Merge branch 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 char * getname(const char __user * filename)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 /*
170 * This does basic POSIX ACL permission checking
171 */
172 static int acl_permission_check(struct inode *inode, int mask,
173 int (*check_acl)(struct inode *inode, int mask))
174 {
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198 }
199
200 /**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 *
206 * Used to check for read/write/execute permissions on a file.
207 * We use "fsuid" for this, letting us set arbitrary permissions
208 * for filesystem access without changing the "normal" uids which
209 * are used for other things..
210 */
211 int generic_permission(struct inode *inode, int mask,
212 int (*check_acl)(struct inode *inode, int mask))
213 {
214 int ret;
215
216 /*
217 * Do the basic POSIX ACL permission checks.
218 */
219 ret = acl_permission_check(inode, mask, check_acl);
220 if (ret != -EACCES)
221 return ret;
222
223 /*
224 * Read/write DACs are always overridable.
225 * Executable DACs are overridable if at least one exec bit is set.
226 */
227 if (!(mask & MAY_EXEC) || execute_ok(inode))
228 if (capable(CAP_DAC_OVERRIDE))
229 return 0;
230
231 /*
232 * Searching includes executable on directories, else just read.
233 */
234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 if (capable(CAP_DAC_READ_SEARCH))
237 return 0;
238
239 return -EACCES;
240 }
241
242 /**
243 * inode_permission - check for access rights to a given inode
244 * @inode: inode to check permission on
245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246 *
247 * Used to check for read/write/execute permissions on an inode.
248 * We use "fsuid" for this, letting us set arbitrary permissions
249 * for filesystem access without changing the "normal" uids which
250 * are used for other things.
251 */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 int retval;
255
256 if (mask & MAY_WRITE) {
257 umode_t mode = inode->i_mode;
258
259 /*
260 * Nobody gets write access to a read-only fs.
261 */
262 if (IS_RDONLY(inode) &&
263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 return -EROFS;
265
266 /*
267 * Nobody gets write access to an immutable file.
268 */
269 if (IS_IMMUTABLE(inode))
270 return -EACCES;
271 }
272
273 if (inode->i_op->permission)
274 retval = inode->i_op->permission(inode, mask);
275 else
276 retval = generic_permission(inode, mask, inode->i_op->check_acl);
277
278 if (retval)
279 return retval;
280
281 retval = devcgroup_inode_permission(inode, mask);
282 if (retval)
283 return retval;
284
285 return security_inode_permission(inode, mask);
286 }
287
288 /**
289 * file_permission - check for additional access rights to a given file
290 * @file: file to check access rights for
291 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
292 *
293 * Used to check for read/write/execute permissions on an already opened
294 * file.
295 *
296 * Note:
297 * Do not use this function in new code. All access checks should
298 * be done using inode_permission().
299 */
300 int file_permission(struct file *file, int mask)
301 {
302 return inode_permission(file->f_path.dentry->d_inode, mask);
303 }
304
305 /*
306 * get_write_access() gets write permission for a file.
307 * put_write_access() releases this write permission.
308 * This is used for regular files.
309 * We cannot support write (and maybe mmap read-write shared) accesses and
310 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
311 * can have the following values:
312 * 0: no writers, no VM_DENYWRITE mappings
313 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
314 * > 0: (i_writecount) users are writing to the file.
315 *
316 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
317 * except for the cases where we don't hold i_writecount yet. Then we need to
318 * use {get,deny}_write_access() - these functions check the sign and refuse
319 * to do the change if sign is wrong. Exclusion between them is provided by
320 * the inode->i_lock spinlock.
321 */
322
323 int get_write_access(struct inode * inode)
324 {
325 spin_lock(&inode->i_lock);
326 if (atomic_read(&inode->i_writecount) < 0) {
327 spin_unlock(&inode->i_lock);
328 return -ETXTBSY;
329 }
330 atomic_inc(&inode->i_writecount);
331 spin_unlock(&inode->i_lock);
332
333 return 0;
334 }
335
336 int deny_write_access(struct file * file)
337 {
338 struct inode *inode = file->f_path.dentry->d_inode;
339
340 spin_lock(&inode->i_lock);
341 if (atomic_read(&inode->i_writecount) > 0) {
342 spin_unlock(&inode->i_lock);
343 return -ETXTBSY;
344 }
345 atomic_dec(&inode->i_writecount);
346 spin_unlock(&inode->i_lock);
347
348 return 0;
349 }
350
351 /**
352 * path_get - get a reference to a path
353 * @path: path to get the reference to
354 *
355 * Given a path increment the reference count to the dentry and the vfsmount.
356 */
357 void path_get(struct path *path)
358 {
359 mntget(path->mnt);
360 dget(path->dentry);
361 }
362 EXPORT_SYMBOL(path_get);
363
364 /**
365 * path_put - put a reference to a path
366 * @path: path to put the reference to
367 *
368 * Given a path decrement the reference count to the dentry and the vfsmount.
369 */
370 void path_put(struct path *path)
371 {
372 dput(path->dentry);
373 mntput(path->mnt);
374 }
375 EXPORT_SYMBOL(path_put);
376
377 /**
378 * release_open_intent - free up open intent resources
379 * @nd: pointer to nameidata
380 */
381 void release_open_intent(struct nameidata *nd)
382 {
383 if (nd->intent.open.file->f_path.dentry == NULL)
384 put_filp(nd->intent.open.file);
385 else
386 fput(nd->intent.open.file);
387 }
388
389 static inline struct dentry *
390 do_revalidate(struct dentry *dentry, struct nameidata *nd)
391 {
392 int status = dentry->d_op->d_revalidate(dentry, nd);
393 if (unlikely(status <= 0)) {
394 /*
395 * The dentry failed validation.
396 * If d_revalidate returned 0 attempt to invalidate
397 * the dentry otherwise d_revalidate is asking us
398 * to return a fail status.
399 */
400 if (!status) {
401 if (!d_invalidate(dentry)) {
402 dput(dentry);
403 dentry = NULL;
404 }
405 } else {
406 dput(dentry);
407 dentry = ERR_PTR(status);
408 }
409 }
410 return dentry;
411 }
412
413 /*
414 * force_reval_path - force revalidation of a dentry
415 *
416 * In some situations the path walking code will trust dentries without
417 * revalidating them. This causes problems for filesystems that depend on
418 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
419 * (which indicates that it's possible for the dentry to go stale), force
420 * a d_revalidate call before proceeding.
421 *
422 * Returns 0 if the revalidation was successful. If the revalidation fails,
423 * either return the error returned by d_revalidate or -ESTALE if the
424 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
425 * invalidate the dentry. It's up to the caller to handle putting references
426 * to the path if necessary.
427 */
428 static int
429 force_reval_path(struct path *path, struct nameidata *nd)
430 {
431 int status;
432 struct dentry *dentry = path->dentry;
433
434 /*
435 * only check on filesystems where it's possible for the dentry to
436 * become stale. It's assumed that if this flag is set then the
437 * d_revalidate op will also be defined.
438 */
439 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
440 return 0;
441
442 status = dentry->d_op->d_revalidate(dentry, nd);
443 if (status > 0)
444 return 0;
445
446 if (!status) {
447 d_invalidate(dentry);
448 status = -ESTALE;
449 }
450 return status;
451 }
452
453 /*
454 * Short-cut version of permission(), for calling on directories
455 * during pathname resolution. Combines parts of permission()
456 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
457 *
458 * If appropriate, check DAC only. If not appropriate, or
459 * short-cut DAC fails, then call ->permission() to do more
460 * complete permission check.
461 */
462 static int exec_permission(struct inode *inode)
463 {
464 int ret;
465
466 if (inode->i_op->permission) {
467 ret = inode->i_op->permission(inode, MAY_EXEC);
468 if (!ret)
469 goto ok;
470 return ret;
471 }
472 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
473 if (!ret)
474 goto ok;
475
476 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
477 goto ok;
478
479 return ret;
480 ok:
481 return security_inode_permission(inode, MAY_EXEC);
482 }
483
484 static __always_inline void set_root(struct nameidata *nd)
485 {
486 if (!nd->root.mnt) {
487 struct fs_struct *fs = current->fs;
488 read_lock(&fs->lock);
489 nd->root = fs->root;
490 path_get(&nd->root);
491 read_unlock(&fs->lock);
492 }
493 }
494
495 static int link_path_walk(const char *, struct nameidata *);
496
497 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
498 {
499 if (IS_ERR(link))
500 goto fail;
501
502 if (*link == '/') {
503 set_root(nd);
504 path_put(&nd->path);
505 nd->path = nd->root;
506 path_get(&nd->root);
507 }
508
509 return link_path_walk(link, nd);
510 fail:
511 path_put(&nd->path);
512 return PTR_ERR(link);
513 }
514
515 static void path_put_conditional(struct path *path, struct nameidata *nd)
516 {
517 dput(path->dentry);
518 if (path->mnt != nd->path.mnt)
519 mntput(path->mnt);
520 }
521
522 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
523 {
524 dput(nd->path.dentry);
525 if (nd->path.mnt != path->mnt) {
526 mntput(nd->path.mnt);
527 nd->path.mnt = path->mnt;
528 }
529 nd->path.dentry = path->dentry;
530 }
531
532 static __always_inline int
533 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
534 {
535 int error;
536 struct dentry *dentry = path->dentry;
537
538 touch_atime(path->mnt, dentry);
539 nd_set_link(nd, NULL);
540
541 if (path->mnt != nd->path.mnt) {
542 path_to_nameidata(path, nd);
543 dget(dentry);
544 }
545 mntget(path->mnt);
546 nd->last_type = LAST_BIND;
547 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
548 error = PTR_ERR(*p);
549 if (!IS_ERR(*p)) {
550 char *s = nd_get_link(nd);
551 error = 0;
552 if (s)
553 error = __vfs_follow_link(nd, s);
554 else if (nd->last_type == LAST_BIND) {
555 error = force_reval_path(&nd->path, nd);
556 if (error)
557 path_put(&nd->path);
558 }
559 }
560 return error;
561 }
562
563 /*
564 * This limits recursive symlink follows to 8, while
565 * limiting consecutive symlinks to 40.
