Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 char * getname(const char __user * filename)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 /*
170 * This does basic POSIX ACL permission checking
171 */
172 static int acl_permission_check(struct inode *inode, int mask,
173 int (*check_acl)(struct inode *inode, int mask))
174 {
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198 }
199
200 /**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 *
206 * Used to check for read/write/execute permissions on a file.
207 * We use "fsuid" for this, letting us set arbitrary permissions
208 * for filesystem access without changing the "normal" uids which
209 * are used for other things..
210 */
211 int generic_permission(struct inode *inode, int mask,
212 int (*check_acl)(struct inode *inode, int mask))
213 {
214 int ret;
215
216 /*
217 * Do the basic POSIX ACL permission checks.
218 */
219 ret = acl_permission_check(inode, mask, check_acl);
220 if (ret != -EACCES)
221 return ret;
222
223 /*
224 * Read/write DACs are always overridable.
225 * Executable DACs are overridable if at least one exec bit is set.
226 */
227 if (!(mask & MAY_EXEC) || execute_ok(inode))
228 if (capable(CAP_DAC_OVERRIDE))
229 return 0;
230
231 /*
232 * Searching includes executable on directories, else just read.
233 */
234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 if (capable(CAP_DAC_READ_SEARCH))
237 return 0;
238
239 return -EACCES;
240 }
241
242 /**
243 * inode_permission - check for access rights to a given inode
244 * @inode: inode to check permission on
245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246 *
247 * Used to check for read/write/execute permissions on an inode.
248 * We use "fsuid" for this, letting us set arbitrary permissions
249 * for filesystem access without changing the "normal" uids which
250 * are used for other things.
251 */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 int retval;
255
256 if (mask & MAY_WRITE) {
257 umode_t mode = inode->i_mode;
258
259 /*
260 * Nobody gets write access to a read-only fs.
261 */
262 if (IS_RDONLY(inode) &&
263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 return -EROFS;
265
266 /*
267 * Nobody gets write access to an immutable file.
268 */
269 if (IS_IMMUTABLE(inode))
270 return -EACCES;
271 }
272
273 if (inode->i_op->permission)
274 retval = inode->i_op->permission(inode, mask);
275 else
276 retval = generic_permission(inode, mask, inode->i_op->check_acl);
277
278 if (retval)
279 return retval;
280
281 retval = devcgroup_inode_permission(inode, mask);
282 if (retval)
283 return retval;
284
285 return security_inode_permission(inode,
286 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
287 }
288
289 /**
290 * file_permission - check for additional access rights to a given file
291 * @file: file to check access rights for
292 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
293 *
294 * Used to check for read/write/execute permissions on an already opened
295 * file.
296 *
297 * Note:
298 * Do not use this function in new code. All access checks should
299 * be done using inode_permission().
300 */
301 int file_permission(struct file *file, int mask)
302 {
303 return inode_permission(file->f_path.dentry->d_inode, mask);
304 }
305
306 /*
307 * get_write_access() gets write permission for a file.
308 * put_write_access() releases this write permission.
309 * This is used for regular files.
310 * We cannot support write (and maybe mmap read-write shared) accesses and
311 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
312 * can have the following values:
313 * 0: no writers, no VM_DENYWRITE mappings
314 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
315 * > 0: (i_writecount) users are writing to the file.
316 *
317 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
318 * except for the cases where we don't hold i_writecount yet. Then we need to
319 * use {get,deny}_write_access() - these functions check the sign and refuse
320 * to do the change if sign is wrong. Exclusion between them is provided by
321 * the inode->i_lock spinlock.
322 */
323
324 int get_write_access(struct inode * inode)
325 {
326 spin_lock(&inode->i_lock);
327 if (atomic_read(&inode->i_writecount) < 0) {
328 spin_unlock(&inode->i_lock);
329 return -ETXTBSY;
330 }
331 atomic_inc(&inode->i_writecount);
332 spin_unlock(&inode->i_lock);
333
334 return 0;
335 }
336
337 int deny_write_access(struct file * file)
338 {
339 struct inode *inode = file->f_path.dentry->d_inode;
340
341 spin_lock(&inode->i_lock);
342 if (atomic_read(&inode->i_writecount) > 0) {
343 spin_unlock(&inode->i_lock);
344 return -ETXTBSY;
345 }
346 atomic_dec(&inode->i_writecount);
347 spin_unlock(&inode->i_lock);
348
349 return 0;
350 }
351
352 /**
353 * path_get - get a reference to a path
354 * @path: path to get the reference to
355 *
356 * Given a path increment the reference count to the dentry and the vfsmount.
357 */
358 void path_get(struct path *path)
359 {
360 mntget(path->mnt);
361 dget(path->dentry);
362 }
363 EXPORT_SYMBOL(path_get);
364
365 /**
366 * path_put - put a reference to a path
367 * @path: path to put the reference to
368 *
369 * Given a path decrement the reference count to the dentry and the vfsmount.
370 */
371 void path_put(struct path *path)
372 {
373 dput(path->dentry);
374 mntput(path->mnt);
375 }
376 EXPORT_SYMBOL(path_put);
377
378 /**
379 * release_open_intent - free up open intent resources
380 * @nd: pointer to nameidata
381 */
382 void release_open_intent(struct nameidata *nd)
383 {
384 if (nd->intent.open.file->f_path.dentry == NULL)
385 put_filp(nd->intent.open.file);
386 else
387 fput(nd->intent.open.file);
388 }
389
390 static inline struct dentry *
391 do_revalidate(struct dentry *dentry, struct nameidata *nd)
392 {
393 int status = dentry->d_op->d_revalidate(dentry, nd);
394 if (unlikely(status <= 0)) {
395 /*
396 * The dentry failed validation.
397 * If d_revalidate returned 0 attempt to invalidate
398 * the dentry otherwise d_revalidate is asking us
399 * to return a fail status.
400 */
401 if (!status) {
402 if (!d_invalidate(dentry)) {
403 dput(dentry);
404 dentry = NULL;
405 }
406 } else {
407 dput(dentry);
408 dentry = ERR_PTR(status);
409 }
410 }
411 return dentry;
412 }
413
414 /*
415 * force_reval_path - force revalidation of a dentry
416 *
417 * In some situations the path walking code will trust dentries without
418 * revalidating them. This causes problems for filesystems that depend on
419 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
420 * (which indicates that it's possible for the dentry to go stale), force
421 * a d_revalidate call before proceeding.
422 *
423 * Returns 0 if the revalidation was successful. If the revalidation fails,
424 * either return the error returned by d_revalidate or -ESTALE if the
425 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
426 * invalidate the dentry. It's up to the caller to handle putting references
427 * to the path if necessary.
428 */
429 static int
430 force_reval_path(struct path *path, struct nameidata *nd)
431 {
432 int status;
433 struct dentry *dentry = path->dentry;
434
435 /*
436 * only check on filesystems where it's possible for the dentry to
437 * become stale. It's assumed that if this flag is set then the
438 * d_revalidate op will also be defined.
439 */
440 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
441 return 0;
442
443 status = dentry->d_op->d_revalidate(dentry, nd);
444 if (status > 0)
445 return 0;
446
447 if (!status) {
448 d_invalidate(dentry);
449 status = -ESTALE;
450 }
451 return status;
452 }
453
454 /*
455 * Short-cut version of permission(), for calling on directories
456 * during pathname resolution. Combines parts of permission()
457 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
458 *
459 * If appropriate, check DAC only. If not appropriate, or
460 * short-cut DAC fails, then call ->permission() to do more
461 * complete permission check.
462 */
463 static int exec_permission(struct inode *inode)
464 {
465 int ret;
466
467 if (inode->i_op->permission) {
468 ret = inode->i_op->permission(inode, MAY_EXEC);
469 if (!ret)
470 goto ok;
471 return ret;
472 }
473 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
474 if (!ret)
475 goto ok;
476
477 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
478 goto ok;
479
480 return ret;
481 ok:
482 return security_inode_permission(inode, MAY_EXEC);
483 }
484
485 static __always_inline void set_root(struct nameidata *nd)
486 {
487 if (!nd->root.mnt) {
488 struct fs_struct *fs = current->fs;
489 read_lock(&fs->lock);
490 nd->root = fs->root;
491 path_get(&nd->root);
492 read_unlock(&fs->lock);
493 }
494 }
495
496 static int link_path_walk(const char *, struct nameidata *);
497
498 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
499 {
500 if (IS_ERR(link))
501 goto fail;
502
503 if (*link == '/') {
504 set_root(nd);
505 path_put(&nd->path);
506 nd->path = nd->root;
507 path_get(&nd->root);
508 }
509
510 return link_path_walk(link, nd);
511 fail:
512 path_put(&nd->path);
513 return PTR_ERR(link);
514 }
515
516 static void path_put_conditional(struct path *path, struct nameidata *nd)
517 {
518 dput(path->dentry);
519 if (path->mnt != nd->path.mnt)
520 mntput(path->mnt);
521 }
522
523 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
524 {
525 dput(nd->path.dentry);
526 if (nd->path.mnt != path->mnt)
527 mntput(nd->path.mnt);
528 nd->path.mnt = path->mnt;
529 nd->path.dentry = path->dentry;
530 }
531
532 static __always_inline int
533 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
534 {
535 int error;
536 struct dentry *dentry = path->dentry;
537
538 touch_atime(path->mnt, dentry);
539 nd_set_link(nd, NULL);
540
541 if (path->mnt != nd->path.mnt) {
542 path_to_nameidata(path, nd);
543 dget(dentry);
544 }
545 mntget(path->mnt);
546 nd->last_type = LAST_BIND;
547 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
548 error = PTR_ERR(*p);
549 if (!IS_ERR(*p)) {
550 char *s = nd_get_link(nd);
551 error = 0;
552 if (s)
553 error = __vfs_follow_link(nd, s);
554 else if (nd->last_type == LAST_BIND) {
555 error = force_reval_path(&nd->path, nd);
556 if (error)
557 path_put(&nd->path);
558 }
559 }
560 return error;
561 }
562
563 /*
564 * This limits recursive symlink follows to 8, while
565 * limiting consecutive symlinks to 40.
