Merge branch 'timer/cleanup' into late/mvebu2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35 #include <asm/desc.h>
36 #include <asm/ldt.h>
37
38 #include "perf_event.h"
39
40 struct x86_pmu x86_pmu __read_mostly;
41
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
43 .enabled = 1,
44 };
45
46 u64 __read_mostly hw_cache_event_ids
47 [PERF_COUNT_HW_CACHE_MAX]
48 [PERF_COUNT_HW_CACHE_OP_MAX]
49 [PERF_COUNT_HW_CACHE_RESULT_MAX];
50 u64 __read_mostly hw_cache_extra_regs
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54
55 /*
56 * Propagate event elapsed time into the generic event.
57 * Can only be executed on the CPU where the event is active.
58 * Returns the delta events processed.
59 */
60 u64 x86_perf_event_update(struct perf_event *event)
61 {
62 struct hw_perf_event *hwc = &event->hw;
63 int shift = 64 - x86_pmu.cntval_bits;
64 u64 prev_raw_count, new_raw_count;
65 int idx = hwc->idx;
66 s64 delta;
67
68 if (idx == INTEL_PMC_IDX_FIXED_BTS)
69 return 0;
70
71 /*
72 * Careful: an NMI might modify the previous event value.
73 *
74 * Our tactic to handle this is to first atomically read and
75 * exchange a new raw count - then add that new-prev delta
76 * count to the generic event atomically:
77 */
78 again:
79 prev_raw_count = local64_read(&hwc->prev_count);
80 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
81
82 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
83 new_raw_count) != prev_raw_count)
84 goto again;
85
86 /*
87 * Now we have the new raw value and have updated the prev
88 * timestamp already. We can now calculate the elapsed delta
89 * (event-)time and add that to the generic event.
90 *
91 * Careful, not all hw sign-extends above the physical width
92 * of the count.
93 */
94 delta = (new_raw_count << shift) - (prev_raw_count << shift);
95 delta >>= shift;
96
97 local64_add(delta, &event->count);
98 local64_sub(delta, &hwc->period_left);
99
100 return new_raw_count;
101 }
102
103 /*
104 * Find and validate any extra registers to set up.
105 */
106 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
107 {
108 struct hw_perf_event_extra *reg;
109 struct extra_reg *er;
110
111 reg = &event->hw.extra_reg;
112
113 if (!x86_pmu.extra_regs)
114 return 0;
115
116 for (er = x86_pmu.extra_regs; er->msr; er++) {
117 if (er->event != (config & er->config_mask))
118 continue;
119 if (event->attr.config1 & ~er->valid_mask)
120 return -EINVAL;
121
122 reg->idx = er->idx;
123 reg->config = event->attr.config1;
124 reg->reg = er->msr;
125 break;
126 }
127 return 0;
128 }
129
130 static atomic_t active_events;
131 static DEFINE_MUTEX(pmc_reserve_mutex);
132
133 #ifdef CONFIG_X86_LOCAL_APIC
134
135 static bool reserve_pmc_hardware(void)
136 {
137 int i;
138
139 for (i = 0; i < x86_pmu.num_counters; i++) {
140 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
141 goto perfctr_fail;
142 }
143
144 for (i = 0; i < x86_pmu.num_counters; i++) {
145 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
146 goto eventsel_fail;
147 }
148
149 return true;
150
151 eventsel_fail:
152 for (i--; i >= 0; i--)
153 release_evntsel_nmi(x86_pmu_config_addr(i));
154
155 i = x86_pmu.num_counters;
156
157 perfctr_fail:
158 for (i--; i >= 0; i--)
159 release_perfctr_nmi(x86_pmu_event_addr(i));
160
161 return false;
162 }
163
164 static void release_pmc_hardware(void)
165 {
166 int i;
167
168 for (i = 0; i < x86_pmu.num_counters; i++) {
169 release_perfctr_nmi(x86_pmu_event_addr(i));
170 release_evntsel_nmi(x86_pmu_config_addr(i));
171 }
172 }
173
174 #else
175
176 static bool reserve_pmc_hardware(void) { return true; }
177 static void release_pmc_hardware(void) {}
178
179 #endif
180
181 static bool check_hw_exists(void)
182 {
183 u64 val, val_new = ~0;
184 int i, reg, ret = 0;
185
186 /*
187 * Check to see if the BIOS enabled any of the counters, if so
188 * complain and bail.
189 */
190 for (i = 0; i < x86_pmu.num_counters; i++) {
191 reg = x86_pmu_config_addr(i);
192 ret = rdmsrl_safe(reg, &val);
193 if (ret)
194 goto msr_fail;
195 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
196 goto bios_fail;
197 }
198
199 if (x86_pmu.num_counters_fixed) {
200 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
201 ret = rdmsrl_safe(reg, &val);
202 if (ret)
203 goto msr_fail;
204 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
205 if (val & (0x03 << i*4))
206 goto bios_fail;
207 }
208 }
209
210 /*
211 * Read the current value, change it and read it back to see if it
212 * matches, this is needed to detect certain hardware emulators
213 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
214 */
215 reg = x86_pmu_event_addr(0);
216 if (rdmsrl_safe(reg, &val))
217 goto msr_fail;
218 val ^= 0xffffUL;
219 ret = wrmsrl_safe(reg, val);
220 ret |= rdmsrl_safe(reg, &val_new);
221 if (ret || val != val_new)
222 goto msr_fail;
223
224 return true;
225
226 bios_fail:
227 /*
228 * We still allow the PMU driver to operate:
229 */
230 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
231 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
232
233 return true;
234
235 msr_fail:
236 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
237 printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
238
239 return false;
240 }
241
242 static void hw_perf_event_destroy(struct perf_event *event)
243 {
244 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
245 release_pmc_hardware();
246 release_ds_buffers();
247 mutex_unlock(&pmc_reserve_mutex);
248 }
249 }
250
251 static inline int x86_pmu_initialized(void)
252 {
253 return x86_pmu.handle_irq != NULL;
254 }
255
256 static inline int
257 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
258 {
259 struct perf_event_attr *attr = &event->attr;
260 unsigned int cache_type, cache_op, cache_result;
261 u64 config, val;
262
263 config = attr->config;
264
265 cache_type = (config >> 0) & 0xff;
266 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
267 return -EINVAL;
268
269 cache_op = (config >> 8) & 0xff;
270 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
271 return -EINVAL;
272
273 cache_result = (config >> 16) & 0xff;
274 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
275 return -EINVAL;
276
277 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
278
279 if (val == 0)
280 return -ENOENT;
281
282 if (val == -1)
283 return -EINVAL;
284
285 hwc->config |= val;
286 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
287 return x86_pmu_extra_regs(val, event);
288 }
289
290 int x86_setup_perfctr(struct perf_event *event)
291 {
292 struct perf_event_attr *attr = &event->attr;
293 struct hw_perf_event *hwc = &event->hw;
294 u64 config;
295
296 if (!is_sampling_event(event)) {
297 hwc->sample_period = x86_pmu.max_period;