566 *
567 * Without that kind of total limit, nasty chains of consecutive
568 * symlinks can cause almost arbitrarily long lookups.
569 */
570 static inline int do_follow_link(struct path *path, struct nameidata *nd)
571 {
572 void *cookie;
573 int err = -ELOOP;
574 if (current->link_count >= MAX_NESTED_LINKS)
575 goto loop;
576 if (current->total_link_count >= 40)
577 goto loop;
578 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
579 cond_resched();
580 err = security_inode_follow_link(path->dentry, nd);
581 if (err)
582 goto loop;
583 current->link_count++;
584 current->total_link_count++;
585 nd->depth++;
586 err = __do_follow_link(path, nd, &cookie);
587 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
588 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
589 path_put(path);
590 current->link_count--;
591 nd->depth--;
592 return err;
593 loop:
594 path_put_conditional(path, nd);
595 path_put(&nd->path);
596 return err;
597 }
598
599 int follow_up(struct path *path)
600 {
601 struct vfsmount *parent;
602 struct dentry *mountpoint;
603 spin_lock(&vfsmount_lock);
604 parent = path->mnt->mnt_parent;
605 if (parent == path->mnt) {
606 spin_unlock(&vfsmount_lock);
607 return 0;
608 }
609 mntget(parent);
610 mountpoint = dget(path->mnt->mnt_mountpoint);
611 spin_unlock(&vfsmount_lock);
612 dput(path->dentry);
613 path->dentry = mountpoint;
614 mntput(path->mnt);
615 path->mnt = parent;
616 return 1;
617 }
618
619 /* no need for dcache_lock, as serialization is taken care in
620 * namespace.c
621 */
622 static int __follow_mount(struct path *path)
623 {
624 int res = 0;
625 while (d_mountpoint(path->dentry)) {
626 struct vfsmount *mounted = lookup_mnt(path);
627 if (!mounted)
628 break;
629 dput(path->dentry);
630 if (res)
631 mntput(path->mnt);
632 path->mnt = mounted;
633 path->dentry = dget(mounted->mnt_root);
634 res = 1;
635 }
636 return res;
637 }
638
639 static void follow_mount(struct path *path)
640 {
641 while (d_mountpoint(path->dentry)) {
642 struct vfsmount *mounted = lookup_mnt(path);
643 if (!mounted)
644 break;
645 dput(path->dentry);
646 mntput(path->mnt);
647 path->mnt = mounted;
648 path->dentry = dget(mounted->mnt_root);
649 }
650 }
651
652 /* no need for dcache_lock, as serialization is taken care in
653 * namespace.c
654 */
655 int follow_down(struct path *path)
656 {
657 struct vfsmount *mounted;
658
659 mounted = lookup_mnt(path);
660 if (mounted) {
661 dput(path->dentry);
662 mntput(path->mnt);
663 path->mnt = mounted;
664 path->dentry = dget(mounted->mnt_root);
665 return 1;
666 }
667 return 0;
668 }
669
670 static __always_inline void follow_dotdot(struct nameidata *nd)
671 {
672 set_root(nd);
673
674 while(1) {
675 struct dentry *old = nd->path.dentry;
676
677 if (nd->path.dentry == nd->root.dentry &&
678 nd->path.mnt == nd->root.mnt) {
679 break;
680 }
681 if (nd->path.dentry != nd->path.mnt->mnt_root) {
682 /* rare case of legitimate dget_parent()... */
683 nd->path.dentry = dget_parent(nd->path.dentry);
684 dput(old);
685 break;
686 }
687 if (!follow_up(&nd->path))
688 break;
689 }
690 follow_mount(&nd->path);
691 }
692
693 /*
694 * It's more convoluted than I'd like it to be, but... it's still fairly
695 * small and for now I'd prefer to have fast path as straight as possible.
696 * It _is_ time-critical.
697 */
698 static int do_lookup(struct nameidata *nd, struct qstr *name,
699 struct path *path)
700 {
701 struct vfsmount *mnt = nd->path.mnt;
702 struct dentry *dentry, *parent;
703 struct inode *dir;
704 /*
705 * See if the low-level filesystem might want
706 * to use its own hash..
707 */
708 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
709 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
710 if (err < 0)
711 return err;
712 }
713
714 dentry = __d_lookup(nd->path.dentry, name);
715 if (!dentry)
716 goto need_lookup;
717 if (dentry->d_op && dentry->d_op->d_revalidate)
718 goto need_revalidate;
719 done:
720 path->mnt = mnt;
721 path->dentry = dentry;
722 __follow_mount(path);
723 return 0;
724
725 need_lookup:
726 parent = nd->path.dentry;
727 dir = parent->d_inode;
728
729 mutex_lock(&dir->i_mutex);
730 /*
731 * First re-do the cached lookup just in case it was created
732 * while we waited for the directory semaphore..
733 *
734 * FIXME! This could use version numbering or similar to
735 * avoid unnecessary cache lookups.
736 *
737 * The "dcache_lock" is purely to protect the RCU list walker
738 * from concurrent renames at this point (we mustn't get false
739 * negatives from the RCU list walk here, unlike the optimistic
740 * fast walk).
741 *
742 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
743 */
744 dentry = d_lookup(parent, name);
745 if (!dentry) {
746 struct dentry *new;
747
748 /* Don't create child dentry for a dead directory. */
749 dentry = ERR_PTR(-ENOENT);
750 if (IS_DEADDIR(dir))
751 goto out_unlock;
752
753 new = d_alloc(parent, name);
754 dentry = ERR_PTR(-ENOMEM);
755 if (new) {
756 dentry = dir->i_op->lookup(dir, new, nd);
757 if (dentry)
758 dput(new);
759 else
760 dentry = new;
761 }
762 out_unlock:
763 mutex_unlock(&dir->i_mutex);
764 if (IS_ERR(dentry))
765 goto fail;
766 goto done;
767 }
768
769 /*
770 * Uhhuh! Nasty case: the cache was re-populated while
771 * we waited on the semaphore. Need to revalidate.
772 */
773 mutex_unlock(&dir->i_mutex);
774 if (dentry->d_op && dentry->d_op->d_revalidate) {
775 dentry = do_revalidate(dentry, nd);
776 if (!dentry)
777 dentry = ERR_PTR(-ENOENT);
778 }
779 if (IS_ERR(dentry))
780 goto fail;
781 goto done;
782
783 need_revalidate:
784 dentry = do_revalidate(dentry, nd);
785 if (!dentry)
786 goto need_lookup;
787 if (IS_ERR(dentry))
788 goto fail;
789 goto done;
790
791 fail:
792 return PTR_ERR(dentry);
793 }
794
795 /*
796 * This is a temporary kludge to deal with "automount" symlinks; proper
797 * solution is to trigger them on follow_mount(), so that do_lookup()
798 * would DTRT. To be killed before 2.6.34-final.
799 */
800 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
801 {
802 return inode && unlikely(inode->i_op->follow_link) &&
803 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
804 }
805
806 /*
807 * Name resolution.
808 * This is the basic name resolution function, turning a pathname into
809 * the final dentry. We expect 'base' to be positive and a directory.
810 *
811 * Returns 0 and nd will have valid dentry and mnt on success.
812 * Returns error and drops reference to input namei data on failure.
813 */
814 static int link_path_walk(const char *name, struct nameidata *nd)
815 {
816 struct path next;
817 struct inode *inode;
818 int err;
819 unsigned int lookup_flags = nd->flags;
820
821 while (*name=='/')
822 name++;
823 if (!*name)
824 goto return_reval;
825
826 inode = nd->path.dentry->d_inode;
827 if (nd->depth)
828 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
829
830 /* At this point we know we have a real path component. */
831 for(;;) {
832 unsigned long hash;
833 struct qstr this;
834 unsigned int c;
835
836 nd->flags |= LOOKUP_CONTINUE;
837 err = exec_permission(inode);
838 if (err)
839 break;
840
841 this.name = name;
842 c = *(const unsigned char *)name;
843
844 hash = init_name_hash();
845 do {
846 name++;
847 hash = partial_name_hash(c, hash);
848 c = *(const unsigned char *)name;
849 } while (c && (c != '/'));
850 this.len = name - (const char *) this.name;
851 this.hash = end_name_hash(hash);
852
853 /* remove trailing slashes? */
854 if (!c)
855 goto last_component;
856 while (*++name == '/');
857 if (!*name)
858 goto last_with_slashes;
859
860 /*
861 * "." and ".." are special - ".." especially so because it has
862 * to be able to know about the current root directory and
863 * parent relationships.
864 */
865 if (this.name[0] == '.') switch (this.len) {
866 default:
867 break;
868 case 2:
869 if (this.name[1] != '.')
870 break;
871 follow_dotdot(nd);
872 inode = nd->path.dentry->d_inode;
873 /* fallthrough */
874 case 1:
875 continue;
876 }
877 /* This does the actual lookups.. */
878 err = do_lookup(nd, &this, &next);
879 if (err)
880 break;
881
882 err = -ENOENT;
883 inode = next.dentry->d_inode;
884 if (!inode)
885 goto out_dput;
886
887 if (inode->i_op->follow_link) {
888 err = do_follow_link(&next, nd);
889 if (err)
890 goto return_err;
891 err = -ENOENT;
892 inode = nd->path.dentry->d_inode;
893 if (!inode)
894 break;
895 } else
896 path_to_nameidata(&next, nd);
897 err = -ENOTDIR;
898 if (!inode->i_op->lookup)
899 break;
900 continue;
901 /* here ends the main loop */
902
903 last_with_slashes:
904 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
905 last_component:
906 /* Clear LOOKUP_CONTINUE iff it was previously unset */
907 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
908 if (lookup_flags & LOOKUP_PARENT)
909 goto lookup_parent;
910 if (this.name[0] == '.') switch (this.len) {
911 default:
912 break;
913 case 2:
914 if (this.name[1] != '.')