566 *
567 * Without that kind of total limit, nasty chains of consecutive
568 * symlinks can cause almost arbitrarily long lookups.
569 */
570 static inline int do_follow_link(struct path *path, struct nameidata *nd)
571 {
572 void *cookie;
573 int err = -ELOOP;
574 if (current->link_count >= MAX_NESTED_LINKS)
575 goto loop;
576 if (current->total_link_count >= 40)
577 goto loop;
578 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
579 cond_resched();
580 err = security_inode_follow_link(path->dentry, nd);
581 if (err)
582 goto loop;
583 current->link_count++;
584 current->total_link_count++;
585 nd->depth++;
586 err = __do_follow_link(path, nd, &cookie);
587 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
588 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
589 path_put(path);
590 current->link_count--;
591 nd->depth--;
592 return err;
593 loop:
594 path_put_conditional(path, nd);
595 path_put(&nd->path);
596 return err;
597 }
598
599 int follow_up(struct path *path)
600 {
601 struct vfsmount *parent;
602 struct dentry *mountpoint;
603 spin_lock(&vfsmount_lock);
604 parent = path->mnt->mnt_parent;
605 if (parent == path->mnt) {
606 spin_unlock(&vfsmount_lock);
607 return 0;
608 }
609 mntget(parent);
610 mountpoint = dget(path->mnt->mnt_mountpoint);
611 spin_unlock(&vfsmount_lock);
612 dput(path->dentry);
613 path->dentry = mountpoint;
614 mntput(path->mnt);
615 path->mnt = parent;
616 return 1;
617 }
618
619 /* no need for dcache_lock, as serialization is taken care in
620 * namespace.c
621 */
622 static int __follow_mount(struct path *path)
623 {
624 int res = 0;
625 while (d_mountpoint(path->dentry)) {
626 struct vfsmount *mounted = lookup_mnt(path);
627 if (!mounted)
628 break;
629 dput(path->dentry);
630 if (res)
631 mntput(path->mnt);
632 path->mnt = mounted;
633 path->dentry = dget(mounted->mnt_root);
634 res = 1;
635 }
636 return res;
637 }
638
639 static void follow_mount(struct path *path)
640 {
641 while (d_mountpoint(path->dentry)) {
642 struct vfsmount *mounted = lookup_mnt(path);
643 if (!mounted)
644 break;
645 dput(path->dentry);
646 mntput(path->mnt);
647 path->mnt = mounted;
648 path->dentry = dget(mounted->mnt_root);
649 }
650 }
651
652 /* no need for dcache_lock, as serialization is taken care in
653 * namespace.c
654 */
655 int follow_down(struct path *path)
656 {
657 struct vfsmount *mounted;
658
659 mounted = lookup_mnt(path);
660 if (mounted) {
661 dput(path->dentry);
662 mntput(path->mnt);
663 path->mnt = mounted;
664 path->dentry = dget(mounted->mnt_root);
665 return 1;
666 }
667 return 0;
668 }
669
670 static __always_inline void follow_dotdot(struct nameidata *nd)
671 {
672 set_root(nd);
673
674 while(1) {
675 struct dentry *old = nd->path.dentry;
676
677 if (nd->path.dentry == nd->root.dentry &&
678 nd->path.mnt == nd->root.mnt) {
679 break;
680 }
681 if (nd->path.dentry != nd->path.mnt->mnt_root) {
682 /* rare case of legitimate dget_parent()... */
683 nd->path.dentry = dget_parent(nd->path.dentry);
684 dput(old);
685 break;
686 }
687 if (!follow_up(&nd->path))
688 break;
689 }
690 follow_mount(&nd->path);
691 }
692
693 /*
694 * It's more convoluted than I'd like it to be, but... it's still fairly
695 * small and for now I'd prefer to have fast path as straight as possible.
696 * It _is_ time-critical.
697 */
698 static int do_lookup(struct nameidata *nd, struct qstr *name,
699 struct path *path)
700 {
701 struct vfsmount *mnt = nd->path.mnt;
702 struct dentry *dentry, *parent;
703 struct inode *dir;
704 /*
705 * See if the low-level filesystem might want
706 * to use its own hash..
707 */
708 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
709 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
710 if (err < 0)
711 return err;
712 }
713
714 dentry = __d_lookup(nd->path.dentry, name);
715 if (!dentry)
716 goto need_lookup;
717 if (dentry->d_op && dentry->d_op->d_revalidate)
718 goto need_revalidate;
719 done:
720 path->mnt = mnt;
721 path->dentry = dentry;
722 __follow_mount(path);
723 return 0;
724
725 need_lookup:
726 parent = nd->path.dentry;
727 dir = parent->d_inode;
728
729 mutex_lock(&dir->i_mutex);
730 /*
731 * First re-do the cached lookup just in case it was created
732 * while we waited for the directory semaphore..
733 *
734 * FIXME! This could use version numbering or similar to
735 * avoid unnecessary cache lookups.
736 *
737 * The "dcache_lock" is purely to protect the RCU list walker
738 * from concurrent renames at this point (we mustn't get false
739 * negatives from the RCU list walk here, unlike the optimistic
740 * fast walk).
741 *
742 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
743 */
744 dentry = d_lookup(parent, name);
745 if (!dentry) {
746 struct dentry *new;
747
748 /* Don't create child dentry for a dead directory. */
749 dentry = ERR_PTR(-ENOENT);
750 if (IS_DEADDIR(dir))
751 goto out_unlock;
752
753 new = d_alloc(parent, name);
754 dentry = ERR_PTR(-ENOMEM);
755 if (new) {
756 dentry = dir->i_op->lookup(dir, new, nd);
757 if (dentry)
758 dput(new);
759 else
760 dentry = new;
761 }
762 out_unlock:
763 mutex_unlock(&dir->i_mutex);
764 if (IS_ERR(dentry))
765 goto fail;
766 goto done;
767 }
768
769 /*
770 * Uhhuh! Nasty case: the cache was re-populated while
771 * we waited on the semaphore. Need to revalidate.
772 */
773 mutex_unlock(&dir->i_mutex);
774 if (dentry->d_op && dentry->d_op->d_revalidate) {
775 dentry = do_revalidate(dentry, nd);
776 if (!dentry)
777 dentry = ERR_PTR(-ENOENT);
778 }
779 if (IS_ERR(dentry))
780 goto fail;
781 goto done;
782
783 need_revalidate:
784 dentry = do_revalidate(dentry, nd);
785 if (!dentry)
786 goto need_lookup;
787 if (IS_ERR(dentry))
788 goto fail;
789 goto done;
790
791 fail:
792 return PTR_ERR(dentry);
793 }
794
795 /*
796 * This is a temporary kludge to deal with "automount" symlinks; proper
797 * solution is to trigger them on follow_mount(), so that do_lookup()
798 * would DTRT. To be killed before 2.6.34-final.
799 */
800 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
801 {
802 return inode && unlikely(inode->i_op->follow_link) &&
803 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
804 }
805
806 /*
807 * Name resolution.
808 * This is the basic name resolution function, turning a pathname into
809 * the final dentry. We expect 'base' to be positive and a directory.
810 *
811 * Returns 0 and nd will have valid dentry and mnt on success.
812 * Returns error and drops reference to input namei data on failure.
813 */
814 static int link_path_walk(const char *name, struct nameidata *nd)
815 {
816 struct path next;
817 struct inode *inode;
818 int err;
819 unsigned int lookup_flags = nd->flags;
820
821 while (*name=='/')
822 name++;
823 if (!*name)
824 goto return_reval;
825
826 inode = nd->path.dentry->d_inode;
827 if (nd->depth)
828 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
829
830 /* At this point we know we have a real path component. */
831 for(;;) {
832 unsigned long hash;
833 struct qstr this;
834 unsigned int c;
835
836 nd->flags |= LOOKUP_CONTINUE;
837 err = exec_permission(inode);
838 if (err)
839 break;
840
841 this.name = name;
842 c = *(const unsigned char *)name;
843
844 hash = init_name_hash();
845 do {
846 name++;
847 hash = partial_name_hash(c, hash);
848 c = *(const unsigned char *)name;
849 } while (c && (c != '/'));
850 this.len = name - (const char *) this.name;
851 this.hash = end_name_hash(hash);
852
853 /* remove trailing slashes? */
854 if (!c)
855 goto last_component;
856 while (*++name == '/');
857 if (!*name)
858 goto last_with_slashes;
859
860 /*
861 * "." and ".." are special - ".." especially so because it has
862 * to be able to know about the current root directory and
863 * parent relationships.
864 */
865 if (this.name[0] == '.') switch (this.len) {
866 default:
867 break;
868 case 2:
869 if (this.name[1] != '.')
870 break;
871 follow_dotdot(nd);
872 inode = nd->path.dentry->d_inode;
873 /* fallthrough */
874 case 1:
875 continue;
876 }
877 /* This does the actual lookups.. */
878 err = do_lookup(nd, &this, &next);
879 if (err)
880 break;
881
882 err = -ENOENT;
883 inode = next.dentry->d_inode;
884 if (!inode)
885 goto out_dput;
886
887 if (inode->i_op->follow_link) {
888 err = do_follow_link(&next, nd);
889 if (err)
890 goto return_err;
891 err = -ENOENT;
892 inode = nd->path.dentry->d_inode;
893 if (!inode)
894 break;
895 } else
896 path_to_nameidata(&next, nd);
897 err = -ENOTDIR;
898 if (!inode->i_op->lookup)
899 break;
900 continue;
901 /* here ends the main loop */
902
903 last_with_slashes:
904 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
905 last_component:
906 /* Clear LOOKUP_CONTINUE iff it was previously unset */
907 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
908 if (lookup_flags & LOOKUP_PARENT)
909 goto lookup_parent;
910 if (this.name[0] == '.') switch (this.len) {
911 default:
912 break;
913 case 2:
914 if (this.name[1] != '.')
