signalfd: fix information leak in signalfd_copyinfo
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121 void final_putname(struct filename *name)
122 {
123 if (name->separate) {
124 __putname(name->name);
125 kfree(name);
126 } else {
127 __putname(name);
128 }
129 }
130
131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 struct filename *result, *err;
137 int len;
138 long max;
139 char *kname;
140
141 result = audit_reusename(filename);
142 if (result)
143 return result;
144
145 result = __getname();
146 if (unlikely(!result))
147 return ERR_PTR(-ENOMEM);
148
149 /*
150 * First, try to embed the struct filename inside the names_cache
151 * allocation
152 */
153 kname = (char *)result + sizeof(*result);
154 result->name = kname;
155 result->separate = false;
156 max = EMBEDDED_NAME_MAX;
157
158 recopy:
159 len = strncpy_from_user(kname, filename, max);
160 if (unlikely(len < 0)) {
161 err = ERR_PTR(len);
162 goto error;
163 }
164
165 /*
166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 * separate struct filename so we can dedicate the entire
168 * names_cache allocation for the pathname, and re-do the copy from
169 * userland.
170 */
171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 kname = (char *)result;
173
174 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 if (!result) {
176 err = ERR_PTR(-ENOMEM);
177 result = (struct filename *)kname;
178 goto error;
179 }
180 result->name = kname;
181 result->separate = true;
182 max = PATH_MAX;
183 goto recopy;
184 }
185
186 /* The empty path is special. */
187 if (unlikely(!len)) {
188 if (empty)
189 *empty = 1;
190 err = ERR_PTR(-ENOENT);
191 if (!(flags & LOOKUP_EMPTY))
192 goto error;
193 }
194
195 err = ERR_PTR(-ENAMETOOLONG);
196 if (unlikely(len >= PATH_MAX))
197 goto error;
198
199 result->uptr = filename;
200 audit_getname(result);
201 return result;
202
203 error:
204 final_putname(result);
205 return err;
206 }
207
208 struct filename *
209 getname(const char __user * filename)
210 {
211 return getname_flags(filename, 0, NULL);
212 }
213 EXPORT_SYMBOL(getname);
214
215 #ifdef CONFIG_AUDITSYSCALL
216 void putname(struct filename *name)
217 {
218 if (unlikely(!audit_dummy_context()))
219 return audit_putname(name);
220 final_putname(name);
221 }
222 #endif
223
224 static int check_acl(struct inode *inode, int mask)
225 {
226 #ifdef CONFIG_FS_POSIX_ACL
227 struct posix_acl *acl;
228
229 if (mask & MAY_NOT_BLOCK) {
230 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
231 if (!acl)
232 return -EAGAIN;
233 /* no ->get_acl() calls in RCU mode... */
234 if (acl == ACL_NOT_CACHED)
235 return -ECHILD;
236 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
237 }
238
239 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
240
241 /*
242 * A filesystem can force a ACL callback by just never filling the
243 * ACL cache. But normally you'd fill the cache either at inode
244 * instantiation time, or on the first ->get_acl call.
245 *
246 * If the filesystem doesn't have a get_acl() function at all, we'll
247 * just create the negative cache entry.
248 */
249 if (acl == ACL_NOT_CACHED) {
250 if (inode->i_op->get_acl) {
251 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
252 if (IS_ERR(acl))
253 return PTR_ERR(acl);
254 } else {
255 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
256 return -EAGAIN;
257 }
258 }
259
260 if (acl) {
261 int error = posix_acl_permission(inode, acl, mask);
262 posix_acl_release(acl);
263 return error;
264 }
265 #endif
266
267 return -EAGAIN;
268 }
269
270 /*
271 * This does the basic permission checking
272 */
273 static int acl_permission_check(struct inode *inode, int mask)
274 {
275 unsigned int mode = inode->i_mode;
276
277 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
278 mode >>= 6;
279 else {
280 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
281 int error = check_acl(inode, mask);
282 if (error != -EAGAIN)
283 return error;
284 }
285
286 if (in_group_p(inode->i_gid))
287 mode >>= 3;
288 }
289
290 /*
291 * If the DACs are ok we don't need any capability check.
292 */
293 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
294 return 0;
295 return -EACCES;
296 }
297
298 /**
299 * generic_permission - check for access rights on a Posix-like filesystem
300 * @inode: inode to check access rights for
301 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
302 *
303 * Used to check for read/write/execute permissions on a file.
304 * We use "fsuid" for this, letting us set arbitrary permissions
305 * for filesystem access without changing the "normal" uids which
306 * are used for other things.
307 *
308 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
309 * request cannot be satisfied (eg. requires blocking or too much complexity).
310 * It would then be called again in ref-walk mode.
311 */
312 int generic_permission(struct inode *inode, int mask)
313 {
314 int ret;
315
316 /*
317 * Do the basic permission checks.
318 */
319 ret = acl_permission_check(inode, mask);
320 if (ret != -EACCES)
321 return ret;
322
323 if (S_ISDIR(inode->i_mode)) {
324 /* DACs are overridable for directories */
325 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
326 return 0;
327 if (!(mask & MAY_WRITE))
328 if (capable_wrt_inode_uidgid(inode,
329 CAP_DAC_READ_SEARCH))
330 return 0;
331 return -EACCES;
332 }
333 /*
334 * Read/write DACs are always overridable.
335 * Executable DACs are overridable when there is
336 * at least one exec bit set.
337 */
338 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
339 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
340 return 0;
341
342 /*
343 * Searching includes executable on directories, else just read.
344 */
345 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
346 if (mask == MAY_READ)
347 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
348 return 0;
349
350 return -EACCES;
351 }
352
353 /*
354 * We _really_ want to just do "generic_permission()" without
355 * even looking at the inode->i_op values. So we keep a cache
356 * flag in inode->i_opflags, that says "this has not special
357 * permission function, use the fast case".
358 */
359 static inline int do_inode_permission(struct inode *inode, int mask)
360 {
361 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
362 if (likely(inode->i_op->permission))
363 return inode->i_op->permission(inode, mask);
364
365 /* This gets set once for the inode lifetime */
366 spin_lock(&inode->i_lock);
367 inode->i_opflags |= IOP_FASTPERM;
368 spin_unlock(&inode->i_lock);
369 }
370 return generic_permission(inode, mask);
371 }
372
373 /**
374 * __inode_permission - Check for access rights to a given inode
375 * @inode: Inode to check permission on
376 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
377 *
378 * Check for read/write/execute permissions on an inode.
379 *
380 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
381 *
382 * This does not check for a read-only file system. You probably want
383 * inode_permission().
384 */
385 int __inode_permission(struct inode *inode, int mask)
386 {
387 int retval;
388
389 if (unlikely(mask & MAY_WRITE)) {
390 /*
391 * Nobody gets write access to an immutable file.
392 */
393 if (IS_IMMUTABLE(inode))
394 return -EACCES;
395 }
396
397 retval = do_inode_permission(inode, mask);
398 if (retval)
399 return retval;
400
401 retval = devcgroup_inode_permission(inode, mask);
402 if (retval)
403 return retval;
404
405 return security_inode_permission(inode, mask);
406 }
407
408 /**
409 * sb_permission - Check superblock-level permissions
410 * @sb: Superblock of inode to check permission on
411 * @inode: Inode to check permission on
412 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413 *
414 * Separate out file-system wide checks from inode-specific permission checks.
415 */
416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 if (unlikely(mask & MAY_WRITE)) {
419 umode_t mode = inode->i_mode;
420
421 /* Nobody gets write access to a read-only fs. */
422 if ((sb->s_flags & MS_RDONLY) &&
423 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
424 return -EROFS;
425 }
426 return 0;
427 }
428
429 /**
430 * inode_permission - Check for access rights to a given inode
431 * @inode: Inode to check permission on
432 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
433 *
434 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
435 * this, letting us set arbitrary permissions for filesystem access without
436 * changing the "normal" UIDs which are used for other things.
437 *
438 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
439 */
440 int inode_permission(struct inode *inode, int mask)
441 {
442 int retval;
443
444 retval = sb_permission(inode->i_sb, inode, mask);
445 if (retval)
446 return retval;
447 return __inode_permission(inode, mask);
448 }
449
450 /**
451 * path_get - get a reference to a path
452 * @path: path to get the reference to
453 *
454 * Given a path increment the reference count to the dentry and the vfsmount.
455 */
456 void path_get(const struct path *path)
457 {
458 mntget(path->mnt);
459 dget(path->dentry);
460 }
461 EXPORT_SYMBOL(path_get);
462
463 /**
464 * path_put - put a reference to a path
465 * @path: path to put the reference to
466 *
467 * Given a path decrement the reference count to the dentry and the vfsmount.
468 */
469 void path_put(const struct path *path)
470 {
471 dput(path->dentry);
472 mntput(path->mnt);
473 }
474 EXPORT_SYMBOL(path_put);
475
476 /*
477 * Path walking has 2 modes, rcu-walk and ref-walk (see
478 * Documentation/filesystems/path-lookup.txt). In situations when we can't
479 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
480 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
481 * mode. Refcounts are grabbed at the last known good point before rcu-walk
482 * got stuck, so ref-walk may continue from there. If this is not successful
483 * (eg. a seqcount has changed), then failure is returned and it's up to caller
484 * to restart the path walk from the beginning in ref-walk mode.
485 */
486
487 static inline void lock_rcu_walk(void)
488 {
489 br_read_lock(&vfsmount_lock);
490 rcu_read_lock();
491 }
492
493 static inline void unlock_rcu_walk(void)
494 {
495 rcu_read_unlock();
496 br_read_unlock(&vfsmount_lock);
497 }
498
499 /**
500 * unlazy_walk - try to switch to ref-walk mode.
501 * @nd: nameidata pathwalk data
502 * @dentry: child of nd->path.dentry or NULL
503 * Returns: 0 on success, -ECHILD on failure
504 *
505 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
506 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
507 * @nd or NULL. Must be called from rcu-walk context.
508 */
509 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
510 {
511 struct fs_struct *fs = current->fs;
512 struct dentry *parent = nd->path.dentry;
513 int want_root = 0;
514
515 BUG_ON(!(nd->flags & LOOKUP_RCU));
516 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
517 want_root = 1;
518 spin_lock(&fs->lock);
519 if (nd->root.mnt != fs->root.mnt ||
520 nd->root.dentry != fs->root.dentry)
521 goto err_root;
522 }
523 spin_lock(&parent->d_lock);
524 if (!dentry) {
525 if (!__d_rcu_to_refcount(parent, nd->seq))
526 goto err_parent;
527 BUG_ON(nd->inode != parent->d_inode);
528 } else {
529 if (dentry->d_parent != parent)
530 goto err_parent;
531 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
532 if (!__d_rcu_to_refcount(dentry, nd->seq))
533 goto err_child;
534 /*
535 * If the sequence check on the child dentry passed, then
536 * the child has not been removed from its parent. This
537 * means the parent dentry must be valid and able to take
538 * a reference at this point.
539 */
540 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
541 BUG_ON(!parent->d_count);
542 parent->d_count++;
543 spin_unlock(&dentry->d_lock);
544 }
545 spin_unlock(&parent->d_lock);
546 if (want_root) {
547 path_get(&nd->root);
548 spin_unlock(&fs->lock);
549 }
550 mntget(nd->path.mnt);
551
552 unlock_rcu_walk();
553 nd->flags &= ~LOOKUP_RCU;
554 return 0;
555
556 err_child:
557 spin_unlock(&dentry->d_lock);
558 err_parent:
559 spin_unlock(&parent->d_lock);
560 err_root:
561 if (want_root)
562 spin_unlock(&fs->lock);
563 return -ECHILD;
564 }
565
566 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
567 {
568 return dentry->d_op->d_revalidate(dentry, flags);
569 }
570
571 /**
572 * complete_walk - successful completion of path walk
573 * @nd: pointer nameidata
574 *
575 * If we had been in RCU mode, drop out of it and legitimize nd->path.
576 * Revalidate the final result, unless we'd already done that during
577 * the path walk or the filesystem doesn't ask for it. Return 0 on
578 * success, -error on failure. In case of failure caller does not
579 * need to drop nd->path.
580 */
581 static int complete_walk(struct nameidata *nd)
582 {
583 struct dentry *dentry = nd->path.dentry;
584 int status;
585
586 if (nd->flags & LOOKUP_RCU) {
587 nd->flags &= ~LOOKUP_RCU;
588 if (!(nd->flags & LOOKUP_ROOT))
589 nd->root.mnt = NULL;
590 spin_lock(&dentry->d_lock);
591 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
592 spin_unlock(&dentry->d_lock);
593 unlock_rcu_walk();
594 return -ECHILD;
595 }
596 BUG_ON(nd->inode != dentry->d_inode);
597 spin_unlock(&dentry->d_lock);
598 mntget(nd->path.mnt);
599 unlock_rcu_walk();
600 }
601
602 if (likely(!(nd->flags & LOOKUP_JUMPED)))
603 return 0;
604
605 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
606 return 0;
607
608 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
609 if (status > 0)
610 return 0;
611
612 if (!status)
613 status = -ESTALE;
614
615 path_put(&nd->path);
616 return status;
617 }
618
619 static __always_inline void set_root(struct nameidata *nd)
620 {
621 if (!nd->root.mnt)
622 get_fs_root(current->fs, &nd->root);
623 }
624
625 static int link_path_walk(const char *, struct nameidata *);
626
627 static __always_inline void set_root_rcu(struct nameidata *nd)
628 {
629 if (!nd->root.mnt) {
630 struct fs_struct *fs = current->fs;
631 unsigned seq;
632
633 do {
634 seq = read_seqcount_begin(&fs->seq);
635 nd->root = fs->root;
636 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
637 } while (read_seqcount_retry(&fs->seq, seq));
638 }
639 }
640
641 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
642 {
643 int ret;
644
645 if (IS_ERR(link))
646 goto fail;
647
648 if (*link == '/') {
649 set_root(nd);
650 path_put(&nd->path);
651 nd->path = nd->root;
652 path_get(&nd->root);
653 nd->flags |= LOOKUP_JUMPED;
654 }
655 nd->inode = nd->path.dentry->d_inode;
656
657 ret = link_path_walk(link, nd);
658 return ret;
659 fail:
660 path_put(&nd->path);
661 return PTR_ERR(link);
662 }
663
664 static void path_put_conditional(struct path *path, struct nameidata *nd)
665 {
666 dput(path->dentry);
667 if (path->mnt != nd->path.mnt)
668 mntput(path->mnt);
669 }
670
671 static inline void path_to_nameidata(const struct path *path,
672 struct nameidata *nd)
673 {
674 if (!(nd->flags & LOOKUP_RCU)) {
675 dput(nd->path.dentry);
676 if (nd->path.mnt != path->mnt)
677 mntput(nd->path.mnt);
678 }
679 nd->path.mnt = path->mnt;
680 nd->path.dentry = path->dentry;
681 }
682
683 /*
684 * Helper to directly jump to a known parsed path from ->follow_link,
685 * caller must have taken a reference to path beforehand.
