Merge branches 'fixes', 'cleanups' and 'boards'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/module.h>
45 #include <linux/sched.h>
46 #include <linux/percpu.h>
47 #include <linux/bootmem.h>
48 #include <linux/err.h>
49 #include <linux/nmi.h>
50
51 #include <asm/acpi.h>
52 #include <asm/desc.h>
53 #include <asm/nmi.h>
54 #include <asm/irq.h>
55 #include <asm/idle.h>
56 #include <asm/smp.h>
57 #include <asm/trampoline.h>
58 #include <asm/cpu.h>
59 #include <asm/numa.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/mtrr.h>
63 #include <asm/vmi.h>
64 #include <asm/genapic.h>
65 #include <asm/setup.h>
66 #include <linux/mc146818rtc.h>
67
68 #include <mach_apic.h>
69 #include <mach_wakecpu.h>
70 #include <smpboot_hooks.h>
71
72 #ifdef CONFIG_X86_32
73 u8 apicid_2_node[MAX_APICID];
74 static int low_mappings;
75 #endif
76
77 /* State of each CPU */
78 DEFINE_PER_CPU(int, cpu_state) = { 0 };
79
80 /* Store all idle threads, this can be reused instead of creating
81 * a new thread. Also avoids complicated thread destroy functionality
82 * for idle threads.
83 */
84 #ifdef CONFIG_HOTPLUG_CPU
85 /*
86 * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
87 * removed after init for !CONFIG_HOTPLUG_CPU.
88 */
89 static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
90 #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x))
91 #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p))
92 #else
93 static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
94 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
95 #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p))
96 #endif
97
98 /* Number of siblings per CPU package */
99 int smp_num_siblings = 1;
100 EXPORT_SYMBOL(smp_num_siblings);
101
102 /* Last level cache ID of each logical CPU */
103 DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID;
104
105 cpumask_t cpu_callin_map;
106 cpumask_t cpu_callout_map;
107
108 /* representing HT siblings of each logical CPU */
109 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map);
110 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
111
112 /* representing HT and core siblings of each logical CPU */
113 DEFINE_PER_CPU(cpumask_t, cpu_core_map);
114 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
115
116 /* Per CPU bogomips and other parameters */
117 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
118 EXPORT_PER_CPU_SYMBOL(cpu_info);
119
120 static atomic_t init_deasserted;
121
122
123 /* representing cpus for which sibling maps can be computed */
124 static cpumask_t cpu_sibling_setup_map;
125
126 /* Set if we find a B stepping CPU */
127 static int __cpuinitdata smp_b_stepping;
128
129 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_32)
130
131 /* which logical CPUs are on which nodes */
132 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly =
133 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
134 EXPORT_SYMBOL(node_to_cpumask_map);
135 /* which node each logical CPU is on */
136 int cpu_to_node_map[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
137 EXPORT_SYMBOL(cpu_to_node_map);
138
139 /* set up a mapping between cpu and node. */
140 static void map_cpu_to_node(int cpu, int node)
141 {
142 printk(KERN_INFO "Mapping cpu %d to node %d\n", cpu, node);
143 cpu_set(cpu, node_to_cpumask_map[node]);
144 cpu_to_node_map[cpu] = node;
145 }
146
147 /* undo a mapping between cpu and node. */
148 static void unmap_cpu_to_node(int cpu)
149 {
150 int node;
151
152 printk(KERN_INFO "Unmapping cpu %d from all nodes\n", cpu);
153 for (node = 0; node < MAX_NUMNODES; node++)
154 cpu_clear(cpu, node_to_cpumask_map[node]);
155 cpu_to_node_map[cpu] = 0;
156 }
157 #else /* !(CONFIG_NUMA && CONFIG_X86_32) */
158 #define map_cpu_to_node(cpu, node) ({})
159 #define unmap_cpu_to_node(cpu) ({})
160 #endif
161
162 #ifdef CONFIG_X86_32
163 static int boot_cpu_logical_apicid;
164
165 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly =
166 { [0 ... NR_CPUS-1] = BAD_APICID };
167
168 static void map_cpu_to_logical_apicid(void)
169 {
170 int cpu = smp_processor_id();
171 int apicid = logical_smp_processor_id();
172 int node = apicid_to_node(apicid);
173
174 if (!node_online(node))
175 node = first_online_node;
176
177 cpu_2_logical_apicid[cpu] = apicid;
178 map_cpu_to_node(cpu, node);
179 }
180
181 void numa_remove_cpu(int cpu)
182 {
183 cpu_2_logical_apicid[cpu] = BAD_APICID;
184 unmap_cpu_to_node(cpu);
185 }
186 #else
187 #define map_cpu_to_logical_apicid() do {} while (0)
188 #endif
189
190 /*
191 * Report back to the Boot Processor.
192 * Running on AP.
193 */
194 static void __cpuinit smp_callin(void)
195 {
196 int cpuid, phys_id;
197 unsigned long timeout;
198
199 /*
200 * If waken up by an INIT in an 82489DX configuration
201 * we may get here before an INIT-deassert IPI reaches
202 * our local APIC. We have to wait for the IPI or we'll
203 * lock up on an APIC access.
204 */
205 wait_for_init_deassert(&init_deasserted);
206
207 /*
208 * (This works even if the APIC is not enabled.)