915 break;
916 follow_dotdot(nd);
917 inode = nd->path.dentry->d_inode;
918 /* fallthrough */
919 case 1:
920 goto return_reval;
921 }
922 err = do_lookup(nd, &this, &next);
923 if (err)
924 break;
925 inode = next.dentry->d_inode;
926 if (follow_on_final(inode, lookup_flags)) {
927 err = do_follow_link(&next, nd);
928 if (err)
929 goto return_err;
930 inode = nd->path.dentry->d_inode;
931 } else
932 path_to_nameidata(&next, nd);
933 err = -ENOENT;
934 if (!inode)
935 break;
936 if (lookup_flags & LOOKUP_DIRECTORY) {
937 err = -ENOTDIR;
938 if (!inode->i_op->lookup)
939 break;
940 }
941 goto return_base;
942 lookup_parent:
943 nd->last = this;
944 nd->last_type = LAST_NORM;
945 if (this.name[0] != '.')
946 goto return_base;
947 if (this.len == 1)
948 nd->last_type = LAST_DOT;
949 else if (this.len == 2 && this.name[1] == '.')
950 nd->last_type = LAST_DOTDOT;
951 else
952 goto return_base;
953 return_reval:
954 /*
955 * We bypassed the ordinary revalidation routines.
956 * We may need to check the cached dentry for staleness.
957 */
958 if (nd->path.dentry && nd->path.dentry->d_sb &&
959 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
960 err = -ESTALE;
961 /* Note: we do not d_invalidate() */
962 if (!nd->path.dentry->d_op->d_revalidate(
963 nd->path.dentry, nd))
964 break;
965 }
966 return_base:
967 return 0;
968 out_dput:
969 path_put_conditional(&next, nd);
970 break;
971 }
972 path_put(&nd->path);
973 return_err:
974 return err;
975 }
976
977 static int path_walk(const char *name, struct nameidata *nd)
978 {
979 struct path save = nd->path;
980 int result;
981
982 current->total_link_count = 0;
983
984 /* make sure the stuff we saved doesn't go away */
985 path_get(&save);
986
987 result = link_path_walk(name, nd);
988 if (result == -ESTALE) {
989 /* nd->path had been dropped */
990 current->total_link_count = 0;
991 nd->path = save;
992 path_get(&nd->path);
993 nd->flags |= LOOKUP_REVAL;
994 result = link_path_walk(name, nd);
995 }
996
997 path_put(&save);
998
999 return result;
1000 }
1001
1002 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1003 {
1004 int retval = 0;
1005 int fput_needed;
1006 struct file *file;
1007
1008 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1009 nd->flags = flags;
1010 nd->depth = 0;
1011 nd->root.mnt = NULL;
1012
1013 if (*name=='/') {
1014 set_root(nd);
1015 nd->path = nd->root;
1016 path_get(&nd->root);
1017 } else if (dfd == AT_FDCWD) {
1018 struct fs_struct *fs = current->fs;
1019 read_lock(&fs->lock);
1020 nd->path = fs->pwd;
1021 path_get(&fs->pwd);
1022 read_unlock(&fs->lock);
1023 } else {
1024 struct dentry *dentry;
1025
1026 file = fget_light(dfd, &fput_needed);
1027 retval = -EBADF;
1028 if (!file)
1029 goto out_fail;
1030
1031 dentry = file->f_path.dentry;
1032
1033 retval = -ENOTDIR;
1034 if (!S_ISDIR(dentry->d_inode->i_mode))
1035 goto fput_fail;
1036
1037 retval = file_permission(file, MAY_EXEC);
1038 if (retval)
1039 goto fput_fail;
1040
1041 nd->path = file->f_path;
1042 path_get(&file->f_path);
1043
1044 fput_light(file, fput_needed);
1045 }
1046 return 0;
1047
1048 fput_fail:
1049 fput_light(file, fput_needed);
1050 out_fail:
1051 return retval;
1052 }
1053
1054 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1055 static int do_path_lookup(int dfd, const char *name,
1056 unsigned int flags, struct nameidata *nd)
1057 {
1058 int retval = path_init(dfd, name, flags, nd);
1059 if (!retval)
1060 retval = path_walk(name, nd);
1061 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1062 nd->path.dentry->d_inode))
1063 audit_inode(name, nd->path.dentry);
1064 if (nd->root.mnt) {
1065 path_put(&nd->root);
1066 nd->root.mnt = NULL;
1067 }
1068 return retval;
1069 }
1070
1071 int path_lookup(const char *name, unsigned int flags,
1072 struct nameidata *nd)
1073 {
1074 return do_path_lookup(AT_FDCWD, name, flags, nd);
1075 }
1076
1077 int kern_path(const char *name, unsigned int flags, struct path *path)
1078 {
1079 struct nameidata nd;
1080 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1081 if (!res)
1082 *path = nd.path;
1083 return res;
1084 }
1085
1086 /**
1087 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1088 * @dentry: pointer to dentry of the base directory
1089 * @mnt: pointer to vfs mount of the base directory
1090 * @name: pointer to file name
1091 * @flags: lookup flags
1092 * @nd: pointer to nameidata
1093 */
1094 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1095 const char *name, unsigned int flags,
1096 struct nameidata *nd)
1097 {
1098 int retval;
1099
1100 /* same as do_path_lookup */
1101 nd->last_type = LAST_ROOT;
1102 nd->flags = flags;
1103 nd->depth = 0;
1104
1105 nd->path.dentry = dentry;
1106 nd->path.mnt = mnt;
1107 path_get(&nd->path);
1108 nd->root = nd->path;
1109 path_get(&nd->root);
1110
1111 retval = path_walk(name, nd);
1112 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1113 nd->path.dentry->d_inode))
1114 audit_inode(name, nd->path.dentry);
1115
1116 path_put(&nd->root);
1117 nd->root.mnt = NULL;
1118
1119 return retval;
1120 }
1121
1122 static struct dentry *__lookup_hash(struct qstr *name,
1123 struct dentry *base, struct nameidata *nd)
1124 {
1125 struct dentry *dentry;
1126 struct inode *inode;
1127 int err;
1128
1129 inode = base->d_inode;
1130
1131 /*
1132 * See if the low-level filesystem might want
1133 * to use its own hash..
1134 */
1135 if (base->d_op && base->d_op->d_hash) {
1136 err = base->d_op->d_hash(base, name);
1137 dentry = ERR_PTR(err);
1138 if (err < 0)
1139 goto out;
1140 }
1141
1142 dentry = __d_lookup(base, name);
1143
1144 /* lockess __d_lookup may fail due to concurrent d_move()
1145 * in some unrelated directory, so try with d_lookup
1146 */
1147 if (!dentry)
1148 dentry = d_lookup(base, name);
1149
1150 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1151 dentry = do_revalidate(dentry, nd);
1152
1153 if (!dentry) {
1154 struct dentry *new;
1155
1156 /* Don't create child dentry for a dead directory. */
1157 dentry = ERR_PTR(-ENOENT);
1158 if (IS_DEADDIR(inode))
1159 goto out;
1160
1161 new = d_alloc(base, name);
1162 dentry = ERR_PTR(-ENOMEM);
1163 if (!new)
1164 goto out;
1165 dentry = inode->i_op->lookup(inode, new, nd);
1166 if (!dentry)
1167 dentry = new;
1168 else
1169 dput(new);
1170 }
1171 out:
1172 return dentry;
1173 }
1174
1175 /*
1176 * Restricted form of lookup. Doesn't follow links, single-component only,
1177 * needs parent already locked. Doesn't follow mounts.
1178 * SMP-safe.
1179 */
1180 static struct dentry *lookup_hash(struct nameidata *nd)
1181 {
1182 int err;
1183
1184 err = exec_permission(nd->path.dentry->d_inode);
1185 if (err)
1186 return ERR_PTR(err);
1187 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1188 }
1189
1190 static int __lookup_one_len(const char *name, struct qstr *this,
1191 struct dentry *base, int len)
1192 {
1193 unsigned long hash;
1194 unsigned int c;
1195
1196 this->name = name;
1197 this->len = len;
1198 if (!len)
1199 return -EACCES;
1200
1201 hash = init_name_hash();
1202 while (len--) {
1203 c = *(const unsigned char *)name++;
1204 if (c == '/' || c == '\0')
1205 return -EACCES;
1206 hash = partial_name_hash(c, hash);
1207 }
1208 this->hash = end_name_hash(hash);
1209 return 0;
1210 }
1211
1212 /**
1213 * lookup_one_len - filesystem helper to lookup single pathname component
1214 * @name: pathname component to lookup
1215 * @base: base directory to lookup from
1216 * @len: maximum length @len should be interpreted to
1217 *
1218 * Note that this routine is purely a helper for filesystem usage and should
1219 * not be called by generic code. Also note that by using this function the
1220 * nameidata argument is passed to the filesystem methods and a filesystem
1221 * using this helper needs to be prepared for that.
1222 */
1223 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1224 {
1225 int err;
1226 struct qstr this;
1227
1228 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1229
1230 err = __lookup_one_len(name, &this, base, len);
1231 if (err)
1232 return ERR_PTR(err);
1233
1234 err = exec_permission(base->d_inode);
1235 if (err)
1236 return ERR_PTR(err);
1237 return __lookup_hash(&this, base, NULL);
1238 }
1239
1240 int user_path_at(int dfd, const char __user *name, unsigned flags,
1241 struct path *path)
1242 {
1243 struct nameidata nd;
1244 char *tmp = getname(name);
1245 int err = PTR_ERR(tmp);
1246 if (!IS_ERR(tmp)) {
1247
1248 BUG_ON(flags & LOOKUP_PARENT);
1249
1250 err = do_path_lookup(dfd, tmp, flags, &nd);
1251 putname(tmp);
1252 if (!err)
1253 *path = nd.path;
1254 }
1255 return err;
1256 }
1257
1258 static int user_path_parent(int dfd, const char __user *path,
1259 struct nameidata *nd, char **name)
1260 {
1261 char *s = getname(path);
1262 int error;
1263
1264 if (IS_ERR(s))
1265 return PTR_ERR(s);
1266
1267 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1268 if (error)
1269 putname(s);
1270 else
1271 *name = s;
1272
1273 return error;
1274 }
1275
1276 /*
1277 * It's inline, so penalty for filesystems that don't use sticky bit is
1278 * minimal.