686 */
687 void nd_jump_link(struct nameidata *nd, struct path *path)
688 {
689 path_put(&nd->path);
690
691 nd->path = *path;
692 nd->inode = nd->path.dentry->d_inode;
693 nd->flags |= LOOKUP_JUMPED;
694 }
695
696 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
697 {
698 struct inode *inode = link->dentry->d_inode;
699 if (inode->i_op->put_link)
700 inode->i_op->put_link(link->dentry, nd, cookie);
701 path_put(link);
702 }
703
704 int sysctl_protected_symlinks __read_mostly = 0;
705 int sysctl_protected_hardlinks __read_mostly = 0;
706
707 /**
708 * may_follow_link - Check symlink following for unsafe situations
709 * @link: The path of the symlink
710 * @nd: nameidata pathwalk data
711 *
712 * In the case of the sysctl_protected_symlinks sysctl being enabled,
713 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
714 * in a sticky world-writable directory. This is to protect privileged
715 * processes from failing races against path names that may change out
716 * from under them by way of other users creating malicious symlinks.
717 * It will permit symlinks to be followed only when outside a sticky
718 * world-writable directory, or when the uid of the symlink and follower
719 * match, or when the directory owner matches the symlink's owner.
720 *
721 * Returns 0 if following the symlink is allowed, -ve on error.
722 */
723 static inline int may_follow_link(struct path *link, struct nameidata *nd)
724 {
725 const struct inode *inode;
726 const struct inode *parent;
727
728 if (!sysctl_protected_symlinks)
729 return 0;
730
731 /* Allowed if owner and follower match. */
732 inode = link->dentry->d_inode;
733 if (uid_eq(current_cred()->fsuid, inode->i_uid))
734 return 0;
735
736 /* Allowed if parent directory not sticky and world-writable. */
737 parent = nd->path.dentry->d_inode;
738 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
739 return 0;
740
741 /* Allowed if parent directory and link owner match. */
742 if (uid_eq(parent->i_uid, inode->i_uid))
743 return 0;
744
745 audit_log_link_denied("follow_link", link);
746 path_put_conditional(link, nd);
747 path_put(&nd->path);
748 return -EACCES;
749 }
750
751 /**
752 * safe_hardlink_source - Check for safe hardlink conditions
753 * @inode: the source inode to hardlink from
754 *
755 * Return false if at least one of the following conditions:
756 * - inode is not a regular file
757 * - inode is setuid
758 * - inode is setgid and group-exec
759 * - access failure for read and write
760 *
761 * Otherwise returns true.
762 */
763 static bool safe_hardlink_source(struct inode *inode)
764 {
765 umode_t mode = inode->i_mode;
766
767 /* Special files should not get pinned to the filesystem. */
768 if (!S_ISREG(mode))
769 return false;
770
771 /* Setuid files should not get pinned to the filesystem. */
772 if (mode & S_ISUID)
773 return false;
774
775 /* Executable setgid files should not get pinned to the filesystem. */
776 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
777 return false;
778
779 /* Hardlinking to unreadable or unwritable sources is dangerous. */
780 if (inode_permission(inode, MAY_READ | MAY_WRITE))
781 return false;
782
783 return true;
784 }
785
786 /**
787 * may_linkat - Check permissions for creating a hardlink
788 * @link: the source to hardlink from
789 *
790 * Block hardlink when all of:
791 * - sysctl_protected_hardlinks enabled
792 * - fsuid does not match inode
793 * - hardlink source is unsafe (see safe_hardlink_source() above)
794 * - not CAP_FOWNER
795 *
796 * Returns 0 if successful, -ve on error.
797 */
798 static int may_linkat(struct path *link)
799 {
800 const struct cred *cred;
801 struct inode *inode;
802
803 if (!sysctl_protected_hardlinks)
804 return 0;
805
806 cred = current_cred();
807 inode = link->dentry->d_inode;
808
809 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
810 * otherwise, it must be a safe source.
811 */
812 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
813 capable(CAP_FOWNER))
814 return 0;
815
816 audit_log_link_denied("linkat", link);
817 return -EPERM;
818 }
819
820 static __always_inline int
821 follow_link(struct path *link, struct nameidata *nd, void **p)
822 {
823 struct dentry *dentry = link->dentry;
824 int error;
825 char *s;
826
827 BUG_ON(nd->flags & LOOKUP_RCU);
828
829 if (link->mnt == nd->path.mnt)
830 mntget(link->mnt);
831
832 error = -ELOOP;
833 if (unlikely(current->total_link_count >= 40))
834 goto out_put_nd_path;
835
836 cond_resched();
837 current->total_link_count++;
838
839 touch_atime(link);
840 nd_set_link(nd, NULL);
841
842 error = security_inode_follow_link(link->dentry, nd);
843 if (error)
844 goto out_put_nd_path;
845
846 nd->last_type = LAST_BIND;
847 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
848 error = PTR_ERR(*p);
849 if (IS_ERR(*p))
850 goto out_put_nd_path;
851
852 error = 0;
853 s = nd_get_link(nd);
854 if (s) {
855 error = __vfs_follow_link(nd, s);
856 if (unlikely(error))
857 put_link(nd, link, *p);
858 }
859
860 return error;
861
862 out_put_nd_path:
863 *p = NULL;
864 path_put(&nd->path);
865 path_put(link);
866 return error;
867 }
868
869 static int follow_up_rcu(struct path *path)
870 {
871 struct mount *mnt = real_mount(path->mnt);
872 struct mount *parent;
873 struct dentry *mountpoint;
874
875 parent = mnt->mnt_parent;
876 if (&parent->mnt == path->mnt)
877 return 0;
878 mountpoint = mnt->mnt_mountpoint;
879 path->dentry = mountpoint;
880 path->mnt = &parent->mnt;
881 return 1;
882 }
883
884 /*
885 * follow_up - Find the mountpoint of path's vfsmount
886 *
887 * Given a path, find the mountpoint of its source file system.
888 * Replace @path with the path of the mountpoint in the parent mount.
889 * Up is towards /.
890 *
891 * Return 1 if we went up a level and 0 if we were already at the
892 * root.
893 */
894 int follow_up(struct path *path)
895 {
896 struct mount *mnt = real_mount(path->mnt);
897 struct mount *parent;
898 struct dentry *mountpoint;
899
900 br_read_lock(&vfsmount_lock);
901 parent = mnt->mnt_parent;
902 if (parent == mnt) {
903 br_read_unlock(&vfsmount_lock);
904 return 0;
905 }
906 mntget(&parent->mnt);
907 mountpoint = dget(mnt->mnt_mountpoint);
908 br_read_unlock(&vfsmount_lock);
909 dput(path->dentry);
910 path->dentry = mountpoint;
911 mntput(path->mnt);
912 path->mnt = &parent->mnt;
913 return 1;
914 }
915
916 /*
917 * Perform an automount
918 * - return -EISDIR to tell follow_managed() to stop and return the path we
919 * were called with.
920 */
921 static int follow_automount(struct path *path, unsigned flags,
922 bool *need_mntput)
923 {
924 struct vfsmount *mnt;
925 int err;
926
927 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
928 return -EREMOTE;
929
930 /* We don't want to mount if someone's just doing a stat -
931 * unless they're stat'ing a directory and appended a '/' to
932 * the name.
933 *
934 * We do, however, want to mount if someone wants to open or
935 * create a file of any type under the mountpoint, wants to
936 * traverse through the mountpoint or wants to open the
937 * mounted directory. Also, autofs may mark negative dentries
938 * as being automount points. These will need the attentions
939 * of the daemon to instantiate them before they can be used.
940 */
941 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
942 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
943 path->dentry->d_inode)
944 return -EISDIR;
945
946 current->total_link_count++;
947 if (current->total_link_count >= 40)
948 return -ELOOP;
949
950 mnt = path->dentry->d_op->d_automount(path);
951 if (IS_ERR(mnt)) {
952 /*
953 * The filesystem is allowed to return -EISDIR here to indicate
954 * it doesn't want to automount. For instance, autofs would do
955 * this so that its userspace daemon can mount on this dentry.
956 *
957 * However, we can only permit this if it's a terminal point in
958 * the path being looked up; if it wasn't then the remainder of
959 * the path is inaccessible and we should say so.
960 */
961 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
962 return -EREMOTE;
963 return PTR_ERR(mnt);
964 }
965
966 if (!mnt) /* mount collision */
967 return 0;
968
969 if (!*need_mntput) {
970 /* lock_mount() may release path->mnt on error */
971 mntget(path->mnt);
972 *need_mntput = true;
973 }
974 err = finish_automount(mnt, path);
975
976 switch (err) {
977 case -EBUSY:
978 /* Someone else made a mount here whilst we were busy */
979 return 0;
980 case 0:
981 path_put(path);
982 path->mnt = mnt;
983 path->dentry = dget(mnt->mnt_root);
984 return 0;
985 default:
986 return err;
987 }
988
989 }
990
991 /*
992 * Handle a dentry that is managed in some way.
993 * - Flagged for transit management (autofs)
994 * - Flagged as mountpoint
995 * - Flagged as automount point
996 *
997 * This may only be called in refwalk mode.
998 *
999 * Serialization is taken care of in namespace.c
1000 */
1001 static int follow_managed(struct path *path, unsigned flags)
1002 {
1003 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1004 unsigned managed;
1005 bool need_mntput = false;
1006 int ret = 0;
1007
1008 /* Given that we're not holding a lock here, we retain the value in a
1009 * local variable for each dentry as we look at it so that we don't see
1010 * the components of that value change under us */
1011 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1012 managed &= DCACHE_MANAGED_DENTRY,
1013 unlikely(managed != 0)) {
1014 /* Allow the filesystem to manage the transit without i_mutex
1015 * being held. */
1016 if (managed & DCACHE_MANAGE_TRANSIT) {
1017 BUG_ON(!path->dentry->d_op);
1018 BUG_ON(!path->dentry->d_op->d_manage);
1019 ret = path->dentry->d_op->d_manage(path->dentry, false);
1020 if (ret < 0)
1021 break;
1022 }
1023
1024 /* Transit to a mounted filesystem. */
1025 if (managed & DCACHE_MOUNTED) {
1026 struct vfsmount *mounted = lookup_mnt(path);
1027 if (mounted) {
1028 dput(path->dentry);
1029 if (need_mntput)
1030 mntput(path->mnt);
1031 path->mnt = mounted;
1032 path->dentry = dget(mounted->mnt_root);
1033 need_mntput = true;
1034 continue;
1035 }
1036
1037 /* Something is mounted on this dentry in another
1038 * namespace and/or whatever was mounted there in this
1039 * namespace got unmounted before we managed to get the
1040 * vfsmount_lock */
1041 }
1042
1043 /* Handle an automount point */
1044 if (managed & DCACHE_NEED_AUTOMOUNT) {
1045 ret = follow_automount(path, flags, &need_mntput);
1046 if (ret < 0)
1047 break;
1048 continue;
1049 }
1050
1051 /* We didn't change the current path point */
1052 break;
1053 }
1054
1055 if (need_mntput && path->mnt == mnt)
1056 mntput(path->mnt);
1057 if (ret == -EISDIR)
1058 ret = 0;
1059 return ret < 0 ? ret : need_mntput;
1060 }
1061
1062 int follow_down_one(struct path *path)
1063 {
1064 struct vfsmount *mounted;
1065
1066 mounted = lookup_mnt(path);
1067 if (mounted) {
1068 dput(path->dentry);
1069 mntput(path->mnt);
1070 path->mnt = mounted;
1071 path->dentry = dget(mounted->mnt_root);
1072 return 1;
1073 }
1074 return 0;
1075 }
1076
1077 static inline bool managed_dentry_might_block(struct dentry *dentry)
1078 {
1079 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1080 dentry->d_op->d_manage(dentry, true) < 0);
1081 }
1082
1083 /*
1084 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1085 * we meet a managed dentry that would need blocking.
1086 */
1087 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1088 struct inode **inode)
1089 {
1090 for (;;) {
1091 struct mount *mounted;
1092 /*
1093 * Don't forget we might have a non-mountpoint managed dentry
1094 * that wants to block transit.
1095 */
1096 if (unlikely(managed_dentry_might_block(path->dentry)))
1097 return false;
1098
1099 if (!d_mountpoint(path->dentry))
1100 break;
1101
1102 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1103 if (!mounted)
1104 break;
1105 path->mnt = &mounted->mnt;
1106 path->dentry = mounted->mnt.mnt_root;
1107 nd->flags |= LOOKUP_JUMPED;
1108 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1109 /*
1110 * Update the inode too. We don't need to re-check the
1111 * dentry sequence number here after this d_inode read,
1112 * because a mount-point is always pinned.
1113 */
1114 *inode = path->dentry->d_inode;
1115 }
1116 return true;
1117 }
1118
1119 static void follow_mount_rcu(struct nameidata *nd)
1120 {
1121 while (d_mountpoint(nd->path.dentry)) {
1122 struct mount *mounted;
1123 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1124 if (!mounted)
1125 break;
1126 nd->path.mnt = &mounted->mnt;
1127 nd->path.dentry = mounted->mnt.mnt_root;
1128 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1129 }
1130 }
1131
1132 static int follow_dotdot_rcu(struct nameidata *nd)
1133 {
1134 set_root_rcu(nd);
1135
1136 while (1) {
1137 if (nd->path.dentry == nd->root.dentry &&
1138 nd->path.mnt == nd->root.mnt) {
1139 break;
1140 }
1141 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1142 struct dentry *old = nd->path.dentry;
1143 struct dentry *parent = old->d_parent;
1144 unsigned seq;
1145
1146 seq = read_seqcount_begin(&parent->d_seq);
1147 if (read_seqcount_retry(&old->d_seq, nd->seq))
1148 goto failed;
1149 nd->path.dentry = parent;
1150 nd->seq = seq;
1151 break;
1152 }
1153 if (!follow_up_rcu(&nd->path))
1154 break;
1155 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1156 }
1157 follow_mount_rcu(nd);
1158 nd->inode = nd->path.dentry->d_inode;
1159 return 0;
1160
1161 failed:
1162 nd->flags &= ~LOOKUP_RCU;
1163 if (!(nd->flags & LOOKUP_ROOT))
1164 nd->root.mnt = NULL;
1165 unlock_rcu_walk();
1166 return -ECHILD;
1167 }
1168
1169 /*
1170 * Follow down to the covering mount currently visible to userspace. At each
1171 * point, the filesystem owning that dentry may be queried as to whether the
1172 * caller is permitted to proceed or not.