209 */
210 phys_id = read_apic_id();
211 cpuid = smp_processor_id();
212 if (cpu_isset(cpuid, cpu_callin_map)) {
213 panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
214 phys_id, cpuid);
215 }
216 pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
217
218 /*
219 * STARTUP IPIs are fragile beasts as they might sometimes
220 * trigger some glue motherboard logic. Complete APIC bus
221 * silence for 1 second, this overestimates the time the
222 * boot CPU is spending to send the up to 2 STARTUP IPIs
223 * by a factor of two. This should be enough.
224 */
225
226 /*
227 * Waiting 2s total for startup (udelay is not yet working)
228 */
229 timeout = jiffies + 2*HZ;
230 while (time_before(jiffies, timeout)) {
231 /*
232 * Has the boot CPU finished it's STARTUP sequence?
233 */
234 if (cpu_isset(cpuid, cpu_callout_map))
235 break;
236 cpu_relax();
237 }
238
239 if (!time_before(jiffies, timeout)) {
240 panic("%s: CPU%d started up but did not get a callout!\n",
241 __func__, cpuid);
242 }
243
244 /*
245 * the boot CPU has finished the init stage and is spinning
246 * on callin_map until we finish. We are free to set up this
247 * CPU, first the APIC. (this is probably redundant on most
248 * boards)
249 */
250
251 pr_debug("CALLIN, before setup_local_APIC().\n");
252 smp_callin_clear_local_apic();
253 setup_local_APIC();
254 end_local_APIC_setup();
255 map_cpu_to_logical_apicid();
256
257 notify_cpu_starting(cpuid);
258 /*
259 * Get our bogomips.
260 *
261 * Need to enable IRQs because it can take longer and then
262 * the NMI watchdog might kill us.
263 */
264 local_irq_enable();
265 calibrate_delay();
266 local_irq_disable();
267 pr_debug("Stack at about %p\n", &cpuid);
268
269 /*
270 * Save our processor parameters
271 */
272 smp_store_cpu_info(cpuid);
273
274 /*
275 * Allow the master to continue.
276 */
277 cpu_set(cpuid, cpu_callin_map);
278 }
279
280 static int __cpuinitdata unsafe_smp;
281
282 /*
283 * Activate a secondary processor.
284 */
285 notrace static void __cpuinit start_secondary(void *unused)
286 {
287 /*
288 * Don't put *anything* before cpu_init(), SMP booting is too
289 * fragile that we want to limit the things done here to the
290 * most necessary things.
291 */
292 vmi_bringup();
293 cpu_init();
294 preempt_disable();
295 smp_callin();
296
297 /* otherwise gcc will move up smp_processor_id before the cpu_init */
298 barrier();
299 /*
300 * Check TSC synchronization with the BP:
301 */
302 check_tsc_sync_target();
303
304 if (nmi_watchdog == NMI_IO_APIC) {
305 disable_8259A_irq(0);
306 enable_NMI_through_LVT0();
307 enable_8259A_irq(0);
308 }
309
310 #ifdef CONFIG_X86_32
311 while (low_mappings)
312 cpu_relax();
313 __flush_tlb_all();
314 #endif
315
316 /* This must be done before setting cpu_online_map */
317 set_cpu_sibling_map(raw_smp_processor_id());
318 wmb();
319
320 /*
321 * We need to hold call_lock, so there is no inconsistency
322 * between the time smp_call_function() determines number of
323 * IPI recipients, and the time when the determination is made
324 * for which cpus receive the IPI. Holding this
325 * lock helps us to not include this cpu in a currently in progress
326 * smp_call_function().
327 *
328 * We need to hold vector_lock so there the set of online cpus
329 * does not change while we are assigning vectors to cpus. Holding
330 * this lock ensures we don't half assign or remove an irq from a cpu.
331 */
332 ipi_call_lock();
333 lock_vector_lock();
334 __setup_vector_irq(smp_processor_id());
335 cpu_set(smp_processor_id(), cpu_online_map);
336 unlock_vector_lock();
337 ipi_call_unlock();
338 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
339
340 /* enable local interrupts */
341 local_irq_enable();
342
343 setup_secondary_clock();
344
345 wmb();
346 cpu_idle();
347 }
348
349 static void __cpuinit smp_apply_quirks(struct cpuinfo_x86 *c)
350 {
351 /*
352 * Mask B, Pentium, but not Pentium MMX
353 */
354 if (c->x86_vendor == X86_VENDOR_INTEL &&
355 c->x86 == 5 &&
356 c->x86_mask >= 1 && c->x86_mask <= 4 &&
357 c->x86_model <= 3)
358 /*
359 * Remember we have B step Pentia with bugs
360 */
361 smp_b_stepping = 1;
362
363 /*
364 * Certain Athlons might work (for various values of 'work') in SMP
365 * but they are not certified as MP capable.
366 */
367 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
368
369 if (num_possible_cpus() == 1)
370 goto valid_k7;
371
372 /* Athlon 660/661 is valid. */
373 if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
374 (c->x86_mask == 1)))
375 goto valid_k7;
376
377 /* Duron 670 is valid */
378 if ((c->x86_model == 7) && (c->x86_mask == 0))
379 goto valid_k7;
380
381 /*
382 * Athlon 662, Duron 671, and Athlon >model 7 have capability
383 * bit. It's worth noting that the A5 stepping (662) of some
384 * Athlon XP's have the MP bit set.
385 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
386 * more.