1279 */
1280 static inline int check_sticky(struct inode *dir, struct inode *inode)
1281 {
1282 uid_t fsuid = current_fsuid();
1283
1284 if (!(dir->i_mode & S_ISVTX))
1285 return 0;
1286 if (inode->i_uid == fsuid)
1287 return 0;
1288 if (dir->i_uid == fsuid)
1289 return 0;
1290 return !capable(CAP_FOWNER);
1291 }
1292
1293 /*
1294 * Check whether we can remove a link victim from directory dir, check
1295 * whether the type of victim is right.
1296 * 1. We can't do it if dir is read-only (done in permission())
1297 * 2. We should have write and exec permissions on dir
1298 * 3. We can't remove anything from append-only dir
1299 * 4. We can't do anything with immutable dir (done in permission())
1300 * 5. If the sticky bit on dir is set we should either
1301 * a. be owner of dir, or
1302 * b. be owner of victim, or
1303 * c. have CAP_FOWNER capability
1304 * 6. If the victim is append-only or immutable we can't do antyhing with
1305 * links pointing to it.
1306 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1307 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1308 * 9. We can't remove a root or mountpoint.
1309 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1310 * nfs_async_unlink().
1311 */
1312 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1313 {
1314 int error;
1315
1316 if (!victim->d_inode)
1317 return -ENOENT;
1318
1319 BUG_ON(victim->d_parent->d_inode != dir);
1320 audit_inode_child(victim, dir);
1321
1322 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1323 if (error)
1324 return error;
1325 if (IS_APPEND(dir))
1326 return -EPERM;
1327 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1328 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1329 return -EPERM;
1330 if (isdir) {
1331 if (!S_ISDIR(victim->d_inode->i_mode))
1332 return -ENOTDIR;
1333 if (IS_ROOT(victim))
1334 return -EBUSY;
1335 } else if (S_ISDIR(victim->d_inode->i_mode))
1336 return -EISDIR;
1337 if (IS_DEADDIR(dir))
1338 return -ENOENT;
1339 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1340 return -EBUSY;
1341 return 0;
1342 }
1343
1344 /* Check whether we can create an object with dentry child in directory
1345 * dir.
1346 * 1. We can't do it if child already exists (open has special treatment for
1347 * this case, but since we are inlined it's OK)
1348 * 2. We can't do it if dir is read-only (done in permission())
1349 * 3. We should have write and exec permissions on dir
1350 * 4. We can't do it if dir is immutable (done in permission())
1351 */
1352 static inline int may_create(struct inode *dir, struct dentry *child)
1353 {
1354 if (child->d_inode)
1355 return -EEXIST;
1356 if (IS_DEADDIR(dir))
1357 return -ENOENT;
1358 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1359 }
1360
1361 /*
1362 * p1 and p2 should be directories on the same fs.
1363 */
1364 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1365 {
1366 struct dentry *p;
1367
1368 if (p1 == p2) {
1369 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1370 return NULL;
1371 }
1372
1373 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1374
1375 p = d_ancestor(p2, p1);
1376 if (p) {
1377 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1378 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1379 return p;
1380 }
1381
1382 p = d_ancestor(p1, p2);
1383 if (p) {
1384 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1385 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1386 return p;
1387 }
1388
1389 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1390 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1391 return NULL;
1392 }
1393
1394 void unlock_rename(struct dentry *p1, struct dentry *p2)
1395 {
1396 mutex_unlock(&p1->d_inode->i_mutex);
1397 if (p1 != p2) {
1398 mutex_unlock(&p2->d_inode->i_mutex);
1399 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1400 }
1401 }
1402
1403 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1404 struct nameidata *nd)
1405 {
1406 int error = may_create(dir, dentry);
1407
1408 if (error)
1409 return error;
1410
1411 if (!dir->i_op->create)
1412 return -EACCES; /* shouldn't it be ENOSYS? */
1413 mode &= S_IALLUGO;
1414 mode |= S_IFREG;
1415 error = security_inode_create(dir, dentry, mode);
1416 if (error)
1417 return error;
1418 error = dir->i_op->create(dir, dentry, mode, nd);
1419 if (!error)
1420 fsnotify_create(dir, dentry);
1421 return error;
1422 }
1423
1424 int may_open(struct path *path, int acc_mode, int flag)
1425 {
1426 struct dentry *dentry = path->dentry;
1427 struct inode *inode = dentry->d_inode;
1428 int error;
1429
1430 if (!inode)
1431 return -ENOENT;
1432
1433 switch (inode->i_mode & S_IFMT) {
1434 case S_IFLNK:
1435 return -ELOOP;
1436 case S_IFDIR:
1437 if (acc_mode & MAY_WRITE)
1438 return -EISDIR;
1439 break;
1440 case S_IFBLK:
1441 case S_IFCHR:
1442 if (path->mnt->mnt_flags & MNT_NODEV)
1443 return -EACCES;
1444 /*FALLTHRU*/
1445 case S_IFIFO:
1446 case S_IFSOCK:
1447 flag &= ~O_TRUNC;
1448 break;
1449 }
1450
1451 error = inode_permission(inode, acc_mode);
1452 if (error)
1453 return error;
1454
1455 /*
1456 * An append-only file must be opened in append mode for writing.
1457 */
1458 if (IS_APPEND(inode)) {
1459 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1460 return -EPERM;
1461 if (flag & O_TRUNC)
1462 return -EPERM;
1463 }
1464
1465 /* O_NOATIME can only be set by the owner or superuser */
1466 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1467 return -EPERM;
1468
1469 /*
1470 * Ensure there are no outstanding leases on the file.
1471 */
1472 return break_lease(inode, flag);
1473 }
1474
1475 static int handle_truncate(struct path *path)
1476 {
1477 struct inode *inode = path->dentry->d_inode;
1478 int error = get_write_access(inode);
1479 if (error)
1480 return error;
1481 /*
1482 * Refuse to truncate files with mandatory locks held on them.
1483 */
1484 error = locks_verify_locked(inode);
1485 if (!error)
1486 error = security_path_truncate(path, 0,
1487 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1488 if (!error) {
1489 error = do_truncate(path->dentry, 0,
1490 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1491 NULL);
1492 }
1493 put_write_access(inode);
1494 return error;
1495 }
1496
1497 /*
1498 * Be careful about ever adding any more callers of this
1499 * function. Its flags must be in the namei format, not
1500 * what get passed to sys_open().
1501 */
1502 static int __open_namei_create(struct nameidata *nd, struct path *path,
1503 int open_flag, int mode)
1504 {
1505 int error;
1506 struct dentry *dir = nd->path.dentry;
1507
1508 if (!IS_POSIXACL(dir->d_inode))
1509 mode &= ~current_umask();
1510 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1511 if (error)
1512 goto out_unlock;
1513 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1514 out_unlock:
1515 mutex_unlock(&dir->d_inode->i_mutex);
1516 dput(nd->path.dentry);
1517 nd->path.dentry = path->dentry;
1518 if (error)
1519 return error;
1520 /* Don't check for write permission, don't truncate */
1521 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1522 }
1523
1524 /*
1525 * Note that while the flag value (low two bits) for sys_open means:
1526 * 00 - read-only
1527 * 01 - write-only
1528 * 10 - read-write
1529 * 11 - special
1530 * it is changed into
1531 * 00 - no permissions needed
1532 * 01 - read-permission
1533 * 10 - write-permission
1534 * 11 - read-write
1535 * for the internal routines (ie open_namei()/follow_link() etc)
1536 * This is more logical, and also allows the 00 "no perm needed"
1537 * to be used for symlinks (where the permissions are checked
1538 * later).
1539 *
1540 */
1541 static inline int open_to_namei_flags(int flag)
1542 {
1543 if ((flag+1) & O_ACCMODE)
1544 flag++;
1545 return flag;
1546 }
1547
1548 static int open_will_truncate(int flag, struct inode *inode)
1549 {
1550 /*
1551 * We'll never write to the fs underlying
1552 * a device file.
1553 */
1554 if (special_file(inode->i_mode))
1555 return 0;
1556 return (flag & O_TRUNC);
1557 }
1558
1559 static struct file *finish_open(struct nameidata *nd,
1560 int open_flag, int acc_mode)
1561 {
1562 struct file *filp;
1563 int will_truncate;
1564 int error;
1565
1566 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1567 if (will_truncate) {
1568 error = mnt_want_write(nd->path.mnt);
1569 if (error)
1570 goto exit;
1571 }
1572 error = may_open(&nd->path, acc_mode, open_flag);
1573 if (error) {
1574 if (will_truncate)
1575 mnt_drop_write(nd->path.mnt);
1576 goto exit;
1577 }
1578 filp = nameidata_to_filp(nd);
1579 if (!IS_ERR(filp)) {
1580 error = ima_file_check(filp, acc_mode);
1581 if (error) {
1582 fput(filp);
1583 filp = ERR_PTR(error);
1584 }
1585 }
1586 if (!IS_ERR(filp)) {
1587 if (will_truncate) {
1588 error = handle_truncate(&nd->path);
1589 if (error) {
1590 fput(filp);
1591 filp = ERR_PTR(error);
1592 }
1593 }
1594 }
1595 /*
1596 * It is now safe to drop the mnt write
1597 * because the filp has had a write taken
1598 * on its behalf.