915 break;
916 follow_dotdot(nd);
917 inode = nd->path.dentry->d_inode;
918 /* fallthrough */
919 case 1:
920 goto return_reval;
921 }
922 err = do_lookup(nd, &this, &next);
923 if (err)
924 break;
925 inode = next.dentry->d_inode;
926 if (follow_on_final(inode, lookup_flags)) {
927 err = do_follow_link(&next, nd);
928 if (err)
929 goto return_err;
930 inode = nd->path.dentry->d_inode;
931 } else
932 path_to_nameidata(&next, nd);
933 err = -ENOENT;
934 if (!inode)
935 break;
936 if (lookup_flags & LOOKUP_DIRECTORY) {
937 err = -ENOTDIR;
938 if (!inode->i_op->lookup)
939 break;
940 }
941 goto return_base;
942 lookup_parent:
943 nd->last = this;
944 nd->last_type = LAST_NORM;
945 if (this.name[0] != '.')
946 goto return_base;
947 if (this.len == 1)
948 nd->last_type = LAST_DOT;
949 else if (this.len == 2 && this.name[1] == '.')
950 nd->last_type = LAST_DOTDOT;
951 else
952 goto return_base;
953 return_reval:
954 /*
955 * We bypassed the ordinary revalidation routines.
956 * We may need to check the cached dentry for staleness.
957 */
958 if (nd->path.dentry && nd->path.dentry->d_sb &&
959 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
960 err = -ESTALE;
961 /* Note: we do not d_invalidate() */
962 if (!nd->path.dentry->d_op->d_revalidate(
963 nd->path.dentry, nd))
964 break;
965 }
966 return_base:
967 return 0;
968 out_dput:
969 path_put_conditional(&next, nd);
970 break;
971 }
972 path_put(&nd->path);
973 return_err:
974 return err;
975 }
976
977 static int path_walk(const char *name, struct nameidata *nd)
978 {
979 struct path save = nd->path;
980 int result;
981
982 current->total_link_count = 0;
983
984 /* make sure the stuff we saved doesn't go away */
985 path_get(&save);
986
987 result = link_path_walk(name, nd);
988 if (result == -ESTALE) {
989 /* nd->path had been dropped */
990 current->total_link_count = 0;
991 nd->path = save;
992 path_get(&nd->path);
993 nd->flags |= LOOKUP_REVAL;
994 result = link_path_walk(name, nd);
995 }
996
997 path_put(&save);
998
999 return result;
1000 }
1001
1002 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1003 {
1004 int retval = 0;
1005 int fput_needed;
1006 struct file *file;
1007
1008 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1009 nd->flags = flags;
1010 nd->depth = 0;
1011 nd->root.mnt = NULL;
1012
1013 if (*name=='/') {
1014 set_root(nd);
1015 nd->path = nd->root;
1016 path_get(&nd->root);
1017 } else if (dfd == AT_FDCWD) {
1018 struct fs_struct *fs = current->fs;
1019 read_lock(&fs->lock);
1020 nd->path = fs->pwd;
1021 path_get(&fs->pwd);
1022 read_unlock(&fs->lock);
1023 } else {
1024 struct dentry *dentry;
1025
1026 file = fget_light(dfd, &fput_needed);
1027 retval = -EBADF;
1028 if (!file)
1029 goto out_fail;
1030
1031 dentry = file->f_path.dentry;
1032
1033 retval = -ENOTDIR;
1034 if (!S_ISDIR(dentry->d_inode->i_mode))
1035 goto fput_fail;
1036
1037 retval = file_permission(file, MAY_EXEC);
1038 if (retval)
1039 goto fput_fail;
1040
1041 nd->path = file->f_path;
1042 path_get(&file->f_path);
1043
1044 fput_light(file, fput_needed);
1045 }
1046 return 0;
1047
1048 fput_fail:
1049 fput_light(file, fput_needed);
1050 out_fail:
1051 return retval;
1052 }
1053
1054 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1055 static int do_path_lookup(int dfd, const char *name,
1056 unsigned int flags, struct nameidata *nd)
1057 {
1058 int retval = path_init(dfd, name, flags, nd);
1059 if (!retval)
1060 retval = path_walk(name, nd);
1061 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1062 nd->path.dentry->d_inode))
1063 audit_inode(name, nd->path.dentry);
1064 if (nd->root.mnt) {
1065 path_put(&nd->root);
1066 nd->root.mnt = NULL;
1067 }
1068 return retval;
1069 }
1070
1071 int path_lookup(const char *name, unsigned int flags,
1072 struct nameidata *nd)
1073 {
1074 return do_path_lookup(AT_FDCWD, name, flags, nd);
1075 }
1076
1077 int kern_path(const char *name, unsigned int flags, struct path *path)
1078 {
1079 struct nameidata nd;
1080 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1081 if (!res)
1082 *path = nd.path;
1083 return res;
1084 }
1085
1086 /**
1087 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1088 * @dentry: pointer to dentry of the base directory
1089 * @mnt: pointer to vfs mount of the base directory
1090 * @name: pointer to file name
1091 * @flags: lookup flags
1092 * @nd: pointer to nameidata
1093 */
1094 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1095 const char *name, unsigned int flags,
1096 struct nameidata *nd)
1097 {
1098 int retval;
1099
1100 /* same as do_path_lookup */
1101 nd->last_type = LAST_ROOT;
1102 nd->flags = flags;
1103 nd->depth = 0;
1104
1105 nd->path.dentry = dentry;
1106 nd->path.mnt = mnt;
1107 path_get(&nd->path);
1108 nd->root = nd->path;
1109 path_get(&nd->root);
1110
1111 retval = path_walk(name, nd);
1112 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1113 nd->path.dentry->d_inode))
1114 audit_inode(name, nd->path.dentry);
1115
1116 path_put(&nd->root);
1117 nd->root.mnt = NULL;
1118
1119 return retval;
1120 }
1121
1122 static struct dentry *__lookup_hash(struct qstr *name,
1123 struct dentry *base, struct nameidata *nd)
1124 {
1125 struct dentry *dentry;
1126 struct inode *inode;
1127 int err;
1128
1129 inode = base->d_inode;
1130
1131 /*
1132 * See if the low-level filesystem might want
1133 * to use its own hash..
1134 */
1135 if (base->d_op && base->d_op->d_hash) {
1136 err = base->d_op->d_hash(base, name);
1137 dentry = ERR_PTR(err);
1138 if (err < 0)
1139 goto out;
1140 }
1141
1142 dentry = __d_lookup(base, name);
1143
1144 /* lockess __d_lookup may fail due to concurrent d_move()
1145 * in some unrelated directory, so try with d_lookup
1146 */
1147 if (!dentry)
1148 dentry = d_lookup(base, name);
1149
1150 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1151 dentry = do_revalidate(dentry, nd);
1152
1153 if (!dentry) {
1154 struct dentry *new;
1155
1156 /* Don't create child dentry for a dead directory. */
1157 dentry = ERR_PTR(-ENOENT);
1158 if (IS_DEADDIR(inode))
1159 goto out;
1160
1161 new = d_alloc(base, name);
1162 dentry = ERR_PTR(-ENOMEM);
1163 if (!new)
1164 goto out;
1165 dentry = inode->i_op->lookup(inode, new, nd);
1166 if (!dentry)
1167 dentry = new;
1168 else
1169 dput(new);
1170 }
1171 out:
1172 return dentry;
1173 }
1174
1175 /*
1176 * Restricted form of lookup. Doesn't follow links, single-component only,
1177 * needs parent already locked. Doesn't follow mounts.
1178 * SMP-safe.
1179 */
1180 static struct dentry *lookup_hash(struct nameidata *nd)
1181 {
1182 int err;
1183
1184 err = exec_permission(nd->path.dentry->d_inode);
1185 if (err)
1186 return ERR_PTR(err);
1187 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1188 }
1189
1190 static int __lookup_one_len(const char *name, struct qstr *this,
1191 struct dentry *base, int len)
1192 {
1193 unsigned long hash;
1194 unsigned int c;
1195
1196 this->name = name;
1197 this->len = len;
1198 if (!len)
1199 return -EACCES;
1200
1201 hash = init_name_hash();
1202 while (len--) {
1203 c = *(const unsigned char *)name++;
1204 if (c == '/' || c == '\0')
1205 return -EACCES;
1206 hash = partial_name_hash(c, hash);
1207 }
1208 this->hash = end_name_hash(hash);
1209 return 0;
1210 }
1211
1212 /**
1213 * lookup_one_len - filesystem helper to lookup single pathname component
1214 * @name: pathname component to lookup
1215 * @base: base directory to lookup from
1216 * @len: maximum length @len should be interpreted to
1217 *
1218 * Note that this routine is purely a helper for filesystem usage and should
1219 * not be called by generic code. Also note that by using this function the
1220 * nameidata argument is passed to the filesystem methods and a filesystem
1221 * using this helper needs to be prepared for that.
1222 */
1223 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1224 {
1225 int err;
1226 struct qstr this;
1227
1228 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1229
1230 err = __lookup_one_len(name, &this, base, len);
1231 if (err)
1232 return ERR_PTR(err);
1233
1234 err = exec_permission(base->d_inode);
1235 if (err)
1236 return ERR_PTR(err);
1237 return __lookup_hash(&this, base, NULL);
1238 }
1239
1240 int user_path_at(int dfd, const char __user *name, unsigned flags,
1241 struct path *path)
1242 {
1243 struct nameidata nd;
1244 char *tmp = getname(name);
1245 int err = PTR_ERR(tmp);
1246 if (!IS_ERR(tmp)) {
1247
1248 BUG_ON(flags & LOOKUP_PARENT);
1249
1250 err = do_path_lookup(dfd, tmp, flags, &nd);
1251 putname(tmp);
1252 if (!err)
1253 *path = nd.path;
1254 }
1255 return err;
1256 }
1257
1258 static int user_path_parent(int dfd, const char __user *path,
1259 struct nameidata *nd, char **name)
1260 {
1261 char *s = getname(path);
1262 int error;
1263
1264 if (IS_ERR(s))
1265 return PTR_ERR(s);
1266
1267 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1268 if (error)
1269 putname(s);
1270 else
1271 *name = s;
1272
1273 return error;
1274 }
1275
1276 /*
1277 * It's inline, so penalty for filesystems that don't use sticky bit is
1278 * minimal.