298 hwc->last_period = hwc->sample_period;
299 local64_set(&hwc->period_left, hwc->sample_period);
300 } else {
301 /*
302 * If we have a PMU initialized but no APIC
303 * interrupts, we cannot sample hardware
304 * events (user-space has to fall back and
305 * sample via a hrtimer based software event):
306 */
307 if (!x86_pmu.apic)
308 return -EOPNOTSUPP;
309 }
310
311 if (attr->type == PERF_TYPE_RAW)
312 return x86_pmu_extra_regs(event->attr.config, event);
313
314 if (attr->type == PERF_TYPE_HW_CACHE)
315 return set_ext_hw_attr(hwc, event);
316
317 if (attr->config >= x86_pmu.max_events)
318 return -EINVAL;
319
320 /*
321 * The generic map:
322 */
323 config = x86_pmu.event_map(attr->config);
324
325 if (config == 0)
326 return -ENOENT;
327
328 if (config == -1LL)
329 return -EINVAL;
330
331 /*
332 * Branch tracing:
333 */
334 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
335 !attr->freq && hwc->sample_period == 1) {
336 /* BTS is not supported by this architecture. */
337 if (!x86_pmu.bts_active)
338 return -EOPNOTSUPP;
339
340 /* BTS is currently only allowed for user-mode. */
341 if (!attr->exclude_kernel)
342 return -EOPNOTSUPP;
343 }
344
345 hwc->config |= config;
346
347 return 0;
348 }
349
350 /*
351 * check that branch_sample_type is compatible with
352 * settings needed for precise_ip > 1 which implies
353 * using the LBR to capture ALL taken branches at the
354 * priv levels of the measurement
355 */
356 static inline int precise_br_compat(struct perf_event *event)
357 {
358 u64 m = event->attr.branch_sample_type;
359 u64 b = 0;
360
361 /* must capture all branches */
362 if (!(m & PERF_SAMPLE_BRANCH_ANY))
363 return 0;
364
365 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
366
367 if (!event->attr.exclude_user)
368 b |= PERF_SAMPLE_BRANCH_USER;
369
370 if (!event->attr.exclude_kernel)
371 b |= PERF_SAMPLE_BRANCH_KERNEL;
372
373 /*
374 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
375 */
376
377 return m == b;
378 }
379
380 int x86_pmu_hw_config(struct perf_event *event)
381 {
382 if (event->attr.precise_ip) {
383 int precise = 0;
384
385 /* Support for constant skid */
386 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
387 precise++;
388
389 /* Support for IP fixup */
390 if (x86_pmu.lbr_nr)
391 precise++;
392 }
393
394 if (event->attr.precise_ip > precise)
395 return -EOPNOTSUPP;
396 /*
397 * check that PEBS LBR correction does not conflict with
398 * whatever the user is asking with attr->branch_sample_type
399 */
400 if (event->attr.precise_ip > 1) {
401 u64 *br_type = &event->attr.branch_sample_type;
402
403 if (has_branch_stack(event)) {
404 if (!precise_br_compat(event))
405 return -EOPNOTSUPP;
406
407 /* branch_sample_type is compatible */
408
409 } else {
410 /*
411 * user did not specify branch_sample_type
412 *
413 * For PEBS fixups, we capture all
414 * the branches at the priv level of the
415 * event.
416 */
417 *br_type = PERF_SAMPLE_BRANCH_ANY;
418
419 if (!event->attr.exclude_user)
420 *br_type |= PERF_SAMPLE_BRANCH_USER;
421
422 if (!event->attr.exclude_kernel)
423 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
424 }
425 }
426 }
427
428 /*
429 * Generate PMC IRQs:
430 * (keep 'enabled' bit clear for now)
431 */
432 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
433
434 /*
435 * Count user and OS events unless requested not to
436 */
437 if (!event->attr.exclude_user)
438 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
439 if (!event->attr.exclude_kernel)
440 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
441
442 if (event->attr.type == PERF_TYPE_RAW)
443 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
444
445 return x86_setup_perfctr(event);
446 }
447
448 /*
449 * Setup the hardware configuration for a given attr_type
450 */
451 static int __x86_pmu_event_init(struct perf_event *event)
452 {
453 int err;
454
455 if (!x86_pmu_initialized())
456 return -ENODEV;
457
458 err = 0;
459 if (!atomic_inc_not_zero(&active_events)) {
460 mutex_lock(&pmc_reserve_mutex);
461 if (atomic_read(&active_events) == 0) {
462 if (!reserve_pmc_hardware())
463 err = -EBUSY;
464 else
465 reserve_ds_buffers();
466 }
467 if (!err)
468 atomic_inc(&active_events);
469 mutex_unlock(&pmc_reserve_mutex);
470 }
471 if (err)
472 return err;
473
474 event->destroy = hw_perf_event_destroy;
475
476 event->hw.idx = -1;
477 event->hw.last_cpu = -1;
478 event->hw.last_tag = ~0ULL;
479
480 /* mark unused */
481 event->hw.extra_reg.idx = EXTRA_REG_NONE;
482 event->hw.branch_reg.idx = EXTRA_REG_NONE;
483
484 return x86_pmu.hw_config(event);
485 }
486
487 void x86_pmu_disable_all(void)
488 {
489 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
490 int idx;
491
492 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
493 u64 val;
494
495 if (!test_bit(idx, cpuc->active_mask))
496 continue;
497 rdmsrl(x86_pmu_config_addr(idx), val);
498 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
499 continue;
500 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
501 wrmsrl(x86_pmu_config_addr(idx), val);
502 }
503 }
504
505 static void x86_pmu_disable(struct pmu *pmu)
506 {
507 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
508
509 if (!x86_pmu_initialized())
510 return;
511
512 if (!cpuc->enabled)
513 return;
514
515 cpuc->n_added = 0;
516 cpuc->enabled = 0;
517 barrier();
518
519 x86_pmu.disable_all();
520 }
521
522 void x86_pmu_enable_all(int added)
523 {
524 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
525 int idx;
526
527 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
528 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
529
530 if (!test_bit(idx, cpuc->active_mask))
531 continue;
532
533 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
534 }
535 }
536
537 static struct pmu pmu;
538
539 static inline int is_x86_event(struct perf_event *event)
540 {
541 return event->pmu == &pmu;
542 }
543
544 /*
545 * Event scheduler state:
546 *
547 * Assign events iterating over all events and counters, beginning
548 * with events with least weights first. Keep the current iterator
549 * state in struct sched_state.
550 */
551 struct sched_state {
552 int weight;
553 int event; /* event index */
554 int counter; /* counter index */
555 int unassigned; /* number of events to be assigned left */
556 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
557 };
558
559 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
560 #define SCHED_STATES_MAX 2
561
562 struct perf_sched {
563 int max_weight;
564 int max_events;
565 struct event_constraint **constraints;
566 struct sched_state state;
567 int saved_states;
568 struct sched_state saved[SCHED_STATES_MAX];
569 };
570
571 /*
572 * Initialize interator that runs through all events and counters.