1599 */
1600 if (will_truncate)
1601 mnt_drop_write(nd->path.mnt);
1602 return filp;
1603
1604 exit:
1605 if (!IS_ERR(nd->intent.open.file))
1606 release_open_intent(nd);
1607 path_put(&nd->path);
1608 return ERR_PTR(error);
1609 }
1610
1611 static struct file *do_last(struct nameidata *nd, struct path *path,
1612 int open_flag, int acc_mode,
1613 int mode, const char *pathname)
1614 {
1615 struct dentry *dir = nd->path.dentry;
1616 struct file *filp;
1617 int error = -EISDIR;
1618
1619 switch (nd->last_type) {
1620 case LAST_DOTDOT:
1621 follow_dotdot(nd);
1622 dir = nd->path.dentry;
1623 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1624 if (!dir->d_op->d_revalidate(dir, nd)) {
1625 error = -ESTALE;
1626 goto exit;
1627 }
1628 }
1629 /* fallthrough */
1630 case LAST_DOT:
1631 case LAST_ROOT:
1632 if (open_flag & O_CREAT)
1633 goto exit;
1634 /* fallthrough */
1635 case LAST_BIND:
1636 audit_inode(pathname, dir);
1637 goto ok;
1638 }
1639
1640 /* trailing slashes? */
1641 if (nd->last.name[nd->last.len]) {
1642 if (open_flag & O_CREAT)
1643 goto exit;
1644 nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW;
1645 }
1646
1647 /* just plain open? */
1648 if (!(open_flag & O_CREAT)) {
1649 error = do_lookup(nd, &nd->last, path);
1650 if (error)
1651 goto exit;
1652 error = -ENOENT;
1653 if (!path->dentry->d_inode)
1654 goto exit_dput;
1655 if (path->dentry->d_inode->i_op->follow_link)
1656 return NULL;
1657 error = -ENOTDIR;
1658 if (nd->flags & LOOKUP_DIRECTORY) {
1659 if (!path->dentry->d_inode->i_op->lookup)
1660 goto exit_dput;
1661 }
1662 path_to_nameidata(path, nd);
1663 audit_inode(pathname, nd->path.dentry);
1664 goto ok;
1665 }
1666
1667 /* OK, it's O_CREAT */
1668 mutex_lock(&dir->d_inode->i_mutex);
1669
1670 path->dentry = lookup_hash(nd);
1671 path->mnt = nd->path.mnt;
1672
1673 error = PTR_ERR(path->dentry);
1674 if (IS_ERR(path->dentry)) {
1675 mutex_unlock(&dir->d_inode->i_mutex);
1676 goto exit;
1677 }
1678
1679 if (IS_ERR(nd->intent.open.file)) {
1680 error = PTR_ERR(nd->intent.open.file);
1681 goto exit_mutex_unlock;
1682 }
1683
1684 /* Negative dentry, just create the file */
1685 if (!path->dentry->d_inode) {
1686 /*
1687 * This write is needed to ensure that a
1688 * ro->rw transition does not occur between
1689 * the time when the file is created and when
1690 * a permanent write count is taken through
1691 * the 'struct file' in nameidata_to_filp().
1692 */
1693 error = mnt_want_write(nd->path.mnt);
1694 if (error)
1695 goto exit_mutex_unlock;
1696 error = __open_namei_create(nd, path, open_flag, mode);
1697 if (error) {
1698 mnt_drop_write(nd->path.mnt);
1699 goto exit;
1700 }
1701 filp = nameidata_to_filp(nd);
1702 mnt_drop_write(nd->path.mnt);
1703 if (!IS_ERR(filp)) {
1704 error = ima_file_check(filp, acc_mode);
1705 if (error) {
1706 fput(filp);
1707 filp = ERR_PTR(error);
1708 }
1709 }
1710 return filp;
1711 }
1712
1713 /*
1714 * It already exists.
1715 */
1716 mutex_unlock(&dir->d_inode->i_mutex);
1717 audit_inode(pathname, path->dentry);
1718
1719 error = -EEXIST;
1720 if (open_flag & O_EXCL)
1721 goto exit_dput;
1722
1723 if (__follow_mount(path)) {
1724 error = -ELOOP;
1725 if (open_flag & O_NOFOLLOW)
1726 goto exit_dput;
1727 }
1728
1729 error = -ENOENT;
1730 if (!path->dentry->d_inode)
1731 goto exit_dput;
1732
1733 if (path->dentry->d_inode->i_op->follow_link)
1734 return NULL;
1735
1736 path_to_nameidata(path, nd);
1737 error = -EISDIR;
1738 if (S_ISDIR(path->dentry->d_inode->i_mode))
1739 goto exit;
1740 ok:
1741 filp = finish_open(nd, open_flag, acc_mode);
1742 return filp;
1743
1744 exit_mutex_unlock:
1745 mutex_unlock(&dir->d_inode->i_mutex);
1746 exit_dput:
1747 path_put_conditional(path, nd);
1748 exit:
1749 if (!IS_ERR(nd->intent.open.file))
1750 release_open_intent(nd);
1751 path_put(&nd->path);
1752 return ERR_PTR(error);
1753 }
1754
1755 /*
1756 * Note that the low bits of the passed in "open_flag"
1757 * are not the same as in the local variable "flag". See
1758 * open_to_namei_flags() for more details.
1759 */
1760 struct file *do_filp_open(int dfd, const char *pathname,
1761 int open_flag, int mode, int acc_mode)
1762 {
1763 struct file *filp;
1764 struct nameidata nd;
1765 int error;
1766 struct path path;
1767 int count = 0;
1768 int flag = open_to_namei_flags(open_flag);
1769 int force_reval = 0;
1770
1771 if (!(open_flag & O_CREAT))
1772 mode = 0;
1773
1774 /*
1775 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1776 * check for O_DSYNC if the need any syncing at all we enforce it's
1777 * always set instead of having to deal with possibly weird behaviour
1778 * for malicious applications setting only __O_SYNC.
1779 */
1780 if (open_flag & __O_SYNC)
1781 open_flag |= O_DSYNC;
1782
1783 if (!acc_mode)
1784 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1785
1786 /* O_TRUNC implies we need access checks for write permissions */
1787 if (open_flag & O_TRUNC)
1788 acc_mode |= MAY_WRITE;
1789
1790 /* Allow the LSM permission hook to distinguish append
1791 access from general write access. */
1792 if (open_flag & O_APPEND)
1793 acc_mode |= MAY_APPEND;
1794
1795 /* find the parent */
1796 reval:
1797 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1798 if (error)
1799 return ERR_PTR(error);
1800 if (force_reval)
1801 nd.flags |= LOOKUP_REVAL;
1802
1803 current->total_link_count = 0;
1804 error = link_path_walk(pathname, &nd);
1805 if (error) {
1806 filp = ERR_PTR(error);
1807 goto out;
1808 }
1809 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1810 audit_inode(pathname, nd.path.dentry);
1811
1812 /*
1813 * We have the parent and last component.
1814 */
1815
1816 error = -ENFILE;
1817 filp = get_empty_filp();
1818 if (filp == NULL)
1819 goto exit_parent;
1820 nd.intent.open.file = filp;
1821 filp->f_flags = open_flag;
1822 nd.intent.open.flags = flag;
1823 nd.intent.open.create_mode = mode;
1824 nd.flags &= ~LOOKUP_PARENT;
1825 nd.flags |= LOOKUP_OPEN;
1826 if (open_flag & O_CREAT) {
1827 nd.flags |= LOOKUP_CREATE;
1828 if (open_flag & O_EXCL)
1829 nd.flags |= LOOKUP_EXCL;
1830 }
1831 if (open_flag & O_DIRECTORY)
1832 nd.flags |= LOOKUP_DIRECTORY;
1833 if (!(open_flag & O_NOFOLLOW))
1834 nd.flags |= LOOKUP_FOLLOW;
1835 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1836 while (unlikely(!filp)) { /* trailing symlink */
1837 struct path holder;
1838 struct inode *inode = path.dentry->d_inode;
1839 void *cookie;
1840 error = -ELOOP;
1841 /* S_ISDIR part is a temporary automount kludge */
1842 if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode))
1843 goto exit_dput;
1844 if (count++ == 32)
1845 goto exit_dput;
1846 /*
1847 * This is subtle. Instead of calling do_follow_link() we do
1848 * the thing by hands. The reason is that this way we have zero
1849 * link_count and path_walk() (called from ->follow_link)
1850 * honoring LOOKUP_PARENT. After that we have the parent and
1851 * last component, i.e. we are in the same situation as after
1852 * the first path_walk(). Well, almost - if the last component
1853 * is normal we get its copy stored in nd->last.name and we will
1854 * have to putname() it when we are done. Procfs-like symlinks
1855 * just set LAST_BIND.
1856 */
1857 nd.flags |= LOOKUP_PARENT;
1858 error = security_inode_follow_link(path.dentry, &nd);
1859 if (error)
1860 goto exit_dput;
1861 error = __do_follow_link(&path, &nd, &cookie);
1862 if (unlikely(error)) {
1863 /* nd.path had been dropped */
1864 if (!IS_ERR(cookie) && inode->i_op->put_link)
1865 inode->i_op->put_link(path.dentry, &nd, cookie);
1866 path_put(&path);
1867 release_open_intent(&nd);
1868 filp = ERR_PTR(error);
1869 goto out;
1870 }
1871 holder = path;
1872 nd.flags &= ~LOOKUP_PARENT;
1873 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1874 if (inode->i_op->put_link)
1875 inode->i_op->put_link(holder.dentry, &nd, cookie);
1876 path_put(&holder);
1877 }
1878 out:
1879 if (nd.root.mnt)
1880 path_put(&nd.root);
1881 if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1882 force_reval = 1;
1883 goto reval;
1884 }
1885 return filp;
1886
1887 exit_dput:
1888 path_put_conditional(&path, &nd);
1889 if (!IS_ERR(nd.intent.open.file))
1890 release_open_intent(&nd);
1891 exit_parent:
1892 path_put(&nd.path);
1893 filp = ERR_PTR(error);
1894 goto out;
1895 }
1896
1897 /**
1898 * filp_open - open file and return file pointer
1899 *
1900 * @filename: path to open
1901 * @flags: open flags as per the open(2) second argument
1902 * @mode: mode for the new file if O_CREAT is set, else ignored
1903 *
1904 * This is the helper to open a file from kernelspace if you really
1905 * have to. But in generally you should not do this, so please move
1906 * along, nothing to see here..