387 */
388 if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
389 ((c->x86_model == 7) && (c->x86_mask >= 1)) ||
390 (c->x86_model > 7))
391 if (cpu_has_mp)
392 goto valid_k7;
393
394 /* If we get here, not a certified SMP capable AMD system. */
395 unsafe_smp = 1;
396 }
397
398 valid_k7:
399 ;
400 }
401
402 static void __cpuinit smp_checks(void)
403 {
404 if (smp_b_stepping)
405 printk(KERN_WARNING "WARNING: SMP operation may be unreliable"
406 "with B stepping processors.\n");
407
408 /*
409 * Don't taint if we are running SMP kernel on a single non-MP
410 * approved Athlon
411 */
412 if (unsafe_smp && num_online_cpus() > 1) {
413 printk(KERN_INFO "WARNING: This combination of AMD"
414 "processors is not suitable for SMP.\n");
415 add_taint(TAINT_UNSAFE_SMP);
416 }
417 }
418
419 /*
420 * The bootstrap kernel entry code has set these up. Save them for
421 * a given CPU
422 */
423
424 void __cpuinit smp_store_cpu_info(int id)
425 {
426 struct cpuinfo_x86 *c = &cpu_data(id);
427
428 *c = boot_cpu_data;
429 c->cpu_index = id;
430 if (id != 0)
431 identify_secondary_cpu(c);
432 smp_apply_quirks(c);
433 }
434
435
436 void __cpuinit set_cpu_sibling_map(int cpu)
437 {
438 int i;
439 struct cpuinfo_x86 *c = &cpu_data(cpu);
440
441 cpu_set(cpu, cpu_sibling_setup_map);
442
443 if (smp_num_siblings > 1) {
444 for_each_cpu_mask_nr(i, cpu_sibling_setup_map) {
445 if (c->phys_proc_id == cpu_data(i).phys_proc_id &&
446 c->cpu_core_id == cpu_data(i).cpu_core_id) {
447 cpu_set(i, per_cpu(cpu_sibling_map, cpu));
448 cpu_set(cpu, per_cpu(cpu_sibling_map, i));
449 cpu_set(i, per_cpu(cpu_core_map, cpu));
450 cpu_set(cpu, per_cpu(cpu_core_map, i));
451 cpu_set(i, c->llc_shared_map);
452 cpu_set(cpu, cpu_data(i).llc_shared_map);
453 }
454 }
455 } else {
456 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
457 }
458
459 cpu_set(cpu, c->llc_shared_map);
460
461 if (current_cpu_data.x86_max_cores == 1) {
462 per_cpu(cpu_core_map, cpu) = per_cpu(cpu_sibling_map, cpu);
463 c->booted_cores = 1;
464 return;
465 }
466
467 for_each_cpu_mask_nr(i, cpu_sibling_setup_map) {
468 if (per_cpu(cpu_llc_id, cpu) != BAD_APICID &&
469 per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) {
470 cpu_set(i, c->llc_shared_map);
471 cpu_set(cpu, cpu_data(i).llc_shared_map);
472 }
473 if (c->phys_proc_id == cpu_data(i).phys_proc_id) {
474 cpu_set(i, per_cpu(cpu_core_map, cpu));
475 cpu_set(cpu, per_cpu(cpu_core_map, i));
476 /*
477 * Does this new cpu bringup a new core?
478 */
479 if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) {
480 /*
481 * for each core in package, increment
482 * the booted_cores for this new cpu
483 */
484 if (first_cpu(per_cpu(cpu_sibling_map, i)) == i)
485 c->booted_cores++;
486 /*
487 * increment the core count for all
488 * the other cpus in this package
489 */
490 if (i != cpu)
491 cpu_data(i).booted_cores++;
492 } else if (i != cpu && !c->booted_cores)
493 c->booted_cores = cpu_data(i).booted_cores;
494 }
495 }
496 }
497
498 /* maps the cpu to the sched domain representing multi-core */
499 const struct cpumask *cpu_coregroup_mask(int cpu)
500 {
501 struct cpuinfo_x86 *c = &cpu_data(cpu);
502 /*
503 * For perf, we return last level cache shared map.
504 * And for power savings, we return cpu_core_map
505 */
506 if (sched_mc_power_savings || sched_smt_power_savings)
507 return &per_cpu(cpu_core_map, cpu);
508 else
509 return &c->llc_shared_map;
510 }
511
512 cpumask_t cpu_coregroup_map(int cpu)
513 {
514 return *cpu_coregroup_mask(cpu);
515 }
516
517 static void impress_friends(void)
518 {
519 int cpu;
520 unsigned long bogosum = 0;
521 /*
522 * Allow the user to impress friends.
523 */
524 pr_debug("Before bogomips.\n");
525 for_each_possible_cpu(cpu)
526 if (cpu_isset(cpu, cpu_callout_map))
527 bogosum += cpu_data(cpu).loops_per_jiffy;
528 printk(KERN_INFO
529 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
530 num_online_cpus(),
531 bogosum/(500000/HZ),
532 (bogosum/(5000/HZ))%100);
533
534 pr_debug("Before bogocount - setting activated=1.\n");
535 }
536
537 void __inquire_remote_apic(int apicid)
538 {
539 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
540 char *names[] = { "ID", "VERSION", "SPIV" };
541 int timeout;
542 u32 status;
543
544 printk(KERN_INFO "Inquiring remote APIC 0x%x...\n", apicid);
545
546 for (i = 0; i < ARRAY_SIZE(regs); i++) {
547 printk(KERN_INFO "... APIC 0x%x %s: ", apicid, names[i]);
548
549 /*
550 * Wait for idle.
