mm: remove unused memclear_highpage_flush()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 static inline void lock_rcu_walk(void)
486 {
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
489 }
490
491 static inline void unlock_rcu_walk(void)
492 {
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 }
496
497 /**
498 * unlazy_walk - try to switch to ref-walk mode.
499 * @nd: nameidata pathwalk data
500 * @dentry: child of nd->path.dentry or NULL
501 * Returns: 0 on success, -ECHILD on failure
502 *
503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
505 * @nd or NULL. Must be called from rcu-walk context.
506 */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 struct fs_struct *fs = current->fs;
510 struct dentry *parent = nd->path.dentry;
511 int want_root = 0;
512
513 BUG_ON(!(nd->flags & LOOKUP_RCU));
514 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
515 want_root = 1;
516 spin_lock(&fs->lock);
517 if (nd->root.mnt != fs->root.mnt ||
518 nd->root.dentry != fs->root.dentry)
519 goto err_root;
520 }
521 spin_lock(&parent->d_lock);
522 if (!dentry) {
523 if (!__d_rcu_to_refcount(parent, nd->seq))
524 goto err_parent;
525 BUG_ON(nd->inode != parent->d_inode);
526 } else {
527 if (dentry->d_parent != parent)
528 goto err_parent;
529 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
530 if (!__d_rcu_to_refcount(dentry, nd->seq))
531 goto err_child;
532 /*
533 * If the sequence check on the child dentry passed, then
534 * the child has not been removed from its parent. This
535 * means the parent dentry must be valid and able to take
536 * a reference at this point.
537 */
538 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
539 BUG_ON(!parent->d_count);
540 parent->d_count++;
541 spin_unlock(&dentry->d_lock);
542 }
543 spin_unlock(&parent->d_lock);
544 if (want_root) {
545 path_get(&nd->root);
546 spin_unlock(&fs->lock);
547 }
548 mntget(nd->path.mnt);
549
550 unlock_rcu_walk();
551 nd->flags &= ~LOOKUP_RCU;
552 return 0;
553
554 err_child:
555 spin_unlock(&dentry->d_lock);
556 err_parent:
557 spin_unlock(&parent->d_lock);
558 err_root:
559 if (want_root)
560 spin_unlock(&fs->lock);
561 return -ECHILD;
562 }
563
564 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
565 {
566 return dentry->d_op->d_revalidate(dentry, flags);
567 }
568
569 /**
570 * complete_walk - successful completion of path walk
571 * @nd: pointer nameidata
572 *
573 * If we had been in RCU mode, drop out of it and legitimize nd->path.
574 * Revalidate the final result, unless we'd already done that during
575 * the path walk or the filesystem doesn't ask for it. Return 0 on
576 * success, -error on failure. In case of failure caller does not
577 * need to drop nd->path.
578 */
579 static int complete_walk(struct nameidata *nd)
580 {
581 struct dentry *dentry = nd->path.dentry;
582 int status;
583
584 if (nd->flags & LOOKUP_RCU) {
585 nd->flags &= ~LOOKUP_RCU;
586 if (!(nd->flags & LOOKUP_ROOT))
587 nd->root.mnt = NULL;
588 spin_lock(&dentry->d_lock);
589 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
590 spin_unlock(&dentry->d_lock);
591 unlock_rcu_walk();
592 return -ECHILD;
593 }
594 BUG_ON(nd->inode != dentry->d_inode);
595 spin_unlock(&dentry->d_lock);
596 mntget(nd->path.mnt);
597 unlock_rcu_walk();
598 }
599
600 if (likely(!(nd->flags & LOOKUP_JUMPED)))
601 return 0;
602
603 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
604 return 0;
605
606 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
607 return 0;
608
609 /* Note: we do not d_invalidate() */
610 status = d_revalidate(dentry, nd->flags);
611 if (status > 0)
612 return 0;
613
614 if (!status)
615 status = -ESTALE;
616
617 path_put(&nd->path);
618 return status;
619 }
620
621 static __always_inline void set_root(struct nameidata *nd)
622 {
623 if (!nd->root.mnt)
624 get_fs_root(current->fs, &nd->root);
625 }
626
627 static int link_path_walk(const char *, struct nameidata *);
628
629 static __always_inline void set_root_rcu(struct nameidata *nd)
630 {
631 if (!nd->root.mnt) {
632 struct fs_struct *fs = current->fs;
633 unsigned seq;
634
635 do {
636 seq = read_seqcount_begin(&fs->seq);
637 nd->root = fs->root;
638 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
639 } while (read_seqcount_retry(&fs->seq, seq));
640 }
641 }
642
643 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
644 {
645 int ret;
646
647 if (IS_ERR(link))
648 goto fail;
649
650 if (*link == '/') {
651 set_root(nd);
652 path_put(&nd->path);
653 nd->path = nd->root;
654 path_get(&nd->root);
655 nd->flags |= LOOKUP_JUMPED;
656 }
657 nd->inode = nd->path.dentry->d_inode;
658
659 ret = link_path_walk(link, nd);
660 return ret;
661 fail:
662 path_put(&nd->path);
663 return PTR_ERR(link);
664 }
665
666 static void path_put_conditional(struct path *path, struct nameidata *nd)
667 {
668 dput(path->dentry);
669 if (path->mnt != nd->path.mnt)
670 mntput(path->mnt);
671 }
672
673 static inline void path_to_nameidata(const struct path *path,
674 struct nameidata *nd)
675 {
676 if (!(nd->flags & LOOKUP_RCU)) {
677 dput(nd->path.dentry);
678 if (nd->path.mnt != path->mnt)
679 mntput(nd->path.mnt);
680 }
681 nd->path.mnt = path->mnt;
682 nd->path.dentry = path->dentry;
683 }
684
685 /*
686 * Helper to directly jump to a known parsed path from ->follow_link,
687 * caller must have taken a reference to path beforehand.
688 */
689 void nd_jump_link(struct nameidata *nd, struct path *path)
690 {
691 path_put(&nd->path);
692
693 nd->path = *path;
694 nd->inode = nd->path.dentry->d_inode;
695 nd->flags |= LOOKUP_JUMPED;
696
697 BUG_ON(nd->inode->i_op->follow_link);
698 }
699
700 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
701 {
702 struct inode *inode = link->dentry->d_inode;
703 if (inode->i_op->put_link)
704 inode->i_op->put_link(link->dentry, nd, cookie);
705 path_put(link);
706 }
707
708 int sysctl_protected_symlinks __read_mostly = 0;
709 int sysctl_protected_hardlinks __read_mostly = 0;
710
711 /**
712 * may_follow_link - Check symlink following for unsafe situations
713 * @link: The path of the symlink
714 * @nd: nameidata pathwalk data
715 *
716 * In the case of the sysctl_protected_symlinks sysctl being enabled,
717 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
718 * in a sticky world-writable directory. This is to protect privileged
719 * processes from failing races against path names that may change out
720 * from under them by way of other users creating malicious symlinks.
721 * It will permit symlinks to be followed only when outside a sticky
722 * world-writable directory, or when the uid of the symlink and follower
723 * match, or when the directory owner matches the symlink's owner.
724 *
725 * Returns 0 if following the symlink is allowed, -ve on error.
726 */
727 static inline int may_follow_link(struct path *link, struct nameidata *nd)
728 {
729 const struct inode *inode;
730 const struct inode *parent;
731
732 if (!sysctl_protected_symlinks)
733 return 0;
734
735 /* Allowed if owner and follower match. */
736 inode = link->dentry->d_inode;
737 if (uid_eq(current_cred()->fsuid, inode->i_uid))
738 return 0;
739
740 /* Allowed if parent directory not sticky and world-writable. */
741 parent = nd->path.dentry->d_inode;
742 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
743 return 0;
744
745 /* Allowed if parent directory and link owner match. */
746 if (uid_eq(parent->i_uid, inode->i_uid))
747 return 0;
748
749 audit_log_link_denied("follow_link", link);
750 path_put_conditional(link, nd);
751 path_put(&nd->path);
752 return -EACCES;
753 }
754
755 /**
756 * safe_hardlink_source - Check for safe hardlink conditions
757 * @inode: the source inode to hardlink from
758 *
759 * Return false if at least one of the following conditions:
760 * - inode is not a regular file
761 * - inode is setuid
762 * - inode is setgid and group-exec
763 * - access failure for read and write
764 *
765 * Otherwise returns true.
766 */
767 static bool safe_hardlink_source(struct inode *inode)
768 {
769 umode_t mode = inode->i_mode;
770
771 /* Special files should not get pinned to the filesystem. */
772 if (!S_ISREG(mode))
773 return false;
774
775 /* Setuid files should not get pinned to the filesystem. */
776 if (mode & S_ISUID)
777 return false;
778
779 /* Executable setgid files should not get pinned to the filesystem. */
780 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
781 return false;
782
783 /* Hardlinking to unreadable or unwritable sources is dangerous. */
784 if (inode_permission(inode, MAY_READ | MAY_WRITE))
785 return false;
786
787 return true;
788 }
789
790 /**
791 * may_linkat - Check permissions for creating a hardlink
792 * @link: the source to hardlink from
793 *
794 * Block hardlink when all of:
795 * - sysctl_protected_hardlinks enabled
796 * - fsuid does not match inode
797 * - hardlink source is unsafe (see safe_hardlink_source() above)
798 * - not CAP_FOWNER
799 *
800 * Returns 0 if successful, -ve on error.
801 */
802 static int may_linkat(struct path *link)
803 {
804 const struct cred *cred;
805 struct inode *inode;
806
807 if (!sysctl_protected_hardlinks)
808 return 0;
809
810 cred = current_cred();
811 inode = link->dentry->d_inode;
812
813 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
814 * otherwise, it must be a safe source.
815 */
816 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
817 capable(CAP_FOWNER))
818 return 0;
819
820 audit_log_link_denied("linkat", link);
821 return -EPERM;
822 }
823
824 static __always_inline int
825 follow_link(struct path *link, struct nameidata *nd, void **p)
826 {
827 struct dentry *dentry = link->dentry;
828 int error;
829 char *s;
830
831 BUG_ON(nd->flags & LOOKUP_RCU);
832
833 if (link->mnt == nd->path.mnt)
834 mntget(link->mnt);
835
836 error = -ELOOP;
837 if (unlikely(current->total_link_count >= 40))
838 goto out_put_nd_path;
839
840 cond_resched();
841 current->total_link_count++;
842
843 touch_atime(link);
844 nd_set_link(nd, NULL);
845
846 error = security_inode_follow_link(link->dentry, nd);
847 if (error)
848 goto out_put_nd_path;
849
850 nd->last_type = LAST_BIND;
851 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
852 error = PTR_ERR(*p);
853 if (IS_ERR(*p))
854 goto out_put_nd_path;
855
856 error = 0;
857 s = nd_get_link(nd);
858 if (s) {
859 error = __vfs_follow_link(nd, s);
860 if (unlikely(error))
861 put_link(nd, link, *p);
862 }
863
864 return error;
865
866 out_put_nd_path:
867 *p = NULL;
868 path_put(&nd->path);
869 path_put(link);
870 return error;
871 }
872
873 static int follow_up_rcu(struct path *path)
874 {
875 struct mount *mnt = real_mount(path->mnt);
876 struct mount *parent;
877 struct dentry *mountpoint;
878
879 parent = mnt->mnt_parent;
880 if (&parent->mnt == path->mnt)
881 return 0;
882 mountpoint = mnt->mnt_mountpoint;
883 path->dentry = mountpoint;
884 path->mnt = &parent->mnt;
885 return 1;
886 }
887
888 /*
889 * follow_up - Find the mountpoint of path's vfsmount
890 *
891 * Given a path, find the mountpoint of its source file system.
892 * Replace @path with the path of the mountpoint in the parent mount.
893 * Up is towards /.
894 *
895 * Return 1 if we went up a level and 0 if we were already at the
896 * root.
897 */
898 int follow_up(struct path *path)
899 {
900 struct mount *mnt = real_mount(path->mnt);
901 struct mount *parent;
902 struct dentry *mountpoint;
903
904 br_read_lock(&vfsmount_lock);
905 parent = mnt->mnt_parent;
906 if (parent == mnt) {
907 br_read_unlock(&vfsmount_lock);
908 return 0;
909 }
910 mntget(&parent->mnt);
911 mountpoint = dget(mnt->mnt_mountpoint);
912 br_read_unlock(&vfsmount_lock);
913 dput(path->dentry);
914 path->dentry = mountpoint;
915 mntput(path->mnt);
916 path->mnt = &parent->mnt;
917 return 1;
918 }
919
920 /*
921 * Perform an automount
922 * - return -EISDIR to tell follow_managed() to stop and return the path we
923 * were called with.
924 */
925 static int follow_automount(struct path *path, unsigned flags,
926 bool *need_mntput)
927 {
928 struct vfsmount *mnt;
929 int err;
930
931 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
932 return -EREMOTE;
933
934 /* We don't want to mount if someone's just doing a stat -
935 * unless they're stat'ing a directory and appended a '/' to
936 * the name.
937 *
938 * We do, however, want to mount if someone wants to open or
939 * create a file of any type under the mountpoint, wants to
940 * traverse through the mountpoint or wants to open the
941 * mounted directory. Also, autofs may mark negative dentries
942 * as being automount points. These will need the attentions
943 * of the daemon to instantiate them before they can be used.
