link_light);
2841 EXPORT_SYMBOL(page_put_link);
2842 EXPORT_SYMBOL(page_readlink);
2843 EXPORT_SYMBOL(__page_symlink);
2844 EXPORT_SYMBOL(page_symlink);
2845 EXPORT_SYMBOL(page_symlink_inode_operations);
2846 EXPORT_SYMBOL(path_lookup);
2847 EXPORT_SYMBOL(kern_path);
2848 EXPORT_SYMBOL(vfs_path_lookup);
2849 EXPORT_SYMBOL(inode_permission);
2850 EXPORT_SYMBOL(vfs_permission);
2851 EXPORT_SYMBOL(file_permission);
2852 EXPORT_SYMBOL(unlock_rename);
2853 EXPORT_SYMBOL(vfs_create);
2854 EXPORT_SYMBOL(vfs_follow_link);
2855 EXPORT_SYMBOL(vfs_link);
2856 EXPORT_SYMBOL(vfs_mkdir);
2857 EXPORT_SYMBOL(vfs_mknod);
2858 EXPORT_SYMBOL(generic_permission);
2859 EXPORT_SYMBOL(vfs_readlink);
2860 EXPORT_SYMBOL(vfs_rename);
2861 EXPORT_SYMBOL(vfs_rmdir);
2862 EXPORT_SYMBOL(vfs_symlink);
2863 EXPORT_SYMBOL(vfs_unlink);
2864 EXPORT_SYMBOL(dentry_unhash);
2865 EXPORT_SYMBOL(generic_readlink);