551 */
552 status = safe_apic_wait_icr_idle();
553 if (status)
554 printk(KERN_CONT
555 "a previous APIC delivery may have failed\n");
556
557 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
558
559 timeout = 0;
560 do {
561 udelay(100);
562 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
563 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
564
565 switch (status) {
566 case APIC_ICR_RR_VALID:
567 status = apic_read(APIC_RRR);
568 printk(KERN_CONT "%08x\n", status);
569 break;
570 default:
571 printk(KERN_CONT "failed\n");
572 }
573 }
574 }
575
576 /*
577 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
578 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
579 * won't ... remember to clear down the APIC, etc later.
580 */
581 int __devinit
582 wakeup_secondary_cpu_via_nmi(int logical_apicid, unsigned long start_eip)
583 {
584 unsigned long send_status, accept_status = 0;
585 int maxlvt;
586
587 /* Target chip */
588 /* Boot on the stack */
589 /* Kick the second */
590 apic_icr_write(APIC_DM_NMI | APIC_DEST_LOGICAL, logical_apicid);
591
592 pr_debug("Waiting for send to finish...\n");
593 send_status = safe_apic_wait_icr_idle();
594
595 /*
596 * Give the other CPU some time to accept the IPI.
597 */
598 udelay(200);
599 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
600 maxlvt = lapic_get_maxlvt();
601 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
602 apic_write(APIC_ESR, 0);
603 accept_status = (apic_read(APIC_ESR) & 0xEF);
604 }
605 pr_debug("NMI sent.\n");
606
607 if (send_status)
608 printk(KERN_ERR "APIC never delivered???\n");
609 if (accept_status)
610 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
611
612 return (send_status | accept_status);
613 }
614
615 int __devinit
616 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
617 {
618 unsigned long send_status, accept_status = 0;
619 int maxlvt, num_starts, j;
620
621 if (get_uv_system_type() == UV_NON_UNIQUE_APIC) {
622 send_status = uv_wakeup_secondary(phys_apicid, start_eip);
623 atomic_set(&init_deasserted, 1);
624 return send_status;
625 }
626
627 maxlvt = lapic_get_maxlvt();
628
629 /*
630 * Be paranoid about clearing APIC errors.
631 */
632 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
633 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
634 apic_write(APIC_ESR, 0);
635 apic_read(APIC_ESR);
636 }
637
638 pr_debug("Asserting INIT.\n");
639
640 /*
641 * Turn INIT on target chip
642 */
643 /*
644 * Send IPI
645 */
646 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
647 phys_apicid);
648
649 pr_debug("Waiting for send to finish...\n");
650 send_status = safe_apic_wait_icr_idle();
651
652 mdelay(10);
653
654 pr_debug("Deasserting INIT.\n");
655
656 /* Target chip */
657 /* Send IPI */
658 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
659
660 pr_debug("Waiting for send to finish...\n");
661 send_status = safe_apic_wait_icr_idle();
662
663 mb();
664 atomic_set(&init_deasserted, 1);
665
666 /*
667 * Should we send STARTUP IPIs ?
668 *
669 * Determine this based on the APIC version.
670 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
671 */
672 if (APIC_INTEGRATED(apic_version[phys_apicid]))
673 num_starts = 2;
674 else
675 num_starts = 0;
676
677 /*
678 * Paravirt / VMI wants a startup IPI hook here to set up the
679 * target processor state.
680 */
681 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
682 (unsigned long)stack_start.sp);
683
684 /*
685 * Run STARTUP IPI loop.
686 */
687 pr_debug("#startup loops: %d.\n", num_starts);
688
689 for (j = 1; j <= num_starts; j++) {
690 pr_debug("Sending STARTUP #%d.\n", j);
691 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
692 apic_write(APIC_ESR, 0);
693 apic_read(APIC_ESR);
694 pr_debug("After apic_write.\n");
695
696 /*
697 * STARTUP IPI
698 */
699
700 /* Target chip */
701 /* Boot on the stack */
702 /* Kick the second */
703 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
704 phys_apicid);
705
706 /*
707 * Give the other CPU some time to accept the IPI.
708 */
709 udelay(300);
710
711 pr_debug("Startup point 1.\n");
712
713 pr_debug("Waiting for send to finish...\n");
714 send_status = safe_apic_wait_icr_idle();
715
716 /*
717 * Give the other CPU some time to accept the IPI.
718 */
719 udelay(200);
720 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
721 apic_write(APIC_ESR, 0);
722 accept_status = (apic_read(APIC_ESR) & 0xEF);
723 if (send_status || accept_status)
724 break;
725 }
726 pr_debug("After Startup.\n");
727
728 if (send_status)
729 printk(KERN_ERR "APIC never delivered???\n");
730 if (accept_status)
731 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
732
733 return (send_status | accept_status);
734 }
735
736 struct create_idle {
737 struct work_struct work;
738 struct task_struct *idle;
739 struct completion done;
740 int cpu;
741 };
742
743 static void __cpuinit do_fork_idle(struct work_struct *work)
744 {
745 struct create_idle *c_idle =
746 container_of(work, struct create_idle, work);
747
748 c_idle->idle = fork_idle(c_idle->cpu);
749 complete(&c_idle->done);
750 }
751
752 #ifdef CONFIG_X86_64
753
754 /* __ref because it's safe to call free_bootmem when after_bootmem == 0. */
755 static void __ref free_bootmem_pda(struct x8664_pda *oldpda)
756 {
757 if (!after_bootmem)
758 free_bootmem((unsigned long)oldpda, sizeof(*oldpda));
759 }
760
761 /*
762 * Allocate node local memory for the AP pda.