573 */
574 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
575 int num, int wmin, int wmax)
576 {
577 int idx;
578
579 memset(sched, 0, sizeof(*sched));
580 sched->max_events = num;
581 sched->max_weight = wmax;
582 sched->constraints = c;
583
584 for (idx = 0; idx < num; idx++) {
585 if (c[idx]->weight == wmin)
586 break;
587 }
588
589 sched->state.event = idx; /* start with min weight */
590 sched->state.weight = wmin;
591 sched->state.unassigned = num;
592 }
593
594 static void perf_sched_save_state(struct perf_sched *sched)
595 {
596 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
597 return;
598
599 sched->saved[sched->saved_states] = sched->state;
600 sched->saved_states++;
601 }
602
603 static bool perf_sched_restore_state(struct perf_sched *sched)
604 {
605 if (!sched->saved_states)
606 return false;
607
608 sched->saved_states--;
609 sched->state = sched->saved[sched->saved_states];
610
611 /* continue with next counter: */
612 clear_bit(sched->state.counter++, sched->state.used);
613
614 return true;
615 }
616
617 /*
618 * Select a counter for the current event to schedule. Return true on
619 * success.
620 */
621 static bool __perf_sched_find_counter(struct perf_sched *sched)
622 {
623 struct event_constraint *c;
624 int idx;
625
626 if (!sched->state.unassigned)
627 return false;
628
629 if (sched->state.event >= sched->max_events)
630 return false;
631
632 c = sched->constraints[sched->state.event];
633
634 /* Prefer fixed purpose counters */
635 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
636 idx = INTEL_PMC_IDX_FIXED;
637 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
638 if (!__test_and_set_bit(idx, sched->state.used))
639 goto done;
640 }
641 }
642 /* Grab the first unused counter starting with idx */
643 idx = sched->state.counter;
644 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
645 if (!__test_and_set_bit(idx, sched->state.used))
646 goto done;
647 }
648
649 return false;
650
651 done:
652 sched->state.counter = idx;
653
654 if (c->overlap)
655 perf_sched_save_state(sched);
656
657 return true;
658 }
659
660 static bool perf_sched_find_counter(struct perf_sched *sched)
661 {
662 while (!__perf_sched_find_counter(sched)) {
663 if (!perf_sched_restore_state(sched))
664 return false;
665 }
666
667 return true;
668 }
669
670 /*
671 * Go through all unassigned events and find the next one to schedule.
672 * Take events with the least weight first. Return true on success.
673 */
674 static bool perf_sched_next_event(struct perf_sched *sched)
675 {
676 struct event_constraint *c;
677
678 if (!sched->state.unassigned || !--sched->state.unassigned)
679 return false;
680
681 do {
682 /* next event */
683 sched->state.event++;
684 if (sched->state.event >= sched->max_events) {
685 /* next weight */
686 sched->state.event = 0;
687 sched->state.weight++;
688 if (sched->state.weight > sched->max_weight)
689 return false;
690 }
691 c = sched->constraints[sched->state.event];
692 } while (c->weight != sched->state.weight);
693
694 sched->state.counter = 0; /* start with first counter */
695
696 return true;
697 }
698
699 /*
700 * Assign a counter for each event.
701 */
702 int perf_assign_events(struct event_constraint **constraints, int n,
703 int wmin, int wmax, int *assign)
704 {
705 struct perf_sched sched;
706
707 perf_sched_init(&sched, constraints, n, wmin, wmax);
708
709 do {
710 if (!perf_sched_find_counter(&sched))
711 break; /* failed */
712 if (assign)
713 assign[sched.state.event] = sched.state.counter;
714 } while (perf_sched_next_event(&sched));
715
716 return sched.state.unassigned;
717 }
718
719 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
720 {
721 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
722 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
723 int i, wmin, wmax, num = 0;
724 struct hw_perf_event *hwc;
725
726 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
727
728 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
729 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
730 constraints[i] = c;
731 wmin = min(wmin, c->weight);
732 wmax = max(wmax, c->weight);
733 }
734
735 /*
736 * fastpath, try to reuse previous register
737 */
738 for (i = 0; i < n; i++) {
739 hwc = &cpuc->event_list[i]->hw;
740 c = constraints[i];
741
742 /* never assigned */
743 if (hwc->idx == -1)
744 break;
745
746 /* constraint still honored */
747 if (!test_bit(hwc->idx, c->idxmsk))
748 break;
749
750 /* not already used */
751 if (test_bit(hwc->idx, used_mask))
752 break;
753
754 __set_bit(hwc->idx, used_mask);
755 if (assign)
756 assign[i] = hwc->idx;
757 }
758
759 /* slow path */
760 if (i != n)
761 num = perf_assign_events(constraints, n, wmin, wmax, assign);
762
763 /*
764 * scheduling failed or is just a simulation,
765 * free resources if necessary
766 */
767 if (!assign || num) {
768 for (i = 0; i < n; i++) {
769 if (x86_pmu.put_event_constraints)
770 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
771 }
772 }
773 return num ? -EINVAL : 0;
774 }
775
776 /*
777 * dogrp: true if must collect siblings events (group)
778 * returns total number of events and error code
779 */
780 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
781 {
782 struct perf_event *event;
783 int n, max_count;
784
785 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
786
787 /* current number of events already accepted */
788 n = cpuc->n_events;
789
790 if (is_x86_event(leader)) {
791 if (n >= max_count)
792 return -EINVAL;
793 cpuc->event_list[n] = leader;
794 n++;
795 }
796 if (!dogrp)
797 return n;
798
799 list_for_each_entry(event, &leader->sibling_list, group_entry) {
800 if (!is_x86_event(event) ||
801 event->state <= PERF_EVENT_STATE_OFF)
802 continue;
803
804 if (n >= max_count)
805 return -EINVAL;
806
807 cpuc->event_list[n] = event;
808 n++;
809 }
810 return n;
811 }
812
813 static inline void x86_assign_hw_event(struct perf_event *event,
814 struct cpu_hw_events *cpuc, int i)
815 {
816 struct hw_perf_event *hwc = &event->hw;
817
818 hwc->idx = cpuc->assign[i];
819 hwc->last_cpu = smp_processor_id();
820 hwc->last_tag = ++cpuc->tags[i];
821
822 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
823 hwc->config_base = 0;
824 hwc->event_base = 0;
825 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
826 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
827 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
828 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
829 } else {
830 hwc->config_base = x86_pmu_config_addr(hwc->idx);
831 hwc->event_base = x86_pmu_event_addr(hwc->idx);
832 hwc->event_base_rdpmc = hwc->idx;
833 }
834 }
835
836 static inline int match_prev_assignment(struct hw_perf_event *hwc,
837 struct cpu_hw_events *cpuc,
838 int i)
839 {
840 return hwc->idx == cpuc->assign[i] &&
841 hwc->last_cpu == smp_processor_id() &&
842 hwc->last_tag == cpuc->tags[i];
843 }
844
845 static void x86_pmu_start(struct perf_event *event, int flags);
846
847 static void x86_pmu_enable(struct pmu *pmu)
848 {
849 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
850 struct perf_event *event;
851 struct hw_perf_event *hwc;
852 int i, added = cpuc->n_added;
853
854 if (!x86_pmu_initialized())
855 return;
856
857 if (cpuc->enabled)
858 return;
859
860 if (cpuc->n_added) {
861 int n_running = cpuc->n_events - cpuc->n_added;
862 /*
863 * apply assignment obtained either from
864 * hw_perf_group_sched_in() or x86_pmu_enable()
865 *
866 * step1: save events moving to new counters
867 * step2: reprogram moved events into new counters
868 */
869 for (i = 0; i < n_running; i++) {
870 event = cpuc->event_list[i];
871 hwc = &event->hw;
872
873 /*
874 * we can avoid reprogramming counter if:
875 * - assigned same counter as last time
876 * - running on same CPU as last time
877 * - no other event has used the counter since
878 */
879 if (hwc->idx == -1 ||
880 match_prev_assignment(hwc, cpuc, i))
881 continue;
882
883 /*
884 * Ensure we don't accidentally enable a stopped
885 * counter simply because we rescheduled.