944 */
945 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
946 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
947 path->dentry->d_inode)
948 return -EISDIR;
949
950 current->total_link_count++;
951 if (current->total_link_count >= 40)
952 return -ELOOP;
953
954 mnt = path->dentry->d_op->d_automount(path);
955 if (IS_ERR(mnt)) {
956 /*
957 * The filesystem is allowed to return -EISDIR here to indicate
958 * it doesn't want to automount. For instance, autofs would do
959 * this so that its userspace daemon can mount on this dentry.
960 *
961 * However, we can only permit this if it's a terminal point in
962 * the path being looked up; if it wasn't then the remainder of
963 * the path is inaccessible and we should say so.
964 */
965 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
966 return -EREMOTE;
967 return PTR_ERR(mnt);
968 }
969
970 if (!mnt) /* mount collision */
971 return 0;
972
973 if (!*need_mntput) {
974 /* lock_mount() may release path->mnt on error */
975 mntget(path->mnt);
976 *need_mntput = true;
977 }
978 err = finish_automount(mnt, path);
979
980 switch (err) {
981 case -EBUSY:
982 /* Someone else made a mount here whilst we were busy */
983 return 0;
984 case 0:
985 path_put(path);
986 path->mnt = mnt;
987 path->dentry = dget(mnt->mnt_root);
988 return 0;
989 default:
990 return err;
991 }
992
993 }
994
995 /*
996 * Handle a dentry that is managed in some way.
997 * - Flagged for transit management (autofs)
998 * - Flagged as mountpoint
999 * - Flagged as automount point
1000 *
1001 * This may only be called in refwalk mode.
1002 *
1003 * Serialization is taken care of in namespace.c
1004 */
1005 static int follow_managed(struct path *path, unsigned flags)
1006 {
1007 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1008 unsigned managed;
1009 bool need_mntput = false;
1010 int ret = 0;
1011
1012 /* Given that we're not holding a lock here, we retain the value in a
1013 * local variable for each dentry as we look at it so that we don't see
1014 * the components of that value change under us */
1015 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1016 managed &= DCACHE_MANAGED_DENTRY,
1017 unlikely(managed != 0)) {
1018 /* Allow the filesystem to manage the transit without i_mutex
1019 * being held. */
1020 if (managed & DCACHE_MANAGE_TRANSIT) {
1021 BUG_ON(!path->dentry->d_op);
1022 BUG_ON(!path->dentry->d_op->d_manage);
1023 ret = path->dentry->d_op->d_manage(path->dentry, false);
1024 if (ret < 0)
1025 break;
1026 }
1027
1028 /* Transit to a mounted filesystem. */
1029 if (managed & DCACHE_MOUNTED) {
1030 struct vfsmount *mounted = lookup_mnt(path);
1031 if (mounted) {
1032 dput(path->dentry);
1033 if (need_mntput)
1034 mntput(path->mnt);
1035 path->mnt = mounted;
1036 path->dentry = dget(mounted->mnt_root);
1037 need_mntput = true;
1038 continue;
1039 }
1040
1041 /* Something is mounted on this dentry in another
1042 * namespace and/or whatever was mounted there in this
1043 * namespace got unmounted before we managed to get the
1044 * vfsmount_lock */
1045 }
1046
1047 /* Handle an automount point */
1048 if (managed & DCACHE_NEED_AUTOMOUNT) {
1049 ret = follow_automount(path, flags, &need_mntput);
1050 if (ret < 0)
1051 break;
1052 continue;
1053 }
1054
1055 /* We didn't change the current path point */
1056 break;
1057 }
1058
1059 if (need_mntput && path->mnt == mnt)
1060 mntput(path->mnt);
1061 if (ret == -EISDIR)
1062 ret = 0;
1063 return ret < 0 ? ret : need_mntput;
1064 }
1065
1066 int follow_down_one(struct path *path)
1067 {
1068 struct vfsmount *mounted;
1069
1070 mounted = lookup_mnt(path);
1071 if (mounted) {
1072 dput(path->dentry);
1073 mntput(path->mnt);
1074 path->mnt = mounted;
1075 path->dentry = dget(mounted->mnt_root);
1076 return 1;
1077 }
1078 return 0;
1079 }
1080
1081 static inline bool managed_dentry_might_block(struct dentry *dentry)
1082 {
1083 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1084 dentry->d_op->d_manage(dentry, true) < 0);
1085 }
1086
1087 /*
1088 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1089 * we meet a managed dentry that would need blocking.
1090 */
1091 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1092 struct inode **inode)
1093 {
1094 for (;;) {
1095 struct mount *mounted;
1096 /*
1097 * Don't forget we might have a non-mountpoint managed dentry
1098 * that wants to block transit.
1099 */
1100 if (unlikely(managed_dentry_might_block(path->dentry)))
1101 return false;
1102
1103 if (!d_mountpoint(path->dentry))
1104 break;
1105
1106 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1107 if (!mounted)
1108 break;
1109 path->mnt = &mounted->mnt;
1110 path->dentry = mounted->mnt.mnt_root;
1111 nd->flags |= LOOKUP_JUMPED;
1112 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1113 /*
1114 * Update the inode too. We don't need to re-check the
1115 * dentry sequence number here after this d_inode read,
1116 * because a mount-point is always pinned.
1117 */
1118 *inode = path->dentry->d_inode;
1119 }
1120 return true;
1121 }
1122
1123 static void follow_mount_rcu(struct nameidata *nd)
1124 {
1125 while (d_mountpoint(nd->path.dentry)) {
1126 struct mount *mounted;
1127 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1128 if (!mounted)
1129 break;
1130 nd->path.mnt = &mounted->mnt;
1131 nd->path.dentry = mounted->mnt.mnt_root;
1132 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1133 }
1134 }
1135
1136 static int follow_dotdot_rcu(struct nameidata *nd)
1137 {
1138 set_root_rcu(nd);
1139
1140 while (1) {
1141 if (nd->path.dentry == nd->root.dentry &&
1142 nd->path.mnt == nd->root.mnt) {
1143 break;
1144 }
1145 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1146 struct dentry *old = nd->path.dentry;
1147 struct dentry *parent = old->d_parent;
1148 unsigned seq;
1149
1150 seq = read_seqcount_begin(&parent->d_seq);
1151 if (read_seqcount_retry(&old->d_seq, nd->seq))
1152 goto failed;
1153 nd->path.dentry = parent;
1154 nd->seq = seq;
1155 break;
1156 }
1157 if (!follow_up_rcu(&nd->path))
1158 break;
1159 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1160 }
1161 follow_mount_rcu(nd);
1162 nd->inode = nd->path.dentry->d_inode;
1163 return 0;
1164
1165 failed:
1166 nd->flags &= ~LOOKUP_RCU;
1167 if (!(nd->flags & LOOKUP_ROOT))
1168 nd->root.mnt = NULL;
1169 unlock_rcu_walk();
1170 return -ECHILD;
1171 }
1172
1173 /*
1174 * Follow down to the covering mount currently visible to userspace. At each
1175 * point, the filesystem owning that dentry may be queried as to whether the
1176 * caller is permitted to proceed or not.
1177 */
1178 int follow_down(struct path *path)
1179 {
1180 unsigned managed;
1181 int ret;
1182
1183 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1184 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1185 /* Allow the filesystem to manage the transit without i_mutex
1186 * being held.
1187 *
1188 * We indicate to the filesystem if someone is trying to mount
1189 * something here. This gives autofs the chance to deny anyone
1190 * other than its daemon the right to mount on its
1191 * superstructure.
1192 *
1193 * The filesystem may sleep at this point.
1194 */
1195 if (managed & DCACHE_MANAGE_TRANSIT) {
1196 BUG_ON(!path->dentry->d_op);
1197 BUG_ON(!path->dentry->d_op->d_manage);
1198 ret = path->dentry->d_op->d_manage(
1199 path->dentry, false);
1200 if (ret < 0)
1201 return ret == -EISDIR ? 0 : ret;
1202 }
1203
1204 /* Transit to a mounted filesystem. */
1205 if (managed & DCACHE_MOUNTED) {
1206 struct vfsmount *mounted = lookup_mnt(path);
1207 if (!mounted)
1208 break;
1209 dput(path->dentry);
1210 mntput(path->mnt);
1211 path->mnt = mounted;
1212 path->dentry = dget(mounted->mnt_root);
1213 continue;
1214 }
1215
1216 /* Don't handle automount points here */
1217 break;
1218 }
1219 return 0;
1220 }
1221
1222 /*
1223 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1224 */
1225 static void follow_mount(struct path *path)
1226 {
1227 while (d_mountpoint(path->dentry)) {
1228 struct vfsmount *mounted = lookup_mnt(path);
1229 if (!mounted)
1230 break;
1231 dput(path->dentry);
1232 mntput(path->mnt);
1233 path->mnt = mounted;
1234 path->dentry = dget(mounted->mnt_root);
1235 }
1236 }
1237
1238 static void follow_dotdot(struct nameidata *nd)
1239 {
1240 set_root(nd);
1241
1242 while(1) {
1243 struct dentry *old = nd->path.dentry;
1244
1245 if (nd->path.dentry == nd->root.dentry &&
1246 nd->path.mnt == nd->root.mnt) {
1247 break;
1248 }
1249 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1250 /* rare case of legitimate dget_parent()... */
1251 nd->path.dentry = dget_parent(nd->path.dentry);
1252 dput(old);
1253 break;
1254 }
1255 if (!follow_up(&nd->path))
1256 break;
1257 }
1258 follow_mount(&nd->path);
1259 nd->inode = nd->path.dentry->d_inode;
1260 }
1261
1262 /*
1263 * This looks up the name in dcache, possibly revalidates the old dentry and
1264 * allocates a new one if not found or not valid. In the need_lookup argument
1265 * returns whether i_op->lookup is necessary.
1266 *
1267 * dir->d_inode->i_mutex must be held
1268 */
1269 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1270 unsigned int flags, bool *need_lookup)
1271 {
1272 struct dentry *dentry;
1273 int error;
1274
1275 *need_lookup = false;
1276 dentry = d_lookup(dir, name);
1277 if (dentry) {
1278 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1279 error = d_revalidate(dentry, flags);
1280 if (unlikely(error <= 0)) {
1281 if (error < 0) {
1282 dput(dentry);
1283 return ERR_PTR(error);
1284 } else if (!d_invalidate(dentry)) {
1285 dput(dentry);
1286 dentry = NULL;
1287 }
1288 }
1289 }
1290 }
1291
1292 if (!dentry) {
1293 dentry = d_alloc(dir, name);
1294 if (unlikely(!dentry))
1295 return ERR_PTR(-ENOMEM);
1296
1297 *need_lookup = true;
1298 }
1299 return dentry;
1300 }
1301
1302 /*
1303 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1304 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1305 *
1306 * dir->d_inode->i_mutex must be held
1307 */
1308 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1309 unsigned int flags)
1310 {
1311 struct dentry *old;
1312
1313 /* Don't create child dentry for a dead directory. */
1314 if (unlikely(IS_DEADDIR(dir))) {
1315 dput(dentry);
1316 return ERR_PTR(-ENOENT);
1317 }
1318
1319 old = dir->i_op->lookup(dir, dentry, flags);
1320 if (unlikely(old)) {
1321 dput(dentry);
1322 dentry = old;
1323 }
1324 return dentry;
1325 }
1326
1327 static struct dentry *__lookup_hash(struct qstr *name,
1328 struct dentry *base, unsigned int flags)
1329 {
1330 bool need_lookup;
1331 struct dentry *dentry;
1332
1333 dentry = lookup_dcache(name, base, flags, &need_lookup);
1334 if (!need_lookup)
1335 return dentry;
1336
1337 return lookup_real(base->d_inode, dentry, flags);
1338 }
1339
1340 /*
1341 * It's more convoluted than I'd like it to be, but... it's still fairly
1342 * small and for now I'd prefer to have fast path as straight as possible.
1343 * It _is_ time-critical.
1344 */
1345 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1346 struct path *path, struct inode **inode)
1347 {
1348 struct vfsmount *mnt = nd->path.mnt;
1349 struct dentry *dentry, *parent = nd->path.dentry;
1350 int need_reval = 1;
1351 int status = 1;
1352 int err;
1353
1354 /*
1355 * Rename seqlock is not required here because in the off chance
1356 * of a false negative due to a concurrent rename, we're going to
1357 * do the non-racy lookup, below.
1358 */
1359 if (nd->flags & LOOKUP_RCU) {
1360 unsigned seq;
1361 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1362 if (!dentry)
1363 goto unlazy;
1364
1365 /*
1366 * This sequence count validates that the inode matches
1367 * the dentry name information from lookup.
1368 */
1369 *inode = dentry->d_inode;
1370 if (read_seqcount_retry(&dentry->d_seq, seq))
1371 return -ECHILD;
1372
1373 /*
1374 * This sequence count validates that the parent had no
1375 * changes while we did the lookup of the dentry above.
1376 *
1377 * The memory barrier in read_seqcount_begin of child is
1378 * enough, we can use __read_seqcount_retry here.