1173 */
1174 int follow_down(struct path *path)
1175 {
1176 unsigned managed;
1177 int ret;
1178
1179 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1180 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1181 /* Allow the filesystem to manage the transit without i_mutex
1182 * being held.
1183 *
1184 * We indicate to the filesystem if someone is trying to mount
1185 * something here. This gives autofs the chance to deny anyone
1186 * other than its daemon the right to mount on its
1187 * superstructure.
1188 *
1189 * The filesystem may sleep at this point.
1190 */
1191 if (managed & DCACHE_MANAGE_TRANSIT) {
1192 BUG_ON(!path->dentry->d_op);
1193 BUG_ON(!path->dentry->d_op->d_manage);
1194 ret = path->dentry->d_op->d_manage(
1195 path->dentry, false);
1196 if (ret < 0)
1197 return ret == -EISDIR ? 0 : ret;
1198 }
1199
1200 /* Transit to a mounted filesystem. */
1201 if (managed & DCACHE_MOUNTED) {
1202 struct vfsmount *mounted = lookup_mnt(path);
1203 if (!mounted)
1204 break;
1205 dput(path->dentry);
1206 mntput(path->mnt);
1207 path->mnt = mounted;
1208 path->dentry = dget(mounted->mnt_root);
1209 continue;
1210 }
1211
1212 /* Don't handle automount points here */
1213 break;
1214 }
1215 return 0;
1216 }
1217
1218 /*
1219 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1220 */
1221 static void follow_mount(struct path *path)
1222 {
1223 while (d_mountpoint(path->dentry)) {
1224 struct vfsmount *mounted = lookup_mnt(path);
1225 if (!mounted)
1226 break;
1227 dput(path->dentry);
1228 mntput(path->mnt);
1229 path->mnt = mounted;
1230 path->dentry = dget(mounted->mnt_root);
1231 }
1232 }
1233
1234 static void follow_dotdot(struct nameidata *nd)
1235 {
1236 set_root(nd);
1237
1238 while(1) {
1239 struct dentry *old = nd->path.dentry;
1240
1241 if (nd->path.dentry == nd->root.dentry &&
1242 nd->path.mnt == nd->root.mnt) {
1243 break;
1244 }
1245 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1246 /* rare case of legitimate dget_parent()... */
1247 nd->path.dentry = dget_parent(nd->path.dentry);
1248 dput(old);
1249 break;
1250 }
1251 if (!follow_up(&nd->path))
1252 break;
1253 }
1254 follow_mount(&nd->path);
1255 nd->inode = nd->path.dentry->d_inode;
1256 }
1257
1258 /*
1259 * This looks up the name in dcache, possibly revalidates the old dentry and
1260 * allocates a new one if not found or not valid. In the need_lookup argument
1261 * returns whether i_op->lookup is necessary.
1262 *
1263 * dir->d_inode->i_mutex must be held
1264 */
1265 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1266 unsigned int flags, bool *need_lookup)
1267 {
1268 struct dentry *dentry;
1269 int error;
1270
1271 *need_lookup = false;
1272 dentry = d_lookup(dir, name);
1273 if (dentry) {
1274 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1275 error = d_revalidate(dentry, flags);
1276 if (unlikely(error <= 0)) {
1277 if (error < 0) {
1278 dput(dentry);
1279 return ERR_PTR(error);
1280 } else if (!d_invalidate(dentry)) {
1281 dput(dentry);
1282 dentry = NULL;
1283 }
1284 }
1285 }
1286 }
1287
1288 if (!dentry) {
1289 dentry = d_alloc(dir, name);
1290 if (unlikely(!dentry))
1291 return ERR_PTR(-ENOMEM);
1292
1293 *need_lookup = true;
1294 }
1295 return dentry;
1296 }
1297
1298 /*
1299 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1300 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1301 *
1302 * dir->d_inode->i_mutex must be held
1303 */
1304 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1305 unsigned int flags)
1306 {
1307 struct dentry *old;
1308
1309 /* Don't create child dentry for a dead directory. */
1310 if (unlikely(IS_DEADDIR(dir))) {
1311 dput(dentry);
1312 return ERR_PTR(-ENOENT);
1313 }
1314
1315 old = dir->i_op->lookup(dir, dentry, flags);
1316 if (unlikely(old)) {
1317 dput(dentry);
1318 dentry = old;
1319 }
1320 return dentry;
1321 }
1322
1323 static struct dentry *__lookup_hash(struct qstr *name,
1324 struct dentry *base, unsigned int flags)
1325 {
1326 bool need_lookup;
1327 struct dentry *dentry;
1328
1329 dentry = lookup_dcache(name, base, flags, &need_lookup);
1330 if (!need_lookup)
1331 return dentry;
1332
1333 return lookup_real(base->d_inode, dentry, flags);
1334 }
1335
1336 /*
1337 * It's more convoluted than I'd like it to be, but... it's still fairly
1338 * small and for now I'd prefer to have fast path as straight as possible.
1339 * It _is_ time-critical.
1340 */
1341 static int lookup_fast(struct nameidata *nd,
1342 struct path *path, struct inode **inode)
1343 {
1344 struct vfsmount *mnt = nd->path.mnt;
1345 struct dentry *dentry, *parent = nd->path.dentry;
1346 int need_reval = 1;
1347 int status = 1;
1348 int err;
1349
1350 /*
1351 * Rename seqlock is not required here because in the off chance
1352 * of a false negative due to a concurrent rename, we're going to
1353 * do the non-racy lookup, below.
1354 */
1355 if (nd->flags & LOOKUP_RCU) {
1356 unsigned seq;
1357 dentry = __d_lookup_rcu(parent, &nd->last, &seq, nd->inode);
1358 if (!dentry)
1359 goto unlazy;
1360
1361 /*
1362 * This sequence count validates that the inode matches
1363 * the dentry name information from lookup.
1364 */
1365 *inode = dentry->d_inode;
1366 if (read_seqcount_retry(&dentry->d_seq, seq))
1367 return -ECHILD;
1368
1369 /*
1370 * This sequence count validates that the parent had no
1371 * changes while we did the lookup of the dentry above.
1372 *
1373 * The memory barrier in read_seqcount_begin of child is
1374 * enough, we can use __read_seqcount_retry here.
1375 */
1376 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1377 return -ECHILD;
1378 nd->seq = seq;
1379
1380 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1381 status = d_revalidate(dentry, nd->flags);
1382 if (unlikely(status <= 0)) {
1383 if (status != -ECHILD)
1384 need_reval = 0;
1385 goto unlazy;
1386 }
1387 }
1388 path->mnt = mnt;
1389 path->dentry = dentry;
1390 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1391 goto unlazy;
1392 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1393 goto unlazy;
1394 return 0;
1395 unlazy:
1396 if (unlazy_walk(nd, dentry))
1397 return -ECHILD;
1398 } else {
1399 dentry = __d_lookup(parent, &nd->last);
1400 }
1401
1402 if (unlikely(!dentry))
1403 goto need_lookup;
1404
1405 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1406 status = d_revalidate(dentry, nd->flags);
1407 if (unlikely(status <= 0)) {
1408 if (status < 0) {
1409 dput(dentry);
1410 return status;
1411 }
1412 if (!d_invalidate(dentry)) {
1413 dput(dentry);
1414 goto need_lookup;
1415 }
1416 }
1417
1418 path->mnt = mnt;
1419 path->dentry = dentry;
1420 err = follow_managed(path, nd->flags);
1421 if (unlikely(err < 0)) {
1422 path_put_conditional(path, nd);
1423 return err;
1424 }
1425 if (err)
1426 nd->flags |= LOOKUP_JUMPED;
1427 *inode = path->dentry->d_inode;
1428 return 0;
1429
1430 need_lookup:
1431 return 1;
1432 }
1433
1434 /* Fast lookup failed, do it the slow way */
1435 static int lookup_slow(struct nameidata *nd, struct path *path)
1436 {
1437 struct dentry *dentry, *parent;
1438 int err;
1439
1440 parent = nd->path.dentry;
1441 BUG_ON(nd->inode != parent->d_inode);
1442
1443 mutex_lock(&parent->d_inode->i_mutex);
1444 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1445 mutex_unlock(&parent->d_inode->i_mutex);
1446 if (IS_ERR(dentry))
1447 return PTR_ERR(dentry);
1448 path->mnt = nd->path.mnt;
1449 path->dentry = dentry;
1450 err = follow_managed(path, nd->flags);
1451 if (unlikely(err < 0)) {
1452 path_put_conditional(path, nd);
1453 return err;
1454 }
1455 if (err)
1456 nd->flags |= LOOKUP_JUMPED;
1457 return 0;
1458 }
1459
1460 static inline int may_lookup(struct nameidata *nd)
1461 {
1462 if (nd->flags & LOOKUP_RCU) {
1463 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1464 if (err != -ECHILD)
1465 return err;
1466 if (unlazy_walk(nd, NULL))
1467 return -ECHILD;
1468 }
1469 return inode_permission(nd->inode, MAY_EXEC);
1470 }
1471
1472 static inline int handle_dots(struct nameidata *nd, int type)
1473 {
1474 if (type == LAST_DOTDOT) {
1475 if (nd->flags & LOOKUP_RCU) {
1476 if (follow_dotdot_rcu(nd))
1477 return -ECHILD;
1478 } else
1479 follow_dotdot(nd);
1480 }
1481 return 0;
1482 }
1483
1484 static void terminate_walk(struct nameidata *nd)
1485 {
1486 if (!(nd->flags & LOOKUP_RCU)) {
1487 path_put(&nd->path);
1488 } else {
1489 nd->flags &= ~LOOKUP_RCU;
1490 if (!(nd->flags & LOOKUP_ROOT))
1491 nd->root.mnt = NULL;
1492 unlock_rcu_walk();
1493 }
1494 }
1495
1496 /*
1497 * Do we need to follow links? We _really_ want to be able
1498 * to do this check without having to look at inode->i_op,
1499 * so we keep a cache of "no, this doesn't need follow_link"
1500 * for the common case.
1501 */
1502 static inline int should_follow_link(struct inode *inode, int follow)
1503 {
1504 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1505 if (likely(inode->i_op->follow_link))
1506 return follow;
1507
1508 /* This gets set once for the inode lifetime */
1509 spin_lock(&inode->i_lock);
1510 inode->i_opflags |= IOP_NOFOLLOW;
1511 spin_unlock(&inode->i_lock);
1512 }
1513 return 0;
1514 }
1515
1516 static inline int walk_component(struct nameidata *nd, struct path *path,
1517 int follow)
1518 {
1519 struct inode *inode;
1520 int err;
1521 /*
1522 * "." and ".." are special - ".." especially so because it has
1523 * to be able to know about the current root directory and
1524 * parent relationships.
1525 */
1526 if (unlikely(nd->last_type != LAST_NORM))
1527 return handle_dots(nd, nd->last_type);
1528 err = lookup_fast(nd, path, &inode);
1529 if (unlikely(err)) {
1530 if (err < 0)
1531 goto out_err;
1532
1533 err = lookup_slow(nd, path);
1534 if (err < 0)
1535 goto out_err;
1536
1537 inode = path->dentry->d_inode;
1538 }
1539 err = -ENOENT;
1540 if (!inode)
1541 goto out_path_put;
1542
1543 if (should_follow_link(inode, follow)) {
1544 if (nd->flags & LOOKUP_RCU) {
1545 if (unlikely(nd->path.mnt != path->mnt ||
1546 unlazy_walk(nd, path->dentry))) {
1547 err = -ECHILD;
1548 goto out_err;
1549 }
1550 }
1551 BUG_ON(inode != path->dentry->d_inode);
1552 return 1;
1553 }
1554 path_to_nameidata(path, nd);
1555 nd->inode = inode;
1556 return 0;
1557
1558 out_path_put:
1559 path_to_nameidata(path, nd);
1560 out_err:
1561 terminate_walk(nd);
1562 return err;
1563 }
1564
1565 /*
1566 * This limits recursive symlink follows to 8, while
1567 * limiting consecutive symlinks to 40.
1568 *
1569 * Without that kind of total limit, nasty chains of consecutive
1570 * symlinks can cause almost arbitrarily long lookups.
1571 */
1572 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1573 {
1574 int res;
1575
1576 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1577 path_put_conditional(path, nd);
1578 path_put(&nd->path);
1579 return -ELOOP;
1580 }
1581 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1582
1583 nd->depth++;
1584 current->link_count++;
1585
1586 do {
1587 struct path link = *path;
1588 void *cookie;
1589
1590 res = follow_link(&link, nd, &cookie);
1591 if (res)
1592 break;
1593 res = walk_component(nd, path, LOOKUP_FOLLOW);
1594 put_link(nd, &link, cookie);
1595 } while (res > 0);
1596
1597 current->link_count--;
1598 nd->depth--;
1599 return res;
1600 }
1601
1602 /*
1603 * We really don't want to look at inode->i_op->lookup
1604 * when we don't have to. So we keep a cache bit in
1605 * the inode ->i_opflags field that says "yes, we can
1606 * do lookup on this inode".
1607 */
1608 static inline int can_lookup(struct inode *inode)
1609 {
1610 if (likely(inode->i_opflags & IOP_LOOKUP))
1611 return 1;
1612 if (likely(!inode->i_op->lookup))
1613 return 0;
1614
1615 /* We do this once for the lifetime of the inode */
1616 spin_lock(&inode->i_lock);
1617 inode->i_opflags |= IOP_LOOKUP;
1618 spin_unlock(&inode->i_lock);
1619 return 1;
1620 }
1621
1622 /*
1623 * We can do the critical dentry name comparison and hashing
1624 * operations one word at a time, but we are limited to:
1625 *
1626 * - Architectures with fast unaligned word accesses. We could
1627 * do a "get_unaligned()" if this helps and is sufficiently
1628 * fast.