1279 */
1280 static inline int check_sticky(struct inode *dir, struct inode *inode)
1281 {
1282 uid_t fsuid = current_fsuid();
1283
1284 if (!(dir->i_mode & S_ISVTX))
1285 return 0;
1286 if (inode->i_uid == fsuid)
1287 return 0;
1288 if (dir->i_uid == fsuid)
1289 return 0;
1290 return !capable(CAP_FOWNER);
1291 }
1292
1293 /*
1294 * Check whether we can remove a link victim from directory dir, check
1295 * whether the type of victim is right.
1296 * 1. We can't do it if dir is read-only (done in permission())
1297 * 2. We should have write and exec permissions on dir
1298 * 3. We can't remove anything from append-only dir
1299 * 4. We can't do anything with immutable dir (done in permission())
1300 * 5. If the sticky bit on dir is set we should either
1301 * a. be owner of dir, or
1302 * b. be owner of victim, or
1303 * c. have CAP_FOWNER capability
1304 * 6. If the victim is append-only or immutable we can't do antyhing with
1305 * links pointing to it.
1306 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1307 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1308 * 9. We can't remove a root or mountpoint.
1309 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1310 * nfs_async_unlink().
1311 */
1312 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1313 {
1314 int error;
1315
1316 if (!victim->d_inode)
1317 return -ENOENT;
1318
1319 BUG_ON(victim->d_parent->d_inode != dir);
1320 audit_inode_child(victim, dir);
1321
1322 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1323 if (error)
1324 return error;
1325 if (IS_APPEND(dir))
1326 return -EPERM;
1327 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1328 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1329 return -EPERM;
1330 if (isdir) {
1331 if (!S_ISDIR(victim->d_inode->i_mode))
1332 return -ENOTDIR;
1333 if (IS_ROOT(victim))
1334 return -EBUSY;
1335 } else if (S_ISDIR(victim->d_inode->i_mode))
1336 return -EISDIR;
1337 if (IS_DEADDIR(dir))
1338 return -ENOENT;
1339 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1340 return -EBUSY;
1341 return 0;
1342 }
1343
1344 /* Check whether we can create an object with dentry child in directory
1345 * dir.
1346 * 1. We can't do it if child already exists (open has special treatment for
1347 * this case, but since we are inlined it's OK)
1348 * 2. We can't do it if dir is read-only (done in permission())
1349 * 3. We should have write and exec permissions on dir
1350 * 4. We can't do it if dir is immutable (done in permission())
1351 */
1352 static inline int may_create(struct inode *dir, struct dentry *child)
1353 {
1354 if (child->d_inode)
1355 return -EEXIST;
1356 if (IS_DEADDIR(dir))
1357 return -ENOENT;
1358 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1359 }
1360
1361 /*
1362 * p1 and p2 should be directories on the same fs.
1363 */
1364 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1365 {
1366 struct dentry *p;
1367
1368 if (p1 == p2) {
1369 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1370 return NULL;
1371 }
1372
1373 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1374
1375 p = d_ancestor(p2, p1);
1376 if (p) {
1377 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1378 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1379 return p;
1380 }
1381
1382 p = d_ancestor(p1, p2);
1383 if (p) {
1384 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1385 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1386 return p;
1387 }
1388
1389 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1390 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1391 return NULL;
1392 }
1393
1394 void unlock_rename(struct dentry *p1, struct dentry *p2)
1395 {
1396 mutex_unlock(&p1->d_inode->i_mutex);
1397 if (p1 != p2) {
1398 mutex_unlock(&p2->d_inode->i_mutex);
1399 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1400 }
1401 }
1402
1403 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1404 struct nameidata *nd)
1405 {
1406 int error = may_create(dir, dentry);
1407
1408 if (error)
1409 return error;
1410
1411 if (!dir->i_op->create)
1412 return -EACCES; /* shouldn't it be ENOSYS? */
1413 mode &= S_IALLUGO;
1414 mode |= S_IFREG;
1415 error = security_inode_create(dir, dentry, mode);
1416 if (error)
1417 return error;
1418 error = dir->i_op->create(dir, dentry, mode, nd);
1419 if (!error)
1420 fsnotify_create(dir, dentry);
1421 return error;
1422 }
1423
1424 int may_open(struct path *path, int acc_mode, int flag)
1425 {
1426 struct dentry *dentry = path->dentry;
1427 struct inode *inode = dentry->d_inode;
1428 int error;
1429
1430 if (!inode)
1431 return -ENOENT;
1432
1433 switch (inode->i_mode & S_IFMT) {
1434 case S_IFLNK:
1435 return -ELOOP;
1436 case S_IFDIR:
1437 if (acc_mode & MAY_WRITE)
1438 return -EISDIR;
1439 break;
1440 case S_IFBLK:
1441 case S_IFCHR:
1442 if (path->mnt->mnt_flags & MNT_NODEV)
1443 return -EACCES;
1444 /*FALLTHRU*/
1445 case S_IFIFO:
1446 case S_IFSOCK:
1447 flag &= ~O_TRUNC;
1448 break;
1449 }
1450
1451 error = inode_permission(inode, acc_mode);
1452 if (error)
1453 return error;
1454
1455 /*
1456 * An append-only file must be opened in append mode for writing.
1457 */
1458 if (IS_APPEND(inode)) {
1459 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1460 return -EPERM;
1461 if (flag & O_TRUNC)
1462 return -EPERM;
1463 }
1464
1465 /* O_NOATIME can only be set by the owner or superuser */
1466 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1467 return -EPERM;
1468
1469 /*
1470 * Ensure there are no outstanding leases on the file.
1471 */
1472 return break_lease(inode, flag);
1473 }
1474
1475 static int handle_truncate(struct path *path)
1476 {
1477 struct inode *inode = path->dentry->d_inode;
1478 int error = get_write_access(inode);
1479 if (error)
1480 return error;
1481 /*
1482 * Refuse to truncate files with mandatory locks held on them.
1483 */
1484 error = locks_verify_locked(inode);
1485 if (!error)
1486 error = security_path_truncate(path);
1487 if (!error) {
1488 error = do_truncate(path->dentry, 0,
1489 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1490 NULL);
1491 }
1492 put_write_access(inode);
1493 return error;
1494 }
1495
1496 /*
1497 * Be careful about ever adding any more callers of this
1498 * function. Its flags must be in the namei format, not
1499 * what get passed to sys_open().
1500 */
1501 static int __open_namei_create(struct nameidata *nd, struct path *path,
1502 int open_flag, int mode)
1503 {
1504 int error;
1505 struct dentry *dir = nd->path.dentry;
1506
1507 if (!IS_POSIXACL(dir->d_inode))
1508 mode &= ~current_umask();
1509 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1510 if (error)
1511 goto out_unlock;
1512 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1513 out_unlock:
1514 mutex_unlock(&dir->d_inode->i_mutex);
1515 dput(nd->path.dentry);
1516 nd->path.dentry = path->dentry;
1517 if (error)
1518 return error;
1519 /* Don't check for write permission, don't truncate */
1520 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1521 }
1522
1523 /*
1524 * Note that while the flag value (low two bits) for sys_open means:
1525 * 00 - read-only
1526 * 01 - write-only
1527 * 10 - read-write
1528 * 11 - special
1529 * it is changed into
1530 * 00 - no permissions needed
1531 * 01 - read-permission
1532 * 10 - write-permission
1533 * 11 - read-write
1534 * for the internal routines (ie open_namei()/follow_link() etc)
1535 * This is more logical, and also allows the 00 "no perm needed"
1536 * to be used for symlinks (where the permissions are checked
1537 * later).
1538 *
1539 */
1540 static inline int open_to_namei_flags(int flag)
1541 {
1542 if ((flag+1) & O_ACCMODE)
1543 flag++;
1544 return flag;
1545 }
1546
1547 static int open_will_truncate(int flag, struct inode *inode)
1548 {
1549 /*
1550 * We'll never write to the fs underlying
1551 * a device file.
1552 */
1553 if (special_file(inode->i_mode))
1554 return 0;
1555 return (flag & O_TRUNC);
1556 }
1557
1558 static struct file *finish_open(struct nameidata *nd,
1559 int open_flag, int acc_mode)
1560 {
1561 struct file *filp;
1562 int will_truncate;
1563 int error;
1564
1565 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1566 if (will_truncate) {
1567 error = mnt_want_write(nd->path.mnt);
1568 if (error)
1569 goto exit;
1570 }
1571 error = may_open(&nd->path, acc_mode, open_flag);
1572 if (error) {
1573 if (will_truncate)
1574 mnt_drop_write(nd->path.mnt);
1575 goto exit;
1576 }
1577 filp = nameidata_to_filp(nd);
1578 if (!IS_ERR(filp)) {
1579 error = ima_file_check(filp, acc_mode);
1580 if (error) {
1581 fput(filp);
1582 filp = ERR_PTR(error);
1583 }
1584 }
1585 if (!IS_ERR(filp)) {
1586 if (will_truncate) {
1587 error = handle_truncate(&nd->path);
1588 if (error) {
1589 fput(filp);
1590 filp = ERR_PTR(error);
1591 }
1592 }
1593 }
1594 /*
1595 * It is now safe to drop the mnt write
1596 * because the filp has had a write taken
1597 * on its behalf.