1379 */
1380 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1381 return -ECHILD;
1382 nd->seq = seq;
1383
1384 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1385 status = d_revalidate(dentry, nd->flags);
1386 if (unlikely(status <= 0)) {
1387 if (status != -ECHILD)
1388 need_reval = 0;
1389 goto unlazy;
1390 }
1391 }
1392 path->mnt = mnt;
1393 path->dentry = dentry;
1394 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1395 goto unlazy;
1396 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1397 goto unlazy;
1398 return 0;
1399 unlazy:
1400 if (unlazy_walk(nd, dentry))
1401 return -ECHILD;
1402 } else {
1403 dentry = __d_lookup(parent, name);
1404 }
1405
1406 if (unlikely(!dentry))
1407 goto need_lookup;
1408
1409 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1410 status = d_revalidate(dentry, nd->flags);
1411 if (unlikely(status <= 0)) {
1412 if (status < 0) {
1413 dput(dentry);
1414 return status;
1415 }
1416 if (!d_invalidate(dentry)) {
1417 dput(dentry);
1418 goto need_lookup;
1419 }
1420 }
1421
1422 path->mnt = mnt;
1423 path->dentry = dentry;
1424 err = follow_managed(path, nd->flags);
1425 if (unlikely(err < 0)) {
1426 path_put_conditional(path, nd);
1427 return err;
1428 }
1429 if (err)
1430 nd->flags |= LOOKUP_JUMPED;
1431 *inode = path->dentry->d_inode;
1432 return 0;
1433
1434 need_lookup:
1435 return 1;
1436 }
1437
1438 /* Fast lookup failed, do it the slow way */
1439 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1440 struct path *path)
1441 {
1442 struct dentry *dentry, *parent;
1443 int err;
1444
1445 parent = nd->path.dentry;
1446 BUG_ON(nd->inode != parent->d_inode);
1447
1448 mutex_lock(&parent->d_inode->i_mutex);
1449 dentry = __lookup_hash(name, parent, nd->flags);
1450 mutex_unlock(&parent->d_inode->i_mutex);
1451 if (IS_ERR(dentry))
1452 return PTR_ERR(dentry);
1453 path->mnt = nd->path.mnt;
1454 path->dentry = dentry;
1455 err = follow_managed(path, nd->flags);
1456 if (unlikely(err < 0)) {
1457 path_put_conditional(path, nd);
1458 return err;
1459 }
1460 if (err)
1461 nd->flags |= LOOKUP_JUMPED;
1462 return 0;
1463 }
1464
1465 static inline int may_lookup(struct nameidata *nd)
1466 {
1467 if (nd->flags & LOOKUP_RCU) {
1468 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1469 if (err != -ECHILD)
1470 return err;
1471 if (unlazy_walk(nd, NULL))
1472 return -ECHILD;
1473 }
1474 return inode_permission(nd->inode, MAY_EXEC);
1475 }
1476
1477 static inline int handle_dots(struct nameidata *nd, int type)
1478 {
1479 if (type == LAST_DOTDOT) {
1480 if (nd->flags & LOOKUP_RCU) {
1481 if (follow_dotdot_rcu(nd))
1482 return -ECHILD;
1483 } else
1484 follow_dotdot(nd);
1485 }
1486 return 0;
1487 }
1488
1489 static void terminate_walk(struct nameidata *nd)
1490 {
1491 if (!(nd->flags & LOOKUP_RCU)) {
1492 path_put(&nd->path);
1493 } else {
1494 nd->flags &= ~LOOKUP_RCU;
1495 if (!(nd->flags & LOOKUP_ROOT))
1496 nd->root.mnt = NULL;
1497 unlock_rcu_walk();
1498 }
1499 }
1500
1501 /*
1502 * Do we need to follow links? We _really_ want to be able
1503 * to do this check without having to look at inode->i_op,
1504 * so we keep a cache of "no, this doesn't need follow_link"
1505 * for the common case.
1506 */
1507 static inline int should_follow_link(struct inode *inode, int follow)
1508 {
1509 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1510 if (likely(inode->i_op->follow_link))
1511 return follow;
1512
1513 /* This gets set once for the inode lifetime */
1514 spin_lock(&inode->i_lock);
1515 inode->i_opflags |= IOP_NOFOLLOW;
1516 spin_unlock(&inode->i_lock);
1517 }
1518 return 0;
1519 }
1520
1521 static inline int walk_component(struct nameidata *nd, struct path *path,
1522 struct qstr *name, int type, int follow)
1523 {
1524 struct inode *inode;
1525 int err;
1526 /*
1527 * "." and ".." are special - ".." especially so because it has
1528 * to be able to know about the current root directory and
1529 * parent relationships.
1530 */
1531 if (unlikely(type != LAST_NORM))
1532 return handle_dots(nd, type);
1533 err = lookup_fast(nd, name, path, &inode);
1534 if (unlikely(err)) {
1535 if (err < 0)
1536 goto out_err;
1537
1538 err = lookup_slow(nd, name, path);
1539 if (err < 0)
1540 goto out_err;
1541
1542 inode = path->dentry->d_inode;
1543 }
1544 err = -ENOENT;
1545 if (!inode)
1546 goto out_path_put;
1547
1548 if (should_follow_link(inode, follow)) {
1549 if (nd->flags & LOOKUP_RCU) {
1550 if (unlikely(unlazy_walk(nd, path->dentry))) {
1551 err = -ECHILD;
1552 goto out_err;
1553 }
1554 }
1555 BUG_ON(inode != path->dentry->d_inode);
1556 return 1;
1557 }
1558 path_to_nameidata(path, nd);
1559 nd->inode = inode;
1560 return 0;
1561
1562 out_path_put:
1563 path_to_nameidata(path, nd);
1564 out_err:
1565 terminate_walk(nd);
1566 return err;
1567 }
1568
1569 /*
1570 * This limits recursive symlink follows to 8, while
1571 * limiting consecutive symlinks to 40.
1572 *
1573 * Without that kind of total limit, nasty chains of consecutive
1574 * symlinks can cause almost arbitrarily long lookups.
1575 */
1576 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1577 {
1578 int res;
1579
1580 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1581 path_put_conditional(path, nd);
1582 path_put(&nd->path);
1583 return -ELOOP;
1584 }
1585 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1586
1587 nd->depth++;
1588 current->link_count++;
1589
1590 do {
1591 struct path link = *path;
1592 void *cookie;
1593
1594 res = follow_link(&link, nd, &cookie);
1595 if (res)
1596 break;
1597 res = walk_component(nd, path, &nd->last,
1598 nd->last_type, LOOKUP_FOLLOW);
1599 put_link(nd, &link, cookie);
1600 } while (res > 0);
1601
1602 current->link_count--;
1603 nd->depth--;
1604 return res;
1605 }
1606
1607 /*
1608 * We really don't want to look at inode->i_op->lookup
1609 * when we don't have to. So we keep a cache bit in
1610 * the inode ->i_opflags field that says "yes, we can
1611 * do lookup on this inode".
1612 */
1613 static inline int can_lookup(struct inode *inode)
1614 {
1615 if (likely(inode->i_opflags & IOP_LOOKUP))
1616 return 1;
1617 if (likely(!inode->i_op->lookup))
1618 return 0;
1619
1620 /* We do this once for the lifetime of the inode */
1621 spin_lock(&inode->i_lock);
1622 inode->i_opflags |= IOP_LOOKUP;
1623 spin_unlock(&inode->i_lock);
1624 return 1;
1625 }
1626
1627 /*
1628 * We can do the critical dentry name comparison and hashing
1629 * operations one word at a time, but we are limited to:
1630 *
1631 * - Architectures with fast unaligned word accesses. We could
1632 * do a "get_unaligned()" if this helps and is sufficiently
1633 * fast.
1634 *
1635 * - Little-endian machines (so that we can generate the mask
1636 * of low bytes efficiently). Again, we *could* do a byte
1637 * swapping load on big-endian architectures if that is not
1638 * expensive enough to make the optimization worthless.
1639 *
1640 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1641 * do not trap on the (extremely unlikely) case of a page
1642 * crossing operation.
1643 *
1644 * - Furthermore, we need an efficient 64-bit compile for the
1645 * 64-bit case in order to generate the "number of bytes in
1646 * the final mask". Again, that could be replaced with a
1647 * efficient population count instruction or similar.
1648 */
1649 #ifdef CONFIG_DCACHE_WORD_ACCESS
1650
1651 #include <asm/word-at-a-time.h>
1652
1653 #ifdef CONFIG_64BIT
1654
1655 static inline unsigned int fold_hash(unsigned long hash)
1656 {
1657 hash += hash >> (8*sizeof(int));
1658 return hash;
1659 }
1660
1661 #else /* 32-bit case */
1662
1663 #define fold_hash(x) (x)
1664
1665 #endif
1666
1667 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1668 {
1669 unsigned long a, mask;
1670 unsigned long hash = 0;
1671
1672 for (;;) {
1673 a = load_unaligned_zeropad(name);
1674 if (len < sizeof(unsigned long))
1675 break;
1676 hash += a;
1677 hash *= 9;
1678 name += sizeof(unsigned long);
1679 len -= sizeof(unsigned long);
1680 if (!len)
1681 goto done;
1682 }
1683 mask = ~(~0ul << len*8);
1684 hash += mask & a;
1685 done:
1686 return fold_hash(hash);
1687 }
1688 EXPORT_SYMBOL(full_name_hash);
1689
1690 /*
1691 * Calculate the length and hash of the path component, and
1692 * return the length of the component;
1693 */
1694 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1695 {
1696 unsigned long a, b, adata, bdata, mask, hash, len;
1697 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1698
1699 hash = a = 0;
1700 len = -sizeof(unsigned long);
1701 do {
1702 hash = (hash + a) * 9;
1703 len += sizeof(unsigned long);
1704 a = load_unaligned_zeropad(name+len);
1705 b = a ^ REPEAT_BYTE('/');
1706 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1707
1708 adata = prep_zero_mask(a, adata, &constants);
1709 bdata = prep_zero_mask(b, bdata, &constants);
1710
1711 mask = create_zero_mask(adata | bdata);
1712
1713 hash += a & zero_bytemask(mask);
1714 *hashp = fold_hash(hash);
1715
1716 return len + find_zero(mask);
1717 }
1718
1719 #else
1720
1721 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1722 {
1723 unsigned long hash = init_name_hash();
1724 while (len--)
1725 hash = partial_name_hash(*name++, hash);
1726 return end_name_hash(hash);
1727 }
1728 EXPORT_SYMBOL(full_name_hash);
1729
1730 /*
1731 * We know there's a real path component here of at least
1732 * one character.
1733 */
1734 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1735 {
1736 unsigned long hash = init_name_hash();
1737 unsigned long len = 0, c;
1738
1739 c = (unsigned char)*name;
1740 do {
1741 len++;
1742 hash = partial_name_hash(c, hash);
1743 c = (unsigned char)name[len];
1744 } while (c && c != '/');
1745 *hashp = end_name_hash(hash);
1746 return len;
1747 }
1748
1749 #endif
1750
1751 /*
1752 * Name resolution.
1753 * This is the basic name resolution function, turning a pathname into
1754 * the final dentry. We expect 'base' to be positive and a directory.
1755 *
1756 * Returns 0 and nd will have valid dentry and mnt on success.
1757 * Returns error and drops reference to input namei data on failure.
1758 */
1759 static int link_path_walk(const char *name, struct nameidata *nd)
1760 {
1761 struct path next;
1762 int err;
1763
1764 while (*name=='/')
1765 name++;
1766 if (!*name)
1767 return 0;
1768
1769 /* At this point we know we have a real path component. */
1770 for(;;) {
1771 struct qstr this;
1772 long len;
1773 int type;
1774
1775 err = may_lookup(nd);
1776 if (err)
1777 break;
1778
1779 len = hash_name(name, &this.hash);
1780 this.name = name;
1781 this.len = len;
1782
1783 type = LAST_NORM;
1784 if (name[0] == '.') switch (len) {
1785 case 2:
1786 if (name[1] == '.') {
1787 type = LAST_DOTDOT;
1788 nd->flags |= LOOKUP_JUMPED;
1789 }
1790 break;
1791 case 1:
1792 type = LAST_DOT;
1793 }
1794 if (likely(type == LAST_NORM)) {
1795 struct dentry *parent = nd->path.dentry;
1796 nd->flags &= ~LOOKUP_JUMPED;
1797 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1798 err = parent->d_op->d_hash(parent, nd->inode,
1799 &this);
1800 if (err < 0)
1801 break;
1802 }
1803 }
1804
1805 if (!name[len])
1806 goto last_component;
1807 /*
1808 * If it wasn't NUL, we know it was '/'. Skip that
1809 * slash, and continue until no more slashes.