1629 *
1630 * - Little-endian machines (so that we can generate the mask
1631 * of low bytes efficiently). Again, we *could* do a byte
1632 * swapping load on big-endian architectures if that is not
1633 * expensive enough to make the optimization worthless.
1634 *
1635 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1636 * do not trap on the (extremely unlikely) case of a page
1637 * crossing operation.
1638 *
1639 * - Furthermore, we need an efficient 64-bit compile for the
1640 * 64-bit case in order to generate the "number of bytes in
1641 * the final mask". Again, that could be replaced with a
1642 * efficient population count instruction or similar.
1643 */
1644 #ifdef CONFIG_DCACHE_WORD_ACCESS
1645
1646 #include <asm/word-at-a-time.h>
1647
1648 #ifdef CONFIG_64BIT
1649
1650 static inline unsigned int fold_hash(unsigned long hash)
1651 {
1652 return hash_64(hash, 32);
1653 }
1654
1655 #else /* 32-bit case */
1656
1657 #define fold_hash(x) (x)
1658
1659 #endif
1660
1661 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1662 {
1663 unsigned long a, mask;
1664 unsigned long hash = 0;
1665
1666 for (;;) {
1667 a = load_unaligned_zeropad(name);
1668 if (len < sizeof(unsigned long))
1669 break;
1670 hash += a;
1671 hash *= 9;
1672 name += sizeof(unsigned long);
1673 len -= sizeof(unsigned long);
1674 if (!len)
1675 goto done;
1676 }
1677 mask = ~(~0ul << len*8);
1678 hash += mask & a;
1679 done:
1680 return fold_hash(hash);
1681 }
1682 EXPORT_SYMBOL(full_name_hash);
1683
1684 /*
1685 * Calculate the length and hash of the path component, and
1686 * return the length of the component;
1687 */
1688 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1689 {
1690 unsigned long a, b, adata, bdata, mask, hash, len;
1691 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1692
1693 hash = a = 0;
1694 len = -sizeof(unsigned long);
1695 do {
1696 hash = (hash + a) * 9;
1697 len += sizeof(unsigned long);
1698 a = load_unaligned_zeropad(name+len);
1699 b = a ^ REPEAT_BYTE('/');
1700 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1701
1702 adata = prep_zero_mask(a, adata, &constants);
1703 bdata = prep_zero_mask(b, bdata, &constants);
1704
1705 mask = create_zero_mask(adata | bdata);
1706
1707 hash += a & zero_bytemask(mask);
1708 *hashp = fold_hash(hash);
1709
1710 return len + find_zero(mask);
1711 }
1712
1713 #else
1714
1715 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1716 {
1717 unsigned long hash = init_name_hash();
1718 while (len--)
1719 hash = partial_name_hash(*name++, hash);
1720 return end_name_hash(hash);
1721 }
1722 EXPORT_SYMBOL(full_name_hash);
1723
1724 /*
1725 * We know there's a real path component here of at least
1726 * one character.
1727 */
1728 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1729 {
1730 unsigned long hash = init_name_hash();
1731 unsigned long len = 0, c;
1732
1733 c = (unsigned char)*name;
1734 do {
1735 len++;
1736 hash = partial_name_hash(c, hash);
1737 c = (unsigned char)name[len];
1738 } while (c && c != '/');
1739 *hashp = end_name_hash(hash);
1740 return len;
1741 }
1742
1743 #endif
1744
1745 /*
1746 * Name resolution.
1747 * This is the basic name resolution function, turning a pathname into
1748 * the final dentry. We expect 'base' to be positive and a directory.
1749 *
1750 * Returns 0 and nd will have valid dentry and mnt on success.
1751 * Returns error and drops reference to input namei data on failure.
1752 */
1753 static int link_path_walk(const char *name, struct nameidata *nd)
1754 {
1755 struct path next;
1756 int err;
1757
1758 while (*name=='/')
1759 name++;
1760 if (!*name)
1761 return 0;
1762
1763 /* At this point we know we have a real path component. */
1764 for(;;) {
1765 struct qstr this;
1766 long len;
1767 int type;
1768
1769 err = may_lookup(nd);
1770 if (err)
1771 break;
1772
1773 len = hash_name(name, &this.hash);
1774 this.name = name;
1775 this.len = len;
1776
1777 type = LAST_NORM;
1778 if (name[0] == '.') switch (len) {
1779 case 2:
1780 if (name[1] == '.') {
1781 type = LAST_DOTDOT;
1782 nd->flags |= LOOKUP_JUMPED;
1783 }
1784 break;
1785 case 1:
1786 type = LAST_DOT;
1787 }
1788 if (likely(type == LAST_NORM)) {
1789 struct dentry *parent = nd->path.dentry;
1790 nd->flags &= ~LOOKUP_JUMPED;
1791 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1792 err = parent->d_op->d_hash(parent, nd->inode,
1793 &this);
1794 if (err < 0)
1795 break;
1796 }
1797 }
1798
1799 nd->last = this;
1800 nd->last_type = type;
1801
1802 if (!name[len])
1803 return 0;
1804 /*
1805 * If it wasn't NUL, we know it was '/'. Skip that
1806 * slash, and continue until no more slashes.
1807 */
1808 do {
1809 len++;
1810 } while (unlikely(name[len] == '/'));
1811 if (!name[len])
1812 return 0;
1813
1814 name += len;
1815
1816 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1817 if (err < 0)
1818 return err;
1819
1820 if (err) {
1821 err = nested_symlink(&next, nd);
1822 if (err)
1823 return err;
1824 }
1825 if (!can_lookup(nd->inode)) {
1826 err = -ENOTDIR;
1827 break;
1828 }
1829 }
1830 terminate_walk(nd);
1831 return err;
1832 }
1833
1834 static int path_init(int dfd, const char *name, unsigned int flags,
1835 struct nameidata *nd, struct file **fp)
1836 {
1837 int retval = 0;
1838
1839 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1840 nd->flags = flags | LOOKUP_JUMPED;
1841 nd->depth = 0;
1842 if (flags & LOOKUP_ROOT) {
1843 struct inode *inode = nd->root.dentry->d_inode;
1844 if (*name) {
1845 if (!can_lookup(inode))
1846 return -ENOTDIR;
1847 retval = inode_permission(inode, MAY_EXEC);
1848 if (retval)
1849 return retval;
1850 }
1851 nd->path = nd->root;
1852 nd->inode = inode;
1853 if (flags & LOOKUP_RCU) {
1854 lock_rcu_walk();
1855 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1856 } else {
1857 path_get(&nd->path);
1858 }
1859 return 0;
1860 }
1861
1862 nd->root.mnt = NULL;
1863
1864 if (*name=='/') {
1865 if (flags & LOOKUP_RCU) {
1866 lock_rcu_walk();
1867 set_root_rcu(nd);
1868 } else {
1869 set_root(nd);
1870 path_get(&nd->root);
1871 }
1872 nd->path = nd->root;
1873 } else if (dfd == AT_FDCWD) {
1874 if (flags & LOOKUP_RCU) {
1875 struct fs_struct *fs = current->fs;
1876 unsigned seq;
1877
1878 lock_rcu_walk();
1879
1880 do {
1881 seq = read_seqcount_begin(&fs->seq);
1882 nd->path = fs->pwd;
1883 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1884 } while (read_seqcount_retry(&fs->seq, seq));
1885 } else {
1886 get_fs_pwd(current->fs, &nd->path);
1887 }
1888 } else {
1889 /* Caller must check execute permissions on the starting path component */
1890 struct fd f = fdget_raw(dfd);
1891 struct dentry *dentry;
1892
1893 if (!f.file)
1894 return -EBADF;
1895
1896 dentry = f.file->f_path.dentry;
1897
1898 if (*name) {
1899 if (!can_lookup(dentry->d_inode)) {
1900 fdput(f);
1901 return -ENOTDIR;
1902 }
1903 }
1904
1905 nd->path = f.file->f_path;
1906 if (flags & LOOKUP_RCU) {
1907 if (f.need_put)
1908 *fp = f.file;
1909 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1910 lock_rcu_walk();
1911 } else {
1912 path_get(&nd->path);
1913 fdput(f);
1914 }
1915 }
1916
1917 nd->inode = nd->path.dentry->d_inode;
1918 return 0;
1919 }
1920
1921 static inline int lookup_last(struct nameidata *nd, struct path *path)
1922 {
1923 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1924 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1925
1926 nd->flags &= ~LOOKUP_PARENT;
1927 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1928 }
1929
1930 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1931 static int path_lookupat(int dfd, const char *name,
1932 unsigned int flags, struct nameidata *nd)
1933 {
1934 struct file *base = NULL;
1935 struct path path;
1936 int err;
1937
1938 /*
1939 * Path walking is largely split up into 2 different synchronisation
1940 * schemes, rcu-walk and ref-walk (explained in
1941 * Documentation/filesystems/path-lookup.txt). These share much of the
1942 * path walk code, but some things particularly setup, cleanup, and
1943 * following mounts are sufficiently divergent that functions are
1944 * duplicated. Typically there is a function foo(), and its RCU
1945 * analogue, foo_rcu().
1946 *
1947 * -ECHILD is the error number of choice (just to avoid clashes) that
1948 * is returned if some aspect of an rcu-walk fails. Such an error must
1949 * be handled by restarting a traditional ref-walk (which will always
1950 * be able to complete).
1951 */
1952 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1953
1954 if (unlikely(err))
1955 return err;
1956
1957 current->total_link_count = 0;
1958 err = link_path_walk(name, nd);
1959
1960 if (!err && !(flags & LOOKUP_PARENT)) {
1961 err = lookup_last(nd, &path);
1962 while (err > 0) {
1963 void *cookie;
1964 struct path link = path;
1965 err = may_follow_link(&link, nd);
1966 if (unlikely(err))
1967 break;
1968 nd->flags |= LOOKUP_PARENT;
1969 err = follow_link(&link, nd, &cookie);
1970 if (err)
1971 break;
1972 err = lookup_last(nd, &path);
1973 put_link(nd, &link, cookie);
1974 }
1975 }
1976
1977 if (!err)
1978 err = complete_walk(nd);
1979
1980 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1981 if (!can_lookup(nd->inode)) {
1982 path_put(&nd->path);
1983 err = -ENOTDIR;
1984 }
1985 }
1986
1987 if (base)
1988 fput(base);
1989
1990 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1991 path_put(&nd->root);
1992 nd->root.mnt = NULL;
1993 }
1994 return err;
1995 }
1996
1997 static int filename_lookup(int dfd, struct filename *name,
1998 unsigned int flags, struct nameidata *nd)
1999 {
2000 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2001 if (unlikely(retval == -ECHILD))
2002 retval = path_lookupat(dfd, name->name, flags, nd);
2003 if (unlikely(retval == -ESTALE))
2004 retval = path_lookupat(dfd, name->name,
2005 flags | LOOKUP_REVAL, nd);
2006
2007 if (likely(!retval))
2008 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2009 return retval;
2010 }
2011
2012 static int do_path_lookup(int dfd, const char *name,
2013 unsigned int flags, struct nameidata *nd)
2014 {
2015 struct filename filename = { .name = name };
2016
2017 return filename_lookup(dfd, &filename, flags, nd);
2018 }
2019
2020 /* does lookup, returns the object with parent locked */
2021 struct dentry *kern_path_locked(const char *name, struct path *path)
2022 {
2023 struct nameidata nd;
2024 struct dentry *d;
2025 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2026 if (err)
2027 return ERR_PTR(err);
2028 if (nd.last_type != LAST_NORM) {
2029 path_put(&nd.path);
2030 return ERR_PTR(-EINVAL);
2031 }
2032 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2033 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2034 if (IS_ERR(d)) {
2035 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2036 path_put(&nd.path);
2037 return d;
2038 }
2039 *path = nd.path;
2040 return d;
2041 }
2042
2043 int kern_path(const char *name, unsigned int flags, struct path *path)
2044 {
2045 struct nameidata nd;
2046 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2047 if (!res)
2048 *path = nd.path;
2049 return res;
2050 }
2051
2052 /**
2053 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2054 * @dentry: pointer to dentry of the base directory
2055 * @mnt: pointer to vfs mount of the base directory
2056 * @name: pointer to file name
2057 * @flags: lookup flags
2058 * @path: pointer to struct path to fill
2059 */
2060 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2061 const char *name, unsigned int flags,
2062 struct path *path)
2063 {
2064 struct nameidata nd;
2065 int err;
2066 nd.root.dentry = dentry;
2067 nd.root.mnt = mnt;
2068 BUG_ON(flags & LOOKUP_PARENT);
2069 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2070 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2071 if (!err)
2072 *path = nd.path;
2073 return err;
2074 }
2075
2076 /*
2077 * Restricted form of lookup. Doesn't follow links, single-component only,
2078 * needs parent already locked. Doesn't follow mounts.
2079 * SMP-safe.
2080 */
2081 static struct dentry *lookup_hash(struct nameidata *nd)
2082 {
2083 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2084 }
2085
2086 /**
2087 * lookup_one_len - filesystem helper to lookup single pathname component
2088 * @name: pathname component to lookup
2089 * @base: base directory to lookup from
2090 * @len: maximum length @len should be interpreted to
2091 *
2092 * Note that this routine is purely a helper for filesystem usage and should
2093 * not be called by generic code. Also note that by using this function the
2094 * nameidata argument is passed to the filesystem methods and a filesystem
2095 * using this helper needs to be prepared for that.
2096 */
2097 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2098 {
2099 struct qstr this;
2100 unsigned int c;
2101 int err;
2102
2103 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2104
2105 this.name = name;
2106 this.len = len;
2107 this.hash = full_name_hash(name, len);
2108 if (!len)
2109 return ERR_PTR(-EACCES);
2110
2111 if (unlikely(name[0] == '.')) {
2112 if (len < 2 || (len == 2 && name[1] == '.'))
2113 return ERR_PTR(-EACCES);
2114 }
2115
2116 while (len--) {
2117 c = *(const unsigned char *)name++;
2118 if (c == '/' || c == '\0')
2119 return ERR_PTR(-EACCES);
2120 }
2121 /*
2122 * See if the low-level filesystem might want
2123 * to use its own hash..