1907 */
1908 struct file *filp_open(const char *filename, int flags, int mode)
1909 {
1910 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1911 }
1912 EXPORT_SYMBOL(filp_open);
1913
1914 /**
1915 * lookup_create - lookup a dentry, creating it if it doesn't exist
1916 * @nd: nameidata info
1917 * @is_dir: directory flag
1918 *
1919 * Simple function to lookup and return a dentry and create it
1920 * if it doesn't exist. Is SMP-safe.
1921 *
1922 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1923 */
1924 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1925 {
1926 struct dentry *dentry = ERR_PTR(-EEXIST);
1927
1928 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1929 /*
1930 * Yucky last component or no last component at all?
1931 * (foo/., foo/.., /////)
1932 */
1933 if (nd->last_type != LAST_NORM)
1934 goto fail;
1935 nd->flags &= ~LOOKUP_PARENT;
1936 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1937 nd->intent.open.flags = O_EXCL;
1938
1939 /*
1940 * Do the final lookup.
1941 */
1942 dentry = lookup_hash(nd);
1943 if (IS_ERR(dentry))
1944 goto fail;
1945
1946 if (dentry->d_inode)
1947 goto eexist;
1948 /*
1949 * Special case - lookup gave negative, but... we had foo/bar/
1950 * From the vfs_mknod() POV we just have a negative dentry -
1951 * all is fine. Let's be bastards - you had / on the end, you've
1952 * been asking for (non-existent) directory. -ENOENT for you.
1953 */
1954 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1955 dput(dentry);
1956 dentry = ERR_PTR(-ENOENT);
1957 }
1958 return dentry;
1959 eexist:
1960 dput(dentry);
1961 dentry = ERR_PTR(-EEXIST);
1962 fail:
1963 return dentry;
1964 }
1965 EXPORT_SYMBOL_GPL(lookup_create);
1966
1967 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1968 {
1969 int error = may_create(dir, dentry);
1970
1971 if (error)
1972 return error;
1973
1974 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1975 return -EPERM;
1976
1977 if (!dir->i_op->mknod)
1978 return -EPERM;
1979
1980 error = devcgroup_inode_mknod(mode, dev);
1981 if (error)
1982 return error;
1983
1984 error = security_inode_mknod(dir, dentry, mode, dev);
1985 if (error)
1986 return error;
1987
1988 error = dir->i_op->mknod(dir, dentry, mode, dev);
1989 if (!error)
1990 fsnotify_create(dir, dentry);
1991 return error;
1992 }
1993
1994 static int may_mknod(mode_t mode)
1995 {
1996 switch (mode & S_IFMT) {
1997 case S_IFREG:
1998 case S_IFCHR:
1999 case S_IFBLK:
2000 case S_IFIFO:
2001 case S_IFSOCK:
2002 case 0: /* zero mode translates to S_IFREG */
2003 return 0;
2004 case S_IFDIR:
2005 return -EPERM;
2006 default:
2007 return -EINVAL;
2008 }
2009 }
2010
2011 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2012 unsigned, dev)
2013 {
2014 int error;
2015 char *tmp;
2016 struct dentry *dentry;
2017 struct nameidata nd;
2018
2019 if (S_ISDIR(mode))
2020 return -EPERM;
2021
2022 error = user_path_parent(dfd, filename, &nd, &tmp);
2023 if (error)
2024 return error;
2025
2026 dentry = lookup_create(&nd, 0);
2027 if (IS_ERR(dentry)) {
2028 error = PTR_ERR(dentry);
2029 goto out_unlock;
2030 }
2031 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2032 mode &= ~current_umask();
2033 error = may_mknod(mode);
2034 if (error)
2035 goto out_dput;
2036 error = mnt_want_write(nd.path.mnt);
2037 if (error)
2038 goto out_dput;
2039 error = security_path_mknod(&nd.path, dentry, mode, dev);
2040 if (error)
2041 goto out_drop_write;
2042 switch (mode & S_IFMT) {
2043 case 0: case S_IFREG:
2044 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2045 break;
2046 case S_IFCHR: case S_IFBLK:
2047 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2048 new_decode_dev(dev));
2049 break;
2050 case S_IFIFO: case S_IFSOCK:
2051 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2052 break;
2053 }
2054 out_drop_write:
2055 mnt_drop_write(nd.path.mnt);
2056 out_dput:
2057 dput(dentry);
2058 out_unlock:
2059 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2060 path_put(&nd.path);
2061 putname(tmp);
2062
2063 return error;
2064 }
2065
2066 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2067 {
2068 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2069 }
2070
2071 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2072 {
2073 int error = may_create(dir, dentry);
2074
2075 if (error)
2076 return error;
2077
2078 if (!dir->i_op->mkdir)
2079 return -EPERM;
2080
2081 mode &= (S_IRWXUGO|S_ISVTX);
2082 error = security_inode_mkdir(dir, dentry, mode);
2083 if (error)
2084 return error;
2085
2086 error = dir->i_op->mkdir(dir, dentry, mode);
2087 if (!error)
2088 fsnotify_mkdir(dir, dentry);
2089 return error;
2090 }
2091
2092 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2093 {
2094 int error = 0;
2095 char * tmp;
2096 struct dentry *dentry;
2097 struct nameidata nd;
2098
2099 error = user_path_parent(dfd, pathname, &nd, &tmp);
2100 if (error)
2101 goto out_err;
2102
2103 dentry = lookup_create(&nd, 1);
2104 error = PTR_ERR(dentry);
2105 if (IS_ERR(dentry))
2106 goto out_unlock;
2107
2108 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2109 mode &= ~current_umask();
2110 error = mnt_want_write(nd.path.mnt);
2111 if (error)
2112 goto out_dput;
2113 error = security_path_mkdir(&nd.path, dentry, mode);
2114 if (error)
2115 goto out_drop_write;
2116 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2117 out_drop_write:
2118 mnt_drop_write(nd.path.mnt);
2119 out_dput:
2120 dput(dentry);
2121 out_unlock:
2122 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2123 path_put(&nd.path);
2124 putname(tmp);
2125 out_err:
2126 return error;
2127 }
2128
2129 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2130 {
2131 return sys_mkdirat(AT_FDCWD, pathname, mode);
2132 }
2133
2134 /*
2135 * We try to drop the dentry early: we should have
2136 * a usage count of 2 if we're the only user of this
2137 * dentry, and if that is true (possibly after pruning
2138 * the dcache), then we drop the dentry now.
2139 *
2140 * A low-level filesystem can, if it choses, legally
2141 * do a
2142 *
2143 * if (!d_unhashed(dentry))
2144 * return -EBUSY;
2145 *
2146 * if it cannot handle the case of removing a directory
2147 * that is still in use by something else..
2148 */
2149 void dentry_unhash(struct dentry *dentry)
2150 {
2151 dget(dentry);
2152 shrink_dcache_parent(dentry);
2153 spin_lock(&dcache_lock);
2154 spin_lock(&dentry->d_lock);
2155 if (atomic_read(&dentry->d_count) == 2)
2156 __d_drop(dentry);
2157 spin_unlock(&dentry->d_lock);
2158 spin_unlock(&dcache_lock);
2159 }
2160
2161 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2162 {
2163 int error = may_delete(dir, dentry, 1);
2164
2165 if (error)
2166 return error;
2167
2168 if (!dir->i_op->rmdir)
2169 return -EPERM;
2170
2171 mutex_lock(&dentry->d_inode->i_mutex);
2172 dentry_unhash(dentry);
2173 if (d_mountpoint(dentry))
2174 error = -EBUSY;
2175 else {
2176 error = security_inode_rmdir(dir, dentry);
2177 if (!error) {
2178 error = dir->i_op->rmdir(dir, dentry);
2179 if (!error) {
2180 dentry->d_inode->i_flags |= S_DEAD;
2181 dont_mount(dentry);
2182 }
2183 }
2184 }
2185 mutex_unlock(&dentry->d_inode->i_mutex);
2186 if (!error) {
2187 d_delete(dentry);
2188 }
2189 dput(dentry);
2190
2191 return error;
2192 }
2193
2194 static long do_rmdir(int dfd, const char __user *pathname)
2195 {
2196 int error = 0;
2197 char * name;
2198 struct dentry *dentry;
2199 struct nameidata nd;
2200
2201 error = user_path_parent(dfd, pathname, &nd, &name);
2202 if (error)
2203 return error;
2204
2205 switch(nd.last_type) {
2206 case LAST_DOTDOT:
2207 error = -ENOTEMPTY;
2208 goto exit1;
2209 case LAST_DOT:
2210 error = -EINVAL;
2211 goto exit1;
2212 case LAST_ROOT:
2213 error = -EBUSY;
2214 goto exit1;
2215 }
2216
2217 nd.flags &= ~LOOKUP_PARENT;
2218
2219 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2220 dentry = lookup_hash(&nd);
2221 error = PTR_ERR(dentry);
2222 if (IS_ERR(dentry))
2223 goto exit2;
2224 error = mnt_want_write(nd.path.mnt);
2225 if (error)
2226 goto exit3;
2227 error = security_path_rmdir(&nd.path, dentry);
2228 if (error)
2229 goto exit4;
2230 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2231 exit4:
2232 mnt_drop_write(nd.path.mnt);
2233 exit3:
2234 dput(dentry);
2235 exit2:
2236 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2237 exit1:
2238 path_put(&nd.path);
2239 putname(name);
2240 return error;
2241 }
2242
2243 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2244 {
2245 return do_rmdir(AT_FDCWD, pathname);
2246 }
2247
2248 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2249 {
2250 int error = may_delete(dir, dentry, 0);
2251
2252 if (error)
2253 return error;
2254
2255 if (!dir->i_op->unlink)
2256 return -EPERM;
2257
2258 mutex_lock(&dentry->d_inode->i_mutex);
2259 if (d_mountpoint(dentry))
2260 error = -EBUSY;
2261 else {
2262 error = security_inode_unlink(dir, dentry);
2263 if (!error) {
2264 error = dir->i_op->unlink(dir, dentry);
2265 if (!error)
2266 dont_mount(dentry);
2267 }
2268 }
2269 mutex_unlock(&dentry->d_inode->i_mutex);
2270
2271 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2272 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2273 fsnotify_link_count(dentry->d_inode);
2274 d_delete(dentry);
2275 }
2276
2277 return error;
2278 }
2279
2280 /*
2281 * Make sure that the actual truncation of the file will occur outside its
2282 * directory's i_mutex. Truncate can take a long time if there is a lot of
2283 * writeout happening, and we don't want to prevent access to the directory
2284 * while waiting on the I/O.