1598 */
1599 if (will_truncate)
1600 mnt_drop_write(nd->path.mnt);
1601 return filp;
1602
1603 exit:
1604 if (!IS_ERR(nd->intent.open.file))
1605 release_open_intent(nd);
1606 path_put(&nd->path);
1607 return ERR_PTR(error);
1608 }
1609
1610 static struct file *do_last(struct nameidata *nd, struct path *path,
1611 int open_flag, int acc_mode,
1612 int mode, const char *pathname)
1613 {
1614 struct dentry *dir = nd->path.dentry;
1615 struct file *filp;
1616 int error = -EISDIR;
1617
1618 switch (nd->last_type) {
1619 case LAST_DOTDOT:
1620 follow_dotdot(nd);
1621 dir = nd->path.dentry;
1622 case LAST_DOT:
1623 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1624 if (!dir->d_op->d_revalidate(dir, nd)) {
1625 error = -ESTALE;
1626 goto exit;
1627 }
1628 }
1629 /* fallthrough */
1630 case LAST_ROOT:
1631 if (open_flag & O_CREAT)
1632 goto exit;
1633 /* fallthrough */
1634 case LAST_BIND:
1635 audit_inode(pathname, dir);
1636 goto ok;
1637 }
1638
1639 /* trailing slashes? */
1640 if (nd->last.name[nd->last.len]) {
1641 if (open_flag & O_CREAT)
1642 goto exit;
1643 nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW;
1644 }
1645
1646 /* just plain open? */
1647 if (!(open_flag & O_CREAT)) {
1648 error = do_lookup(nd, &nd->last, path);
1649 if (error)
1650 goto exit;
1651 error = -ENOENT;
1652 if (!path->dentry->d_inode)
1653 goto exit_dput;
1654 if (path->dentry->d_inode->i_op->follow_link)
1655 return NULL;
1656 error = -ENOTDIR;
1657 if (nd->flags & LOOKUP_DIRECTORY) {
1658 if (!path->dentry->d_inode->i_op->lookup)
1659 goto exit_dput;
1660 }
1661 path_to_nameidata(path, nd);
1662 audit_inode(pathname, nd->path.dentry);
1663 goto ok;
1664 }
1665
1666 /* OK, it's O_CREAT */
1667 mutex_lock(&dir->d_inode->i_mutex);
1668
1669 path->dentry = lookup_hash(nd);
1670 path->mnt = nd->path.mnt;
1671
1672 error = PTR_ERR(path->dentry);
1673 if (IS_ERR(path->dentry)) {
1674 mutex_unlock(&dir->d_inode->i_mutex);
1675 goto exit;
1676 }
1677
1678 if (IS_ERR(nd->intent.open.file)) {
1679 error = PTR_ERR(nd->intent.open.file);
1680 goto exit_mutex_unlock;
1681 }
1682
1683 /* Negative dentry, just create the file */
1684 if (!path->dentry->d_inode) {
1685 /*
1686 * This write is needed to ensure that a
1687 * ro->rw transition does not occur between
1688 * the time when the file is created and when
1689 * a permanent write count is taken through
1690 * the 'struct file' in nameidata_to_filp().
1691 */
1692 error = mnt_want_write(nd->path.mnt);
1693 if (error)
1694 goto exit_mutex_unlock;
1695 error = __open_namei_create(nd, path, open_flag, mode);
1696 if (error) {
1697 mnt_drop_write(nd->path.mnt);
1698 goto exit;
1699 }
1700 filp = nameidata_to_filp(nd);
1701 mnt_drop_write(nd->path.mnt);
1702 if (!IS_ERR(filp)) {
1703 error = ima_file_check(filp, acc_mode);
1704 if (error) {
1705 fput(filp);
1706 filp = ERR_PTR(error);
1707 }
1708 }
1709 return filp;
1710 }
1711
1712 /*
1713 * It already exists.
1714 */
1715 mutex_unlock(&dir->d_inode->i_mutex);
1716 audit_inode(pathname, path->dentry);
1717
1718 error = -EEXIST;
1719 if (open_flag & O_EXCL)
1720 goto exit_dput;
1721
1722 if (__follow_mount(path)) {
1723 error = -ELOOP;
1724 if (open_flag & O_NOFOLLOW)
1725 goto exit_dput;
1726 }
1727
1728 error = -ENOENT;
1729 if (!path->dentry->d_inode)
1730 goto exit_dput;
1731
1732 if (path->dentry->d_inode->i_op->follow_link)
1733 return NULL;
1734
1735 path_to_nameidata(path, nd);
1736 error = -EISDIR;
1737 if (S_ISDIR(path->dentry->d_inode->i_mode))
1738 goto exit;
1739 ok:
1740 filp = finish_open(nd, open_flag, acc_mode);
1741 return filp;
1742
1743 exit_mutex_unlock:
1744 mutex_unlock(&dir->d_inode->i_mutex);
1745 exit_dput:
1746 path_put_conditional(path, nd);
1747 exit:
1748 if (!IS_ERR(nd->intent.open.file))
1749 release_open_intent(nd);
1750 path_put(&nd->path);
1751 return ERR_PTR(error);
1752 }
1753
1754 /*
1755 * Note that the low bits of the passed in "open_flag"
1756 * are not the same as in the local variable "flag". See
1757 * open_to_namei_flags() for more details.
1758 */
1759 struct file *do_filp_open(int dfd, const char *pathname,
1760 int open_flag, int mode, int acc_mode)
1761 {
1762 struct file *filp;
1763 struct nameidata nd;
1764 int error;
1765 struct path path;
1766 int count = 0;
1767 int flag = open_to_namei_flags(open_flag);
1768 int force_reval = 0;
1769
1770 if (!(open_flag & O_CREAT))
1771 mode = 0;
1772
1773 /*
1774 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1775 * check for O_DSYNC if the need any syncing at all we enforce it's
1776 * always set instead of having to deal with possibly weird behaviour
1777 * for malicious applications setting only __O_SYNC.
1778 */
1779 if (open_flag & __O_SYNC)
1780 open_flag |= O_DSYNC;
1781
1782 if (!acc_mode)
1783 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1784
1785 /* O_TRUNC implies we need access checks for write permissions */
1786 if (open_flag & O_TRUNC)
1787 acc_mode |= MAY_WRITE;
1788
1789 /* Allow the LSM permission hook to distinguish append
1790 access from general write access. */
1791 if (open_flag & O_APPEND)
1792 acc_mode |= MAY_APPEND;
1793
1794 /* find the parent */
1795 reval:
1796 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1797 if (error)
1798 return ERR_PTR(error);
1799 if (force_reval)
1800 nd.flags |= LOOKUP_REVAL;
1801
1802 current->total_link_count = 0;
1803 error = link_path_walk(pathname, &nd);
1804 if (error) {
1805 filp = ERR_PTR(error);
1806 goto out;
1807 }
1808 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1809 audit_inode(pathname, nd.path.dentry);
1810
1811 /*
1812 * We have the parent and last component.
1813 */
1814
1815 error = -ENFILE;
1816 filp = get_empty_filp();
1817 if (filp == NULL)
1818 goto exit_parent;
1819 nd.intent.open.file = filp;
1820 filp->f_flags = open_flag;
1821 nd.intent.open.flags = flag;
1822 nd.intent.open.create_mode = mode;
1823 nd.flags &= ~LOOKUP_PARENT;
1824 nd.flags |= LOOKUP_OPEN;
1825 if (open_flag & O_CREAT) {
1826 nd.flags |= LOOKUP_CREATE;
1827 if (open_flag & O_EXCL)
1828 nd.flags |= LOOKUP_EXCL;
1829 }
1830 if (open_flag & O_DIRECTORY)
1831 nd.flags |= LOOKUP_DIRECTORY;
1832 if (!(open_flag & O_NOFOLLOW))
1833 nd.flags |= LOOKUP_FOLLOW;
1834 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1835 while (unlikely(!filp)) { /* trailing symlink */
1836 struct path holder;
1837 struct inode *inode = path.dentry->d_inode;
1838 void *cookie;
1839 error = -ELOOP;
1840 /* S_ISDIR part is a temporary automount kludge */
1841 if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode))
1842 goto exit_dput;
1843 if (count++ == 32)
1844 goto exit_dput;
1845 /*
1846 * This is subtle. Instead of calling do_follow_link() we do
1847 * the thing by hands. The reason is that this way we have zero
1848 * link_count and path_walk() (called from ->follow_link)
1849 * honoring LOOKUP_PARENT. After that we have the parent and
1850 * last component, i.e. we are in the same situation as after
1851 * the first path_walk(). Well, almost - if the last component
1852 * is normal we get its copy stored in nd->last.name and we will
1853 * have to putname() it when we are done. Procfs-like symlinks
1854 * just set LAST_BIND.
1855 */
1856 nd.flags |= LOOKUP_PARENT;
1857 error = security_inode_follow_link(path.dentry, &nd);
1858 if (error)
1859 goto exit_dput;
1860 error = __do_follow_link(&path, &nd, &cookie);
1861 if (unlikely(error)) {
1862 /* nd.path had been dropped */
1863 if (!IS_ERR(cookie) && inode->i_op->put_link)
1864 inode->i_op->put_link(path.dentry, &nd, cookie);
1865 path_put(&path);
1866 release_open_intent(&nd);
1867 filp = ERR_PTR(error);
1868 goto out;
1869 }
1870 holder = path;
1871 nd.flags &= ~LOOKUP_PARENT;
1872 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1873 if (inode->i_op->put_link)
1874 inode->i_op->put_link(holder.dentry, &nd, cookie);
1875 path_put(&holder);
1876 }
1877 out:
1878 if (nd.root.mnt)
1879 path_put(&nd.root);
1880 if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1881 force_reval = 1;
1882 goto reval;
1883 }
1884 return filp;
1885
1886 exit_dput:
1887 path_put_conditional(&path, &nd);
1888 if (!IS_ERR(nd.intent.open.file))
1889 release_open_intent(&nd);
1890 exit_parent:
1891 path_put(&nd.path);
1892 filp = ERR_PTR(error);
1893 goto out;
1894 }
1895
1896 /**
1897 * filp_open - open file and return file pointer
1898 *
1899 * @filename: path to open
1900 * @flags: open flags as per the open(2) second argument
1901 * @mode: mode for the new file if O_CREAT is set, else ignored
1902 *
1903 * This is the helper to open a file from kernelspace if you really
1904 * have to. But in generally you should not do this, so please move
1905 * along, nothing to see here..