886 */
887 if (hwc->state & PERF_HES_STOPPED)
888 hwc->state |= PERF_HES_ARCH;
889
890 x86_pmu_stop(event, PERF_EF_UPDATE);
891 }
892
893 for (i = 0; i < cpuc->n_events; i++) {
894 event = cpuc->event_list[i];
895 hwc = &event->hw;
896
897 if (!match_prev_assignment(hwc, cpuc, i))
898 x86_assign_hw_event(event, cpuc, i);
899 else if (i < n_running)
900 continue;
901
902 if (hwc->state & PERF_HES_ARCH)
903 continue;
904
905 x86_pmu_start(event, PERF_EF_RELOAD);
906 }
907 cpuc->n_added = 0;
908 perf_events_lapic_init();
909 }
910
911 cpuc->enabled = 1;
912 barrier();
913
914 x86_pmu.enable_all(added);
915 }
916
917 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
918
919 /*
920 * Set the next IRQ period, based on the hwc->period_left value.
921 * To be called with the event disabled in hw:
922 */
923 int x86_perf_event_set_period(struct perf_event *event)
924 {
925 struct hw_perf_event *hwc = &event->hw;
926 s64 left = local64_read(&hwc->period_left);
927 s64 period = hwc->sample_period;
928 int ret = 0, idx = hwc->idx;
929
930 if (idx == INTEL_PMC_IDX_FIXED_BTS)
931 return 0;
932
933 /*
934 * If we are way outside a reasonable range then just skip forward:
935 */
936 if (unlikely(left <= -period)) {
937 left = period;
938 local64_set(&hwc->period_left, left);
939 hwc->last_period = period;
940 ret = 1;
941 }
942
943 if (unlikely(left <= 0)) {
944 left += period;
945 local64_set(&hwc->period_left, left);
946 hwc->last_period = period;
947 ret = 1;
948 }
949 /*
950 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
951 */
952 if (unlikely(left < 2))
953 left = 2;
954
955 if (left > x86_pmu.max_period)
956 left = x86_pmu.max_period;
957
958 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
959
960 /*
961 * The hw event starts counting from this event offset,
962 * mark it to be able to extra future deltas:
963 */
964 local64_set(&hwc->prev_count, (u64)-left);
965
966 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
967
968 /*
969 * Due to erratum on certan cpu we need
970 * a second write to be sure the register
971 * is updated properly
972 */
973 if (x86_pmu.perfctr_second_write) {
974 wrmsrl(hwc->event_base,
975 (u64)(-left) & x86_pmu.cntval_mask);
976 }
977
978 perf_event_update_userpage(event);
979
980 return ret;
981 }
982
983 void x86_pmu_enable_event(struct perf_event *event)
984 {
985 if (__this_cpu_read(cpu_hw_events.enabled))
986 __x86_pmu_enable_event(&event->hw,
987 ARCH_PERFMON_EVENTSEL_ENABLE);
988 }
989
990 /*
991 * Add a single event to the PMU.
992 *
993 * The event is added to the group of enabled events
994 * but only if it can be scehduled with existing events.
995 */
996 static int x86_pmu_add(struct perf_event *event, int flags)
997 {
998 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
999 struct hw_perf_event *hwc;
1000 int assign[X86_PMC_IDX_MAX];
1001 int n, n0, ret;
1002
1003 hwc = &event->hw;
1004
1005 perf_pmu_disable(event->pmu);
1006 n0 = cpuc->n_events;
1007 ret = n = collect_events(cpuc, event, false);
1008 if (ret < 0)
1009 goto out;
1010
1011 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1012 if (!(flags & PERF_EF_START))
1013 hwc->state |= PERF_HES_ARCH;
1014
1015 /*
1016 * If group events scheduling transaction was started,
1017 * skip the schedulability test here, it will be performed
1018 * at commit time (->commit_txn) as a whole
1019 */
1020 if (cpuc->group_flag & PERF_EVENT_TXN)
1021 goto done_collect;
1022
1023 ret = x86_pmu.schedule_events(cpuc, n, assign);
1024 if (ret)
1025 goto out;
1026 /*
1027 * copy new assignment, now we know it is possible
1028 * will be used by hw_perf_enable()
1029 */
1030 memcpy(cpuc->assign, assign, n*sizeof(int));
1031
1032 done_collect:
1033 cpuc->n_events = n;
1034 cpuc->n_added += n - n0;
1035 cpuc->n_txn += n - n0;
1036
1037 ret = 0;
1038 out:
1039 perf_pmu_enable(event->pmu);
1040 return ret;
1041 }
1042
1043 static void x86_pmu_start(struct perf_event *event, int flags)
1044 {
1045 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1046 int idx = event->hw.idx;
1047
1048 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1049 return;
1050
1051 if (WARN_ON_ONCE(idx == -1))
1052 return;
1053
1054 if (flags & PERF_EF_RELOAD) {
1055 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1056 x86_perf_event_set_period(event);
1057 }
1058
1059 event->hw.state = 0;
1060
1061 cpuc->events[idx] = event;
1062 __set_bit(idx, cpuc->active_mask);
1063 __set_bit(idx, cpuc->running);
1064 x86_pmu.enable(event);
1065 perf_event_update_userpage(event);
1066 }
1067
1068 void perf_event_print_debug(void)
1069 {
1070 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1071 u64 pebs;
1072 struct cpu_hw_events *cpuc;
1073 unsigned long flags;
1074 int cpu, idx;
1075
1076 if (!x86_pmu.num_counters)
1077 return;
1078
1079 local_irq_save(flags);
1080
1081 cpu = smp_processor_id();
1082 cpuc = &per_cpu(cpu_hw_events, cpu);
1083
1084 if (x86_pmu.version >= 2) {
1085 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1086 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1087 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1088 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1089 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1090
1091 pr_info("\n");
1092 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1093 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1094 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1095 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1096 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1097 }
1098 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1099
1100 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1101 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1102 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1103
1104 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1105
1106 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1107 cpu, idx, pmc_ctrl);
1108 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1109 cpu, idx, pmc_count);
1110 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1111 cpu, idx, prev_left);
1112 }
1113 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1114 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1115
1116 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1117 cpu, idx, pmc_count);
1118 }
1119 local_irq_restore(flags);
1120 }
1121
1122 void x86_pmu_stop(struct perf_event *event, int flags)
1123 {
1124 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1125 struct hw_perf_event *hwc = &event->hw;
1126
1127 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1128 x86_pmu.disable(event);
1129 cpuc->events[hwc->idx] = NULL;
1130 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1131 hwc->state |= PERF_HES_STOPPED;
1132 }
1133
1134 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1135 /*
1136 * Drain the remaining delta count out of a event
1137 * that we are disabling:
1138 */
1139 x86_perf_event_update(event);
1140 hwc->state |= PERF_HES_UPTODATE;
1141 }
1142 }
1143
1144 static void x86_pmu_del(struct perf_event *event, int flags)
1145 {
1146 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1147 int i;
1148
1149 /*
1150 * If we're called during a txn, we don't need to do anything.