763 *
764 * Must be called after the _cpu_pda pointer table is initialized.
765 */
766 int __cpuinit get_local_pda(int cpu)
767 {
768 struct x8664_pda *oldpda, *newpda;
769 unsigned long size = sizeof(struct x8664_pda);
770 int node = cpu_to_node(cpu);
771
772 if (cpu_pda(cpu) && !cpu_pda(cpu)->in_bootmem)
773 return 0;
774
775 oldpda = cpu_pda(cpu);
776 newpda = kmalloc_node(size, GFP_ATOMIC, node);
777 if (!newpda) {
778 printk(KERN_ERR "Could not allocate node local PDA "
779 "for CPU %d on node %d\n", cpu, node);
780
781 if (oldpda)
782 return 0; /* have a usable pda */
783 else
784 return -1;
785 }
786
787 if (oldpda) {
788 memcpy(newpda, oldpda, size);
789 free_bootmem_pda(oldpda);
790 }
791
792 newpda->in_bootmem = 0;
793 cpu_pda(cpu) = newpda;
794 return 0;
795 }
796 #endif /* CONFIG_X86_64 */
797
798 static int __cpuinit do_boot_cpu(int apicid, int cpu)
799 /*
800 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
801 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
802 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
803 */
804 {
805 unsigned long boot_error = 0;
806 int timeout;
807 unsigned long start_ip;
808 unsigned short nmi_high = 0, nmi_low = 0;
809 struct create_idle c_idle = {
810 .cpu = cpu,
811 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
812 };
813 INIT_WORK(&c_idle.work, do_fork_idle);
814
815 #ifdef CONFIG_X86_64
816 /* Allocate node local memory for AP pdas */
817 if (cpu > 0) {
818 boot_error = get_local_pda(cpu);
819 if (boot_error)
820 goto restore_state;
821 /* if can't get pda memory, can't start cpu */
822 }
823 #endif
824
825 alternatives_smp_switch(1);
826
827 c_idle.idle = get_idle_for_cpu(cpu);
828
829 /*
830 * We can't use kernel_thread since we must avoid to
831 * reschedule the child.
832 */
833 if (c_idle.idle) {
834 c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *)
835 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
836 init_idle(c_idle.idle, cpu);
837 goto do_rest;
838 }
839
840 if (!keventd_up() || current_is_keventd())
841 c_idle.work.func(&c_idle.work);
842 else {
843 schedule_work(&c_idle.work);
844 wait_for_completion(&c_idle.done);
845 }
846
847 if (IS_ERR(c_idle.idle)) {
848 printk("failed fork for CPU %d\n", cpu);
849 return PTR_ERR(c_idle.idle);
850 }
851
852 set_idle_for_cpu(cpu, c_idle.idle);
853 do_rest:
854 #ifdef CONFIG_X86_32
855 per_cpu(current_task, cpu) = c_idle.idle;
856 init_gdt(cpu);
857 /* Stack for startup_32 can be just as for start_secondary onwards */
858 irq_ctx_init(cpu);
859 #else
860 cpu_pda(cpu)->pcurrent = c_idle.idle;
861 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
862 #endif
863 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
864 initial_code = (unsigned long)start_secondary;
865 stack_start.sp = (void *) c_idle.idle->thread.sp;
866
867 /* start_ip had better be page-aligned! */
868 start_ip = setup_trampoline();
869
870 /* So we see what's up */
871 printk(KERN_INFO "Booting processor %d APIC 0x%x ip 0x%lx\n",
872 cpu, apicid, start_ip);
873
874 /*
875 * This grunge runs the startup process for
876 * the targeted processor.
877 */
878
879 atomic_set(&init_deasserted, 0);
880
881 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
882
883 pr_debug("Setting warm reset code and vector.\n");
884
885 store_NMI_vector(&nmi_high, &nmi_low);
886
887 smpboot_setup_warm_reset_vector(start_ip);
888 /*
889 * Be paranoid about clearing APIC errors.
890 */
891 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
892 apic_write(APIC_ESR, 0);
893 apic_read(APIC_ESR);
894 }
895 }
896
897 /*
898 * Starting actual IPI sequence...
899 */
900 boot_error = wakeup_secondary_cpu(apicid, start_ip);
901
902 if (!boot_error) {
903 /*
904 * allow APs to start initializing.
905 */
906 pr_debug("Before Callout %d.\n", cpu);
907 cpu_set(cpu, cpu_callout_map);
908 pr_debug("After Callout %d.\n", cpu);
909
910 /*
911 * Wait 5s total for a response
912 */
913 for (timeout = 0; timeout < 50000; timeout++) {
914 if (cpu_isset(cpu, cpu_callin_map))
915 break; /* It has booted */
916 udelay(100);
917 }
918
919 if (cpu_isset(cpu, cpu_callin_map)) {
920 /* number CPUs logically, starting from 1 (BSP is 0) */
921 pr_debug("OK.\n");
922 printk(KERN_INFO "CPU%d: ", cpu);
923 print_cpu_info(&cpu_data(cpu));
924 pr_debug("CPU has booted.\n");
925 } else {
926 boot_error = 1;
927 if (*((volatile unsigned char *)trampoline_base)
928 == 0xA5)
929 /* trampoline started but...? */
930 printk(KERN_ERR "Stuck ??\n");
931 else
932 /* trampoline code not run */
933 printk(KERN_ERR "Not responding.\n");
934 if (get_uv_system_type() != UV_NON_UNIQUE_APIC)
935 inquire_remote_apic(apicid);
936 }
937 }
938 #ifdef CONFIG_X86_64
939 restore_state:
940 #endif
941 if (boot_error) {
942 /* Try to put things back the way they were before ... */
943 numa_remove_cpu(cpu); /* was set by numa_add_cpu */
944 cpu_clear(cpu, cpu_callout_map); /* was set by do_boot_cpu() */
945 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
946 cpu_clear(cpu, cpu_present_map);
947 per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
948 }
949
950 /* mark "stuck" area as not stuck */
951 *((volatile unsigned long *)trampoline_base) = 0;
952
953 /*
954 * Cleanup possible dangling ends...