1810 */
1811 do {
1812 len++;
1813 } while (unlikely(name[len] == '/'));
1814 if (!name[len])
1815 goto last_component;
1816 name += len;
1817
1818 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1819 if (err < 0)
1820 return err;
1821
1822 if (err) {
1823 err = nested_symlink(&next, nd);
1824 if (err)
1825 return err;
1826 }
1827 if (can_lookup(nd->inode))
1828 continue;
1829 err = -ENOTDIR;
1830 break;
1831 /* here ends the main loop */
1832
1833 last_component:
1834 nd->last = this;
1835 nd->last_type = type;
1836 return 0;
1837 }
1838 terminate_walk(nd);
1839 return err;
1840 }
1841
1842 static int path_init(int dfd, const char *name, unsigned int flags,
1843 struct nameidata *nd, struct file **fp)
1844 {
1845 int retval = 0;
1846
1847 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1848 nd->flags = flags | LOOKUP_JUMPED;
1849 nd->depth = 0;
1850 if (flags & LOOKUP_ROOT) {
1851 struct inode *inode = nd->root.dentry->d_inode;
1852 if (*name) {
1853 if (!can_lookup(inode))
1854 return -ENOTDIR;
1855 retval = inode_permission(inode, MAY_EXEC);
1856 if (retval)
1857 return retval;
1858 }
1859 nd->path = nd->root;
1860 nd->inode = inode;
1861 if (flags & LOOKUP_RCU) {
1862 lock_rcu_walk();
1863 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1864 } else {
1865 path_get(&nd->path);
1866 }
1867 return 0;
1868 }
1869
1870 nd->root.mnt = NULL;
1871
1872 if (*name=='/') {
1873 if (flags & LOOKUP_RCU) {
1874 lock_rcu_walk();
1875 set_root_rcu(nd);
1876 } else {
1877 set_root(nd);
1878 path_get(&nd->root);
1879 }
1880 nd->path = nd->root;
1881 } else if (dfd == AT_FDCWD) {
1882 if (flags & LOOKUP_RCU) {
1883 struct fs_struct *fs = current->fs;
1884 unsigned seq;
1885
1886 lock_rcu_walk();
1887
1888 do {
1889 seq = read_seqcount_begin(&fs->seq);
1890 nd->path = fs->pwd;
1891 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1892 } while (read_seqcount_retry(&fs->seq, seq));
1893 } else {
1894 get_fs_pwd(current->fs, &nd->path);
1895 }
1896 } else {
1897 /* Caller must check execute permissions on the starting path component */
1898 struct fd f = fdget_raw(dfd);
1899 struct dentry *dentry;
1900
1901 if (!f.file)
1902 return -EBADF;
1903
1904 dentry = f.file->f_path.dentry;
1905
1906 if (*name) {
1907 if (!can_lookup(dentry->d_inode)) {
1908 fdput(f);
1909 return -ENOTDIR;
1910 }
1911 }
1912
1913 nd->path = f.file->f_path;
1914 if (flags & LOOKUP_RCU) {
1915 if (f.need_put)
1916 *fp = f.file;
1917 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1918 lock_rcu_walk();
1919 } else {
1920 path_get(&nd->path);
1921 fdput(f);
1922 }
1923 }
1924
1925 nd->inode = nd->path.dentry->d_inode;
1926 return 0;
1927 }
1928
1929 static inline int lookup_last(struct nameidata *nd, struct path *path)
1930 {
1931 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1932 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1933
1934 nd->flags &= ~LOOKUP_PARENT;
1935 return walk_component(nd, path, &nd->last, nd->last_type,
1936 nd->flags & LOOKUP_FOLLOW);
1937 }
1938
1939 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1940 static int path_lookupat(int dfd, const char *name,
1941 unsigned int flags, struct nameidata *nd)
1942 {
1943 struct file *base = NULL;
1944 struct path path;
1945 int err;
1946
1947 /*
1948 * Path walking is largely split up into 2 different synchronisation
1949 * schemes, rcu-walk and ref-walk (explained in
1950 * Documentation/filesystems/path-lookup.txt). These share much of the
1951 * path walk code, but some things particularly setup, cleanup, and
1952 * following mounts are sufficiently divergent that functions are
1953 * duplicated. Typically there is a function foo(), and its RCU
1954 * analogue, foo_rcu().
1955 *
1956 * -ECHILD is the error number of choice (just to avoid clashes) that
1957 * is returned if some aspect of an rcu-walk fails. Such an error must
1958 * be handled by restarting a traditional ref-walk (which will always
1959 * be able to complete).
1960 */
1961 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1962
1963 if (unlikely(err))
1964 return err;
1965
1966 current->total_link_count = 0;
1967 err = link_path_walk(name, nd);
1968
1969 if (!err && !(flags & LOOKUP_PARENT)) {
1970 err = lookup_last(nd, &path);
1971 while (err > 0) {
1972 void *cookie;
1973 struct path link = path;
1974 err = may_follow_link(&link, nd);
1975 if (unlikely(err))
1976 break;
1977 nd->flags |= LOOKUP_PARENT;
1978 err = follow_link(&link, nd, &cookie);
1979 if (err)
1980 break;
1981 err = lookup_last(nd, &path);
1982 put_link(nd, &link, cookie);
1983 }
1984 }
1985
1986 if (!err)
1987 err = complete_walk(nd);
1988
1989 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1990 if (!nd->inode->i_op->lookup) {
1991 path_put(&nd->path);
1992 err = -ENOTDIR;
1993 }
1994 }
1995
1996 if (base)
1997 fput(base);
1998
1999 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2000 path_put(&nd->root);
2001 nd->root.mnt = NULL;
2002 }
2003 return err;
2004 }
2005
2006 static int filename_lookup(int dfd, struct filename *name,
2007 unsigned int flags, struct nameidata *nd)
2008 {
2009 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2010 if (unlikely(retval == -ECHILD))
2011 retval = path_lookupat(dfd, name->name, flags, nd);
2012 if (unlikely(retval == -ESTALE))
2013 retval = path_lookupat(dfd, name->name,
2014 flags | LOOKUP_REVAL, nd);
2015
2016 if (likely(!retval))
2017 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2018 return retval;
2019 }
2020
2021 static int do_path_lookup(int dfd, const char *name,
2022 unsigned int flags, struct nameidata *nd)
2023 {
2024 struct filename filename = { .name = name };
2025
2026 return filename_lookup(dfd, &filename, flags, nd);
2027 }
2028
2029 /* does lookup, returns the object with parent locked */
2030 struct dentry *kern_path_locked(const char *name, struct path *path)
2031 {
2032 struct nameidata nd;
2033 struct dentry *d;
2034 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2035 if (err)
2036 return ERR_PTR(err);
2037 if (nd.last_type != LAST_NORM) {
2038 path_put(&nd.path);
2039 return ERR_PTR(-EINVAL);
2040 }
2041 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2042 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2043 if (IS_ERR(d)) {
2044 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2045 path_put(&nd.path);
2046 return d;
2047 }
2048 *path = nd.path;
2049 return d;
2050 }
2051
2052 int kern_path(const char *name, unsigned int flags, struct path *path)
2053 {
2054 struct nameidata nd;
2055 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2056 if (!res)
2057 *path = nd.path;
2058 return res;
2059 }
2060
2061 /**
2062 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2063 * @dentry: pointer to dentry of the base directory
2064 * @mnt: pointer to vfs mount of the base directory
2065 * @name: pointer to file name
2066 * @flags: lookup flags
2067 * @path: pointer to struct path to fill
2068 */
2069 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2070 const char *name, unsigned int flags,
2071 struct path *path)
2072 {
2073 struct nameidata nd;
2074 int err;
2075 nd.root.dentry = dentry;
2076 nd.root.mnt = mnt;
2077 BUG_ON(flags & LOOKUP_PARENT);
2078 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2079 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2080 if (!err)
2081 *path = nd.path;
2082 return err;
2083 }
2084
2085 /*
2086 * Restricted form of lookup. Doesn't follow links, single-component only,
2087 * needs parent already locked. Doesn't follow mounts.
2088 * SMP-safe.
2089 */
2090 static struct dentry *lookup_hash(struct nameidata *nd)
2091 {
2092 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2093 }
2094
2095 /**
2096 * lookup_one_len - filesystem helper to lookup single pathname component
2097 * @name: pathname component to lookup
2098 * @base: base directory to lookup from
2099 * @len: maximum length @len should be interpreted to
2100 *
2101 * Note that this routine is purely a helper for filesystem usage and should
2102 * not be called by generic code. Also note that by using this function the
2103 * nameidata argument is passed to the filesystem methods and a filesystem
2104 * using this helper needs to be prepared for that.
2105 */
2106 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2107 {
2108 struct qstr this;
2109 unsigned int c;
2110 int err;
2111
2112 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2113
2114 this.name = name;
2115 this.len = len;
2116 this.hash = full_name_hash(name, len);
2117 if (!len)
2118 return ERR_PTR(-EACCES);
2119
2120 if (unlikely(name[0] == '.')) {
2121 if (len < 2 || (len == 2 && name[1] == '.'))
2122 return ERR_PTR(-EACCES);
2123 }
2124
2125 while (len--) {
2126 c = *(const unsigned char *)name++;
2127 if (c == '/' || c == '\0')
2128 return ERR_PTR(-EACCES);
2129 }
2130 /*
2131 * See if the low-level filesystem might want
2132 * to use its own hash..
2133 */
2134 if (base->d_flags & DCACHE_OP_HASH) {
2135 int err = base->d_op->d_hash(base, base->d_inode, &this);
2136 if (err < 0)
2137 return ERR_PTR(err);
2138 }
2139
2140 err = inode_permission(base->d_inode, MAY_EXEC);
2141 if (err)
2142 return ERR_PTR(err);
2143
2144 return __lookup_hash(&this, base, 0);
2145 }
2146
2147 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2148 struct path *path, int *empty)
2149 {
2150 struct nameidata nd;
2151 struct filename *tmp = getname_flags(name, flags, empty);
2152 int err = PTR_ERR(tmp);
2153 if (!IS_ERR(tmp)) {
2154
2155 BUG_ON(flags & LOOKUP_PARENT);
2156
2157 err = filename_lookup(dfd, tmp, flags, &nd);
2158 putname(tmp);
2159 if (!err)
2160 *path = nd.path;
2161 }
2162 return err;
2163 }
2164
2165 int user_path_at(int dfd, const char __user *name, unsigned flags,
2166 struct path *path)
2167 {
2168 return user_path_at_empty(dfd, name, flags, path, NULL);
2169 }
2170
2171 /*
2172 * NB: most callers don't do anything directly with the reference to the
2173 * to struct filename, but the nd->last pointer points into the name string
2174 * allocated by getname. So we must hold the reference to it until all
2175 * path-walking is complete.
2176 */
2177 static struct filename *
2178 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2179 unsigned int flags)
2180 {
2181 struct filename *s = getname(path);
2182 int error;
2183
2184 /* only LOOKUP_REVAL is allowed in extra flags */
2185 flags &= LOOKUP_REVAL;
2186
2187 if (IS_ERR(s))
2188 return s;
2189
2190 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2191 if (error) {
2192 putname(s);
2193 return ERR_PTR(error);
2194 }
2195
2196 return s;
2197 }
2198
2199 /*
2200 * It's inline, so penalty for filesystems that don't use sticky bit is
2201 * minimal.
2202 */
2203 static inline int check_sticky(struct inode *dir, struct inode *inode)
2204 {
2205 kuid_t fsuid = current_fsuid();
2206
2207 if (!(dir->i_mode & S_ISVTX))
2208 return 0;
2209 if (uid_eq(inode->i_uid, fsuid))
2210 return 0;
2211 if (uid_eq(dir->i_uid, fsuid))
2212 return 0;
2213 return !inode_capable(inode, CAP_FOWNER);
2214 }
2215
2216 /*
2217 * Check whether we can remove a link victim from directory dir, check
2218 * whether the type of victim is right.
2219 * 1. We can't do it if dir is read-only (done in permission())
2220 * 2. We should have write and exec permissions on dir
2221 * 3. We can't remove anything from append-only dir
2222 * 4. We can't do anything with immutable dir (done in permission())
2223 * 5. If the sticky bit on dir is set we should either
2224 * a. be owner of dir, or
2225 * b. be owner of victim, or
2226 * c. have CAP_FOWNER capability
2227 * 6. If the victim is append-only or immutable we can't do antyhing with
2228 * links pointing to it.
2229 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2230 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2231 * 9. We can't remove a root or mountpoint.
2232 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2233 * nfs_async_unlink().
2234 */
2235 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2236 {
2237 int error;
2238
2239 if (!victim->d_inode)
2240 return -ENOENT;
2241
2242 BUG_ON(victim->d_parent->d_inode != dir);
2243 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2244
2245 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2246 if (error)
2247 return error;
2248 if (IS_APPEND(dir))
2249 return -EPERM;
2250 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2251 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2252 return -EPERM;
2253 if (isdir) {
2254 if (!S_ISDIR(victim->d_inode->i_mode))
2255 return -ENOTDIR;
2256 if (IS_ROOT(victim))
2257 return -EBUSY;
2258 } else if (S_ISDIR(victim->d_inode->i_mode))
2259 return -EISDIR;
2260 if (IS_DEADDIR(dir))
2261 return -ENOENT;
2262 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2263 return -EBUSY;
2264 return 0;
2265 }
2266
2267 /* Check whether we can create an object with dentry child in directory
2268 * dir.
2269 * 1. We can't do it if child already exists (open has special treatment for
2270 * this case, but since we are inlined it's OK)
2271 * 2. We can't do it if dir is read-only (done in permission())
2272 * 3. We should have write and exec permissions on dir
2273 * 4. We can't do it if dir is immutable (done in permission())
2274 */
2275 static inline int may_create(struct inode *dir, struct dentry *child)
2276 {
2277 if (child->d_inode)
2278 return -EEXIST;
2279 if (IS_DEADDIR(dir))
2280 return -ENOENT;
2281 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2282 }
2283
2284 /*
2285 * p1 and p2 should be directories on the same fs.