1906 */
1907 struct file *filp_open(const char *filename, int flags, int mode)
1908 {
1909 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1910 }
1911 EXPORT_SYMBOL(filp_open);
1912
1913 /**
1914 * lookup_create - lookup a dentry, creating it if it doesn't exist
1915 * @nd: nameidata info
1916 * @is_dir: directory flag
1917 *
1918 * Simple function to lookup and return a dentry and create it
1919 * if it doesn't exist. Is SMP-safe.
1920 *
1921 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1922 */
1923 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1924 {
1925 struct dentry *dentry = ERR_PTR(-EEXIST);
1926
1927 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1928 /*
1929 * Yucky last component or no last component at all?
1930 * (foo/., foo/.., /////)
1931 */
1932 if (nd->last_type != LAST_NORM)
1933 goto fail;
1934 nd->flags &= ~LOOKUP_PARENT;
1935 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1936 nd->intent.open.flags = O_EXCL;
1937
1938 /*
1939 * Do the final lookup.
1940 */
1941 dentry = lookup_hash(nd);
1942 if (IS_ERR(dentry))
1943 goto fail;
1944
1945 if (dentry->d_inode)
1946 goto eexist;
1947 /*
1948 * Special case - lookup gave negative, but... we had foo/bar/
1949 * From the vfs_mknod() POV we just have a negative dentry -
1950 * all is fine. Let's be bastards - you had / on the end, you've
1951 * been asking for (non-existent) directory. -ENOENT for you.
1952 */
1953 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1954 dput(dentry);
1955 dentry = ERR_PTR(-ENOENT);
1956 }
1957 return dentry;
1958 eexist:
1959 dput(dentry);
1960 dentry = ERR_PTR(-EEXIST);
1961 fail:
1962 return dentry;
1963 }
1964 EXPORT_SYMBOL_GPL(lookup_create);
1965
1966 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1967 {
1968 int error = may_create(dir, dentry);
1969
1970 if (error)
1971 return error;
1972
1973 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1974 return -EPERM;
1975
1976 if (!dir->i_op->mknod)
1977 return -EPERM;
1978
1979 error = devcgroup_inode_mknod(mode, dev);
1980 if (error)
1981 return error;
1982
1983 error = security_inode_mknod(dir, dentry, mode, dev);
1984 if (error)
1985 return error;
1986
1987 error = dir->i_op->mknod(dir, dentry, mode, dev);
1988 if (!error)
1989 fsnotify_create(dir, dentry);
1990 return error;
1991 }
1992
1993 static int may_mknod(mode_t mode)
1994 {
1995 switch (mode & S_IFMT) {
1996 case S_IFREG:
1997 case S_IFCHR:
1998 case S_IFBLK:
1999 case S_IFIFO:
2000 case S_IFSOCK:
2001 case 0: /* zero mode translates to S_IFREG */
2002 return 0;
2003 case S_IFDIR:
2004 return -EPERM;
2005 default:
2006 return -EINVAL;
2007 }
2008 }
2009
2010 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2011 unsigned, dev)
2012 {
2013 int error;
2014 char *tmp;
2015 struct dentry *dentry;
2016 struct nameidata nd;
2017
2018 if (S_ISDIR(mode))
2019 return -EPERM;
2020
2021 error = user_path_parent(dfd, filename, &nd, &tmp);
2022 if (error)
2023 return error;
2024
2025 dentry = lookup_create(&nd, 0);
2026 if (IS_ERR(dentry)) {
2027 error = PTR_ERR(dentry);
2028 goto out_unlock;
2029 }
2030 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2031 mode &= ~current_umask();
2032 error = may_mknod(mode);
2033 if (error)
2034 goto out_dput;
2035 error = mnt_want_write(nd.path.mnt);
2036 if (error)
2037 goto out_dput;
2038 error = security_path_mknod(&nd.path, dentry, mode, dev);
2039 if (error)
2040 goto out_drop_write;
2041 switch (mode & S_IFMT) {
2042 case 0: case S_IFREG:
2043 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2044 break;
2045 case S_IFCHR: case S_IFBLK:
2046 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2047 new_decode_dev(dev));
2048 break;
2049 case S_IFIFO: case S_IFSOCK:
2050 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2051 break;
2052 }
2053 out_drop_write:
2054 mnt_drop_write(nd.path.mnt);
2055 out_dput:
2056 dput(dentry);
2057 out_unlock:
2058 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2059 path_put(&nd.path);
2060 putname(tmp);
2061
2062 return error;
2063 }
2064
2065 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2066 {
2067 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2068 }
2069
2070 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2071 {
2072 int error = may_create(dir, dentry);
2073
2074 if (error)
2075 return error;
2076
2077 if (!dir->i_op->mkdir)
2078 return -EPERM;
2079
2080 mode &= (S_IRWXUGO|S_ISVTX);
2081 error = security_inode_mkdir(dir, dentry, mode);
2082 if (error)
2083 return error;
2084
2085 error = dir->i_op->mkdir(dir, dentry, mode);
2086 if (!error)
2087 fsnotify_mkdir(dir, dentry);
2088 return error;
2089 }
2090
2091 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2092 {
2093 int error = 0;
2094 char * tmp;
2095 struct dentry *dentry;
2096 struct nameidata nd;
2097
2098 error = user_path_parent(dfd, pathname, &nd, &tmp);
2099 if (error)
2100 goto out_err;
2101
2102 dentry = lookup_create(&nd, 1);
2103 error = PTR_ERR(dentry);
2104 if (IS_ERR(dentry))
2105 goto out_unlock;
2106
2107 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2108 mode &= ~current_umask();
2109 error = mnt_want_write(nd.path.mnt);
2110 if (error)
2111 goto out_dput;
2112 error = security_path_mkdir(&nd.path, dentry, mode);
2113 if (error)
2114 goto out_drop_write;
2115 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2116 out_drop_write:
2117 mnt_drop_write(nd.path.mnt);
2118 out_dput:
2119 dput(dentry);
2120 out_unlock:
2121 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2122 path_put(&nd.path);
2123 putname(tmp);
2124 out_err:
2125 return error;
2126 }
2127
2128 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2129 {
2130 return sys_mkdirat(AT_FDCWD, pathname, mode);
2131 }
2132
2133 /*
2134 * We try to drop the dentry early: we should have
2135 * a usage count of 2 if we're the only user of this
2136 * dentry, and if that is true (possibly after pruning
2137 * the dcache), then we drop the dentry now.
2138 *
2139 * A low-level filesystem can, if it choses, legally
2140 * do a
2141 *
2142 * if (!d_unhashed(dentry))
2143 * return -EBUSY;
2144 *
2145 * if it cannot handle the case of removing a directory
2146 * that is still in use by something else..
2147 */
2148 void dentry_unhash(struct dentry *dentry)
2149 {
2150 dget(dentry);
2151 shrink_dcache_parent(dentry);
2152 spin_lock(&dcache_lock);
2153 spin_lock(&dentry->d_lock);
2154 if (atomic_read(&dentry->d_count) == 2)
2155 __d_drop(dentry);
2156 spin_unlock(&dentry->d_lock);
2157 spin_unlock(&dcache_lock);
2158 }
2159
2160 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2161 {
2162 int error = may_delete(dir, dentry, 1);
2163
2164 if (error)
2165 return error;
2166
2167 if (!dir->i_op->rmdir)
2168 return -EPERM;
2169
2170 mutex_lock(&dentry->d_inode->i_mutex);
2171 dentry_unhash(dentry);
2172 if (d_mountpoint(dentry))
2173 error = -EBUSY;
2174 else {
2175 error = security_inode_rmdir(dir, dentry);
2176 if (!error) {
2177 error = dir->i_op->rmdir(dir, dentry);
2178 if (!error) {
2179 dentry->d_inode->i_flags |= S_DEAD;
2180 dont_mount(dentry);
2181 }
2182 }
2183 }
2184 mutex_unlock(&dentry->d_inode->i_mutex);
2185 if (!error) {
2186 d_delete(dentry);
2187 }
2188 dput(dentry);
2189
2190 return error;
2191 }
2192
2193 static long do_rmdir(int dfd, const char __user *pathname)
2194 {
2195 int error = 0;
2196 char * name;
2197 struct dentry *dentry;
2198 struct nameidata nd;
2199
2200 error = user_path_parent(dfd, pathname, &nd, &name);
2201 if (error)
2202 return error;
2203
2204 switch(nd.last_type) {
2205 case LAST_DOTDOT:
2206 error = -ENOTEMPTY;
2207 goto exit1;
2208 case LAST_DOT:
2209 error = -EINVAL;
2210 goto exit1;
2211 case LAST_ROOT:
2212 error = -EBUSY;
2213 goto exit1;
2214 }
2215
2216 nd.flags &= ~LOOKUP_PARENT;
2217
2218 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2219 dentry = lookup_hash(&nd);
2220 error = PTR_ERR(dentry);
2221 if (IS_ERR(dentry))
2222 goto exit2;
2223 error = mnt_want_write(nd.path.mnt);
2224 if (error)
2225 goto exit3;
2226 error = security_path_rmdir(&nd.path, dentry);
2227 if (error)
2228 goto exit4;
2229 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2230 exit4:
2231 mnt_drop_write(nd.path.mnt);
2232 exit3:
2233 dput(dentry);
2234 exit2:
2235 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2236 exit1:
2237 path_put(&nd.path);
2238 putname(name);
2239 return error;
2240 }
2241
2242 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2243 {
2244 return do_rmdir(AT_FDCWD, pathname);
2245 }
2246
2247 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2248 {
2249 int error = may_delete(dir, dentry, 0);
2250
2251 if (error)
2252 return error;
2253
2254 if (!dir->i_op->unlink)
2255 return -EPERM;
2256
2257 mutex_lock(&dentry->d_inode->i_mutex);
2258 if (d_mountpoint(dentry))
2259 error = -EBUSY;
2260 else {
2261 error = security_inode_unlink(dir, dentry);
2262 if (!error) {
2263 error = dir->i_op->unlink(dir, dentry);
2264 if (!error)
2265 dont_mount(dentry);
2266 }
2267 }
2268 mutex_unlock(&dentry->d_inode->i_mutex);
2269
2270 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2271 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2272 fsnotify_link_count(dentry->d_inode);
2273 d_delete(dentry);
2274 }
2275
2276 return error;
2277 }
2278
2279 /*
2280 * Make sure that the actual truncation of the file will occur outside its
2281 * directory's i_mutex. Truncate can take a long time if there is a lot of
2282 * writeout happening, and we don't want to prevent access to the directory
2283 * while waiting on the I/O.