2124 */
2125 if (base->d_flags & DCACHE_OP_HASH) {
2126 int err = base->d_op->d_hash(base, base->d_inode, &this);
2127 if (err < 0)
2128 return ERR_PTR(err);
2129 }
2130
2131 err = inode_permission(base->d_inode, MAY_EXEC);
2132 if (err)
2133 return ERR_PTR(err);
2134
2135 return __lookup_hash(&this, base, 0);
2136 }
2137
2138 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2139 struct path *path, int *empty)
2140 {
2141 struct nameidata nd;
2142 struct filename *tmp = getname_flags(name, flags, empty);
2143 int err = PTR_ERR(tmp);
2144 if (!IS_ERR(tmp)) {
2145
2146 BUG_ON(flags & LOOKUP_PARENT);
2147
2148 err = filename_lookup(dfd, tmp, flags, &nd);
2149 putname(tmp);
2150 if (!err)
2151 *path = nd.path;
2152 }
2153 return err;
2154 }
2155
2156 int user_path_at(int dfd, const char __user *name, unsigned flags,
2157 struct path *path)
2158 {
2159 return user_path_at_empty(dfd, name, flags, path, NULL);
2160 }
2161
2162 /*
2163 * NB: most callers don't do anything directly with the reference to the
2164 * to struct filename, but the nd->last pointer points into the name string
2165 * allocated by getname. So we must hold the reference to it until all
2166 * path-walking is complete.
2167 */
2168 static struct filename *
2169 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2170 unsigned int flags)
2171 {
2172 struct filename *s = getname(path);
2173 int error;
2174
2175 /* only LOOKUP_REVAL is allowed in extra flags */
2176 flags &= LOOKUP_REVAL;
2177
2178 if (IS_ERR(s))
2179 return s;
2180
2181 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2182 if (error) {
2183 putname(s);
2184 return ERR_PTR(error);
2185 }
2186
2187 return s;
2188 }
2189
2190 /*
2191 * It's inline, so penalty for filesystems that don't use sticky bit is
2192 * minimal.
2193 */
2194 static inline int check_sticky(struct inode *dir, struct inode *inode)
2195 {
2196 kuid_t fsuid = current_fsuid();
2197
2198 if (!(dir->i_mode & S_ISVTX))
2199 return 0;
2200 if (uid_eq(inode->i_uid, fsuid))
2201 return 0;
2202 if (uid_eq(dir->i_uid, fsuid))
2203 return 0;
2204 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2205 }
2206
2207 /*
2208 * Check whether we can remove a link victim from directory dir, check
2209 * whether the type of victim is right.
2210 * 1. We can't do it if dir is read-only (done in permission())
2211 * 2. We should have write and exec permissions on dir
2212 * 3. We can't remove anything from append-only dir
2213 * 4. We can't do anything with immutable dir (done in permission())
2214 * 5. If the sticky bit on dir is set we should either
2215 * a. be owner of dir, or
2216 * b. be owner of victim, or
2217 * c. have CAP_FOWNER capability
2218 * 6. If the victim is append-only or immutable we can't do antyhing with
2219 * links pointing to it.
2220 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2221 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2222 * 9. We can't remove a root or mountpoint.
2223 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2224 * nfs_async_unlink().
2225 */
2226 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2227 {
2228 int error;
2229
2230 if (!victim->d_inode)
2231 return -ENOENT;
2232
2233 BUG_ON(victim->d_parent->d_inode != dir);
2234 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2235
2236 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2237 if (error)
2238 return error;
2239 if (IS_APPEND(dir))
2240 return -EPERM;
2241 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2242 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2243 return -EPERM;
2244 if (isdir) {
2245 if (!S_ISDIR(victim->d_inode->i_mode))
2246 return -ENOTDIR;
2247 if (IS_ROOT(victim))
2248 return -EBUSY;
2249 } else if (S_ISDIR(victim->d_inode->i_mode))
2250 return -EISDIR;
2251 if (IS_DEADDIR(dir))
2252 return -ENOENT;
2253 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2254 return -EBUSY;
2255 return 0;
2256 }
2257
2258 /* Check whether we can create an object with dentry child in directory
2259 * dir.
2260 * 1. We can't do it if child already exists (open has special treatment for
2261 * this case, but since we are inlined it's OK)
2262 * 2. We can't do it if dir is read-only (done in permission())
2263 * 3. We should have write and exec permissions on dir
2264 * 4. We can't do it if dir is immutable (done in permission())
2265 */
2266 static inline int may_create(struct inode *dir, struct dentry *child)
2267 {
2268 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2269 if (child->d_inode)
2270 return -EEXIST;
2271 if (IS_DEADDIR(dir))
2272 return -ENOENT;
2273 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2274 }
2275
2276 /*
2277 * p1 and p2 should be directories on the same fs.
2278 */
2279 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2280 {
2281 struct dentry *p;
2282
2283 if (p1 == p2) {
2284 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2285 return NULL;
2286 }
2287
2288 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2289
2290 p = d_ancestor(p2, p1);
2291 if (p) {
2292 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2293 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2294 return p;
2295 }
2296
2297 p = d_ancestor(p1, p2);
2298 if (p) {
2299 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2300 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2301 return p;
2302 }
2303
2304 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2305 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2306 return NULL;
2307 }
2308
2309 void unlock_rename(struct dentry *p1, struct dentry *p2)
2310 {
2311 mutex_unlock(&p1->d_inode->i_mutex);
2312 if (p1 != p2) {
2313 mutex_unlock(&p2->d_inode->i_mutex);
2314 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2315 }
2316 }
2317
2318 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2319 bool want_excl)
2320 {
2321 int error = may_create(dir, dentry);
2322 if (error)
2323 return error;
2324
2325 if (!dir->i_op->create)
2326 return -EACCES; /* shouldn't it be ENOSYS? */
2327 mode &= S_IALLUGO;
2328 mode |= S_IFREG;
2329 error = security_inode_create(dir, dentry, mode);
2330 if (error)
2331 return error;
2332 error = dir->i_op->create(dir, dentry, mode, want_excl);
2333 if (!error)
2334 fsnotify_create(dir, dentry);
2335 return error;
2336 }
2337
2338 static int may_open(struct path *path, int acc_mode, int flag)
2339 {
2340 struct dentry *dentry = path->dentry;
2341 struct inode *inode = dentry->d_inode;
2342 int error;
2343
2344 /* O_PATH? */
2345 if (!acc_mode)
2346 return 0;
2347
2348 if (!inode)
2349 return -ENOENT;
2350
2351 switch (inode->i_mode & S_IFMT) {
2352 case S_IFLNK:
2353 return -ELOOP;
2354 case S_IFDIR:
2355 if (acc_mode & MAY_WRITE)
2356 return -EISDIR;
2357 break;
2358 case S_IFBLK:
2359 case S_IFCHR:
2360 if (path->mnt->mnt_flags & MNT_NODEV)
2361 return -EACCES;
2362 /*FALLTHRU*/
2363 case S_IFIFO:
2364 case S_IFSOCK:
2365 flag &= ~O_TRUNC;
2366 break;
2367 }
2368
2369 error = inode_permission(inode, acc_mode);
2370 if (error)
2371 return error;
2372
2373 /*
2374 * An append-only file must be opened in append mode for writing.
2375 */
2376 if (IS_APPEND(inode)) {
2377 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2378 return -EPERM;
2379 if (flag & O_TRUNC)
2380 return -EPERM;
2381 }
2382
2383 /* O_NOATIME can only be set by the owner or superuser */
2384 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2385 return -EPERM;
2386
2387 return 0;
2388 }
2389
2390 static int handle_truncate(struct file *filp)
2391 {
2392 struct path *path = &filp->f_path;
2393 struct inode *inode = path->dentry->d_inode;
2394 int error = get_write_access(inode);
2395 if (error)
2396 return error;
2397 /*
2398 * Refuse to truncate files with mandatory locks held on them.
2399 */
2400 error = locks_verify_locked(inode);
2401 if (!error)
2402 error = security_path_truncate(path);
2403 if (!error) {
2404 error = do_truncate(path->dentry, 0,
2405 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2406 filp);
2407 }
2408 put_write_access(inode);
2409 return error;
2410 }
2411
2412 static inline int open_to_namei_flags(int flag)
2413 {
2414 if ((flag & O_ACCMODE) == 3)
2415 flag--;
2416 return flag;
2417 }
2418
2419 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2420 {
2421 int error = security_path_mknod(dir, dentry, mode, 0);
2422 if (error)
2423 return error;
2424
2425 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2426 if (error)
2427 return error;
2428
2429 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2430 }
2431
2432 /*
2433 * Attempt to atomically look up, create and open a file from a negative
2434 * dentry.
2435 *
2436 * Returns 0 if successful. The file will have been created and attached to
2437 * @file by the filesystem calling finish_open().
2438 *
2439 * Returns 1 if the file was looked up only or didn't need creating. The
2440 * caller will need to perform the open themselves. @path will have been
2441 * updated to point to the new dentry. This may be negative.
2442 *
2443 * Returns an error code otherwise.
2444 */
2445 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2446 struct path *path, struct file *file,
2447 const struct open_flags *op,
2448 bool got_write, bool need_lookup,
2449 int *opened)
2450 {
2451 struct inode *dir = nd->path.dentry->d_inode;
2452 unsigned open_flag = open_to_namei_flags(op->open_flag);
2453 umode_t mode;
2454 int error;
2455 int acc_mode;
2456 int create_error = 0;
2457 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2458
2459 BUG_ON(dentry->d_inode);
2460
2461 /* Don't create child dentry for a dead directory. */
2462 if (unlikely(IS_DEADDIR(dir))) {
2463 error = -ENOENT;
2464 goto out;
2465 }
2466
2467 mode = op->mode;
2468 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2469 mode &= ~current_umask();
2470
2471 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2472 open_flag &= ~O_TRUNC;
2473 *opened |= FILE_CREATED;
2474 }
2475
2476 /*
2477 * Checking write permission is tricky, bacuse we don't know if we are
2478 * going to actually need it: O_CREAT opens should work as long as the
2479 * file exists. But checking existence breaks atomicity. The trick is
2480 * to check access and if not granted clear O_CREAT from the flags.
2481 *
2482 * Another problem is returing the "right" error value (e.g. for an
2483 * O_EXCL open we want to return EEXIST not EROFS).
2484 */
2485 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2486 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2487 if (!(open_flag & O_CREAT)) {
2488 /*
2489 * No O_CREATE -> atomicity not a requirement -> fall
2490 * back to lookup + open
2491 */
2492 goto no_open;
2493 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2494 /* Fall back and fail with the right error */
2495 create_error = -EROFS;
2496 goto no_open;
2497 } else {
2498 /* No side effects, safe to clear O_CREAT */
2499 create_error = -EROFS;
2500 open_flag &= ~O_CREAT;
2501 }
2502 }
2503
2504 if (open_flag & O_CREAT) {
2505 error = may_o_create(&nd->path, dentry, mode);
2506 if (error) {
2507 create_error = error;
2508 if (open_flag & O_EXCL)
2509 goto no_open;
2510 open_flag &= ~O_CREAT;
2511 }
2512 }
2513
2514 if (nd->flags & LOOKUP_DIRECTORY)
2515 open_flag |= O_DIRECTORY;
2516
2517 file->f_path.dentry = DENTRY_NOT_SET;
2518 file->f_path.mnt = nd->path.mnt;
2519 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2520 opened);
2521 if (error < 0) {
2522 if (create_error && error == -ENOENT)
2523 error = create_error;
2524 goto out;
2525 }
2526
2527 acc_mode = op->acc_mode;
2528 if (*opened & FILE_CREATED) {
2529 fsnotify_create(dir, dentry);
2530 acc_mode = MAY_OPEN;
2531 }
2532
2533 if (error) { /* returned 1, that is */
2534 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2535 error = -EIO;
2536 goto out;
2537 }
2538 if (file->f_path.dentry) {
2539 dput(dentry);
2540 dentry = file->f_path.dentry;
2541 }
2542 if (create_error && dentry->d_inode == NULL) {
2543 error = create_error;
2544 goto out;
2545 }
2546 goto looked_up;
2547 }
2548
2549 /*
2550 * We didn't have the inode before the open, so check open permission
2551 * here.
2552 */
2553 error = may_open(&file->f_path, acc_mode, open_flag);
2554 if (error)
2555 fput(file);
2556
2557 out:
2558 dput(dentry);
2559 return error;
2560
2561 no_open:
2562 if (need_lookup) {
2563 dentry = lookup_real(dir, dentry, nd->flags);
2564 if (IS_ERR(dentry))
2565 return PTR_ERR(dentry);
2566
2567 if (create_error) {
2568 int open_flag = op->open_flag;
2569
2570 error = create_error;
2571 if ((open_flag & O_EXCL)) {
2572 if (!dentry->d_inode)
2573 goto out;
2574 } else if (!dentry->d_inode) {
2575 goto out;
2576 } else if ((open_flag & O_TRUNC) &&
2577 S_ISREG(dentry->d_inode->i_mode)) {
2578 goto out;
2579 }
2580 /* will fail later, go on to get the right error */
2581 }
2582 }
2583 looked_up:
2584 path->dentry = dentry;
2585 path->mnt = nd->path.mnt;
2586 return 1;
2587 }
2588
2589 /*
2590 * Look up and maybe create and open the last component.
2591 *
2592 * Must be called with i_mutex held on parent.
2593 *
2594 * Returns 0 if the file was successfully atomically created (if necessary) and
2595 * opened. In this case the file will be returned attached to @file.
2596 *
2597 * Returns 1 if the file was not completely opened at this time, though lookups
2598 * and creations will have been performed and the dentry returned in @path will
2599 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2600 * specified then a negative dentry may be returned.
2601 *
2602 * An error code is returned otherwise.
2603 *
2604 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2605 * cleared otherwise prior to returning.