2286 */
2287 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2288 {
2289 struct dentry *p;
2290
2291 if (p1 == p2) {
2292 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2293 return NULL;
2294 }
2295
2296 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2297
2298 p = d_ancestor(p2, p1);
2299 if (p) {
2300 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2301 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2302 return p;
2303 }
2304
2305 p = d_ancestor(p1, p2);
2306 if (p) {
2307 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2308 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2309 return p;
2310 }
2311
2312 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2313 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2314 return NULL;
2315 }
2316
2317 void unlock_rename(struct dentry *p1, struct dentry *p2)
2318 {
2319 mutex_unlock(&p1->d_inode->i_mutex);
2320 if (p1 != p2) {
2321 mutex_unlock(&p2->d_inode->i_mutex);
2322 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2323 }
2324 }
2325
2326 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2327 bool want_excl)
2328 {
2329 int error = may_create(dir, dentry);
2330 if (error)
2331 return error;
2332
2333 if (!dir->i_op->create)
2334 return -EACCES; /* shouldn't it be ENOSYS? */
2335 mode &= S_IALLUGO;
2336 mode |= S_IFREG;
2337 error = security_inode_create(dir, dentry, mode);
2338 if (error)
2339 return error;
2340 error = dir->i_op->create(dir, dentry, mode, want_excl);
2341 if (!error)
2342 fsnotify_create(dir, dentry);
2343 return error;
2344 }
2345
2346 static int may_open(struct path *path, int acc_mode, int flag)
2347 {
2348 struct dentry *dentry = path->dentry;
2349 struct inode *inode = dentry->d_inode;
2350 int error;
2351
2352 /* O_PATH? */
2353 if (!acc_mode)
2354 return 0;
2355
2356 if (!inode)
2357 return -ENOENT;
2358
2359 switch (inode->i_mode & S_IFMT) {
2360 case S_IFLNK:
2361 return -ELOOP;
2362 case S_IFDIR:
2363 if (acc_mode & MAY_WRITE)
2364 return -EISDIR;
2365 break;
2366 case S_IFBLK:
2367 case S_IFCHR:
2368 if (path->mnt->mnt_flags & MNT_NODEV)
2369 return -EACCES;
2370 /*FALLTHRU*/
2371 case S_IFIFO:
2372 case S_IFSOCK:
2373 flag &= ~O_TRUNC;
2374 break;
2375 }
2376
2377 error = inode_permission(inode, acc_mode);
2378 if (error)
2379 return error;
2380
2381 /*
2382 * An append-only file must be opened in append mode for writing.
2383 */
2384 if (IS_APPEND(inode)) {
2385 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2386 return -EPERM;
2387 if (flag & O_TRUNC)
2388 return -EPERM;
2389 }
2390
2391 /* O_NOATIME can only be set by the owner or superuser */
2392 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2393 return -EPERM;
2394
2395 return 0;
2396 }
2397
2398 static int handle_truncate(struct file *filp)
2399 {
2400 struct path *path = &filp->f_path;
2401 struct inode *inode = path->dentry->d_inode;
2402 int error = get_write_access(inode);
2403 if (error)
2404 return error;
2405 /*
2406 * Refuse to truncate files with mandatory locks held on them.
2407 */
2408 error = locks_verify_locked(inode);
2409 if (!error)
2410 error = security_path_truncate(path);
2411 if (!error) {
2412 error = do_truncate(path->dentry, 0,
2413 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2414 filp);
2415 }
2416 put_write_access(inode);
2417 return error;
2418 }
2419
2420 static inline int open_to_namei_flags(int flag)
2421 {
2422 if ((flag & O_ACCMODE) == 3)
2423 flag--;
2424 return flag;
2425 }
2426
2427 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2428 {
2429 int error = security_path_mknod(dir, dentry, mode, 0);
2430 if (error)
2431 return error;
2432
2433 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2434 if (error)
2435 return error;
2436
2437 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2438 }
2439
2440 /*
2441 * Attempt to atomically look up, create and open a file from a negative
2442 * dentry.
2443 *
2444 * Returns 0 if successful. The file will have been created and attached to
2445 * @file by the filesystem calling finish_open().
2446 *
2447 * Returns 1 if the file was looked up only or didn't need creating. The
2448 * caller will need to perform the open themselves. @path will have been
2449 * updated to point to the new dentry. This may be negative.
2450 *
2451 * Returns an error code otherwise.
2452 */
2453 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2454 struct path *path, struct file *file,
2455 const struct open_flags *op,
2456 bool got_write, bool need_lookup,
2457 int *opened)
2458 {
2459 struct inode *dir = nd->path.dentry->d_inode;
2460 unsigned open_flag = open_to_namei_flags(op->open_flag);
2461 umode_t mode;
2462 int error;
2463 int acc_mode;
2464 int create_error = 0;
2465 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2466
2467 BUG_ON(dentry->d_inode);
2468
2469 /* Don't create child dentry for a dead directory. */
2470 if (unlikely(IS_DEADDIR(dir))) {
2471 error = -ENOENT;
2472 goto out;
2473 }
2474
2475 mode = op->mode;
2476 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2477 mode &= ~current_umask();
2478
2479 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2480 open_flag &= ~O_TRUNC;
2481 *opened |= FILE_CREATED;
2482 }
2483
2484 /*
2485 * Checking write permission is tricky, bacuse we don't know if we are
2486 * going to actually need it: O_CREAT opens should work as long as the
2487 * file exists. But checking existence breaks atomicity. The trick is
2488 * to check access and if not granted clear O_CREAT from the flags.
2489 *
2490 * Another problem is returing the "right" error value (e.g. for an
2491 * O_EXCL open we want to return EEXIST not EROFS).
2492 */
2493 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2494 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2495 if (!(open_flag & O_CREAT)) {
2496 /*
2497 * No O_CREATE -> atomicity not a requirement -> fall
2498 * back to lookup + open
2499 */
2500 goto no_open;
2501 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2502 /* Fall back and fail with the right error */
2503 create_error = -EROFS;
2504 goto no_open;
2505 } else {
2506 /* No side effects, safe to clear O_CREAT */
2507 create_error = -EROFS;
2508 open_flag &= ~O_CREAT;
2509 }
2510 }
2511
2512 if (open_flag & O_CREAT) {
2513 error = may_o_create(&nd->path, dentry, mode);
2514 if (error) {
2515 create_error = error;
2516 if (open_flag & O_EXCL)
2517 goto no_open;
2518 open_flag &= ~O_CREAT;
2519 }
2520 }
2521
2522 if (nd->flags & LOOKUP_DIRECTORY)
2523 open_flag |= O_DIRECTORY;
2524
2525 file->f_path.dentry = DENTRY_NOT_SET;
2526 file->f_path.mnt = nd->path.mnt;
2527 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2528 opened);
2529 if (error < 0) {
2530 if (create_error && error == -ENOENT)
2531 error = create_error;
2532 goto out;
2533 }
2534
2535 acc_mode = op->acc_mode;
2536 if (*opened & FILE_CREATED) {
2537 fsnotify_create(dir, dentry);
2538 acc_mode = MAY_OPEN;
2539 }
2540
2541 if (error) { /* returned 1, that is */
2542 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2543 error = -EIO;
2544 goto out;
2545 }
2546 if (file->f_path.dentry) {
2547 dput(dentry);
2548 dentry = file->f_path.dentry;
2549 }
2550 if (create_error && dentry->d_inode == NULL) {
2551 error = create_error;
2552 goto out;
2553 }
2554 goto looked_up;
2555 }
2556
2557 /*
2558 * We didn't have the inode before the open, so check open permission
2559 * here.
2560 */
2561 error = may_open(&file->f_path, acc_mode, open_flag);
2562 if (error)
2563 fput(file);
2564
2565 out:
2566 dput(dentry);
2567 return error;
2568
2569 no_open:
2570 if (need_lookup) {
2571 dentry = lookup_real(dir, dentry, nd->flags);
2572 if (IS_ERR(dentry))
2573 return PTR_ERR(dentry);
2574
2575 if (create_error) {
2576 int open_flag = op->open_flag;
2577
2578 error = create_error;
2579 if ((open_flag & O_EXCL)) {
2580 if (!dentry->d_inode)
2581 goto out;
2582 } else if (!dentry->d_inode) {
2583 goto out;
2584 } else if ((open_flag & O_TRUNC) &&
2585 S_ISREG(dentry->d_inode->i_mode)) {
2586 goto out;
2587 }
2588 /* will fail later, go on to get the right error */
2589 }
2590 }
2591 looked_up:
2592 path->dentry = dentry;
2593 path->mnt = nd->path.mnt;
2594 return 1;
2595 }
2596
2597 /*
2598 * Look up and maybe create and open the last component.
2599 *
2600 * Must be called with i_mutex held on parent.
2601 *
2602 * Returns 0 if the file was successfully atomically created (if necessary) and
2603 * opened. In this case the file will be returned attached to @file.
2604 *
2605 * Returns 1 if the file was not completely opened at this time, though lookups
2606 * and creations will have been performed and the dentry returned in @path will
2607 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2608 * specified then a negative dentry may be returned.
2609 *
2610 * An error code is returned otherwise.
2611 *
2612 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2613 * cleared otherwise prior to returning.
2614 */
2615 static int lookup_open(struct nameidata *nd, struct path *path,
2616 struct file *file,
2617 const struct open_flags *op,
2618 bool got_write, int *opened)
2619 {
2620 struct dentry *dir = nd->path.dentry;
2621 struct inode *dir_inode = dir->d_inode;
2622 struct dentry *dentry;
2623 int error;
2624 bool need_lookup;
2625
2626 *opened &= ~FILE_CREATED;
2627 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2628 if (IS_ERR(dentry))
2629 return PTR_ERR(dentry);
2630
2631 /* Cached positive dentry: will open in f_op->open */
2632 if (!need_lookup && dentry->d_inode)
2633 goto out_no_open;
2634
2635 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2636 return atomic_open(nd, dentry, path, file, op, got_write,
2637 need_lookup, opened);
2638 }
2639
2640 if (need_lookup) {
2641 BUG_ON(dentry->d_inode);
2642
2643 dentry = lookup_real(dir_inode, dentry, nd->flags);
2644 if (IS_ERR(dentry))
2645 return PTR_ERR(dentry);
2646 }
2647
2648 /* Negative dentry, just create the file */
2649 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2650 umode_t mode = op->mode;
2651 if (!IS_POSIXACL(dir->d_inode))
2652 mode &= ~current_umask();
2653 /*
2654 * This write is needed to ensure that a
2655 * rw->ro transition does not occur between
2656 * the time when the file is created and when
2657 * a permanent write count is taken through
2658 * the 'struct file' in finish_open().
2659 */
2660 if (!got_write) {
2661 error = -EROFS;
2662 goto out_dput;
2663 }
2664 *opened |= FILE_CREATED;
2665 error = security_path_mknod(&nd->path, dentry, mode, 0);
2666 if (error)
2667 goto out_dput;
2668 error = vfs_create(dir->d_inode, dentry, mode,
2669 nd->flags & LOOKUP_EXCL);
2670 if (error)
2671 goto out_dput;
2672 }
2673 out_no_open:
2674 path->dentry = dentry;
2675 path->mnt = nd->path.mnt;
2676 return 1;
2677
2678 out_dput:
2679 dput(dentry);
2680 return error;
2681 }
2682
2683 /*
2684 * Handle the last step of open()
2685 */
2686 static int do_last(struct nameidata *nd, struct path *path,
2687 struct file *file, const struct open_flags *op,
2688 int *opened, struct filename *name)
2689 {
2690 struct dentry *dir = nd->path.dentry;
2691 int open_flag = op->open_flag;
2692 bool will_truncate = (open_flag & O_TRUNC) != 0;
2693 bool got_write = false;
2694 int acc_mode = op->acc_mode;
2695 struct inode *inode;
2696 bool symlink_ok = false;
2697 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2698 bool retried = false;
2699 int error;
2700
2701 nd->flags &= ~LOOKUP_PARENT;
2702 nd->flags |= op->intent;
2703
2704 switch (nd->last_type) {
2705 case LAST_DOTDOT:
2706 case LAST_DOT:
2707 error = handle_dots(nd, nd->last_type);
2708 if (error)
2709 return error;
2710 /* fallthrough */
2711 case LAST_ROOT:
2712 error = complete_walk(nd);
2713 if (error)
2714 return error;
2715 audit_inode(name, nd->path.dentry, 0);
2716 if (open_flag & O_CREAT) {
2717 error = -EISDIR;
2718 goto out;
2719 }
2720 goto finish_open;
2721 case LAST_BIND:
2722 error = complete_walk(nd);
2723 if (error)
2724 return error;
2725 audit_inode(name, dir, 0);
2726 goto finish_open;
2727 }
2728
2729 if (!(open_flag & O_CREAT)) {
2730 if (nd->last.name[nd->last.len])
2731 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2732 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2733 symlink_ok = true;
2734 /* we _can_ be in RCU mode here */
2735 error = lookup_fast(nd, &nd->last, path, &inode);
2736 if (likely(!error))
2737 goto finish_lookup;
2738
2739 if (error < 0)
2740 goto out;
2741
2742 BUG_ON(nd->inode != dir->d_inode);
2743 } else {
2744 /* create side of things */
2745 /*
2746 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2747 * has been cleared when we got to the last component we are
2748 * about to look up
2749 */
2750 error = complete_walk(nd);
2751 if (error)
2752 return error;
2753
2754 audit_inode(name, dir, 0);
2755 error = -EISDIR;
2756 /* trailing slashes? */
2757 if (nd->last.name[nd->last.len])
2758 goto out;
2759 }
2760
2761 retry_lookup:
2762 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2763 error = mnt_want_write(nd->path.mnt);
2764 if (!error)
2765 got_write = true;
2766 /*
2767 * do _not_ fail yet - we might not need that or fail with
2768 * a different error; let lookup_open() decide; we'll be
2769 * dropping this one anyway.