1151 * The events never got scheduled and ->cancel_txn will truncate
1152 * the event_list.
1153 */
1154 if (cpuc->group_flag & PERF_EVENT_TXN)
1155 return;
1156
1157 x86_pmu_stop(event, PERF_EF_UPDATE);
1158
1159 for (i = 0; i < cpuc->n_events; i++) {
1160 if (event == cpuc->event_list[i]) {
1161
1162 if (x86_pmu.put_event_constraints)
1163 x86_pmu.put_event_constraints(cpuc, event);
1164
1165 while (++i < cpuc->n_events)
1166 cpuc->event_list[i-1] = cpuc->event_list[i];
1167
1168 --cpuc->n_events;
1169 break;
1170 }
1171 }
1172 perf_event_update_userpage(event);
1173 }
1174
1175 int x86_pmu_handle_irq(struct pt_regs *regs)
1176 {
1177 struct perf_sample_data data;
1178 struct cpu_hw_events *cpuc;
1179 struct perf_event *event;
1180 int idx, handled = 0;
1181 u64 val;
1182
1183 cpuc = &__get_cpu_var(cpu_hw_events);
1184
1185 /*
1186 * Some chipsets need to unmask the LVTPC in a particular spot
1187 * inside the nmi handler. As a result, the unmasking was pushed
1188 * into all the nmi handlers.
1189 *
1190 * This generic handler doesn't seem to have any issues where the
1191 * unmasking occurs so it was left at the top.
1192 */
1193 apic_write(APIC_LVTPC, APIC_DM_NMI);
1194
1195 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1196 if (!test_bit(idx, cpuc->active_mask)) {
1197 /*
1198 * Though we deactivated the counter some cpus
1199 * might still deliver spurious interrupts still
1200 * in flight. Catch them:
1201 */
1202 if (__test_and_clear_bit(idx, cpuc->running))
1203 handled++;
1204 continue;
1205 }
1206
1207 event = cpuc->events[idx];
1208
1209 val = x86_perf_event_update(event);
1210 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1211 continue;
1212
1213 /*
1214 * event overflow
1215 */
1216 handled++;
1217 perf_sample_data_init(&data, 0, event->hw.last_period);
1218
1219 if (!x86_perf_event_set_period(event))
1220 continue;
1221
1222 if (perf_event_overflow(event, &data, regs))
1223 x86_pmu_stop(event, 0);
1224 }
1225
1226 if (handled)
1227 inc_irq_stat(apic_perf_irqs);
1228
1229 return handled;
1230 }
1231
1232 void perf_events_lapic_init(void)
1233 {
1234 if (!x86_pmu.apic || !x86_pmu_initialized())
1235 return;
1236
1237 /*
1238 * Always use NMI for PMU
1239 */
1240 apic_write(APIC_LVTPC, APIC_DM_NMI);
1241 }
1242
1243 static int __kprobes
1244 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1245 {
1246 if (!atomic_read(&active_events))
1247 return NMI_DONE;
1248
1249 return x86_pmu.handle_irq(regs);
1250 }
1251
1252 struct event_constraint emptyconstraint;
1253 struct event_constraint unconstrained;
1254
1255 static int __cpuinit
1256 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1257 {
1258 unsigned int cpu = (long)hcpu;
1259 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1260 int ret = NOTIFY_OK;
1261
1262 switch (action & ~CPU_TASKS_FROZEN) {
1263 case CPU_UP_PREPARE:
1264 cpuc->kfree_on_online = NULL;
1265 if (x86_pmu.cpu_prepare)
1266 ret = x86_pmu.cpu_prepare(cpu);
1267 break;
1268
1269 case CPU_STARTING:
1270 if (x86_pmu.attr_rdpmc)
1271 set_in_cr4(X86_CR4_PCE);
1272 if (x86_pmu.cpu_starting)
1273 x86_pmu.cpu_starting(cpu);
1274 break;
1275
1276 case CPU_ONLINE:
1277 kfree(cpuc->kfree_on_online);
1278 break;
1279
1280 case CPU_DYING:
1281 if (x86_pmu.cpu_dying)
1282 x86_pmu.cpu_dying(cpu);
1283 break;
1284
1285 case CPU_UP_CANCELED:
1286 case CPU_DEAD:
1287 if (x86_pmu.cpu_dead)
1288 x86_pmu.cpu_dead(cpu);
1289 break;
1290
1291 default:
1292 break;
1293 }
1294
1295 return ret;
1296 }
1297
1298 static void __init pmu_check_apic(void)
1299 {
1300 if (cpu_has_apic)
1301 return;
1302
1303 x86_pmu.apic = 0;
1304 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1305 pr_info("no hardware sampling interrupt available.\n");
1306 }
1307
1308 static struct attribute_group x86_pmu_format_group = {
1309 .name = "format",
1310 .attrs = NULL,
1311 };
1312
1313 struct perf_pmu_events_attr {
1314 struct device_attribute attr;
1315 u64 id;
1316 };
1317
1318 /*
1319 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1320 * out of events_attr attributes.