2606 */
2607 static int lookup_open(struct nameidata *nd, struct path *path,
2608 struct file *file,
2609 const struct open_flags *op,
2610 bool got_write, int *opened)
2611 {
2612 struct dentry *dir = nd->path.dentry;
2613 struct inode *dir_inode = dir->d_inode;
2614 struct dentry *dentry;
2615 int error;
2616 bool need_lookup;
2617
2618 *opened &= ~FILE_CREATED;
2619 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2620 if (IS_ERR(dentry))
2621 return PTR_ERR(dentry);
2622
2623 /* Cached positive dentry: will open in f_op->open */
2624 if (!need_lookup && dentry->d_inode)
2625 goto out_no_open;
2626
2627 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2628 return atomic_open(nd, dentry, path, file, op, got_write,
2629 need_lookup, opened);
2630 }
2631
2632 if (need_lookup) {
2633 BUG_ON(dentry->d_inode);
2634
2635 dentry = lookup_real(dir_inode, dentry, nd->flags);
2636 if (IS_ERR(dentry))
2637 return PTR_ERR(dentry);
2638 }
2639
2640 /* Negative dentry, just create the file */
2641 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2642 umode_t mode = op->mode;
2643 if (!IS_POSIXACL(dir->d_inode))
2644 mode &= ~current_umask();
2645 /*
2646 * This write is needed to ensure that a
2647 * rw->ro transition does not occur between
2648 * the time when the file is created and when
2649 * a permanent write count is taken through
2650 * the 'struct file' in finish_open().
2651 */
2652 if (!got_write) {
2653 error = -EROFS;
2654 goto out_dput;
2655 }
2656 *opened |= FILE_CREATED;
2657 error = security_path_mknod(&nd->path, dentry, mode, 0);
2658 if (error)
2659 goto out_dput;
2660 error = vfs_create(dir->d_inode, dentry, mode,
2661 nd->flags & LOOKUP_EXCL);
2662 if (error)
2663 goto out_dput;
2664 }
2665 out_no_open:
2666 path->dentry = dentry;
2667 path->mnt = nd->path.mnt;
2668 return 1;
2669
2670 out_dput:
2671 dput(dentry);
2672 return error;
2673 }
2674
2675 /*
2676 * Handle the last step of open()
2677 */
2678 static int do_last(struct nameidata *nd, struct path *path,
2679 struct file *file, const struct open_flags *op,
2680 int *opened, struct filename *name)
2681 {
2682 struct dentry *dir = nd->path.dentry;
2683 int open_flag = op->open_flag;
2684 bool will_truncate = (open_flag & O_TRUNC) != 0;
2685 bool got_write = false;
2686 int acc_mode = op->acc_mode;
2687 struct inode *inode;
2688 bool symlink_ok = false;
2689 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2690 bool retried = false;
2691 int error;
2692
2693 nd->flags &= ~LOOKUP_PARENT;
2694 nd->flags |= op->intent;
2695
2696 switch (nd->last_type) {
2697 case LAST_DOTDOT:
2698 case LAST_DOT:
2699 error = handle_dots(nd, nd->last_type);
2700 if (error)
2701 return error;
2702 /* fallthrough */
2703 case LAST_ROOT:
2704 error = complete_walk(nd);
2705 if (error)
2706 return error;
2707 audit_inode(name, nd->path.dentry, 0);
2708 if (open_flag & O_CREAT) {
2709 error = -EISDIR;
2710 goto out;
2711 }
2712 goto finish_open;
2713 case LAST_BIND:
2714 error = complete_walk(nd);
2715 if (error)
2716 return error;
2717 audit_inode(name, dir, 0);
2718 goto finish_open;
2719 }
2720
2721 if (!(open_flag & O_CREAT)) {
2722 if (nd->last.name[nd->last.len])
2723 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2724 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2725 symlink_ok = true;
2726 /* we _can_ be in RCU mode here */
2727 error = lookup_fast(nd, path, &inode);
2728 if (likely(!error))
2729 goto finish_lookup;
2730
2731 if (error < 0)
2732 goto out;
2733
2734 BUG_ON(nd->inode != dir->d_inode);
2735 } else {
2736 /* create side of things */
2737 /*
2738 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2739 * has been cleared when we got to the last component we are
2740 * about to look up
2741 */
2742 error = complete_walk(nd);
2743 if (error)
2744 return error;
2745
2746 audit_inode(name, dir, LOOKUP_PARENT);
2747 error = -EISDIR;
2748 /* trailing slashes? */
2749 if (nd->last.name[nd->last.len])
2750 goto out;
2751 }
2752
2753 retry_lookup:
2754 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2755 error = mnt_want_write(nd->path.mnt);
2756 if (!error)
2757 got_write = true;
2758 /*
2759 * do _not_ fail yet - we might not need that or fail with
2760 * a different error; let lookup_open() decide; we'll be
2761 * dropping this one anyway.
2762 */
2763 }
2764 mutex_lock(&dir->d_inode->i_mutex);
2765 error = lookup_open(nd, path, file, op, got_write, opened);
2766 mutex_unlock(&dir->d_inode->i_mutex);
2767
2768 if (error <= 0) {
2769 if (error)
2770 goto out;
2771
2772 if ((*opened & FILE_CREATED) ||
2773 !S_ISREG(file_inode(file)->i_mode))
2774 will_truncate = false;
2775
2776 audit_inode(name, file->f_path.dentry, 0);
2777 goto opened;
2778 }
2779
2780 if (*opened & FILE_CREATED) {
2781 /* Don't check for write permission, don't truncate */
2782 open_flag &= ~O_TRUNC;
2783 will_truncate = false;
2784 acc_mode = MAY_OPEN;
2785 path_to_nameidata(path, nd);
2786 goto finish_open_created;
2787 }
2788
2789 /*
2790 * create/update audit record if it already exists.
2791 */
2792 if (path->dentry->d_inode)
2793 audit_inode(name, path->dentry, 0);
2794
2795 /*
2796 * If atomic_open() acquired write access it is dropped now due to
2797 * possible mount and symlink following (this might be optimized away if
2798 * necessary...)
2799 */
2800 if (got_write) {
2801 mnt_drop_write(nd->path.mnt);
2802 got_write = false;
2803 }
2804
2805 error = -EEXIST;
2806 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2807 goto exit_dput;
2808
2809 error = follow_managed(path, nd->flags);
2810 if (error < 0)
2811 goto exit_dput;
2812
2813 if (error)
2814 nd->flags |= LOOKUP_JUMPED;
2815
2816 BUG_ON(nd->flags & LOOKUP_RCU);
2817 inode = path->dentry->d_inode;
2818 finish_lookup:
2819 /* we _can_ be in RCU mode here */
2820 error = -ENOENT;
2821 if (!inode) {
2822 path_to_nameidata(path, nd);
2823 goto out;
2824 }
2825
2826 if (should_follow_link(inode, !symlink_ok)) {
2827 if (nd->flags & LOOKUP_RCU) {
2828 if (unlikely(nd->path.mnt != path->mnt ||
2829 unlazy_walk(nd, path->dentry))) {
2830 error = -ECHILD;
2831 goto out;
2832 }
2833 }
2834 BUG_ON(inode != path->dentry->d_inode);
2835 return 1;
2836 }
2837
2838 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2839 path_to_nameidata(path, nd);
2840 } else {
2841 save_parent.dentry = nd->path.dentry;
2842 save_parent.mnt = mntget(path->mnt);
2843 nd->path.dentry = path->dentry;
2844
2845 }
2846 nd->inode = inode;
2847 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2848 error = complete_walk(nd);
2849 if (error) {
2850 path_put(&save_parent);
2851 return error;
2852 }
2853 error = -EISDIR;
2854 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2855 goto out;
2856 error = -ENOTDIR;
2857 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
2858 goto out;
2859 audit_inode(name, nd->path.dentry, 0);
2860 finish_open:
2861 if (!S_ISREG(nd->inode->i_mode))
2862 will_truncate = false;
2863
2864 if (will_truncate) {
2865 error = mnt_want_write(nd->path.mnt);
2866 if (error)
2867 goto out;
2868 got_write = true;
2869 }
2870 finish_open_created:
2871 error = may_open(&nd->path, acc_mode, open_flag);
2872 if (error)
2873 goto out;
2874 file->f_path.mnt = nd->path.mnt;
2875 error = finish_open(file, nd->path.dentry, NULL, opened);
2876 if (error) {
2877 if (error == -EOPENSTALE)
2878 goto stale_open;
2879 goto out;
2880 }
2881 opened:
2882 error = open_check_o_direct(file);
2883 if (error)
2884 goto exit_fput;
2885 error = ima_file_check(file, op->acc_mode);
2886 if (error)
2887 goto exit_fput;
2888
2889 if (will_truncate) {
2890 error = handle_truncate(file);
2891 if (error)
2892 goto exit_fput;
2893 }
2894 out:
2895 if (got_write)
2896 mnt_drop_write(nd->path.mnt);
2897 path_put(&save_parent);
2898 terminate_walk(nd);
2899 return error;
2900
2901 exit_dput:
2902 path_put_conditional(path, nd);
2903 goto out;
2904 exit_fput:
2905 fput(file);
2906 goto out;
2907
2908 stale_open:
2909 /* If no saved parent or already retried then can't retry */
2910 if (!save_parent.dentry || retried)
2911 goto out;
2912
2913 BUG_ON(save_parent.dentry != dir);
2914 path_put(&nd->path);
2915 nd->path = save_parent;
2916 nd->inode = dir->d_inode;
2917 save_parent.mnt = NULL;
2918 save_parent.dentry = NULL;
2919 if (got_write) {
2920 mnt_drop_write(nd->path.mnt);
2921 got_write = false;
2922 }
2923 retried = true;
2924 goto retry_lookup;
2925 }
2926
2927 static struct file *path_openat(int dfd, struct filename *pathname,
2928 struct nameidata *nd, const struct open_flags *op, int flags)
2929 {
2930 struct file *base = NULL;
2931 struct file *file;
2932 struct path path;
2933 int opened = 0;
2934 int error;
2935
2936 file = get_empty_filp();
2937 if (IS_ERR(file))
2938 return file;
2939
2940 file->f_flags = op->open_flag;
2941
2942 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2943 if (unlikely(error))
2944 goto out;
2945
2946 current->total_link_count = 0;
2947 error = link_path_walk(pathname->name, nd);
2948 if (unlikely(error))
2949 goto out;
2950
2951 error = do_last(nd, &path, file, op, &opened, pathname);
2952 while (unlikely(error > 0)) { /* trailing symlink */
2953 struct path link = path;
2954 void *cookie;
2955 if (!(nd->flags & LOOKUP_FOLLOW)) {
2956 path_put_conditional(&path, nd);
2957 path_put(&nd->path);
2958 error = -ELOOP;
2959 break;
2960 }
2961 error = may_follow_link(&link, nd);
2962 if (unlikely(error))
2963 break;
2964 nd->flags |= LOOKUP_PARENT;
2965 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2966 error = follow_link(&link, nd, &cookie);
2967 if (unlikely(error))
2968 break;
2969 error = do_last(nd, &path, file, op, &opened, pathname);
2970 put_link(nd, &link, cookie);
2971 }
2972 out:
2973 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2974 path_put(&nd->root);
2975 if (base)
2976 fput(base);
2977 if (!(opened & FILE_OPENED)) {
2978 BUG_ON(!error);
2979 put_filp(file);
2980 }
2981 if (unlikely(error)) {
2982 if (error == -EOPENSTALE) {
2983 if (flags & LOOKUP_RCU)
2984 error = -ECHILD;
2985 else
2986 error = -ESTALE;
2987 }
2988 file = ERR_PTR(error);
2989 }
2990 return file;
2991 }
2992
2993 struct file *do_filp_open(int dfd, struct filename *pathname,
2994 const struct open_flags *op, int flags)
2995 {
2996 struct nameidata nd;
2997 struct file *filp;
2998
2999 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3000 if (unlikely(filp == ERR_PTR(-ECHILD)))
3001 filp = path_openat(dfd, pathname, &nd, op, flags);
3002 if (unlikely(filp == ERR_PTR(-ESTALE)))
3003 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3004 return filp;
3005 }
3006
3007 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3008 const char *name, const struct open_flags *op, int flags)
3009 {
3010 struct nameidata nd;
3011 struct file *file;
3012 struct filename filename = { .name = name };
3013
3014 nd.root.mnt = mnt;
3015 nd.root.dentry = dentry;
3016
3017 flags |= LOOKUP_ROOT;
3018
3019 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3020 return ERR_PTR(-ELOOP);
3021
3022 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3023 if (unlikely(file == ERR_PTR(-ECHILD)))
3024 file = path_openat(-1, &filename, &nd, op, flags);
3025 if (unlikely(file == ERR_PTR(-ESTALE)))
3026 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3027 return file;
3028 }
3029
3030 struct dentry *kern_path_create(int dfd, const char *pathname,
3031 struct path *path, unsigned int lookup_flags)
3032 {
3033 struct dentry *dentry = ERR_PTR(-EEXIST);
3034 struct nameidata nd;
3035 int err2;
3036 int error;
3037 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3038
3039 /*
3040 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3041 * other flags passed in are ignored!
3042 */
3043 lookup_flags &= LOOKUP_REVAL;
3044
3045 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3046 if (error)
3047 return ERR_PTR(error);
3048
3049 /*
3050 * Yucky last component or no last component at all?
3051 * (foo/., foo/.., /////)
3052 */
3053 if (nd.last_type != LAST_NORM)
3054 goto out;
3055 nd.flags &= ~LOOKUP_PARENT;
3056 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3057
3058 /* don't fail immediately if it's r/o, at least try to report other errors */
3059 err2 = mnt_want_write(nd.path.mnt);
3060 /*
3061 * Do the final lookup.
3062 */
3063 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3064 dentry = lookup_hash(&nd);
3065 if (IS_ERR(dentry))
3066 goto unlock;
3067
3068 error = -EEXIST;
3069 if (dentry->d_inode)
3070 goto fail;
3071 /*
3072 * Special case - lookup gave negative, but... we had foo/bar/
3073 * From the vfs_mknod() POV we just have a negative dentry -
3074 * all is fine. Let's be bastards - you had / on the end, you've
3075 * been asking for (non-existent) directory. -ENOENT for you.