2770 */
2771 }
2772 mutex_lock(&dir->d_inode->i_mutex);
2773 error = lookup_open(nd, path, file, op, got_write, opened);
2774 mutex_unlock(&dir->d_inode->i_mutex);
2775
2776 if (error <= 0) {
2777 if (error)
2778 goto out;
2779
2780 if ((*opened & FILE_CREATED) ||
2781 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2782 will_truncate = false;
2783
2784 audit_inode(name, file->f_path.dentry, 0);
2785 goto opened;
2786 }
2787
2788 if (*opened & FILE_CREATED) {
2789 /* Don't check for write permission, don't truncate */
2790 open_flag &= ~O_TRUNC;
2791 will_truncate = false;
2792 acc_mode = MAY_OPEN;
2793 path_to_nameidata(path, nd);
2794 goto finish_open_created;
2795 }
2796
2797 /*
2798 * create/update audit record if it already exists.
2799 */
2800 if (path->dentry->d_inode)
2801 audit_inode(name, path->dentry, 0);
2802
2803 /*
2804 * If atomic_open() acquired write access it is dropped now due to
2805 * possible mount and symlink following (this might be optimized away if
2806 * necessary...)
2807 */
2808 if (got_write) {
2809 mnt_drop_write(nd->path.mnt);
2810 got_write = false;
2811 }
2812
2813 error = -EEXIST;
2814 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2815 goto exit_dput;
2816
2817 error = follow_managed(path, nd->flags);
2818 if (error < 0)
2819 goto exit_dput;
2820
2821 if (error)
2822 nd->flags |= LOOKUP_JUMPED;
2823
2824 BUG_ON(nd->flags & LOOKUP_RCU);
2825 inode = path->dentry->d_inode;
2826 finish_lookup:
2827 /* we _can_ be in RCU mode here */
2828 error = -ENOENT;
2829 if (!inode) {
2830 path_to_nameidata(path, nd);
2831 goto out;
2832 }
2833
2834 if (should_follow_link(inode, !symlink_ok)) {
2835 if (nd->flags & LOOKUP_RCU) {
2836 if (unlikely(unlazy_walk(nd, path->dentry))) {
2837 error = -ECHILD;
2838 goto out;
2839 }
2840 }
2841 BUG_ON(inode != path->dentry->d_inode);
2842 return 1;
2843 }
2844
2845 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2846 path_to_nameidata(path, nd);
2847 } else {
2848 save_parent.dentry = nd->path.dentry;
2849 save_parent.mnt = mntget(path->mnt);
2850 nd->path.dentry = path->dentry;
2851
2852 }
2853 nd->inode = inode;
2854 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2855 error = complete_walk(nd);
2856 if (error) {
2857 path_put(&save_parent);
2858 return error;
2859 }
2860 error = -EISDIR;
2861 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2862 goto out;
2863 error = -ENOTDIR;
2864 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2865 goto out;
2866 audit_inode(name, nd->path.dentry, 0);
2867 finish_open:
2868 if (!S_ISREG(nd->inode->i_mode))
2869 will_truncate = false;
2870
2871 if (will_truncate) {
2872 error = mnt_want_write(nd->path.mnt);
2873 if (error)
2874 goto out;
2875 got_write = true;
2876 }
2877 finish_open_created:
2878 error = may_open(&nd->path, acc_mode, open_flag);
2879 if (error)
2880 goto out;
2881 file->f_path.mnt = nd->path.mnt;
2882 error = finish_open(file, nd->path.dentry, NULL, opened);
2883 if (error) {
2884 if (error == -EOPENSTALE)
2885 goto stale_open;
2886 goto out;
2887 }
2888 opened:
2889 error = open_check_o_direct(file);
2890 if (error)
2891 goto exit_fput;
2892 error = ima_file_check(file, op->acc_mode);
2893 if (error)
2894 goto exit_fput;
2895
2896 if (will_truncate) {
2897 error = handle_truncate(file);
2898 if (error)
2899 goto exit_fput;
2900 }
2901 out:
2902 if (got_write)
2903 mnt_drop_write(nd->path.mnt);
2904 path_put(&save_parent);
2905 terminate_walk(nd);
2906 return error;
2907
2908 exit_dput:
2909 path_put_conditional(path, nd);
2910 goto out;
2911 exit_fput:
2912 fput(file);
2913 goto out;
2914
2915 stale_open:
2916 /* If no saved parent or already retried then can't retry */
2917 if (!save_parent.dentry || retried)
2918 goto out;
2919
2920 BUG_ON(save_parent.dentry != dir);
2921 path_put(&nd->path);
2922 nd->path = save_parent;
2923 nd->inode = dir->d_inode;
2924 save_parent.mnt = NULL;
2925 save_parent.dentry = NULL;
2926 if (got_write) {
2927 mnt_drop_write(nd->path.mnt);
2928 got_write = false;
2929 }
2930 retried = true;
2931 goto retry_lookup;
2932 }
2933
2934 static struct file *path_openat(int dfd, struct filename *pathname,
2935 struct nameidata *nd, const struct open_flags *op, int flags)
2936 {
2937 struct file *base = NULL;
2938 struct file *file;
2939 struct path path;
2940 int opened = 0;
2941 int error;
2942
2943 file = get_empty_filp();
2944 if (!file)
2945 return ERR_PTR(-ENFILE);
2946
2947 file->f_flags = op->open_flag;
2948
2949 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2950 if (unlikely(error))
2951 goto out;
2952
2953 current->total_link_count = 0;
2954 error = link_path_walk(pathname->name, nd);
2955 if (unlikely(error))
2956 goto out;
2957
2958 error = do_last(nd, &path, file, op, &opened, pathname);
2959 while (unlikely(error > 0)) { /* trailing symlink */
2960 struct path link = path;
2961 void *cookie;
2962 if (!(nd->flags & LOOKUP_FOLLOW)) {
2963 path_put_conditional(&path, nd);
2964 path_put(&nd->path);
2965 error = -ELOOP;
2966 break;
2967 }
2968 error = may_follow_link(&link, nd);
2969 if (unlikely(error))
2970 break;
2971 nd->flags |= LOOKUP_PARENT;
2972 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2973 error = follow_link(&link, nd, &cookie);
2974 if (unlikely(error))
2975 break;
2976 error = do_last(nd, &path, file, op, &opened, pathname);
2977 put_link(nd, &link, cookie);
2978 }
2979 out:
2980 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2981 path_put(&nd->root);
2982 if (base)
2983 fput(base);
2984 if (!(opened & FILE_OPENED)) {
2985 BUG_ON(!error);
2986 put_filp(file);
2987 }
2988 if (unlikely(error)) {
2989 if (error == -EOPENSTALE) {
2990 if (flags & LOOKUP_RCU)
2991 error = -ECHILD;
2992 else
2993 error = -ESTALE;
2994 }
2995 file = ERR_PTR(error);
2996 }
2997 return file;
2998 }
2999
3000 struct file *do_filp_open(int dfd, struct filename *pathname,
3001 const struct open_flags *op, int flags)
3002 {
3003 struct nameidata nd;
3004 struct file *filp;
3005
3006 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3007 if (unlikely(filp == ERR_PTR(-ECHILD)))
3008 filp = path_openat(dfd, pathname, &nd, op, flags);
3009 if (unlikely(filp == ERR_PTR(-ESTALE)))
3010 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3011 return filp;
3012 }
3013
3014 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3015 const char *name, const struct open_flags *op, int flags)
3016 {
3017 struct nameidata nd;
3018 struct file *file;
3019 struct filename filename = { .name = name };
3020
3021 nd.root.mnt = mnt;
3022 nd.root.dentry = dentry;
3023
3024 flags |= LOOKUP_ROOT;
3025
3026 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3027 return ERR_PTR(-ELOOP);
3028
3029 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3030 if (unlikely(file == ERR_PTR(-ECHILD)))
3031 file = path_openat(-1, &filename, &nd, op, flags);
3032 if (unlikely(file == ERR_PTR(-ESTALE)))
3033 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3034 return file;
3035 }
3036
3037 struct dentry *kern_path_create(int dfd, const char *pathname,
3038 struct path *path, unsigned int lookup_flags)
3039 {
3040 struct dentry *dentry = ERR_PTR(-EEXIST);
3041 struct nameidata nd;
3042 int err2;
3043 int error;
3044 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3045
3046 /*
3047 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3048 * other flags passed in are ignored!
3049 */
3050 lookup_flags &= LOOKUP_REVAL;
3051
3052 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3053 if (error)
3054 return ERR_PTR(error);
3055
3056 /*
3057 * Yucky last component or no last component at all?
3058 * (foo/., foo/.., /////)
3059 */
3060 if (nd.last_type != LAST_NORM)
3061 goto out;
3062 nd.flags &= ~LOOKUP_PARENT;
3063 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3064
3065 /* don't fail immediately if it's r/o, at least try to report other errors */
3066 err2 = mnt_want_write(nd.path.mnt);
3067 /*
3068 * Do the final lookup.
3069 */
3070 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3071 dentry = lookup_hash(&nd);
3072 if (IS_ERR(dentry))
3073 goto unlock;
3074
3075 error = -EEXIST;
3076 if (dentry->d_inode)
3077 goto fail;
3078 /*
3079 * Special case - lookup gave negative, but... we had foo/bar/
3080 * From the vfs_mknod() POV we just have a negative dentry -
3081 * all is fine. Let's be bastards - you had / on the end, you've
3082 * been asking for (non-existent) directory. -ENOENT for you.
3083 */
3084 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3085 error = -ENOENT;
3086 goto fail;
3087 }
3088 if (unlikely(err2)) {
3089 error = err2;
3090 goto fail;
3091 }
3092 *path = nd.path;
3093 return dentry;
3094 fail:
3095 dput(dentry);
3096 dentry = ERR_PTR(error);
3097 unlock:
3098 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3099 if (!err2)
3100 mnt_drop_write(nd.path.mnt);
3101 out:
3102 path_put(&nd.path);
3103 return dentry;
3104 }
3105 EXPORT_SYMBOL(kern_path_create);
3106
3107 void done_path_create(struct path *path, struct dentry *dentry)
3108 {
3109 dput(dentry);
3110 mutex_unlock(&path->dentry->d_inode->i_mutex);
3111 mnt_drop_write(path->mnt);
3112 path_put(path);
3113 }
3114 EXPORT_SYMBOL(done_path_create);
3115
3116 struct dentry *user_path_create(int dfd, const char __user *pathname,
3117 struct path *path, unsigned int lookup_flags)
3118 {
3119 struct filename *tmp = getname(pathname);
3120 struct dentry *res;
3121 if (IS_ERR(tmp))
3122 return ERR_CAST(tmp);
3123 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3124 putname(tmp);
3125 return res;
3126 }
3127 EXPORT_SYMBOL(user_path_create);
3128
3129 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3130 {
3131 int error = may_create(dir, dentry);
3132
3133 if (error)
3134 return error;
3135
3136 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3137 return -EPERM;
3138
3139 if (!dir->i_op->mknod)
3140 return -EPERM;
3141
3142 error = devcgroup_inode_mknod(mode, dev);
3143 if (error)
3144 return error;
3145
3146 error = security_inode_mknod(dir, dentry, mode, dev);
3147 if (error)
3148 return error;
3149
3150 error = dir->i_op->mknod(dir, dentry, mode, dev);
3151 if (!error)
3152 fsnotify_create(dir, dentry);
3153 return error;
3154 }
3155
3156 static int may_mknod(umode_t mode)
3157 {
3158 switch (mode & S_IFMT) {
3159 case S_IFREG:
3160 case S_IFCHR:
3161 case S_IFBLK:
3162 case S_IFIFO:
3163 case S_IFSOCK:
3164 case 0: /* zero mode translates to S_IFREG */
3165 return 0;
3166 case S_IFDIR:
3167 return -EPERM;
3168 default:
3169 return -EINVAL;
3170 }
3171 }
3172
3173 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3174 unsigned, dev)
3175 {
3176 struct dentry *dentry;
3177 struct path path;
3178 int error;
3179 unsigned int lookup_flags = 0;
3180
3181 error = may_mknod(mode);
3182 if (error)
3183 return error;
3184 retry:
3185 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3186 if (IS_ERR(dentry))
3187 return PTR_ERR(dentry);
3188
3189 if (!IS_POSIXACL(path.dentry->d_inode))
3190 mode &= ~current_umask();
3191 error = security_path_mknod(&path, dentry, mode, dev);
3192 if (error)
3193 goto out;
3194 switch (mode & S_IFMT) {
3195 case 0: case S_IFREG:
3196 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3197 break;
3198 case S_IFCHR: case S_IFBLK:
3199 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3200 new_decode_dev(dev));
3201 break;
3202 case S_IFIFO: case S_IFSOCK:
3203 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3204 break;
3205 }
3206 out:
3207 done_path_create(&path, dentry);
3208 if (retry_estale(error, lookup_flags)) {
3209 lookup_flags |= LOOKUP_REVAL;
3210 goto retry;
3211 }
3212 return error;
3213 }
3214
3215 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3216 {
3217 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3218 }
3219
3220 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3221 {
3222 int error = may_create(dir, dentry);
3223 unsigned max_links = dir->i_sb->s_max_links;
3224
3225 if (error)
3226 return error;
3227
3228 if (!dir->i_op->mkdir)
3229 return -EPERM;
3230
3231 mode &= (S_IRWXUGO|S_ISVTX);
3232 error = security_inode_mkdir(dir, dentry, mode);
3233 if (error)
3234 return error;
3235
3236 if (max_links && dir->i_nlink >= max_links)
3237 return -EMLINK;
3238
3239 error = dir->i_op->mkdir(dir, dentry, mode);
3240 if (!error)
3241 fsnotify_mkdir(dir, dentry);
3242 return error;
3243 }
3244
3245 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3246 {
3247 struct dentry *dentry;
3248 struct path path;
3249 int error;
3250 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3251
3252 retry:
3253 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3254 if (IS_ERR(dentry))
3255 return PTR_ERR(dentry);
3256
3257 if (!IS_POSIXACL(path.dentry->d_inode))
3258 mode &= ~current_umask();
3259 error = security_path_mkdir(&path, dentry, mode);
3260 if (!error)
3261 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3262 done_path_create(&path, dentry);
3263 if (retry_estale(error, lookup_flags)) {
3264 lookup_flags |= LOOKUP_REVAL;
3265 goto retry;
3266 }
3267 return error;
3268 }
3269
3270 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3271 {
3272 return sys_mkdirat(AT_FDCWD, pathname, mode);
3273 }
3274
3275 /*
3276 * The dentry_unhash() helper will try to drop the dentry early: we
3277 * should have a usage count of 1 if we're the only user of this
3278 * dentry, and if that is true (possibly after pruning the dcache),
3279 * then we drop the dentry now.