1321 */
1322 static void __init filter_events(struct attribute **attrs)
1323 {
1324 int i, j;
1325
1326 for (i = 0; attrs[i]; i++) {
1327 if (x86_pmu.event_map(i))
1328 continue;
1329
1330 for (j = i; attrs[j]; j++)
1331 attrs[j] = attrs[j + 1];
1332
1333 /* Check the shifted attr. */
1334 i--;
1335 }
1336 }
1337
1338 static ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1339 char *page)
1340 {
1341 struct perf_pmu_events_attr *pmu_attr = \
1342 container_of(attr, struct perf_pmu_events_attr, attr);
1343
1344 u64 config = x86_pmu.event_map(pmu_attr->id);
1345 return x86_pmu.events_sysfs_show(page, config);
1346 }
1347
1348 #define EVENT_VAR(_id) event_attr_##_id
1349 #define EVENT_PTR(_id) &event_attr_##_id.attr.attr
1350
1351 #define EVENT_ATTR(_name, _id) \
1352 static struct perf_pmu_events_attr EVENT_VAR(_id) = { \
1353 .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \
1354 .id = PERF_COUNT_HW_##_id, \
1355 };
1356
1357 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1358 EVENT_ATTR(instructions, INSTRUCTIONS );
1359 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1360 EVENT_ATTR(cache-misses, CACHE_MISSES );
1361 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1362 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1363 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1364 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1365 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1366 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1367
1368 static struct attribute *empty_attrs;
1369
1370 static struct attribute *events_attr[] = {
1371 EVENT_PTR(CPU_CYCLES),
1372 EVENT_PTR(INSTRUCTIONS),
1373 EVENT_PTR(CACHE_REFERENCES),
1374 EVENT_PTR(CACHE_MISSES),
1375 EVENT_PTR(BRANCH_INSTRUCTIONS),
1376 EVENT_PTR(BRANCH_MISSES),
1377 EVENT_PTR(BUS_CYCLES),
1378 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1379 EVENT_PTR(STALLED_CYCLES_BACKEND),
1380 EVENT_PTR(REF_CPU_CYCLES),
1381 NULL,
1382 };
1383
1384 static struct attribute_group x86_pmu_events_group = {
1385 .name = "events",
1386 .attrs = events_attr,
1387 };
1388
1389 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1390 {
1391 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1392 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1393 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1394 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1395 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1396 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1397 ssize_t ret;
1398
1399 /*
1400 * We have whole page size to spend and just little data
1401 * to write, so we can safely use sprintf.
1402 */
1403 ret = sprintf(page, "event=0x%02llx", event);
1404
1405 if (umask)
1406 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1407
1408 if (edge)
1409 ret += sprintf(page + ret, ",edge");
1410
1411 if (pc)
1412 ret += sprintf(page + ret, ",pc");
1413
1414 if (any)
1415 ret += sprintf(page + ret, ",any");
1416
1417 if (inv)
1418 ret += sprintf(page + ret, ",inv");
1419
1420 if (cmask)
1421 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1422
1423 ret += sprintf(page + ret, "\n");
1424
1425 return ret;
1426 }
1427
1428 static int __init init_hw_perf_events(void)
1429 {
1430 struct x86_pmu_quirk *quirk;
1431 int err;
1432
1433 pr_info("Performance Events: ");
1434
1435 switch (boot_cpu_data.x86_vendor) {
1436 case X86_VENDOR_INTEL:
1437 err = intel_pmu_init();
1438 break;
1439 case X86_VENDOR_AMD:
1440 err = amd_pmu_init();
1441 break;
1442 default:
1443 return 0;
1444 }
1445 if (err != 0) {
1446 pr_cont("no PMU driver, software events only.\n");
1447 return 0;
1448 }
1449
1450 pmu_check_apic();
1451
1452 /* sanity check that the hardware exists or is emulated */
1453 if (!check_hw_exists())
1454 return 0;
1455
1456 pr_cont("%s PMU driver.\n", x86_pmu.name);
1457
1458 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1459 quirk->func();
1460
1461 if (!x86_pmu.intel_ctrl)
1462 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1463
1464 perf_events_lapic_init();
1465 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1466
1467 unconstrained = (struct event_constraint)
1468 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1469 0, x86_pmu.num_counters, 0);
1470
1471 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1472 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1473
1474 if (!x86_pmu.events_sysfs_show)
1475 x86_pmu_events_group.attrs = &empty_attrs;
1476 else
1477 filter_events(x86_pmu_events_group.attrs);
1478
1479 pr_info("... version: %d\n", x86_pmu.version);
1480 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1481 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1482 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1483 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1484 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1485 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1486
1487 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1488 perf_cpu_notifier(x86_pmu_notifier);
1489
1490 return 0;
1491 }
1492 early_initcall(init_hw_perf_events);
1493
1494 static inline void x86_pmu_read(struct perf_event *event)
1495 {
1496 x86_perf_event_update(event);
1497 }
1498
1499 /*
1500 * Start group events scheduling transaction
1501 * Set the flag to make pmu::enable() not perform the
1502 * schedulability test, it will be performed at commit time
1503 */
1504 static void x86_pmu_start_txn(struct pmu *pmu)
1505 {
1506 perf_pmu_disable(pmu);
1507 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1508 __this_cpu_write(cpu_hw_events.n_txn, 0);
1509 }
1510
1511 /*
1512 * Stop group events scheduling transaction
1513 * Clear the flag and pmu::enable() will perform the
1514 * schedulability test.
1515 */
1516 static void x86_pmu_cancel_txn(struct pmu *pmu)
1517 {
1518 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1519 /*
1520 * Truncate the collected events.
1521 */
1522 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1523 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1524 perf_pmu_enable(pmu);
1525 }
1526
1527 /*
1528 * Commit group events scheduling transaction
1529 * Perform the group schedulability test as a whole
1530 * Return 0 if success
1531 */
1532 static int x86_pmu_commit_txn(struct pmu *pmu)
1533 {
1534 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1535 int assign[X86_PMC_IDX_MAX];
1536 int n, ret;
1537
1538 n = cpuc->n_events;
1539
1540 if (!x86_pmu_initialized())
1541 return -EAGAIN;
1542
1543 ret = x86_pmu.schedule_events(cpuc, n, assign);
1544 if (ret)
1545 return ret;
1546
1547 /*
1548 * copy new assignment, now we know it is possible
1549 * will be used by hw_perf_enable()
1550 */
1551 memcpy(cpuc->assign, assign, n*sizeof(int));
1552
1553 cpuc->group_flag &= ~PERF_EVENT_TXN;
1554 perf_pmu_enable(pmu);
1555 return 0;
1556 }
1557 /*
1558 * a fake_cpuc is used to validate event groups. Due to
1559 * the extra reg logic, we need to also allocate a fake
1560 * per_core and per_cpu structure. Otherwise, group events
1561 * using extra reg may conflict without the kernel being
1562 * able to catch this when the last event gets added to
1563 * the group.