3076 */
3077 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3078 error = -ENOENT;
3079 goto fail;
3080 }
3081 if (unlikely(err2)) {
3082 error = err2;
3083 goto fail;
3084 }
3085 *path = nd.path;
3086 return dentry;
3087 fail:
3088 dput(dentry);
3089 dentry = ERR_PTR(error);
3090 unlock:
3091 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3092 if (!err2)
3093 mnt_drop_write(nd.path.mnt);
3094 out:
3095 path_put(&nd.path);
3096 return dentry;
3097 }
3098 EXPORT_SYMBOL(kern_path_create);
3099
3100 void done_path_create(struct path *path, struct dentry *dentry)
3101 {
3102 dput(dentry);
3103 mutex_unlock(&path->dentry->d_inode->i_mutex);
3104 mnt_drop_write(path->mnt);
3105 path_put(path);
3106 }
3107 EXPORT_SYMBOL(done_path_create);
3108
3109 struct dentry *user_path_create(int dfd, const char __user *pathname,
3110 struct path *path, unsigned int lookup_flags)
3111 {
3112 struct filename *tmp = getname(pathname);
3113 struct dentry *res;
3114 if (IS_ERR(tmp))
3115 return ERR_CAST(tmp);
3116 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3117 putname(tmp);
3118 return res;
3119 }
3120 EXPORT_SYMBOL(user_path_create);
3121
3122 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3123 {
3124 int error = may_create(dir, dentry);
3125
3126 if (error)
3127 return error;
3128
3129 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3130 return -EPERM;
3131
3132 if (!dir->i_op->mknod)
3133 return -EPERM;
3134
3135 error = devcgroup_inode_mknod(mode, dev);
3136 if (error)
3137 return error;
3138
3139 error = security_inode_mknod(dir, dentry, mode, dev);
3140 if (error)
3141 return error;
3142
3143 error = dir->i_op->mknod(dir, dentry, mode, dev);
3144 if (!error)
3145 fsnotify_create(dir, dentry);
3146 return error;
3147 }
3148
3149 static int may_mknod(umode_t mode)
3150 {
3151 switch (mode & S_IFMT) {
3152 case S_IFREG:
3153 case S_IFCHR:
3154 case S_IFBLK:
3155 case S_IFIFO:
3156 case S_IFSOCK:
3157 case 0: /* zero mode translates to S_IFREG */
3158 return 0;
3159 case S_IFDIR:
3160 return -EPERM;
3161 default:
3162 return -EINVAL;
3163 }
3164 }
3165
3166 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3167 unsigned, dev)
3168 {
3169 struct dentry *dentry;
3170 struct path path;
3171 int error;
3172 unsigned int lookup_flags = 0;
3173
3174 error = may_mknod(mode);
3175 if (error)
3176 return error;
3177 retry:
3178 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3179 if (IS_ERR(dentry))
3180 return PTR_ERR(dentry);
3181
3182 if (!IS_POSIXACL(path.dentry->d_inode))
3183 mode &= ~current_umask();
3184 error = security_path_mknod(&path, dentry, mode, dev);
3185 if (error)
3186 goto out;
3187 switch (mode & S_IFMT) {
3188 case 0: case S_IFREG:
3189 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3190 break;
3191 case S_IFCHR: case S_IFBLK:
3192 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3193 new_decode_dev(dev));
3194 break;
3195 case S_IFIFO: case S_IFSOCK:
3196 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3197 break;
3198 }
3199 out:
3200 done_path_create(&path, dentry);
3201 if (retry_estale(error, lookup_flags)) {
3202 lookup_flags |= LOOKUP_REVAL;
3203 goto retry;
3204 }
3205 return error;
3206 }
3207
3208 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3209 {
3210 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3211 }
3212
3213 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3214 {
3215 int error = may_create(dir, dentry);
3216 unsigned max_links = dir->i_sb->s_max_links;
3217
3218 if (error)
3219 return error;
3220
3221 if (!dir->i_op->mkdir)
3222 return -EPERM;
3223
3224 mode &= (S_IRWXUGO|S_ISVTX);
3225 error = security_inode_mkdir(dir, dentry, mode);
3226 if (error)
3227 return error;
3228
3229 if (max_links && dir->i_nlink >= max_links)
3230 return -EMLINK;
3231
3232 error = dir->i_op->mkdir(dir, dentry, mode);
3233 if (!error)
3234 fsnotify_mkdir(dir, dentry);
3235 return error;
3236 }
3237
3238 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3239 {
3240 struct dentry *dentry;
3241 struct path path;
3242 int error;
3243 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3244
3245 retry:
3246 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3247 if (IS_ERR(dentry))
3248 return PTR_ERR(dentry);
3249
3250 if (!IS_POSIXACL(path.dentry->d_inode))
3251 mode &= ~current_umask();
3252 error = security_path_mkdir(&path, dentry, mode);
3253 if (!error)
3254 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3255 done_path_create(&path, dentry);
3256 if (retry_estale(error, lookup_flags)) {
3257 lookup_flags |= LOOKUP_REVAL;
3258 goto retry;
3259 }
3260 return error;
3261 }
3262
3263 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3264 {
3265 return sys_mkdirat(AT_FDCWD, pathname, mode);
3266 }
3267
3268 /*
3269 * The dentry_unhash() helper will try to drop the dentry early: we
3270 * should have a usage count of 1 if we're the only user of this
3271 * dentry, and if that is true (possibly after pruning the dcache),
3272 * then we drop the dentry now.
3273 *
3274 * A low-level filesystem can, if it choses, legally
3275 * do a
3276 *
3277 * if (!d_unhashed(dentry))
3278 * return -EBUSY;
3279 *
3280 * if it cannot handle the case of removing a directory
3281 * that is still in use by something else..
3282 */
3283 void dentry_unhash(struct dentry *dentry)
3284 {
3285 shrink_dcache_parent(dentry);
3286 spin_lock(&dentry->d_lock);
3287 if (dentry->d_count == 1)
3288 __d_drop(dentry);
3289 spin_unlock(&dentry->d_lock);
3290 }
3291
3292 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3293 {
3294 int error = may_delete(dir, dentry, 1);
3295
3296 if (error)
3297 return error;
3298
3299 if (!dir->i_op->rmdir)
3300 return -EPERM;
3301
3302 dget(dentry);
3303 mutex_lock(&dentry->d_inode->i_mutex);
3304
3305 error = -EBUSY;
3306 if (d_mountpoint(dentry))
3307 goto out;
3308
3309 error = security_inode_rmdir(dir, dentry);
3310 if (error)
3311 goto out;
3312
3313 shrink_dcache_parent(dentry);
3314 error = dir->i_op->rmdir(dir, dentry);
3315 if (error)
3316 goto out;
3317
3318 dentry->d_inode->i_flags |= S_DEAD;
3319 dont_mount(dentry);
3320
3321 out:
3322 mutex_unlock(&dentry->d_inode->i_mutex);
3323 dput(dentry);
3324 if (!error)
3325 d_delete(dentry);
3326 return error;
3327 }
3328
3329 static long do_rmdir(int dfd, const char __user *pathname)
3330 {
3331 int error = 0;
3332 struct filename *name;
3333 struct dentry *dentry;
3334 struct nameidata nd;
3335 unsigned int lookup_flags = 0;
3336 retry:
3337 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3338 if (IS_ERR(name))
3339 return PTR_ERR(name);
3340
3341 switch(nd.last_type) {
3342 case LAST_DOTDOT:
3343 error = -ENOTEMPTY;
3344 goto exit1;
3345 case LAST_DOT:
3346 error = -EINVAL;
3347 goto exit1;
3348 case LAST_ROOT:
3349 error = -EBUSY;
3350 goto exit1;
3351 }
3352
3353 nd.flags &= ~LOOKUP_PARENT;
3354 error = mnt_want_write(nd.path.mnt);
3355 if (error)
3356 goto exit1;
3357
3358 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3359 dentry = lookup_hash(&nd);
3360 error = PTR_ERR(dentry);
3361 if (IS_ERR(dentry))
3362 goto exit2;
3363 if (!dentry->d_inode) {
3364 error = -ENOENT;
3365 goto exit3;
3366 }
3367 error = security_path_rmdir(&nd.path, dentry);
3368 if (error)
3369 goto exit3;
3370 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3371 exit3:
3372 dput(dentry);
3373 exit2:
3374 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3375 mnt_drop_write(nd.path.mnt);
3376 exit1:
3377 path_put(&nd.path);
3378 putname(name);
3379 if (retry_estale(error, lookup_flags)) {
3380 lookup_flags |= LOOKUP_REVAL;
3381 goto retry;
3382 }
3383 return error;
3384 }
3385
3386 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3387 {
3388 return do_rmdir(AT_FDCWD, pathname);
3389 }
3390
3391 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3392 {
3393 int error = may_delete(dir, dentry, 0);
3394
3395 if (error)
3396 return error;
3397
3398 if (!dir->i_op->unlink)
3399 return -EPERM;
3400
3401 mutex_lock(&dentry->d_inode->i_mutex);
3402 if (d_mountpoint(dentry))
3403 error = -EBUSY;
3404 else {
3405 error = security_inode_unlink(dir, dentry);
3406 if (!error) {
3407 error = dir->i_op->unlink(dir, dentry);
3408 if (!error)
3409 dont_mount(dentry);
3410 }
3411 }
3412 mutex_unlock(&dentry->d_inode->i_mutex);
3413
3414 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3415 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3416 fsnotify_link_count(dentry->d_inode);
3417 d_delete(dentry);
3418 }
3419
3420 return error;
3421 }
3422
3423 /*
3424 * Make sure that the actual truncation of the file will occur outside its
3425 * directory's i_mutex. Truncate can take a long time if there is a lot of
3426 * writeout happening, and we don't want to prevent access to the directory
3427 * while waiting on the I/O.
3428 */
3429 static long do_unlinkat(int dfd, const char __user *pathname)
3430 {
3431 int error;
3432 struct filename *name;
3433 struct dentry *dentry;
3434 struct nameidata nd;
3435 struct inode *inode = NULL;
3436 unsigned int lookup_flags = 0;
3437 retry:
3438 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3439 if (IS_ERR(name))
3440 return PTR_ERR(name);
3441
3442 error = -EISDIR;
3443 if (nd.last_type != LAST_NORM)
3444 goto exit1;
3445
3446 nd.flags &= ~LOOKUP_PARENT;
3447 error = mnt_want_write(nd.path.mnt);
3448 if (error)
3449 goto exit1;
3450
3451 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3452 dentry = lookup_hash(&nd);
3453 error = PTR_ERR(dentry);
3454 if (!IS_ERR(dentry)) {
3455 /* Why not before? Because we want correct error value */
3456 if (nd.last.name[nd.last.len])
3457 goto slashes;
3458 inode = dentry->d_inode;
3459 if (!inode)
3460 goto slashes;
3461 ihold(inode);
3462 error = security_path_unlink(&nd.path, dentry);
3463 if (error)
3464 goto exit2;
3465 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3466 exit2:
3467 dput(dentry);
3468 }
3469 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3470 if (inode)
3471 iput(inode); /* truncate the inode here */
3472 mnt_drop_write(nd.path.mnt);
3473 exit1:
3474 path_put(&nd.path);
3475 putname(name);
3476 if (retry_estale(error, lookup_flags)) {
3477 lookup_flags |= LOOKUP_REVAL;
3478 inode = NULL;
3479 goto retry;
3480 }
3481 return error;
3482
3483 slashes:
3484 error = !dentry->d_inode ? -ENOENT :
3485 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3486 goto exit2;
3487 }
3488
3489 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3490 {
3491 if ((flag & ~AT_REMOVEDIR) != 0)
3492 return -EINVAL;
3493
3494 if (flag & AT_REMOVEDIR)
3495 return do_rmdir(dfd, pathname);
3496
3497 return do_unlinkat(dfd, pathname);
3498 }
3499
3500 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3501 {
3502 return do_unlinkat(AT_FDCWD, pathname);
3503 }
3504
3505 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3506 {
3507 int error = may_create(dir, dentry);
3508
3509 if (error)
3510 return error;
3511
3512 if (!dir->i_op->symlink)
3513 return -EPERM;
3514
3515 error = security_inode_symlink(dir, dentry, oldname);
3516 if (error)
3517 return error;
3518
3519 error = dir->i_op->symlink(dir, dentry, oldname);
3520 if (!error)
3521 fsnotify_create(dir, dentry);
3522 return error;
3523 }
3524
3525 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3526 int, newdfd, const char __user *, newname)
3527 {
3528 int error;
3529 struct filename *from;
3530 struct dentry *dentry;
3531 struct path path;
3532 unsigned int lookup_flags = 0;
3533
3534 from = getname(oldname);
3535 if (IS_ERR(from))
3536 return PTR_ERR(from);
3537 retry:
3538 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3539 error = PTR_ERR(dentry);
3540 if (IS_ERR(dentry))
3541 goto out_putname;
3542
3543 error = security_path_symlink(&path, dentry, from->name);
3544 if (!error)
3545 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3546 done_path_create(&path, dentry);
3547 if (retry_estale(error, lookup_flags)) {
3548 lookup_flags |= LOOKUP_REVAL;
3549 goto retry;
3550 }
3551 out_putname:
3552 putname(from);
3553 return error;
3554 }
3555
3556 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3557 {
3558 return sys_symlinkat(oldname, AT_FDCWD, newname);
3559 }
3560
3561 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3562 {
3563 struct inode *inode = old_dentry->d_inode;
3564 unsigned max_links = dir->i_sb->s_max_links;
3565 int error;
3566
3567 if (!inode)
3568 return -ENOENT;
3569
3570 error = may_create(dir, new_dentry);
3571 if (error)
3572 return error;
3573
3574 if (dir->i_sb != inode->i_sb)
3575 return -EXDEV;
3576
3577 /*
3578 * A link to an append-only or immutable file cannot be created.
3579 */
3580 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3581 return -EPERM;
3582 if (!dir->i_op->link)
3583 return -EPERM;
3584 if (S_ISDIR(inode->i_mode))
3585 return -EPERM;
3586
3587 error = security_inode_link(old_dentry, dir, new_dentry);
3588 if (error)
3589 return error;
3590
3591 mutex_lock(&inode->i_mutex);
3592 /* Make sure we don't allow creating hardlink to an unlinked file */
3593 if (inode->i_nlink == 0)
3594 error = -ENOENT;
3595 else if (max_links && inode->i_nlink >= max_links)
3596 error = -EMLINK;
3597 else
3598 error = dir->i_op->link(old_dentry, dir, new_dentry);
3599 mutex_unlock(&inode->i_mutex);
3600 if (!error)
3601 fsnotify_link(dir, inode, new_dentry);
3602 return error;
3603 }
3604
3605 /*
3606 * Hardlinks are often used in delicate situations. We avoid
3607 * security-related surprises by not following symlinks on the
3608 * newname. --KAB
3609 *
3610 * We don't follow them on the oldname either to be compatible
3611 * with linux 2.0, and to avoid hard-linking to directories
3612 * and other special files. --ADM
3613 */
3614 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3615 int, newdfd, const char __user *, newname, int, flags)
3616 {
3617 struct dentry *new_dentry;
3618 struct path old_path, new_path;
3619 int how = 0;
3620 int error;
3621
3622 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3623 return -EINVAL;
3624 /*
3625 * To use null names we require CAP_DAC_READ_SEARCH
3626 * This ensures that not everyone will be able to create
3627 * handlink using the passed filedescriptor.