3280 *
3281 * A low-level filesystem can, if it choses, legally
3282 * do a
3283 *
3284 * if (!d_unhashed(dentry))
3285 * return -EBUSY;
3286 *
3287 * if it cannot handle the case of removing a directory
3288 * that is still in use by something else..
3289 */
3290 void dentry_unhash(struct dentry *dentry)
3291 {
3292 shrink_dcache_parent(dentry);
3293 spin_lock(&dentry->d_lock);
3294 if (dentry->d_count == 1)
3295 __d_drop(dentry);
3296 spin_unlock(&dentry->d_lock);
3297 }
3298
3299 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3300 {
3301 int error = may_delete(dir, dentry, 1);
3302
3303 if (error)
3304 return error;
3305
3306 if (!dir->i_op->rmdir)
3307 return -EPERM;
3308
3309 dget(dentry);
3310 mutex_lock(&dentry->d_inode->i_mutex);
3311
3312 error = -EBUSY;
3313 if (d_mountpoint(dentry))
3314 goto out;
3315
3316 error = security_inode_rmdir(dir, dentry);
3317 if (error)
3318 goto out;
3319
3320 shrink_dcache_parent(dentry);
3321 error = dir->i_op->rmdir(dir, dentry);
3322 if (error)
3323 goto out;
3324
3325 dentry->d_inode->i_flags |= S_DEAD;
3326 dont_mount(dentry);
3327
3328 out:
3329 mutex_unlock(&dentry->d_inode->i_mutex);
3330 dput(dentry);
3331 if (!error)
3332 d_delete(dentry);
3333 return error;
3334 }
3335
3336 static long do_rmdir(int dfd, const char __user *pathname)
3337 {
3338 int error = 0;
3339 struct filename *name;
3340 struct dentry *dentry;
3341 struct nameidata nd;
3342 unsigned int lookup_flags = 0;
3343 retry:
3344 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3345 if (IS_ERR(name))
3346 return PTR_ERR(name);
3347
3348 switch(nd.last_type) {
3349 case LAST_DOTDOT:
3350 error = -ENOTEMPTY;
3351 goto exit1;
3352 case LAST_DOT:
3353 error = -EINVAL;
3354 goto exit1;
3355 case LAST_ROOT:
3356 error = -EBUSY;
3357 goto exit1;
3358 }
3359
3360 nd.flags &= ~LOOKUP_PARENT;
3361 error = mnt_want_write(nd.path.mnt);
3362 if (error)
3363 goto exit1;
3364
3365 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3366 dentry = lookup_hash(&nd);
3367 error = PTR_ERR(dentry);
3368 if (IS_ERR(dentry))
3369 goto exit2;
3370 if (!dentry->d_inode) {
3371 error = -ENOENT;
3372 goto exit3;
3373 }
3374 error = security_path_rmdir(&nd.path, dentry);
3375 if (error)
3376 goto exit3;
3377 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3378 exit3:
3379 dput(dentry);
3380 exit2:
3381 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3382 mnt_drop_write(nd.path.mnt);
3383 exit1:
3384 path_put(&nd.path);
3385 putname(name);
3386 if (retry_estale(error, lookup_flags)) {
3387 lookup_flags |= LOOKUP_REVAL;
3388 goto retry;
3389 }
3390 return error;
3391 }
3392
3393 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3394 {
3395 return do_rmdir(AT_FDCWD, pathname);
3396 }
3397
3398 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3399 {
3400 int error = may_delete(dir, dentry, 0);
3401
3402 if (error)
3403 return error;
3404
3405 if (!dir->i_op->unlink)
3406 return -EPERM;
3407
3408 mutex_lock(&dentry->d_inode->i_mutex);
3409 if (d_mountpoint(dentry))
3410 error = -EBUSY;
3411 else {
3412 error = security_inode_unlink(dir, dentry);
3413 if (!error) {
3414 error = dir->i_op->unlink(dir, dentry);
3415 if (!error)
3416 dont_mount(dentry);
3417 }
3418 }
3419 mutex_unlock(&dentry->d_inode->i_mutex);
3420
3421 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3422 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3423 fsnotify_link_count(dentry->d_inode);
3424 d_delete(dentry);
3425 }
3426
3427 return error;
3428 }
3429
3430 /*
3431 * Make sure that the actual truncation of the file will occur outside its
3432 * directory's i_mutex. Truncate can take a long time if there is a lot of
3433 * writeout happening, and we don't want to prevent access to the directory
3434 * while waiting on the I/O.
3435 */
3436 static long do_unlinkat(int dfd, const char __user *pathname)
3437 {
3438 int error;
3439 struct filename *name;
3440 struct dentry *dentry;
3441 struct nameidata nd;
3442 struct inode *inode = NULL;
3443 unsigned int lookup_flags = 0;
3444 retry:
3445 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3446 if (IS_ERR(name))
3447 return PTR_ERR(name);
3448
3449 error = -EISDIR;
3450 if (nd.last_type != LAST_NORM)
3451 goto exit1;
3452
3453 nd.flags &= ~LOOKUP_PARENT;
3454 error = mnt_want_write(nd.path.mnt);
3455 if (error)
3456 goto exit1;
3457
3458 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3459 dentry = lookup_hash(&nd);
3460 error = PTR_ERR(dentry);
3461 if (!IS_ERR(dentry)) {
3462 /* Why not before? Because we want correct error value */
3463 if (nd.last.name[nd.last.len])
3464 goto slashes;
3465 inode = dentry->d_inode;
3466 if (!inode)
3467 goto slashes;
3468 ihold(inode);
3469 error = security_path_unlink(&nd.path, dentry);
3470 if (error)
3471 goto exit2;
3472 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3473 exit2:
3474 dput(dentry);
3475 }
3476 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3477 if (inode)
3478 iput(inode); /* truncate the inode here */
3479 mnt_drop_write(nd.path.mnt);
3480 exit1:
3481 path_put(&nd.path);
3482 putname(name);
3483 if (retry_estale(error, lookup_flags)) {
3484 lookup_flags |= LOOKUP_REVAL;
3485 inode = NULL;
3486 goto retry;
3487 }
3488 return error;
3489
3490 slashes:
3491 error = !dentry->d_inode ? -ENOENT :
3492 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3493 goto exit2;
3494 }
3495
3496 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3497 {
3498 if ((flag & ~AT_REMOVEDIR) != 0)
3499 return -EINVAL;
3500
3501 if (flag & AT_REMOVEDIR)
3502 return do_rmdir(dfd, pathname);
3503
3504 return do_unlinkat(dfd, pathname);
3505 }
3506
3507 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3508 {
3509 return do_unlinkat(AT_FDCWD, pathname);
3510 }
3511
3512 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3513 {
3514 int error = may_create(dir, dentry);
3515
3516 if (error)
3517 return error;
3518
3519 if (!dir->i_op->symlink)
3520 return -EPERM;
3521
3522 error = security_inode_symlink(dir, dentry, oldname);
3523 if (error)
3524 return error;
3525
3526 error = dir->i_op->symlink(dir, dentry, oldname);
3527 if (!error)
3528 fsnotify_create(dir, dentry);
3529 return error;
3530 }
3531
3532 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3533 int, newdfd, const char __user *, newname)
3534 {
3535 int error;
3536 struct filename *from;
3537 struct dentry *dentry;
3538 struct path path;
3539 unsigned int lookup_flags = 0;
3540
3541 from = getname(oldname);
3542 if (IS_ERR(from))
3543 return PTR_ERR(from);
3544 retry:
3545 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3546 error = PTR_ERR(dentry);
3547 if (IS_ERR(dentry))
3548 goto out_putname;
3549
3550 error = security_path_symlink(&path, dentry, from->name);
3551 if (!error)
3552 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3553 done_path_create(&path, dentry);
3554 if (retry_estale(error, lookup_flags)) {
3555 lookup_flags |= LOOKUP_REVAL;
3556 goto retry;
3557 }
3558 out_putname:
3559 putname(from);
3560 return error;
3561 }
3562
3563 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3564 {
3565 return sys_symlinkat(oldname, AT_FDCWD, newname);
3566 }
3567
3568 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3569 {
3570 struct inode *inode = old_dentry->d_inode;
3571 unsigned max_links = dir->i_sb->s_max_links;
3572 int error;
3573
3574 if (!inode)
3575 return -ENOENT;
3576
3577 error = may_create(dir, new_dentry);
3578 if (error)
3579 return error;
3580
3581 if (dir->i_sb != inode->i_sb)
3582 return -EXDEV;
3583
3584 /*
3585 * A link to an append-only or immutable file cannot be created.
3586 */
3587 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3588 return -EPERM;
3589 if (!dir->i_op->link)
3590 return -EPERM;
3591 if (S_ISDIR(inode->i_mode))
3592 return -EPERM;
3593
3594 error = security_inode_link(old_dentry, dir, new_dentry);
3595 if (error)
3596 return error;
3597
3598 mutex_lock(&inode->i_mutex);
3599 /* Make sure we don't allow creating hardlink to an unlinked file */
3600 if (inode->i_nlink == 0)
3601 error = -ENOENT;
3602 else if (max_links && inode->i_nlink >= max_links)
3603 error = -EMLINK;
3604 else
3605 error = dir->i_op->link(old_dentry, dir, new_dentry);
3606 mutex_unlock(&inode->i_mutex);
3607 if (!error)
3608 fsnotify_link(dir, inode, new_dentry);
3609 return error;
3610 }
3611
3612 /*
3613 * Hardlinks are often used in delicate situations. We avoid
3614 * security-related surprises by not following symlinks on the
3615 * newname. --KAB
3616 *
3617 * We don't follow them on the oldname either to be compatible
3618 * with linux 2.0, and to avoid hard-linking to directories
3619 * and other special files. --ADM
3620 */
3621 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3622 int, newdfd, const char __user *, newname, int, flags)
3623 {
3624 struct dentry *new_dentry;
3625 struct path old_path, new_path;
3626 int how = 0;
3627 int error;
3628
3629 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3630 return -EINVAL;
3631 /*
3632 * To use null names we require CAP_DAC_READ_SEARCH
3633 * This ensures that not everyone will be able to create
3634 * handlink using the passed filedescriptor.
3635 */
3636 if (flags & AT_EMPTY_PATH) {
3637 if (!capable(CAP_DAC_READ_SEARCH))
3638 return -ENOENT;
3639 how = LOOKUP_EMPTY;
3640 }
3641
3642 if (flags & AT_SYMLINK_FOLLOW)
3643 how |= LOOKUP_FOLLOW;
3644 retry:
3645 error = user_path_at(olddfd, oldname, how, &old_path);
3646 if (error)
3647 return error;
3648
3649 new_dentry = user_path_create(newdfd, newname, &new_path,
3650 (how & LOOKUP_REVAL));
3651 error = PTR_ERR(new_dentry);
3652 if (IS_ERR(new_dentry))
3653 goto out;
3654
3655 error = -EXDEV;
3656 if (old_path.mnt != new_path.mnt)
3657 goto out_dput;
3658 error = may_linkat(&old_path);
3659 if (unlikely(error))
3660 goto out_dput;
3661 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3662 if (error)
3663 goto out_dput;
3664 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3665 out_dput:
3666 done_path_create(&new_path, new_dentry);
3667 if (retry_estale(error, how)) {
3668 how |= LOOKUP_REVAL;
3669 goto retry;
3670 }
3671 out:
3672 path_put(&old_path);
3673
3674 return error;
3675 }
3676
3677 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3678 {
3679 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3680 }
3681
3682 /*
3683 * The worst of all namespace operations - renaming directory. "Perverted"
3684 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3685 * Problems:
3686 * a) we can get into loop creation. Check is done in is_subdir().