955 */
956 smpboot_restore_warm_reset_vector();
957
958 return boot_error;
959 }
960
961 int __cpuinit native_cpu_up(unsigned int cpu)
962 {
963 int apicid = cpu_present_to_apicid(cpu);
964 unsigned long flags;
965 int err;
966
967 WARN_ON(irqs_disabled());
968
969 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
970
971 if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid ||
972 !physid_isset(apicid, phys_cpu_present_map)) {
973 printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu);
974 return -EINVAL;
975 }
976
977 /*
978 * Already booted CPU?
979 */
980 if (cpu_isset(cpu, cpu_callin_map)) {
981 pr_debug("do_boot_cpu %d Already started\n", cpu);
982 return -ENOSYS;
983 }
984
985 /*
986 * Save current MTRR state in case it was changed since early boot
987 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
988 */
989 mtrr_save_state();
990
991 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
992
993 #ifdef CONFIG_X86_32
994 /* init low mem mapping */
995 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
996 min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
997 flush_tlb_all();
998 low_mappings = 1;
999
1000 err = do_boot_cpu(apicid, cpu);
1001
1002 zap_low_mappings();
1003 low_mappings = 0;
1004 #else
1005 err = do_boot_cpu(apicid, cpu);
1006 #endif
1007 if (err) {
1008 pr_debug("do_boot_cpu failed %d\n", err);
1009 return -EIO;
1010 }
1011
1012 /*
1013 * Check TSC synchronization with the AP (keep irqs disabled
1014 * while doing so):
1015 */
1016 local_irq_save(flags);
1017 check_tsc_sync_source(cpu);
1018 local_irq_restore(flags);
1019
1020 while (!cpu_online(cpu)) {
1021 cpu_relax();
1022 touch_nmi_watchdog();
1023 }
1024
1025 return 0;
1026 }
1027
1028 /*
1029 * Fall back to non SMP mode after errors.
1030 *
1031 * RED-PEN audit/test this more. I bet there is more state messed up here.
1032 */
1033 static __init void disable_smp(void)
1034 {
1035 cpu_present_map = cpumask_of_cpu(0);
1036 cpu_possible_map = cpumask_of_cpu(0);
1037 smpboot_clear_io_apic_irqs();
1038
1039 if (smp_found_config)
1040 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1041 else
1042 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1043 map_cpu_to_logical_apicid();
1044 cpu_set(0, per_cpu(cpu_sibling_map, 0));
1045 cpu_set(0, per_cpu(cpu_core_map, 0));
1046 }
1047
1048 /*
1049 * Various sanity checks.
1050 */
1051 static int __init smp_sanity_check(unsigned max_cpus)
1052 {
1053 preempt_disable();
1054
1055 #if defined(CONFIG_X86_PC) && defined(CONFIG_X86_32)
1056 if (def_to_bigsmp && nr_cpu_ids > 8) {
1057 unsigned int cpu;
1058 unsigned nr;
1059
1060 printk(KERN_WARNING
1061 "More than 8 CPUs detected - skipping them.\n"
1062 "Use CONFIG_X86_GENERICARCH and CONFIG_X86_BIGSMP.\n");
1063
1064 nr = 0;
1065 for_each_present_cpu(cpu) {
1066 if (nr >= 8)
1067 cpu_clear(cpu, cpu_present_map);
1068 nr++;
1069 }
1070
1071 nr = 0;
1072 for_each_possible_cpu(cpu) {
1073 if (nr >= 8)
1074 cpu_clear(cpu, cpu_possible_map);
1075 nr++;
1076 }
1077
1078 nr_cpu_ids = 8;
1079 }
1080 #endif
1081
1082 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1083 printk(KERN_WARNING
1084 "weird, boot CPU (#%d) not listed by the BIOS.\n",
1085 hard_smp_processor_id());
1086
1087 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1088 }
1089
1090 /*
1091 * If we couldn't find an SMP configuration at boot time,
1092 * get out of here now!
1093 */
1094 if (!smp_found_config && !acpi_lapic) {
1095 preempt_enable();
1096 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1097 disable_smp();
1098 if (APIC_init_uniprocessor())
1099 printk(KERN_NOTICE "Local APIC not detected."
1100 " Using dummy APIC emulation.\n");
1101 return -1;
1102 }
1103
1104 /*
1105 * Should not be necessary because the MP table should list the boot
1106 * CPU too, but we do it for the sake of robustness anyway.
1107 */
1108 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1109 printk(KERN_NOTICE
1110 "weird, boot CPU (#%d) not listed by the BIOS.\n",
1111 boot_cpu_physical_apicid);
1112 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1113 }
1114 preempt_enable();
1115
1116 /*
1117 * If we couldn't find a local APIC, then get out of here now!