3628 */
3629 if (flags & AT_EMPTY_PATH) {
3630 if (!capable(CAP_DAC_READ_SEARCH))
3631 return -ENOENT;
3632 how = LOOKUP_EMPTY;
3633 }
3634
3635 if (flags & AT_SYMLINK_FOLLOW)
3636 how |= LOOKUP_FOLLOW;
3637 retry:
3638 error = user_path_at(olddfd, oldname, how, &old_path);
3639 if (error)
3640 return error;
3641
3642 new_dentry = user_path_create(newdfd, newname, &new_path,
3643 (how & LOOKUP_REVAL));
3644 error = PTR_ERR(new_dentry);
3645 if (IS_ERR(new_dentry))
3646 goto out;
3647
3648 error = -EXDEV;
3649 if (old_path.mnt != new_path.mnt)
3650 goto out_dput;
3651 error = may_linkat(&old_path);
3652 if (unlikely(error))
3653 goto out_dput;
3654 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3655 if (error)
3656 goto out_dput;
3657 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3658 out_dput:
3659 done_path_create(&new_path, new_dentry);
3660 if (retry_estale(error, how)) {
3661 path_put(&old_path);
3662 how |= LOOKUP_REVAL;
3663 goto retry;
3664 }
3665 out:
3666 path_put(&old_path);
3667
3668 return error;
3669 }
3670
3671 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3672 {
3673 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3674 }
3675
3676 /*
3677 * The worst of all namespace operations - renaming directory. "Perverted"
3678 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3679 * Problems:
3680 * a) we can get into loop creation. Check is done in is_subdir().
3681 * b) race potential - two innocent renames can create a loop together.
3682 * That's where 4.4 screws up. Current fix: serialization on
3683 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3684 * story.
3685 * c) we have to lock _three_ objects - parents and victim (if it exists).
3686 * And that - after we got ->i_mutex on parents (until then we don't know
3687 * whether the target exists). Solution: try to be smart with locking
3688 * order for inodes. We rely on the fact that tree topology may change
3689 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3690 * move will be locked. Thus we can rank directories by the tree
3691 * (ancestors first) and rank all non-directories after them.
3692 * That works since everybody except rename does "lock parent, lookup,
3693 * lock child" and rename is under ->s_vfs_rename_mutex.
3694 * HOWEVER, it relies on the assumption that any object with ->lookup()
3695 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3696 * we'd better make sure that there's no link(2) for them.
3697 * d) conversion from fhandle to dentry may come in the wrong moment - when
3698 * we are removing the target. Solution: we will have to grab ->i_mutex
3699 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3700 * ->i_mutex on parents, which works but leads to some truly excessive
3701 * locking].
3702 */
3703 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3704 struct inode *new_dir, struct dentry *new_dentry)
3705 {
3706 int error = 0;
3707 struct inode *target = new_dentry->d_inode;
3708 unsigned max_links = new_dir->i_sb->s_max_links;
3709
3710 /*
3711 * If we are going to change the parent - check write permissions,
3712 * we'll need to flip '..'.
3713 */
3714 if (new_dir != old_dir) {
3715 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3716 if (error)
3717 return error;
3718 }
3719
3720 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3721 if (error)
3722 return error;
3723
3724 dget(new_dentry);
3725 if (target)
3726 mutex_lock(&target->i_mutex);
3727
3728 error = -EBUSY;
3729 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3730 goto out;
3731
3732 error = -EMLINK;
3733 if (max_links && !target && new_dir != old_dir &&
3734 new_dir->i_nlink >= max_links)
3735 goto out;
3736
3737 if (target)
3738 shrink_dcache_parent(new_dentry);
3739 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3740 if (error)
3741 goto out;
3742
3743 if (target) {
3744 target->i_flags |= S_DEAD;
3745 dont_mount(new_dentry);
3746 }
3747 out:
3748 if (target)
3749 mutex_unlock(&target->i_mutex);
3750 dput(new_dentry);
3751 if (!error)
3752 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3753 d_move(old_dentry,new_dentry);
3754 return error;
3755 }
3756
3757 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3758 struct inode *new_dir, struct dentry *new_dentry)
3759 {
3760 struct inode *target = new_dentry->d_inode;
3761 int error;
3762
3763 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3764 if (error)
3765 return error;
3766
3767 dget(new_dentry);
3768 if (target)
3769 mutex_lock(&target->i_mutex);
3770
3771 error = -EBUSY;
3772 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3773 goto out;
3774
3775 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3776 if (error)
3777 goto out;
3778
3779 if (target)
3780 dont_mount(new_dentry);
3781 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3782 d_move(old_dentry, new_dentry);
3783 out:
3784 if (target)
3785 mutex_unlock(&target->i_mutex);
3786 dput(new_dentry);
3787 return error;
3788 }
3789
3790 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3791 struct inode *new_dir, struct dentry *new_dentry)
3792 {
3793 int error;
3794 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3795 const unsigned char *old_name;
3796
3797 if (old_dentry->d_inode == new_dentry->d_inode)
3798 return 0;
3799
3800 error = may_delete(old_dir, old_dentry, is_dir);
3801 if (error)
3802 return error;
3803
3804 if (!new_dentry->d_inode)
3805 error = may_create(new_dir, new_dentry);
3806 else
3807 error = may_delete(new_dir, new_dentry, is_dir);
3808 if (error)
3809 return error;
3810
3811 if (!old_dir->i_op->rename)
3812 return -EPERM;
3813
3814 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3815
3816 if (is_dir)
3817 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3818 else
3819 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3820 if (!error)
3821 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3822 new_dentry->d_inode, old_dentry);
3823 fsnotify_oldname_free(old_name);
3824
3825 return error;
3826 }
3827
3828 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3829 int, newdfd, const char __user *, newname)
3830 {
3831 struct dentry *old_dir, *new_dir;
3832 struct dentry *old_dentry, *new_dentry;
3833 struct dentry *trap;
3834 struct nameidata oldnd, newnd;
3835 struct filename *from;
3836 struct filename *to;
3837 unsigned int lookup_flags = 0;
3838 bool should_retry = false;
3839 int error;
3840 retry:
3841 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
3842 if (IS_ERR(from)) {
3843 error = PTR_ERR(from);
3844 goto exit;
3845 }
3846
3847 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
3848 if (IS_ERR(to)) {
3849 error = PTR_ERR(to);
3850 goto exit1;
3851 }
3852
3853 error = -EXDEV;
3854 if (oldnd.path.mnt != newnd.path.mnt)
3855 goto exit2;
3856
3857 old_dir = oldnd.path.dentry;
3858 error = -EBUSY;
3859 if (oldnd.last_type != LAST_NORM)
3860 goto exit2;
3861
3862 new_dir = newnd.path.dentry;
3863 if (newnd.last_type != LAST_NORM)
3864 goto exit2;
3865
3866 error = mnt_want_write(oldnd.path.mnt);
3867 if (error)
3868 goto exit2;
3869
3870 oldnd.flags &= ~LOOKUP_PARENT;
3871 newnd.flags &= ~LOOKUP_PARENT;
3872 newnd.flags |= LOOKUP_RENAME_TARGET;
3873
3874 trap = lock_rename(new_dir, old_dir);
3875
3876 old_dentry = lookup_hash(&oldnd);
3877 error = PTR_ERR(old_dentry);
3878 if (IS_ERR(old_dentry))
3879 goto exit3;
3880 /* source must exist */
3881 error = -ENOENT;
3882 if (!old_dentry->d_inode)
3883 goto exit4;
3884 /* unless the source is a directory trailing slashes give -ENOTDIR */
3885 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3886 error = -ENOTDIR;
3887 if (oldnd.last.name[oldnd.last.len])
3888 goto exit4;
3889 if (newnd.last.name[newnd.last.len])
3890 goto exit4;
3891 }
3892 /* source should not be ancestor of target */
3893 error = -EINVAL;
3894 if (old_dentry == trap)
3895 goto exit4;
3896 new_dentry = lookup_hash(&newnd);
3897 error = PTR_ERR(new_dentry);
3898 if (IS_ERR(new_dentry))
3899 goto exit4;
3900 /* target should not be an ancestor of source */
3901 error = -ENOTEMPTY;
3902 if (new_dentry == trap)
3903 goto exit5;
3904
3905 error = security_path_rename(&oldnd.path, old_dentry,
3906 &newnd.path, new_dentry);
3907 if (error)
3908 goto exit5;
3909 error = vfs_rename(old_dir->d_inode, old_dentry,
3910 new_dir->d_inode, new_dentry);
3911 exit5:
3912 dput(new_dentry);
3913 exit4:
3914 dput(old_dentry);
3915 exit3:
3916 unlock_rename(new_dir, old_dir);
3917 mnt_drop_write(oldnd.path.mnt);
3918 exit2:
3919 if (retry_estale(error, lookup_flags))
3920 should_retry = true;
3921 path_put(&newnd.path);
3922 putname(to);
3923 exit1:
3924 path_put(&oldnd.path);
3925 putname(from);
3926 if (should_retry) {
3927 should_retry = false;
3928 lookup_flags |= LOOKUP_REVAL;
3929 goto retry;
3930 }
3931 exit:
3932 return error;
3933 }
3934
3935 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3936 {
3937 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3938 }
3939
3940 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3941 {
3942 int len;
3943
3944 len = PTR_ERR(link);
3945 if (IS_ERR(link))
3946 goto out;
3947
3948 len = strlen(link);
3949 if (len > (unsigned) buflen)
3950 len = buflen;
3951 if (copy_to_user(buffer, link, len))
3952 len = -EFAULT;
3953 out:
3954 return len;
3955 }
3956
3957 /*
3958 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3959 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3960 * using) it for any given inode is up to filesystem.
3961 */
3962 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3963 {
3964 struct nameidata nd;
3965 void *cookie;
3966 int res;
3967
3968 nd.depth = 0;
3969 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3970 if (IS_ERR(cookie))
3971 return PTR_ERR(cookie);
3972
3973 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3974 if (dentry->d_inode->i_op->put_link)
3975 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3976 return res;
3977 }
3978
3979 int vfs_follow_link(struct nameidata *nd, const char *link)
3980 {
3981 return __vfs_follow_link(nd, link);
3982 }
3983
3984 /* get the link contents into pagecache */
3985 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3986 {
3987 char *kaddr;
3988 struct page *page;
3989 struct address_space *mapping = dentry->d_inode->i_mapping;
3990 page = read_mapping_page(mapping, 0, NULL);
3991 if (IS_ERR(page))
3992 return (char*)page;
3993 *ppage = page;
3994 kaddr = kmap(page);
3995 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3996 return kaddr;
3997 }
3998
3999 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4000 {
4001 struct page *page = NULL;
4002 char *s = page_getlink(dentry, &page);
4003 int res = vfs_readlink(dentry,buffer,buflen,s);
4004 if (page) {
4005 kunmap(page);
4006 page_cache_release(page);
4007 }
4008 return res;
4009 }
4010
4011 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4012 {
4013 struct page *page = NULL;
4014 nd_set_link(nd, page_getlink(dentry, &page));
4015 return page;
4016 }
4017
4018 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4019 {
4020 struct page *page = cookie;
4021
4022 if (page) {
4023 kunmap(page);
4024 page_cache_release(page);
4025 }
4026 }
4027
4028 /*
4029 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4030 */
4031 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4032 {
4033 struct address_space *mapping = inode->i_mapping;
4034 struct page *page;
4035 void *fsdata;
4036 int err;
4037 char *kaddr;
4038 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4039 if (nofs)
4040 flags |= AOP_FLAG_NOFS;
4041
4042 retry:
4043 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4044 flags, &page, &fsdata);
4045 if (err)
4046 goto fail;
4047
4048 kaddr = kmap_atomic(page);
4049 memcpy(kaddr, symname, len-1);
4050 kunmap_atomic(kaddr);
4051
4052 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4053 page, fsdata);
4054 if (err < 0)
4055 goto fail;
4056 if (err < len-1)
4057 goto retry;
4058
4059 mark_inode_dirty(inode);
4060 return 0;
4061 fail:
4062 return err;
4063 }
4064
4065 int page_symlink(struct inode *inode, const char *symname, int len)
4066 {
4067 return __page_symlink(inode, symname, len,
4068 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4069 }
4070
4071 const struct inode_operations page_symlink_inode_operations = {
4072 .readlink = generic_readlink,
4073 .follow_link = page_follow_link_light,
4074 .put_link = page_put_link,
4075 };
4076
4077 EXPORT_SYMBOL(user_path_at);
4078 EXPORT_SYMBOL(follow_down_one);
4079 EXPORT_SYMBOL(follow_down);
4080 EXPORT_SYMBOL(follow_up);
4081 EXPORT_SYMBOL(get_write_access); /* nfsd */
4082 EXPORT_SYMBOL(lock_rename);
4083 EXPORT_SYMBOL(lookup_one_len);
4084 EXPORT_SYMBOL(page_follow_link_light);
4085 EXPORT_SYMBOL(page_put_link);
4086 EXPORT_SYMBOL(page_readlink);
4087 EXPORT_SYMBOL(__page_symlink);
4088 EXPORT_SYMBOL(page_symlink);
4089 EXPORT_SYMBOL(page_symlink_inode_operations);
4090 EXPORT_SYMBOL(kern_path);
4091 EXPORT_SYMBOL(vfs_path_lookup);
4092 EXPORT_SYMBOL(inode_permission);
4093 EXPORT_SYMBOL(unlock_rename);
4094 EXPORT_SYMBOL(vfs_create);
4095 EXPORT_SYMBOL(vfs_follow_link);
4096 EXPORT_SYMBOL(vfs_link);
4097 EXPORT_SYMBOL(vfs_mkdir);
4098 EXPORT_SYMBOL(vfs_mknod);
4099 EXPORT_SYMBOL(generic_permission);
4100 EXPORT_SYMBOL(vfs_readlink);
4101 EXPORT_SYMBOL(vfs_rename);
4102 EXPORT_SYMBOL(vfs_rmdir);
4103 EXPORT_SYMBOL(vfs_symlink);
4104 EXPORT_SYMBOL(vfs_unlink);
4105 EXPORT_SYMBOL(dentry_unhash);
4106 EXPORT_SYMBOL(generic_readlink);