1564 */
1565 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1566 {
1567 kfree(cpuc->shared_regs);
1568 kfree(cpuc);
1569 }
1570
1571 static struct cpu_hw_events *allocate_fake_cpuc(void)
1572 {
1573 struct cpu_hw_events *cpuc;
1574 int cpu = raw_smp_processor_id();
1575
1576 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1577 if (!cpuc)
1578 return ERR_PTR(-ENOMEM);
1579
1580 /* only needed, if we have extra_regs */
1581 if (x86_pmu.extra_regs) {
1582 cpuc->shared_regs = allocate_shared_regs(cpu);
1583 if (!cpuc->shared_regs)
1584 goto error;
1585 }
1586 cpuc->is_fake = 1;
1587 return cpuc;
1588 error:
1589 free_fake_cpuc(cpuc);
1590 return ERR_PTR(-ENOMEM);
1591 }
1592
1593 /*
1594 * validate that we can schedule this event
1595 */
1596 static int validate_event(struct perf_event *event)
1597 {
1598 struct cpu_hw_events *fake_cpuc;
1599 struct event_constraint *c;
1600 int ret = 0;
1601
1602 fake_cpuc = allocate_fake_cpuc();
1603 if (IS_ERR(fake_cpuc))
1604 return PTR_ERR(fake_cpuc);
1605
1606 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1607
1608 if (!c || !c->weight)
1609 ret = -EINVAL;
1610
1611 if (x86_pmu.put_event_constraints)
1612 x86_pmu.put_event_constraints(fake_cpuc, event);
1613
1614 free_fake_cpuc(fake_cpuc);
1615
1616 return ret;
1617 }
1618
1619 /*
1620 * validate a single event group
1621 *
1622 * validation include:
1623 * - check events are compatible which each other
1624 * - events do not compete for the same counter
1625 * - number of events <= number of counters
1626 *
1627 * validation ensures the group can be loaded onto the
1628 * PMU if it was the only group available.
1629 */
1630 static int validate_group(struct perf_event *event)
1631 {
1632 struct perf_event *leader = event->group_leader;
1633 struct cpu_hw_events *fake_cpuc;
1634 int ret = -EINVAL, n;
1635
1636 fake_cpuc = allocate_fake_cpuc();
1637 if (IS_ERR(fake_cpuc))
1638 return PTR_ERR(fake_cpuc);
1639 /*
1640 * the event is not yet connected with its
1641 * siblings therefore we must first collect
1642 * existing siblings, then add the new event
1643 * before we can simulate the scheduling
1644 */
1645 n = collect_events(fake_cpuc, leader, true);
1646 if (n < 0)
1647 goto out;
1648
1649 fake_cpuc->n_events = n;
1650 n = collect_events(fake_cpuc, event, false);
1651 if (n < 0)
1652 goto out;
1653
1654 fake_cpuc->n_events = n;
1655
1656 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1657
1658 out:
1659 free_fake_cpuc(fake_cpuc);
1660 return ret;
1661 }
1662
1663 static int x86_pmu_event_init(struct perf_event *event)
1664 {
1665 struct pmu *tmp;
1666 int err;
1667
1668 switch (event->attr.type) {
1669 case PERF_TYPE_RAW:
1670 case PERF_TYPE_HARDWARE:
1671 case PERF_TYPE_HW_CACHE:
1672 break;
1673
1674 default:
1675 return -ENOENT;
1676 }
1677
1678 err = __x86_pmu_event_init(event);
1679 if (!err) {
1680 /*
1681 * we temporarily connect event to its pmu
1682 * such that validate_group() can classify
1683 * it as an x86 event using is_x86_event()
1684 */
1685 tmp = event->pmu;
1686 event->pmu = &pmu;
1687
1688 if (event->group_leader != event)
1689 err = validate_group(event);
1690 else
1691 err = validate_event(event);
1692
1693 event->pmu = tmp;
1694 }
1695 if (err) {
1696 if (event->destroy)
1697 event->destroy(event);
1698 }
1699
1700 return err;
1701 }
1702
1703 static int x86_pmu_event_idx(struct perf_event *event)
1704 {
1705 int idx = event->hw.idx;
1706
1707 if (!x86_pmu.attr_rdpmc)
1708 return 0;
1709
1710 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1711 idx -= INTEL_PMC_IDX_FIXED;
1712 idx |= 1 << 30;
1713 }
1714
1715 return idx + 1;
1716 }
1717
1718 static ssize_t get_attr_rdpmc(struct device *cdev,
1719 struct device_attribute *attr,
1720 char *buf)
1721 {
1722 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1723 }
1724
1725 static void change_rdpmc(void *info)
1726 {
1727 bool enable = !!(unsigned long)info;
1728
1729 if (enable)
1730 set_in_cr4(X86_CR4_PCE);
1731 else
1732 clear_in_cr4(X86_CR4_PCE);
1733 }
1734
1735 static ssize_t set_attr_rdpmc(struct device *cdev,
1736 struct device_attribute *attr,
1737 const char *buf, size_t count)
1738 {
1739 unsigned long val;
1740 ssize_t ret;
1741
1742 ret = kstrtoul(buf, 0, &val);
1743 if (ret)
1744 return ret;
1745
1746 if (!!val != !!x86_pmu.attr_rdpmc) {
1747 x86_pmu.attr_rdpmc = !!val;
1748 smp_call_function(change_rdpmc, (void *)val, 1);
1749 }
1750
1751 return count;
1752 }
1753
1754 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1755
1756 static struct attribute *x86_pmu_attrs[] = {
1757 &dev_attr_rdpmc.attr,
1758 NULL,
1759 };
1760
1761 static struct attribute_group x86_pmu_attr_group = {
1762 .attrs = x86_pmu_attrs,
1763 };
1764
1765 static const struct attribute_group *x86_pmu_attr_groups[] = {
1766 &x86_pmu_attr_group,
1767 &x86_pmu_format_group,
1768 &x86_pmu_events_group,
1769 NULL,
1770 };
1771
1772 static void x86_pmu_flush_branch_stack(void)
1773 {
1774 if (x86_pmu.flush_branch_stack)
1775 x86_pmu.flush_branch_stack();
1776 }
1777
1778 void perf_check_microcode(void)
1779 {
1780 if (x86_pmu.check_microcode)
1781 x86_pmu.check_microcode();
1782 }
1783 EXPORT_SYMBOL_GPL(perf_check_microcode);
1784
1785 static struct pmu pmu = {
1786 .pmu_enable = x86_pmu_enable,
1787 .pmu_disable = x86_pmu_disable,
1788
1789 .attr_groups = x86_pmu_attr_groups,
1790
1791 .event_init = x86_pmu_event_init,
1792
1793 .add = x86_pmu_add,
1794 .del = x86_pmu_del,
1795 .start = x86_pmu_start,
1796 .stop = x86_pmu_stop,
1797 .read = x86_pmu_read,
1798
1799 .start_txn = x86_pmu_start_txn,
1800 .cancel_txn = x86_pmu_cancel_txn,
1801 .commit_txn = x86_pmu_commit_txn,
1802
1803 .event_idx = x86_pmu_event_idx,
1804 .flush_branch_stack = x86_pmu_flush_branch_stack,
1805 };
1806
1807 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1808 {
1809 userpg->cap_usr_time = 0;
1810 userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1811 userpg->pmc_width = x86_pmu.cntval_bits;
1812
1813 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1814 return;
1815
1816 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1817 return;
1818
1819 userpg->cap_usr_time = 1;
1820 userpg->time_mult = this_cpu_read(cyc2ns);