1118 */
1119 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1120 !cpu_has_apic) {
1121 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1122 boot_cpu_physical_apicid);
1123 printk(KERN_ERR "... forcing use of dummy APIC emulation."
1124 "(tell your hw vendor)\n");
1125 smpboot_clear_io_apic();
1126 return -1;
1127 }
1128
1129 verify_local_APIC();
1130
1131 /*
1132 * If SMP should be disabled, then really disable it!
1133 */
1134 if (!max_cpus) {
1135 printk(KERN_INFO "SMP mode deactivated.\n");
1136 smpboot_clear_io_apic();
1137
1138 localise_nmi_watchdog();
1139
1140 connect_bsp_APIC();
1141 setup_local_APIC();
1142 end_local_APIC_setup();
1143 return -1;
1144 }
1145
1146 return 0;
1147 }
1148
1149 static void __init smp_cpu_index_default(void)
1150 {
1151 int i;
1152 struct cpuinfo_x86 *c;
1153
1154 for_each_possible_cpu(i) {
1155 c = &cpu_data(i);
1156 /* mark all to hotplug */
1157 c->cpu_index = nr_cpu_ids;
1158 }
1159 }
1160
1161 /*
1162 * Prepare for SMP bootup. The MP table or ACPI has been read
1163 * earlier. Just do some sanity checking here and enable APIC mode.
1164 */
1165 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1166 {
1167 preempt_disable();
1168 smp_cpu_index_default();
1169 current_cpu_data = boot_cpu_data;
1170 cpu_callin_map = cpumask_of_cpu(0);
1171 mb();
1172 /*
1173 * Setup boot CPU information
1174 */
1175 smp_store_cpu_info(0); /* Final full version of the data */
1176 #ifdef CONFIG_X86_32
1177 boot_cpu_logical_apicid = logical_smp_processor_id();
1178 #endif
1179 current_thread_info()->cpu = 0; /* needed? */
1180 set_cpu_sibling_map(0);
1181
1182 #ifdef CONFIG_X86_64
1183 enable_IR_x2apic();
1184 setup_apic_routing();
1185 #endif
1186
1187 if (smp_sanity_check(max_cpus) < 0) {
1188 printk(KERN_INFO "SMP disabled\n");
1189 disable_smp();
1190 goto out;
1191 }
1192
1193 preempt_disable();
1194 if (read_apic_id() != boot_cpu_physical_apicid) {
1195 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1196 read_apic_id(), boot_cpu_physical_apicid);
1197 /* Or can we switch back to PIC here? */
1198 }
1199 preempt_enable();
1200
1201 connect_bsp_APIC();
1202
1203 /*
1204 * Switch from PIC to APIC mode.
1205 */
1206 setup_local_APIC();
1207
1208 #ifdef CONFIG_X86_64
1209 /*
1210 * Enable IO APIC before setting up error vector
1211 */
1212 if (!skip_ioapic_setup && nr_ioapics)
1213 enable_IO_APIC();
1214 #endif
1215 end_local_APIC_setup();
1216
1217 map_cpu_to_logical_apicid();
1218
1219 setup_portio_remap();
1220
1221 smpboot_setup_io_apic();
1222 /*
1223 * Set up local APIC timer on boot CPU.
1224 */
1225
1226 printk(KERN_INFO "CPU%d: ", 0);
1227 print_cpu_info(&cpu_data(0));
1228 setup_boot_clock();
1229
1230 if (is_uv_system())
1231 uv_system_init();
1232 out:
1233 preempt_enable();
1234 }
1235 /*
1236 * Early setup to make printk work.
1237 */
1238 void __init native_smp_prepare_boot_cpu(void)
1239 {
1240 int me = smp_processor_id();
1241 #ifdef CONFIG_X86_32
1242 init_gdt(me);
1243 #endif
1244 switch_to_new_gdt();
1245 /* already set me in cpu_online_map in boot_cpu_init() */
1246 cpu_set(me, cpu_callout_map);
1247 per_cpu(cpu_state, me) = CPU_ONLINE;
1248 }
1249
1250 void __init native_smp_cpus_done(unsigned int max_cpus)
1251 {
1252 pr_debug("Boot done.\n");
1253
1254 impress_friends();
1255 smp_checks();
1256 #ifdef CONFIG_X86_IO_APIC
1257 setup_ioapic_dest();
1258 #endif
1259 check_nmi_watchdog();
1260 }
1261
1262 static int __initdata setup_possible_cpus = -1;
1263 static int __init _setup_possible_cpus(char *str)
1264 {
1265 get_option(&str, &setup_possible_cpus);
1266 return 0;
1267 }
1268 early_param("possible_cpus", _setup_possible_cpus);
1269
1270
1271 /*
1272 * cpu_possible_map should be static, it cannot change as cpu's
1273 * are onlined, or offlined. The reason is per-cpu data-structures
1274 * are allocated by some modules at init time, and dont expect to
1275 * do this dynamically on cpu arrival/departure.
1276 * cpu_present_map on the other hand can change dynamically.
1277 * In case when cpu_hotplug is not compiled, then we resort to current
1278 * behaviour, which is cpu_possible == cpu_present.
1279 * - Ashok Raj
1280 *
1281 * Three ways to find out the number of additional hotplug CPUs:
1282 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1283 * - The user can overwrite it with possible_cpus=NUM
1284 * - Otherwise don't reserve additional CPUs.
1285 * We do this because additional CPUs waste a lot of memory.