3687 * b) race potential - two innocent renames can create a loop together.
3688 * That's where 4.4 screws up. Current fix: serialization on
3689 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3690 * story.
3691 * c) we have to lock _three_ objects - parents and victim (if it exists).
3692 * And that - after we got ->i_mutex on parents (until then we don't know
3693 * whether the target exists). Solution: try to be smart with locking
3694 * order for inodes. We rely on the fact that tree topology may change
3695 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3696 * move will be locked. Thus we can rank directories by the tree
3697 * (ancestors first) and rank all non-directories after them.
3698 * That works since everybody except rename does "lock parent, lookup,
3699 * lock child" and rename is under ->s_vfs_rename_mutex.
3700 * HOWEVER, it relies on the assumption that any object with ->lookup()
3701 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3702 * we'd better make sure that there's no link(2) for them.
3703 * d) conversion from fhandle to dentry may come in the wrong moment - when
3704 * we are removing the target. Solution: we will have to grab ->i_mutex
3705 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3706 * ->i_mutex on parents, which works but leads to some truly excessive
3707 * locking].
3708 */
3709 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3710 struct inode *new_dir, struct dentry *new_dentry)
3711 {
3712 int error = 0;
3713 struct inode *target = new_dentry->d_inode;
3714 unsigned max_links = new_dir->i_sb->s_max_links;
3715
3716 /*
3717 * If we are going to change the parent - check write permissions,
3718 * we'll need to flip '..'.
3719 */
3720 if (new_dir != old_dir) {
3721 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3722 if (error)
3723 return error;
3724 }
3725
3726 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3727 if (error)
3728 return error;
3729
3730 dget(new_dentry);
3731 if (target)
3732 mutex_lock(&target->i_mutex);
3733
3734 error = -EBUSY;
3735 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3736 goto out;
3737
3738 error = -EMLINK;
3739 if (max_links && !target && new_dir != old_dir &&
3740 new_dir->i_nlink >= max_links)
3741 goto out;
3742
3743 if (target)
3744 shrink_dcache_parent(new_dentry);
3745 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3746 if (error)
3747 goto out;
3748
3749 if (target) {
3750 target->i_flags |= S_DEAD;
3751 dont_mount(new_dentry);
3752 }
3753 out:
3754 if (target)
3755 mutex_unlock(&target->i_mutex);
3756 dput(new_dentry);
3757 if (!error)
3758 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3759 d_move(old_dentry,new_dentry);
3760 return error;
3761 }
3762
3763 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3764 struct inode *new_dir, struct dentry *new_dentry)
3765 {
3766 struct inode *target = new_dentry->d_inode;
3767 int error;
3768
3769 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3770 if (error)
3771 return error;
3772
3773 dget(new_dentry);
3774 if (target)
3775 mutex_lock(&target->i_mutex);
3776
3777 error = -EBUSY;
3778 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3779 goto out;
3780
3781 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3782 if (error)
3783 goto out;
3784
3785 if (target)
3786 dont_mount(new_dentry);
3787 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3788 d_move(old_dentry, new_dentry);
3789 out:
3790 if (target)
3791 mutex_unlock(&target->i_mutex);
3792 dput(new_dentry);
3793 return error;
3794 }
3795
3796 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3797 struct inode *new_dir, struct dentry *new_dentry)
3798 {
3799 int error;
3800 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3801 const unsigned char *old_name;
3802
3803 if (old_dentry->d_inode == new_dentry->d_inode)
3804 return 0;
3805
3806 error = may_delete(old_dir, old_dentry, is_dir);
3807 if (error)
3808 return error;
3809
3810 if (!new_dentry->d_inode)
3811 error = may_create(new_dir, new_dentry);
3812 else
3813 error = may_delete(new_dir, new_dentry, is_dir);
3814 if (error)
3815 return error;
3816
3817 if (!old_dir->i_op->rename)
3818 return -EPERM;
3819
3820 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3821
3822 if (is_dir)
3823 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3824 else
3825 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3826 if (!error)
3827 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3828 new_dentry->d_inode, old_dentry);
3829 fsnotify_oldname_free(old_name);
3830
3831 return error;
3832 }
3833
3834 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3835 int, newdfd, const char __user *, newname)
3836 {
3837 struct dentry *old_dir, *new_dir;
3838 struct dentry *old_dentry, *new_dentry;
3839 struct dentry *trap;
3840 struct nameidata oldnd, newnd;
3841 struct filename *from;
3842 struct filename *to;
3843 unsigned int lookup_flags = 0;
3844 bool should_retry = false;
3845 int error;
3846 retry:
3847 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
3848 if (IS_ERR(from)) {
3849 error = PTR_ERR(from);
3850 goto exit;
3851 }
3852
3853 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
3854 if (IS_ERR(to)) {
3855 error = PTR_ERR(to);
3856 goto exit1;
3857 }
3858
3859 error = -EXDEV;
3860 if (oldnd.path.mnt != newnd.path.mnt)
3861 goto exit2;
3862
3863 old_dir = oldnd.path.dentry;
3864 error = -EBUSY;
3865 if (oldnd.last_type != LAST_NORM)
3866 goto exit2;
3867
3868 new_dir = newnd.path.dentry;
3869 if (newnd.last_type != LAST_NORM)
3870 goto exit2;
3871
3872 error = mnt_want_write(oldnd.path.mnt);
3873 if (error)
3874 goto exit2;
3875
3876 oldnd.flags &= ~LOOKUP_PARENT;
3877 newnd.flags &= ~LOOKUP_PARENT;
3878 newnd.flags |= LOOKUP_RENAME_TARGET;
3879
3880 trap = lock_rename(new_dir, old_dir);
3881
3882 old_dentry = lookup_hash(&oldnd);
3883 error = PTR_ERR(old_dentry);
3884 if (IS_ERR(old_dentry))
3885 goto exit3;
3886 /* source must exist */
3887 error = -ENOENT;
3888 if (!old_dentry->d_inode)
3889 goto exit4;
3890 /* unless the source is a directory trailing slashes give -ENOTDIR */
3891 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3892 error = -ENOTDIR;
3893 if (oldnd.last.name[oldnd.last.len])
3894 goto exit4;
3895 if (newnd.last.name[newnd.last.len])
3896 goto exit4;
3897 }
3898 /* source should not be ancestor of target */
3899 error = -EINVAL;
3900 if (old_dentry == trap)
3901 goto exit4;
3902 new_dentry = lookup_hash(&newnd);
3903 error = PTR_ERR(new_dentry);
3904 if (IS_ERR(new_dentry))
3905 goto exit4;
3906 /* target should not be an ancestor of source */
3907 error = -ENOTEMPTY;
3908 if (new_dentry == trap)
3909 goto exit5;
3910
3911 error = security_path_rename(&oldnd.path, old_dentry,
3912 &newnd.path, new_dentry);
3913 if (error)
3914 goto exit5;
3915 error = vfs_rename(old_dir->d_inode, old_dentry,
3916 new_dir->d_inode, new_dentry);
3917 exit5:
3918 dput(new_dentry);
3919 exit4:
3920 dput(old_dentry);
3921 exit3:
3922 unlock_rename(new_dir, old_dir);
3923 mnt_drop_write(oldnd.path.mnt);
3924 exit2:
3925 if (retry_estale(error, lookup_flags))
3926 should_retry = true;
3927 path_put(&newnd.path);
3928 putname(to);
3929 exit1:
3930 path_put(&oldnd.path);
3931 putname(from);
3932 if (should_retry) {
3933 should_retry = false;
3934 lookup_flags |= LOOKUP_REVAL;
3935 goto retry;
3936 }
3937 exit:
3938 return error;
3939 }
3940
3941 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3942 {
3943 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3944 }
3945
3946 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3947 {
3948 int len;
3949
3950 len = PTR_ERR(link);
3951 if (IS_ERR(link))
3952 goto out;
3953
3954 len = strlen(link);
3955 if (len > (unsigned) buflen)
3956 len = buflen;
3957 if (copy_to_user(buffer, link, len))
3958 len = -EFAULT;
3959 out:
3960 return len;
3961 }
3962
3963 /*
3964 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3965 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3966 * using) it for any given inode is up to filesystem.
3967 */
3968 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3969 {
3970 struct nameidata nd;
3971 void *cookie;
3972 int res;
3973
3974 nd.depth = 0;
3975 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3976 if (IS_ERR(cookie))
3977 return PTR_ERR(cookie);
3978
3979 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3980 if (dentry->d_inode->i_op->put_link)
3981 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3982 return res;
3983 }
3984
3985 int vfs_follow_link(struct nameidata *nd, const char *link)
3986 {
3987 return __vfs_follow_link(nd, link);
3988 }
3989
3990 /* get the link contents into pagecache */
3991 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3992 {
3993 char *kaddr;
3994 struct page *page;
3995 struct address_space *mapping = dentry->d_inode->i_mapping;
3996 page = read_mapping_page(mapping, 0, NULL);
3997 if (IS_ERR(page))
3998 return (char*)page;
3999 *ppage = page;
4000 kaddr = kmap(page);
4001 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4002 return kaddr;
4003 }
4004
4005 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4006 {
4007 struct page *page = NULL;
4008 char *s = page_getlink(dentry, &page);
4009 int res = vfs_readlink(dentry,buffer,buflen,s);
4010 if (page) {
4011 kunmap(page);
4012 page_cache_release(page);
4013 }
4014 return res;
4015 }
4016
4017 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4018 {
4019 struct page *page = NULL;
4020 nd_set_link(nd, page_getlink(dentry, &page));
4021 return page;
4022 }
4023
4024 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4025 {
4026 struct page *page = cookie;
4027
4028 if (page) {
4029 kunmap(page);
4030 page_cache_release(page);
4031 }
4032 }
4033
4034 /*
4035 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4036 */
4037 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4038 {
4039 struct address_space *mapping = inode->i_mapping;
4040 struct page *page;
4041 void *fsdata;
4042 int err;
4043 char *kaddr;
4044 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4045 if (nofs)
4046 flags |= AOP_FLAG_NOFS;
4047
4048 retry:
4049 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4050 flags, &page, &fsdata);
4051 if (err)
4052 goto fail;
4053
4054 kaddr = kmap_atomic(page);
4055 memcpy(kaddr, symname, len-1);
4056 kunmap_atomic(kaddr);
4057
4058 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4059 page, fsdata);
4060 if (err < 0)
4061 goto fail;
4062 if (err < len-1)
4063 goto retry;
4064
4065 mark_inode_dirty(inode);
4066 return 0;
4067 fail:
4068 return err;
4069 }
4070
4071 int page_symlink(struct inode *inode, const char *symname, int len)
4072 {
4073 return __page_symlink(inode, symname, len,
4074 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4075 }
4076
4077 const struct inode_operations page_symlink_inode_operations = {
4078 .readlink = generic_readlink,
4079 .follow_link = page_follow_link_light,
4080 .put_link = page_put_link,
4081 };
4082
4083 EXPORT_SYMBOL(user_path_at);
4084 EXPORT_SYMBOL(follow_down_one);
4085 EXPORT_SYMBOL(follow_down);
4086 EXPORT_SYMBOL(follow_up);
4087 EXPORT_SYMBOL(get_write_access); /* nfsd */
4088 EXPORT_SYMBOL(lock_rename);
4089 EXPORT_SYMBOL(lookup_one_len);
4090 EXPORT_SYMBOL(page_follow_link_light);
4091 EXPORT_SYMBOL(page_put_link);
4092 EXPORT_SYMBOL(page_readlink);
4093 EXPORT_SYMBOL(__page_symlink);
4094 EXPORT_SYMBOL(page_symlink);
4095 EXPORT_SYMBOL(page_symlink_inode_operations);
4096 EXPORT_SYMBOL(kern_path);
4097 EXPORT_SYMBOL(vfs_path_lookup);
4098 EXPORT_SYMBOL(inode_permission);
4099 EXPORT_SYMBOL(unlock_rename);
4100 EXPORT_SYMBOL(vfs_create);
4101 EXPORT_SYMBOL(vfs_follow_link);
4102 EXPORT_SYMBOL(vfs_link);
4103 EXPORT_SYMBOL(vfs_mkdir);
4104 EXPORT_SYMBOL(vfs_mknod);
4105 EXPORT_SYMBOL(generic_permission);
4106 EXPORT_SYMBOL(vfs_readlink);
4107 EXPORT_SYMBOL(vfs_rename);
4108 EXPORT_SYMBOL(vfs_rmdir);
4109 EXPORT_SYMBOL(vfs_symlink);
4110 EXPORT_SYMBOL(vfs_unlink);
4111 EXPORT_SYMBOL(dentry_unhash);
4112 EXPORT_SYMBOL(generic_readlink);