2284 */
2285 static long do_unlinkat(int dfd, const char __user *pathname)
2286 {
2287 int error;
2288 char *name;
2289 struct dentry *dentry;
2290 struct nameidata nd;
2291 struct inode *inode = NULL;
2292
2293 error = user_path_parent(dfd, pathname, &nd, &name);
2294 if (error)
2295 return error;
2296
2297 error = -EISDIR;
2298 if (nd.last_type != LAST_NORM)
2299 goto exit1;
2300
2301 nd.flags &= ~LOOKUP_PARENT;
2302
2303 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2304 dentry = lookup_hash(&nd);
2305 error = PTR_ERR(dentry);
2306 if (!IS_ERR(dentry)) {
2307 /* Why not before? Because we want correct error value */
2308 if (nd.last.name[nd.last.len])
2309 goto slashes;
2310 inode = dentry->d_inode;
2311 if (inode)
2312 atomic_inc(&inode->i_count);
2313 error = mnt_want_write(nd.path.mnt);
2314 if (error)
2315 goto exit2;
2316 error = security_path_unlink(&nd.path, dentry);
2317 if (error)
2318 goto exit3;
2319 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2320 exit3:
2321 mnt_drop_write(nd.path.mnt);
2322 exit2:
2323 dput(dentry);
2324 }
2325 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2326 if (inode)
2327 iput(inode); /* truncate the inode here */
2328 exit1:
2329 path_put(&nd.path);
2330 putname(name);
2331 return error;
2332
2333 slashes:
2334 error = !dentry->d_inode ? -ENOENT :
2335 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2336 goto exit2;
2337 }
2338
2339 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2340 {
2341 if ((flag & ~AT_REMOVEDIR) != 0)
2342 return -EINVAL;
2343
2344 if (flag & AT_REMOVEDIR)
2345 return do_rmdir(dfd, pathname);
2346
2347 return do_unlinkat(dfd, pathname);
2348 }
2349
2350 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2351 {
2352 return do_unlinkat(AT_FDCWD, pathname);
2353 }
2354
2355 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2356 {
2357 int error = may_create(dir, dentry);
2358
2359 if (error)
2360 return error;
2361
2362 if (!dir->i_op->symlink)
2363 return -EPERM;
2364
2365 error = security_inode_symlink(dir, dentry, oldname);
2366 if (error)
2367 return error;
2368
2369 error = dir->i_op->symlink(dir, dentry, oldname);
2370 if (!error)
2371 fsnotify_create(dir, dentry);
2372 return error;
2373 }
2374
2375 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2376 int, newdfd, const char __user *, newname)
2377 {
2378 int error;
2379 char *from;
2380 char *to;
2381 struct dentry *dentry;
2382 struct nameidata nd;
2383
2384 from = getname(oldname);
2385 if (IS_ERR(from))
2386 return PTR_ERR(from);
2387
2388 error = user_path_parent(newdfd, newname, &nd, &to);
2389 if (error)
2390 goto out_putname;
2391
2392 dentry = lookup_create(&nd, 0);
2393 error = PTR_ERR(dentry);
2394 if (IS_ERR(dentry))
2395 goto out_unlock;
2396
2397 error = mnt_want_write(nd.path.mnt);
2398 if (error)
2399 goto out_dput;
2400 error = security_path_symlink(&nd.path, dentry, from);
2401 if (error)
2402 goto out_drop_write;
2403 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2404 out_drop_write:
2405 mnt_drop_write(nd.path.mnt);
2406 out_dput:
2407 dput(dentry);
2408 out_unlock:
2409 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2410 path_put(&nd.path);
2411 putname(to);
2412 out_putname:
2413 putname(from);
2414 return error;
2415 }
2416
2417 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2418 {
2419 return sys_symlinkat(oldname, AT_FDCWD, newname);
2420 }
2421
2422 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2423 {
2424 struct inode *inode = old_dentry->d_inode;
2425 int error;
2426
2427 if (!inode)
2428 return -ENOENT;
2429
2430 error = may_create(dir, new_dentry);
2431 if (error)
2432 return error;
2433
2434 if (dir->i_sb != inode->i_sb)
2435 return -EXDEV;
2436
2437 /*
2438 * A link to an append-only or immutable file cannot be created.
2439 */
2440 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2441 return -EPERM;
2442 if (!dir->i_op->link)
2443 return -EPERM;
2444 if (S_ISDIR(inode->i_mode))
2445 return -EPERM;
2446
2447 error = security_inode_link(old_dentry, dir, new_dentry);
2448 if (error)
2449 return error;
2450
2451 mutex_lock(&inode->i_mutex);
2452 error = dir->i_op->link(old_dentry, dir, new_dentry);
2453 mutex_unlock(&inode->i_mutex);
2454 if (!error)
2455 fsnotify_link(dir, inode, new_dentry);
2456 return error;
2457 }
2458
2459 /*
2460 * Hardlinks are often used in delicate situations. We avoid
2461 * security-related surprises by not following symlinks on the
2462 * newname. --KAB
2463 *
2464 * We don't follow them on the oldname either to be compatible
2465 * with linux 2.0, and to avoid hard-linking to directories
2466 * and other special files. --ADM
2467 */
2468 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2469 int, newdfd, const char __user *, newname, int, flags)
2470 {
2471 struct dentry *new_dentry;
2472 struct nameidata nd;
2473 struct path old_path;
2474 int error;
2475 char *to;
2476
2477 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2478 return -EINVAL;
2479
2480 error = user_path_at(olddfd, oldname,
2481 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2482 &old_path);
2483 if (error)
2484 return error;
2485
2486 error = user_path_parent(newdfd, newname, &nd, &to);
2487 if (error)
2488 goto out;
2489 error = -EXDEV;
2490 if (old_path.mnt != nd.path.mnt)
2491 goto out_release;
2492 new_dentry = lookup_create(&nd, 0);
2493 error = PTR_ERR(new_dentry);
2494 if (IS_ERR(new_dentry))
2495 goto out_unlock;
2496 error = mnt_want_write(nd.path.mnt);
2497 if (error)
2498 goto out_dput;
2499 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2500 if (error)
2501 goto out_drop_write;
2502 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2503 out_drop_write:
2504 mnt_drop_write(nd.path.mnt);
2505 out_dput:
2506 dput(new_dentry);
2507 out_unlock:
2508 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2509 out_release:
2510 path_put(&nd.path);
2511 putname(to);
2512 out:
2513 path_put(&old_path);
2514
2515 return error;
2516 }
2517
2518 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2519 {
2520 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2521 }
2522
2523 /*
2524 * The worst of all namespace operations - renaming directory. "Perverted"
2525 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2526 * Problems:
2527 * a) we can get into loop creation. Check is done in is_subdir().
2528 * b) race potential - two innocent renames can create a loop together.
2529 * That's where 4.4 screws up. Current fix: serialization on
2530 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2531 * story.
2532 * c) we have to lock _three_ objects - parents and victim (if it exists).
2533 * And that - after we got ->i_mutex on parents (until then we don't know
2534 * whether the target exists). Solution: try to be smart with locking
2535 * order for inodes. We rely on the fact that tree topology may change
2536 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2537 * move will be locked. Thus we can rank directories by the tree
2538 * (ancestors first) and rank all non-directories after them.
2539 * That works since everybody except rename does "lock parent, lookup,
2540 * lock child" and rename is under ->s_vfs_rename_mutex.
2541 * HOWEVER, it relies on the assumption that any object with ->lookup()
2542 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2543 * we'd better make sure that there's no link(2) for them.
2544 * d) some filesystems don't support opened-but-unlinked directories,
2545 * either because of layout or because they are not ready to deal with
2546 * all cases correctly. The latter will be fixed (taking this sort of
2547 * stuff into VFS), but the former is not going away. Solution: the same
2548 * trick as in rmdir().
2549 * e) conversion from fhandle to dentry may come in the wrong moment - when
2550 * we are removing the target. Solution: we will have to grab ->i_mutex
2551 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2552 * ->i_mutex on parents, which works but leads to some truly excessive
2553 * locking].
2554 */
2555 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2556 struct inode *new_dir, struct dentry *new_dentry)
2557 {
2558 int error = 0;
2559 struct inode *target;
2560
2561 /*
2562 * If we are going to change the parent - check write permissions,
2563 * we'll need to flip '..'.