1286 * -AK
1287 */
1288 __init void prefill_possible_map(void)
1289 {
1290 int i, possible;
1291
1292 /* no processor from mptable or madt */
1293 if (!num_processors)
1294 num_processors = 1;
1295
1296 if (setup_possible_cpus == -1)
1297 possible = num_processors + disabled_cpus;
1298 else
1299 possible = setup_possible_cpus;
1300
1301 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1302
1303 if (possible > CONFIG_NR_CPUS) {
1304 printk(KERN_WARNING
1305 "%d Processors exceeds NR_CPUS limit of %d\n",
1306 possible, CONFIG_NR_CPUS);
1307 possible = CONFIG_NR_CPUS;
1308 }
1309
1310 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1311 possible, max_t(int, possible - num_processors, 0));
1312
1313 for (i = 0; i < possible; i++)
1314 cpu_set(i, cpu_possible_map);
1315
1316 nr_cpu_ids = possible;
1317 }
1318
1319 #ifdef CONFIG_HOTPLUG_CPU
1320
1321 static void remove_siblinginfo(int cpu)
1322 {
1323 int sibling;
1324 struct cpuinfo_x86 *c = &cpu_data(cpu);
1325
1326 for_each_cpu_mask_nr(sibling, per_cpu(cpu_core_map, cpu)) {
1327 cpu_clear(cpu, per_cpu(cpu_core_map, sibling));
1328 /*/
1329 * last thread sibling in this cpu core going down
1330 */
1331 if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1)
1332 cpu_data(sibling).booted_cores--;
1333 }
1334
1335 for_each_cpu_mask_nr(sibling, per_cpu(cpu_sibling_map, cpu))
1336 cpu_clear(cpu, per_cpu(cpu_sibling_map, sibling));
1337 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1338 cpus_clear(per_cpu(cpu_core_map, cpu));
1339 c->phys_proc_id = 0;
1340 c->cpu_core_id = 0;
1341 cpu_clear(cpu, cpu_sibling_setup_map);
1342 }
1343
1344 static void __ref remove_cpu_from_maps(int cpu)
1345 {
1346 cpu_clear(cpu, cpu_online_map);
1347 cpu_clear(cpu, cpu_callout_map);
1348 cpu_clear(cpu, cpu_callin_map);
1349 /* was set by cpu_init() */
1350 cpu_clear(cpu, cpu_initialized);
1351 numa_remove_cpu(cpu);
1352 }
1353
1354 void cpu_disable_common(void)
1355 {
1356 int cpu = smp_processor_id();
1357 /*
1358 * HACK:
1359 * Allow any queued timer interrupts to get serviced
1360 * This is only a temporary solution until we cleanup
1361 * fixup_irqs as we do for IA64.
1362 */
1363 local_irq_enable();
1364 mdelay(1);
1365
1366 local_irq_disable();
1367 remove_siblinginfo(cpu);
1368
1369 /* It's now safe to remove this processor from the online map */
1370 lock_vector_lock();
1371 remove_cpu_from_maps(cpu);
1372 unlock_vector_lock();
1373 fixup_irqs();
1374 }
1375
1376 int native_cpu_disable(void)
1377 {
1378 int cpu = smp_processor_id();
1379
1380 /*
1381 * Perhaps use cpufreq to drop frequency, but that could go
1382 * into generic code.
1383 *
1384 * We won't take down the boot processor on i386 due to some
1385 * interrupts only being able to be serviced by the BSP.
1386 * Especially so if we're not using an IOAPIC -zwane
1387 */
1388 if (cpu == 0)
1389 return -EBUSY;
1390
1391 if (nmi_watchdog == NMI_LOCAL_APIC)
1392 stop_apic_nmi_watchdog(NULL);
1393 clear_local_APIC();
1394
1395 cpu_disable_common();
1396 return 0;
1397 }
1398
1399 void native_cpu_die(unsigned int cpu)
1400 {
1401 /* We don't do anything here: idle task is faking death itself. */
1402 unsigned int i;
1403
1404 for (i = 0; i < 10; i++) {
1405 /* They ack this in play_dead by setting CPU_DEAD */
1406 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1407 printk(KERN_INFO "CPU %d is now offline\n", cpu);
1408 if (1 == num_online_cpus())
1409 alternatives_smp_switch(0);
1410 return;
1411 }
1412 msleep(100);
1413 }
1414 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1415 }
1416
1417 void play_dead_common(void)
1418 {
1419 idle_task_exit();
1420 reset_lazy_tlbstate();
1421 irq_ctx_exit(raw_smp_processor_id());
1422 c1e_remove_cpu(raw_smp_processor_id());
1423
1424 mb();
1425 /* Ack it */
1426 __get_cpu_var(cpu_state) = CPU_DEAD;
1427
1428 /*
1429 * With physical CPU hotplug, we should halt the cpu
1430 */
1431 local_irq_disable();
1432 }
1433
1434 void native_play_dead(void)
1435 {
1436 play_dead_common();
1437 wbinvd_halt();
1438 }
1439
1440 #else /* ... !CONFIG_HOTPLUG_CPU */
1441 int native_cpu_disable(void)
1442 {
1443 return -ENOSYS;
1444 }
1445
1446 void native_cpu_die(unsigned int cpu)
1447 {
1448 /* We said "no" in __cpu_disable */
1449 BUG();
1450 }
1451
1452 void native_play_dead(void)
1453 {
1454 BUG();
1455 }
1456
1457 #endif