2285 */
2286 static long do_unlinkat(int dfd, const char __user *pathname)
2287 {
2288 int error;
2289 char *name;
2290 struct dentry *dentry;
2291 struct nameidata nd;
2292 struct inode *inode = NULL;
2293
2294 error = user_path_parent(dfd, pathname, &nd, &name);
2295 if (error)
2296 return error;
2297
2298 error = -EISDIR;
2299 if (nd.last_type != LAST_NORM)
2300 goto exit1;
2301
2302 nd.flags &= ~LOOKUP_PARENT;
2303
2304 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2305 dentry = lookup_hash(&nd);
2306 error = PTR_ERR(dentry);
2307 if (!IS_ERR(dentry)) {
2308 /* Why not before? Because we want correct error value */
2309 if (nd.last.name[nd.last.len])
2310 goto slashes;
2311 inode = dentry->d_inode;
2312 if (inode)
2313 atomic_inc(&inode->i_count);
2314 error = mnt_want_write(nd.path.mnt);
2315 if (error)
2316 goto exit2;
2317 error = security_path_unlink(&nd.path, dentry);
2318 if (error)
2319 goto exit3;
2320 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2321 exit3:
2322 mnt_drop_write(nd.path.mnt);
2323 exit2:
2324 dput(dentry);
2325 }
2326 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2327 if (inode)
2328 iput(inode); /* truncate the inode here */
2329 exit1:
2330 path_put(&nd.path);
2331 putname(name);
2332 return error;
2333
2334 slashes:
2335 error = !dentry->d_inode ? -ENOENT :
2336 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2337 goto exit2;
2338 }
2339
2340 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2341 {
2342 if ((flag & ~AT_REMOVEDIR) != 0)
2343 return -EINVAL;
2344
2345 if (flag & AT_REMOVEDIR)
2346 return do_rmdir(dfd, pathname);
2347
2348 return do_unlinkat(dfd, pathname);
2349 }
2350
2351 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2352 {
2353 return do_unlinkat(AT_FDCWD, pathname);
2354 }
2355
2356 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2357 {
2358 int error = may_create(dir, dentry);
2359
2360 if (error)
2361 return error;
2362
2363 if (!dir->i_op->symlink)
2364 return -EPERM;
2365
2366 error = security_inode_symlink(dir, dentry, oldname);
2367 if (error)
2368 return error;
2369
2370 error = dir->i_op->symlink(dir, dentry, oldname);
2371 if (!error)
2372 fsnotify_create(dir, dentry);
2373 return error;
2374 }
2375
2376 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2377 int, newdfd, const char __user *, newname)
2378 {
2379 int error;
2380 char *from;
2381 char *to;
2382 struct dentry *dentry;
2383 struct nameidata nd;
2384
2385 from = getname(oldname);
2386 if (IS_ERR(from))
2387 return PTR_ERR(from);
2388
2389 error = user_path_parent(newdfd, newname, &nd, &to);
2390 if (error)
2391 goto out_putname;
2392
2393 dentry = lookup_create(&nd, 0);
2394 error = PTR_ERR(dentry);
2395 if (IS_ERR(dentry))
2396 goto out_unlock;
2397
2398 error = mnt_want_write(nd.path.mnt);
2399 if (error)
2400 goto out_dput;
2401 error = security_path_symlink(&nd.path, dentry, from);
2402 if (error)
2403 goto out_drop_write;
2404 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2405 out_drop_write:
2406 mnt_drop_write(nd.path.mnt);
2407 out_dput:
2408 dput(dentry);
2409 out_unlock:
2410 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2411 path_put(&nd.path);
2412 putname(to);
2413 out_putname:
2414 putname(from);
2415 return error;
2416 }
2417
2418 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2419 {
2420 return sys_symlinkat(oldname, AT_FDCWD, newname);
2421 }
2422
2423 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2424 {
2425 struct inode *inode = old_dentry->d_inode;
2426 int error;
2427
2428 if (!inode)
2429 return -ENOENT;
2430
2431 error = may_create(dir, new_dentry);
2432 if (error)
2433 return error;
2434
2435 if (dir->i_sb != inode->i_sb)
2436 return -EXDEV;
2437
2438 /*
2439 * A link to an append-only or immutable file cannot be created.
2440 */
2441 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2442 return -EPERM;
2443 if (!dir->i_op->link)
2444 return -EPERM;
2445 if (S_ISDIR(inode->i_mode))
2446 return -EPERM;
2447
2448 error = security_inode_link(old_dentry, dir, new_dentry);
2449 if (error)
2450 return error;
2451
2452 mutex_lock(&inode->i_mutex);
2453 error = dir->i_op->link(old_dentry, dir, new_dentry);
2454 mutex_unlock(&inode->i_mutex);
2455 if (!error)
2456 fsnotify_link(dir, inode, new_dentry);
2457 return error;
2458 }
2459
2460 /*
2461 * Hardlinks are often used in delicate situations. We avoid
2462 * security-related surprises by not following symlinks on the
2463 * newname. --KAB
2464 *
2465 * We don't follow them on the oldname either to be compatible
2466 * with linux 2.0, and to avoid hard-linking to directories
2467 * and other special files. --ADM
2468 */
2469 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2470 int, newdfd, const char __user *, newname, int, flags)
2471 {
2472 struct dentry *new_dentry;
2473 struct nameidata nd;
2474 struct path old_path;
2475 int error;
2476 char *to;
2477
2478 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2479 return -EINVAL;
2480
2481 error = user_path_at(olddfd, oldname,
2482 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2483 &old_path);
2484 if (error)
2485 return error;
2486
2487 error = user_path_parent(newdfd, newname, &nd, &to);
2488 if (error)
2489 goto out;
2490 error = -EXDEV;
2491 if (old_path.mnt != nd.path.mnt)
2492 goto out_release;
2493 new_dentry = lookup_create(&nd, 0);
2494 error = PTR_ERR(new_dentry);
2495 if (IS_ERR(new_dentry))
2496 goto out_unlock;
2497 error = mnt_want_write(nd.path.mnt);
2498 if (error)
2499 goto out_dput;
2500 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2501 if (error)
2502 goto out_drop_write;
2503 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2504 out_drop_write:
2505 mnt_drop_write(nd.path.mnt);
2506 out_dput:
2507 dput(new_dentry);
2508 out_unlock:
2509 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2510 out_release:
2511 path_put(&nd.path);
2512 putname(to);
2513 out:
2514 path_put(&old_path);
2515
2516 return error;
2517 }
2518
2519 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2520 {
2521 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2522 }
2523
2524 /*
2525 * The worst of all namespace operations - renaming directory. "Perverted"
2526 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2527 * Problems:
2528 * a) we can get into loop creation. Check is done in is_subdir().
2529 * b) race potential - two innocent renames can create a loop together.
2530 * That's where 4.4 screws up. Current fix: serialization on
2531 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2532 * story.
2533 * c) we have to lock _three_ objects - parents and victim (if it exists).
2534 * And that - after we got ->i_mutex on parents (until then we don't know
2535 * whether the target exists). Solution: try to be smart with locking
2536 * order for inodes. We rely on the fact that tree topology may change
2537 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2538 * move will be locked. Thus we can rank directories by the tree
2539 * (ancestors first) and rank all non-directories after them.
2540 * That works since everybody except rename does "lock parent, lookup,
2541 * lock child" and rename is under ->s_vfs_rename_mutex.
2542 * HOWEVER, it relies on the assumption that any object with ->lookup()
2543 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2544 * we'd better make sure that there's no link(2) for them.
2545 * d) some filesystems don't support opened-but-unlinked directories,
2546 * either because of layout or because they are not ready to deal with
2547 * all cases correctly. The latter will be fixed (taking this sort of
2548 * stuff into VFS), but the former is not going away. Solution: the same
2549 * trick as in rmdir().
2550 * e) conversion from fhandle to dentry may come in the wrong moment - when
2551 * we are removing the target. Solution: we will have to grab ->i_mutex
2552 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2553 * ->i_mutex on parents, which works but leads to some truly excessive
2554 * locking].
2555 */
2556 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2557 struct inode *new_dir, struct dentry *new_dentry)
2558 {
2559 int error = 0;
2560 struct inode *target;
2561
2562 /*
2563 * If we are going to change the parent - check write permissions,
2564 * we'll need to flip '..'.