2564 */
2565 if (new_dir != old_dir) {
2566 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2567 if (error)
2568 return error;
2569 }
2570
2571 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2572 if (error)
2573 return error;
2574
2575 target = new_dentry->d_inode;
2576 if (target)
2577 mutex_lock(&target->i_mutex);
2578 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2579 error = -EBUSY;
2580 else {
2581 if (target)
2582 dentry_unhash(new_dentry);
2583 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2584 }
2585 if (target) {
2586 if (!error) {
2587 target->i_flags |= S_DEAD;
2588 dont_mount(new_dentry);
2589 }
2590 mutex_unlock(&target->i_mutex);
2591 if (d_unhashed(new_dentry))
2592 d_rehash(new_dentry);
2593 dput(new_dentry);
2594 }
2595 if (!error)
2596 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2597 d_move(old_dentry,new_dentry);
2598 return error;
2599 }
2600
2601 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2602 struct inode *new_dir, struct dentry *new_dentry)
2603 {
2604 struct inode *target;
2605 int error;
2606
2607 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2608 if (error)
2609 return error;
2610
2611 dget(new_dentry);
2612 target = new_dentry->d_inode;
2613 if (target)
2614 mutex_lock(&target->i_mutex);
2615 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2616 error = -EBUSY;
2617 else
2618 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2619 if (!error) {
2620 if (target)
2621 dont_mount(new_dentry);
2622 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2623 d_move(old_dentry, new_dentry);
2624 }
2625 if (target)
2626 mutex_unlock(&target->i_mutex);
2627 dput(new_dentry);
2628 return error;
2629 }
2630
2631 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2632 struct inode *new_dir, struct dentry *new_dentry)
2633 {
2634 int error;
2635 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2636 const char *old_name;
2637
2638 if (old_dentry->d_inode == new_dentry->d_inode)
2639 return 0;
2640
2641 error = may_delete(old_dir, old_dentry, is_dir);
2642 if (error)
2643 return error;
2644
2645 if (!new_dentry->d_inode)
2646 error = may_create(new_dir, new_dentry);
2647 else
2648 error = may_delete(new_dir, new_dentry, is_dir);
2649 if (error)
2650 return error;
2651
2652 if (!old_dir->i_op->rename)
2653 return -EPERM;
2654
2655 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2656
2657 if (is_dir)
2658 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2659 else
2660 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2661 if (!error)
2662 fsnotify_move(old_dir, new_dir, old_name, is_dir,
2663 new_dentry->d_inode, old_dentry);
2664 fsnotify_oldname_free(old_name);
2665
2666 return error;
2667 }
2668
2669 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2670 int, newdfd, const char __user *, newname)
2671 {
2672 struct dentry *old_dir, *new_dir;
2673 struct dentry *old_dentry, *new_dentry;
2674 struct dentry *trap;
2675 struct nameidata oldnd, newnd;
2676 char *from;
2677 char *to;
2678 int error;
2679
2680 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2681 if (error)
2682 goto exit;
2683
2684 error = user_path_parent(newdfd, newname, &newnd, &to);
2685 if (error)
2686 goto exit1;
2687
2688 error = -EXDEV;
2689 if (oldnd.path.mnt != newnd.path.mnt)
2690 goto exit2;
2691
2692 old_dir = oldnd.path.dentry;
2693 error = -EBUSY;
2694 if (oldnd.last_type != LAST_NORM)
2695 goto exit2;
2696
2697 new_dir = newnd.path.dentry;
2698 if (newnd.last_type != LAST_NORM)
2699 goto exit2;
2700
2701 oldnd.flags &= ~LOOKUP_PARENT;
2702 newnd.flags &= ~LOOKUP_PARENT;
2703 newnd.flags |= LOOKUP_RENAME_TARGET;
2704
2705 trap = lock_rename(new_dir, old_dir);
2706
2707 old_dentry = lookup_hash(&oldnd);
2708 error = PTR_ERR(old_dentry);
2709 if (IS_ERR(old_dentry))
2710 goto exit3;
2711 /* source must exist */
2712 error = -ENOENT;
2713 if (!old_dentry->d_inode)
2714 goto exit4;
2715 /* unless the source is a directory trailing slashes give -ENOTDIR */
2716 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2717 error = -ENOTDIR;
2718 if (oldnd.last.name[oldnd.last.len])
2719 goto exit4;
2720 if (newnd.last.name[newnd.last.len])
2721 goto exit4;
2722 }
2723 /* source should not be ancestor of target */
2724 error = -EINVAL;
2725 if (old_dentry == trap)
2726 goto exit4;
2727 new_dentry = lookup_hash(&newnd);
2728 error = PTR_ERR(new_dentry);
2729 if (IS_ERR(new_dentry))
2730 goto exit4;
2731 /* target should not be an ancestor of source */
2732 error = -ENOTEMPTY;
2733 if (new_dentry == trap)
2734 goto exit5;
2735
2736 error = mnt_want_write(oldnd.path.mnt);
2737 if (error)
2738 goto exit5;
2739 error = security_path_rename(&oldnd.path, old_dentry,
2740 &newnd.path, new_dentry);
2741 if (error)
2742 goto exit6;
2743 error = vfs_rename(old_dir->d_inode, old_dentry,
2744 new_dir->d_inode, new_dentry);
2745 exit6:
2746 mnt_drop_write(oldnd.path.mnt);
2747 exit5:
2748 dput(new_dentry);
2749 exit4:
2750 dput(old_dentry);
2751 exit3:
2752 unlock_rename(new_dir, old_dir);
2753 exit2:
2754 path_put(&newnd.path);
2755 putname(to);
2756 exit1:
2757 path_put(&oldnd.path);
2758 putname(from);
2759 exit:
2760 return error;
2761 }
2762
2763 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2764 {
2765 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2766 }
2767
2768 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2769 {
2770 int len;
2771
2772 len = PTR_ERR(link);
2773 if (IS_ERR(link))
2774 goto out;
2775
2776 len = strlen(link);
2777 if (len > (unsigned) buflen)
2778 len = buflen;
2779 if (copy_to_user(buffer, link, len))
2780 len = -EFAULT;
2781 out:
2782 return len;
2783 }
2784
2785 /*
2786 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2787 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2788 * using) it for any given inode is up to filesystem.
2789 */
2790 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2791 {
2792 struct nameidata nd;
2793 void *cookie;
2794 int res;
2795
2796 nd.depth = 0;
2797 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2798 if (IS_ERR(cookie))
2799 return PTR_ERR(cookie);
2800
2801 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2802 if (dentry->d_inode->i_op->put_link)
2803 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2804 return res;
2805 }
2806
2807 int vfs_follow_link(struct nameidata *nd, const char *link)
2808 {
2809 return __vfs_follow_link(nd, link);
2810 }
2811
2812 /* get the link contents into pagecache */
2813 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2814 {
2815 char *kaddr;
2816 struct page *page;
2817 struct address_space *mapping = dentry->d_inode->i_mapping;
2818 page = read_mapping_page(mapping, 0, NULL);
2819 if (IS_ERR(page))
2820 return (char*)page;
2821 *ppage = page;
2822 kaddr = kmap(page);
2823 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2824 return kaddr;
2825 }
2826
2827 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2828 {
2829 struct page *page = NULL;
2830 char *s = page_getlink(dentry, &page);
2831 int res = vfs_readlink(dentry,buffer,buflen,s);
2832 if (page) {
2833 kunmap(page);
2834 page_cache_release(page);
2835 }
2836 return res;
2837 }
2838
2839 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2840 {
2841 struct page *page = NULL;
2842 nd_set_link(nd, page_getlink(dentry, &page));
2843 return page;
2844 }
2845
2846 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2847 {
2848 struct page *page = cookie;
2849
2850 if (page) {
2851 kunmap(page);
2852 page_cache_release(page);
2853 }
2854 }
2855
2856 /*
2857 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2858 */
2859 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2860 {
2861 struct address_space *mapping = inode->i_mapping;
2862 struct page *page;
2863 void *fsdata;
2864 int err;
2865 char *kaddr;
2866 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2867 if (nofs)
2868 flags |= AOP_FLAG_NOFS;
2869
2870 retry:
2871 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2872 flags, &page, &fsdata);
2873 if (err)
2874 goto fail;
2875
2876 kaddr = kmap_atomic(page, KM_USER0);
2877 memcpy(kaddr, symname, len-1);
2878 kunmap_atomic(kaddr, KM_USER0);
2879
2880 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2881 page, fsdata);
2882 if (err < 0)
2883 goto fail;
2884 if (err < len-1)
2885 goto retry;
2886
2887 mark_inode_dirty(inode);
2888 return 0;
2889 fail:
2890 return err;
2891 }
2892
2893 int page_symlink(struct inode *inode, const char *symname, int len)
2894 {
2895 return __page_symlink(inode, symname, len,
2896 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2897 }
2898
2899 const struct inode_operations page_symlink_inode_operations = {
2900 .readlink = generic_readlink,
2901 .follow_link = page_follow_link_light,
2902 .put_link = page_put_link,
2903 };
2904
2905 EXPORT_SYMBOL(user_path_at);
2906 EXPORT_SYMBOL(follow_down);
2907 EXPORT_SYMBOL(follow_up);
2908 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2909 EXPORT_SYMBOL(getname);
2910 EXPORT_SYMBOL(lock_rename);
2911 EXPORT_SYMBOL(lookup_one_len);
2912 EXPORT_SYMBOL(page_follow_link_light);
2913 EXPORT_SYMBOL(page_put_link);
2914 EXPORT_SYMBOL(page_readlink);
2915 EXPORT_SYMBOL(__page_symlink);
2916 EXPORT_SYMBOL(page_symlink);
2917 EXPORT_SYMBOL(page_symlink_inode_operations);
2918 EXPORT_SYMBOL(path_lookup);
2919 EXPORT_SYMBOL(kern_path);
2920 EXPORT_SYMBOL(vfs_path_lookup);
2921 EXPORT_SYMBOL(inode_permission);
2922 EXPORT_SYMBOL(file_permission);
2923 EXPORT_SYMBOL(unlock_rename);
2924 EXPORT_SYMBOL(vfs_create);
2925 EXPORT_SYMBOL(vfs_follow_link);
2926 EXPORT_SYMBOL(vfs_link);
2927 EXPORT_SYMBOL(vfs_mkdir);
2928 EXPORT_SYMBOL(vfs_mknod);
2929 EXPORT_SYMBOL(generic_permission);
2930 EXPORT_SYMBOL(vfs_readlink);
2931 EXPORT_SYMBOL(vfs_rename);
2932 EXPORT_SYMBOL(vfs_rmdir);
2933 EXPORT_SYMBOL(vfs_symlink);
2934 EXPORT_SYMBOL(vfs_unlink);
2935 EXPORT_SYMBOL(dentry_unhash);
2936 EXPORT_SYMBOL(generic_readlink);