1821 userpg->time_shift = CYC2NS_SCALE_FACTOR;
1822 userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1823 }
1824
1825 /*
1826 * callchain support
1827 */
1828
1829 static int backtrace_stack(void *data, char *name)
1830 {
1831 return 0;
1832 }
1833
1834 static void backtrace_address(void *data, unsigned long addr, int reliable)
1835 {
1836 struct perf_callchain_entry *entry = data;
1837
1838 perf_callchain_store(entry, addr);
1839 }
1840
1841 static const struct stacktrace_ops backtrace_ops = {
1842 .stack = backtrace_stack,
1843 .address = backtrace_address,
1844 .walk_stack = print_context_stack_bp,
1845 };
1846
1847 void
1848 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1849 {
1850 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1851 /* TODO: We don't support guest os callchain now */
1852 return;
1853 }
1854
1855 perf_callchain_store(entry, regs->ip);
1856
1857 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1858 }
1859
1860 static inline int
1861 valid_user_frame(const void __user *fp, unsigned long size)
1862 {
1863 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1864 }
1865
1866 static unsigned long get_segment_base(unsigned int segment)
1867 {
1868 struct desc_struct *desc;
1869 int idx = segment >> 3;
1870
1871 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1872 if (idx > LDT_ENTRIES)
1873 return 0;
1874
1875 if (idx > current->active_mm->context.size)
1876 return 0;
1877
1878 desc = current->active_mm->context.ldt;
1879 } else {
1880 if (idx > GDT_ENTRIES)
1881 return 0;
1882
1883 desc = __this_cpu_ptr(&gdt_page.gdt[0]);
1884 }
1885
1886 return get_desc_base(desc + idx);
1887 }
1888
1889 #ifdef CONFIG_COMPAT
1890
1891 #include <asm/compat.h>
1892
1893 static inline int
1894 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1895 {
1896 /* 32-bit process in 64-bit kernel. */
1897 unsigned long ss_base, cs_base;
1898 struct stack_frame_ia32 frame;
1899 const void __user *fp;
1900
1901 if (!test_thread_flag(TIF_IA32))
1902 return 0;
1903
1904 cs_base = get_segment_base(regs->cs);
1905 ss_base = get_segment_base(regs->ss);
1906
1907 fp = compat_ptr(ss_base + regs->bp);
1908 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1909 unsigned long bytes;
1910 frame.next_frame = 0;
1911 frame.return_address = 0;
1912
1913 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1914 if (bytes != sizeof(frame))
1915 break;
1916
1917 if (!valid_user_frame(fp, sizeof(frame)))
1918 break;
1919
1920 perf_callchain_store(entry, cs_base + frame.return_address);
1921 fp = compat_ptr(ss_base + frame.next_frame);
1922 }
1923 return 1;
1924 }
1925 #else
1926 static inline int
1927 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1928 {
1929 return 0;
1930 }
1931 #endif
1932
1933 void
1934 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1935 {
1936 struct stack_frame frame;
1937 const void __user *fp;
1938
1939 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1940 /* TODO: We don't support guest os callchain now */
1941 return;
1942 }
1943
1944 /*
1945 * We don't know what to do with VM86 stacks.. ignore them for now.
1946 */
1947 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
1948 return;
1949
1950 fp = (void __user *)regs->bp;
1951
1952 perf_callchain_store(entry, regs->ip);
1953
1954 if (!current->mm)
1955 return;
1956
1957 if (perf_callchain_user32(regs, entry))
1958 return;
1959
1960 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1961 unsigned long bytes;
1962 frame.next_frame = NULL;
1963 frame.return_address = 0;
1964
1965 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1966 if (bytes != sizeof(frame))
1967 break;
1968
1969 if (!valid_user_frame(fp, sizeof(frame)))
1970 break;
1971
1972 perf_callchain_store(entry, frame.return_address);
1973 fp = frame.next_frame;
1974 }
1975 }
1976
1977 /*
1978 * Deal with code segment offsets for the various execution modes:
1979 *
1980 * VM86 - the good olde 16 bit days, where the linear address is
1981 * 20 bits and we use regs->ip + 0x10 * regs->cs.
1982 *
1983 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
1984 * to figure out what the 32bit base address is.
1985 *
1986 * X32 - has TIF_X32 set, but is running in x86_64
1987 *
1988 * X86_64 - CS,DS,SS,ES are all zero based.
1989 */
1990 static unsigned long code_segment_base(struct pt_regs *regs)
1991 {
1992 /*
1993 * If we are in VM86 mode, add the segment offset to convert to a
1994 * linear address.
1995 */
1996 if (regs->flags & X86_VM_MASK)
1997 return 0x10 * regs->cs;
1998
1999 /*
2000 * For IA32 we look at the GDT/LDT segment base to convert the
2001 * effective IP to a linear address.
2002 */
2003 #ifdef CONFIG_X86_32
2004 if (user_mode(regs) && regs->cs != __USER_CS)
2005 return get_segment_base(regs->cs);
2006 #else
2007 if (test_thread_flag(TIF_IA32)) {
2008 if (user_mode(regs) && regs->cs != __USER32_CS)
2009 return get_segment_base(regs->cs);
2010 }
2011 #endif
2012 return 0;
2013 }
2014
2015 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2016 {
2017 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2018 return perf_guest_cbs->get_guest_ip();
2019
2020 return regs->ip + code_segment_base(regs);
2021 }
2022
2023 unsigned long perf_misc_flags(struct pt_regs *regs)
2024 {
2025 int misc = 0;
2026
2027 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2028 if (perf_guest_cbs->is_user_mode())
2029 misc |= PERF_RECORD_MISC_GUEST_USER;
2030 else
2031 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2032 } else {
2033 if (user_mode(regs))
2034 misc |= PERF_RECORD_MISC_USER;
2035 else
2036 misc |= PERF_RECORD_MISC_KERNEL;
2037 }
2038
2039 if (regs->flags & PERF_EFLAGS_EXACT)
2040 misc |= PERF_RECORD_MISC_EXACT_IP;
2041
2042 return misc;
2043 }
2044
2045 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2046 {
2047 cap->version = x86_pmu.version;
2048 cap->num_counters_gp = x86_pmu.num_counters;
2049 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2050 cap->bit_width_gp = x86_pmu.cntval_bits;
2051 cap->bit_width_fixed = x86_pmu.cntval_bits;
2052 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2053 cap->events_mask_len = x86_pmu.events_mask_len;
2054 }
2055 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);