2565 */
2566 if (new_dir != old_dir) {
2567 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2568 if (error)
2569 return error;
2570 }
2571
2572 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2573 if (error)
2574 return error;
2575
2576 target = new_dentry->d_inode;
2577 if (target)
2578 mutex_lock(&target->i_mutex);
2579 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2580 error = -EBUSY;
2581 else {
2582 if (target)
2583 dentry_unhash(new_dentry);
2584 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2585 }
2586 if (target) {
2587 if (!error) {
2588 target->i_flags |= S_DEAD;
2589 dont_mount(new_dentry);
2590 }
2591 mutex_unlock(&target->i_mutex);
2592 if (d_unhashed(new_dentry))
2593 d_rehash(new_dentry);
2594 dput(new_dentry);
2595 }
2596 if (!error)
2597 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2598 d_move(old_dentry,new_dentry);
2599 return error;
2600 }
2601
2602 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2603 struct inode *new_dir, struct dentry *new_dentry)
2604 {
2605 struct inode *target;
2606 int error;
2607
2608 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2609 if (error)
2610 return error;
2611
2612 dget(new_dentry);
2613 target = new_dentry->d_inode;
2614 if (target)
2615 mutex_lock(&target->i_mutex);
2616 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2617 error = -EBUSY;
2618 else
2619 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2620 if (!error) {
2621 if (target)
2622 dont_mount(new_dentry);
2623 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2624 d_move(old_dentry, new_dentry);
2625 }
2626 if (target)
2627 mutex_unlock(&target->i_mutex);
2628 dput(new_dentry);
2629 return error;
2630 }
2631
2632 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2633 struct inode *new_dir, struct dentry *new_dentry)
2634 {
2635 int error;
2636 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2637 const char *old_name;
2638
2639 if (old_dentry->d_inode == new_dentry->d_inode)
2640 return 0;
2641
2642 error = may_delete(old_dir, old_dentry, is_dir);
2643 if (error)
2644 return error;
2645
2646 if (!new_dentry->d_inode)
2647 error = may_create(new_dir, new_dentry);
2648 else
2649 error = may_delete(new_dir, new_dentry, is_dir);
2650 if (error)
2651 return error;
2652
2653 if (!old_dir->i_op->rename)
2654 return -EPERM;
2655
2656 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2657
2658 if (is_dir)
2659 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2660 else
2661 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2662 if (!error)
2663 fsnotify_move(old_dir, new_dir, old_name, is_dir,
2664 new_dentry->d_inode, old_dentry);
2665 fsnotify_oldname_free(old_name);
2666
2667 return error;
2668 }
2669
2670 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2671 int, newdfd, const char __user *, newname)
2672 {
2673 struct dentry *old_dir, *new_dir;
2674 struct dentry *old_dentry, *new_dentry;
2675 struct dentry *trap;
2676 struct nameidata oldnd, newnd;
2677 char *from;
2678 char *to;
2679 int error;
2680
2681 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2682 if (error)
2683 goto exit;
2684
2685 error = user_path_parent(newdfd, newname, &newnd, &to);
2686 if (error)
2687 goto exit1;
2688
2689 error = -EXDEV;
2690 if (oldnd.path.mnt != newnd.path.mnt)
2691 goto exit2;
2692
2693 old_dir = oldnd.path.dentry;
2694 error = -EBUSY;
2695 if (oldnd.last_type != LAST_NORM)
2696 goto exit2;
2697
2698 new_dir = newnd.path.dentry;
2699 if (newnd.last_type != LAST_NORM)
2700 goto exit2;
2701
2702 oldnd.flags &= ~LOOKUP_PARENT;
2703 newnd.flags &= ~LOOKUP_PARENT;
2704 newnd.flags |= LOOKUP_RENAME_TARGET;
2705
2706 trap = lock_rename(new_dir, old_dir);
2707
2708 old_dentry = lookup_hash(&oldnd);
2709 error = PTR_ERR(old_dentry);
2710 if (IS_ERR(old_dentry))
2711 goto exit3;
2712 /* source must exist */
2713 error = -ENOENT;
2714 if (!old_dentry->d_inode)
2715 goto exit4;
2716 /* unless the source is a directory trailing slashes give -ENOTDIR */
2717 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2718 error = -ENOTDIR;
2719 if (oldnd.last.name[oldnd.last.len])
2720 goto exit4;
2721 if (newnd.last.name[newnd.last.len])
2722 goto exit4;
2723 }
2724 /* source should not be ancestor of target */
2725 error = -EINVAL;
2726 if (old_dentry == trap)
2727 goto exit4;
2728 new_dentry = lookup_hash(&newnd);
2729 error = PTR_ERR(new_dentry);
2730 if (IS_ERR(new_dentry))
2731 goto exit4;
2732 /* target should not be an ancestor of source */
2733 error = -ENOTEMPTY;
2734 if (new_dentry == trap)
2735 goto exit5;
2736
2737 error = mnt_want_write(oldnd.path.mnt);
2738 if (error)
2739 goto exit5;
2740 error = security_path_rename(&oldnd.path, old_dentry,
2741 &newnd.path, new_dentry);
2742 if (error)
2743 goto exit6;
2744 error = vfs_rename(old_dir->d_inode, old_dentry,
2745 new_dir->d_inode, new_dentry);
2746 exit6:
2747 mnt_drop_write(oldnd.path.mnt);
2748 exit5:
2749 dput(new_dentry);
2750 exit4:
2751 dput(old_dentry);
2752 exit3:
2753 unlock_rename(new_dir, old_dir);
2754 exit2:
2755 path_put(&newnd.path);
2756 putname(to);
2757 exit1:
2758 path_put(&oldnd.path);
2759 putname(from);
2760 exit:
2761 return error;
2762 }
2763
2764 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2765 {
2766 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2767 }
2768
2769 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2770 {
2771 int len;
2772
2773 len = PTR_ERR(link);
2774 if (IS_ERR(link))
2775 goto out;
2776
2777 len = strlen(link);
2778 if (len > (unsigned) buflen)
2779 len = buflen;
2780 if (copy_to_user(buffer, link, len))
2781 len = -EFAULT;
2782 out:
2783 return len;
2784 }
2785
2786 /*
2787 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2788 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2789 * using) it for any given inode is up to filesystem.
2790 */
2791 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2792 {
2793 struct nameidata nd;
2794 void *cookie;
2795 int res;
2796
2797 nd.depth = 0;
2798 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2799 if (IS_ERR(cookie))
2800 return PTR_ERR(cookie);
2801
2802 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2803 if (dentry->d_inode->i_op->put_link)
2804 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2805 return res;
2806 }
2807
2808 int vfs_follow_link(struct nameidata *nd, const char *link)
2809 {
2810 return __vfs_follow_link(nd, link);
2811 }
2812
2813 /* get the link contents into pagecache */
2814 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2815 {
2816 char *kaddr;
2817 struct page *page;
2818 struct address_space *mapping = dentry->d_inode->i_mapping;
2819 page = read_mapping_page(mapping, 0, NULL);
2820 if (IS_ERR(page))
2821 return (char*)page;
2822 *ppage = page;
2823 kaddr = kmap(page);
2824 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2825 return kaddr;
2826 }
2827
2828 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2829 {
2830 struct page *page = NULL;
2831 char *s = page_getlink(dentry, &page);
2832 int res = vfs_readlink(dentry,buffer,buflen,s);
2833 if (page) {
2834 kunmap(page);
2835 page_cache_release(page);
2836 }
2837 return res;
2838 }
2839
2840 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2841 {
2842 struct page *page = NULL;
2843 nd_set_link(nd, page_getlink(dentry, &page));
2844 return page;
2845 }
2846
2847 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2848 {
2849 struct page *page = cookie;
2850
2851 if (page) {
2852 kunmap(page);
2853 page_cache_release(page);
2854 }
2855 }
2856
2857 /*
2858 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2859 */
2860 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2861 {
2862 struct address_space *mapping = inode->i_mapping;
2863 struct page *page;
2864 void *fsdata;
2865 int err;
2866 char *kaddr;
2867 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2868 if (nofs)
2869 flags |= AOP_FLAG_NOFS;
2870
2871 retry:
2872 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2873 flags, &page, &fsdata);
2874 if (err)
2875 goto fail;
2876
2877 kaddr = kmap_atomic(page, KM_USER0);
2878 memcpy(kaddr, symname, len-1);
2879 kunmap_atomic(kaddr, KM_USER0);
2880
2881 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2882 page, fsdata);
2883 if (err < 0)
2884 goto fail;
2885 if (err < len-1)
2886 goto retry;
2887
2888 mark_inode_dirty(inode);
2889 return 0;
2890 fail:
2891 return err;
2892 }
2893
2894 int page_symlink(struct inode *inode, const char *symname, int len)
2895 {
2896 return __page_symlink(inode, symname, len,
2897 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2898 }
2899
2900 const struct inode_operations page_symlink_inode_operations = {
2901 .readlink = generic_readlink,
2902 .follow_link = page_follow_link_light,
2903 .put_link = page_put_link,
2904 };
2905
2906 EXPORT_SYMBOL(user_path_at);
2907 EXPORT_SYMBOL(follow_down);
2908 EXPORT_SYMBOL(follow_up);
2909 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2910 EXPORT_SYMBOL(getname);
2911 EXPORT_SYMBOL(lock_rename);
2912 EXPORT_SYMBOL(lookup_one_len);
2913 EXPORT_SYMBOL(page_follow_link_light);
2914 EXPORT_SYMBOL(page_put_link);
2915 EXPORT_SYMBOL(page_readlink);
2916 EXPORT_SYMBOL(__page_symlink);
2917 EXPORT_SYMBOL(page_symlink);
2918 EXPORT_SYMBOL(page_symlink_inode_operations);
2919 EXPORT_SYMBOL(path_lookup);
2920 EXPORT_SYMBOL(kern_path);
2921 EXPORT_SYMBOL(vfs_path_lookup);
2922 EXPORT_SYMBOL(inode_permission);
2923 EXPORT_SYMBOL(file_permission);
2924 EXPORT_SYMBOL(unlock_rename);
2925 EXPORT_SYMBOL(vfs_create);
2926 EXPORT_SYMBOL(vfs_follow_link);
2927 EXPORT_SYMBOL(vfs_link);
2928 EXPORT_SYMBOL(vfs_mkdir);
2929 EXPORT_SYMBOL(vfs_mknod);
2930 EXPORT_SYMBOL(generic_permission);
2931 EXPORT_SYMBOL(vfs_readlink);
2932 EXPORT_SYMBOL(vfs_rename);
2933 EXPORT_SYMBOL(vfs_rmdir);
2934 EXPORT_SYMBOL(vfs_symlink);
2935 EXPORT_SYMBOL(vfs_unlink);
2936 EXPORT_SYMBOL(dentry_unhash);
2937 EXPORT_SYMBOL(generic_readlink);