perf: Register PMU implementations
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val) \
37 do { \
38 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39 (unsigned long)(val)); \
40 native_write_msr((msr), (u32)((u64)(val)), \
41 (u32)((u64)(val) >> 32)); \
42 } while (0)
43 #endif
44
45 /*
46 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47 */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51 unsigned long offset, addr = (unsigned long)from;
52 int type = in_nmi() ? KM_NMI : KM_IRQ0;
53 unsigned long size, len = 0;
54 struct page *page;
55 void *map;
56 int ret;
57
58 do {
59 ret = __get_user_pages_fast(addr, 1, 0, &page);
60 if (!ret)
61 break;
62
63 offset = addr & (PAGE_SIZE - 1);
64 size = min(PAGE_SIZE - offset, n - len);
65
66 map = kmap_atomic(page, type);
67 memcpy(to, map+offset, size);
68 kunmap_atomic(map, type);
69 put_page(page);
70
71 len += size;
72 to += size;
73 addr += size;
74
75 } while (len < n);
76
77 return len;
78 }
79
80 struct event_constraint {
81 union {
82 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83 u64 idxmsk64;
84 };
85 u64 code;
86 u64 cmask;
87 int weight;
88 };
89
90 struct amd_nb {
91 int nb_id; /* NorthBridge id */
92 int refcnt; /* reference count */
93 struct perf_event *owners[X86_PMC_IDX_MAX];
94 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES 16
98
99 struct cpu_hw_events {
100 /*
101 * Generic x86 PMC bits
102 */
103 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
104 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105 int enabled;
106
107 int n_events;
108 int n_added;
109 int n_txn;
110 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
111 u64 tags[X86_PMC_IDX_MAX];
112 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
113
114 unsigned int group_flag;
115
116 /*
117 * Intel DebugStore bits
118 */
119 struct debug_store *ds;
120 u64 pebs_enabled;
121
122 /*
123 * Intel LBR bits
124 */
125 int lbr_users;
126 void *lbr_context;
127 struct perf_branch_stack lbr_stack;
128 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
129
130 /*
131 * AMD specific bits
132 */
133 struct amd_nb *amd_nb;
134 };
135
136 #define __EVENT_CONSTRAINT(c, n, m, w) {\
137 { .idxmsk64 = (n) }, \
138 .code = (c), \
139 .cmask = (m), \
140 .weight = (w), \
141 }
142
143 #define EVENT_CONSTRAINT(c, n, m) \
144 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
145
146 /*
147 * Constraint on the Event code.
148 */
149 #define INTEL_EVENT_CONSTRAINT(c, n) \
150 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
151
152 /*
153 * Constraint on the Event code + UMask + fixed-mask
154 *
155 * filter mask to validate fixed counter events.
156 * the following filters disqualify for fixed counters:
157 * - inv
158 * - edge
159 * - cnt-mask
160 * The other filters are supported by fixed counters.
161 * The any-thread option is supported starting with v3.
162 */
163 #define FIXED_EVENT_CONSTRAINT(c, n) \
164 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
165
166 /*
167 * Constraint on the Event code + UMask
168 */
169 #define PEBS_EVENT_CONSTRAINT(c, n) \
170 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
171
172 #define EVENT_CONSTRAINT_END \
173 EVENT_CONSTRAINT(0, 0, 0)
174
175 #define for_each_event_constraint(e, c) \
176 for ((e) = (c); (e)->weight; (e)++)
177
178 union perf_capabilities {
179 struct {
180 u64 lbr_format : 6;
181 u64 pebs_trap : 1;
182 u64 pebs_arch_reg : 1;
183 u64 pebs_format : 4;
184 u64 smm_freeze : 1;
185 };
186 u64 capabilities;
187 };
188
189 /*
190 * struct x86_pmu - generic x86 pmu
191 */
192 struct x86_pmu {
193 /*
194 * Generic x86 PMC bits
195 */
196 const char *name;
197 int version;
198 int (*handle_irq)(struct pt_regs *);
199 void (*disable_all)(void);
200 void (*enable_all)(int added);
201 void (*enable)(struct perf_event *);
202 void (*disable)(struct perf_event *);
203 int (*hw_config)(struct perf_event *event);
204 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
205 unsigned eventsel;
206 unsigned perfctr;
207 u64 (*event_map)(int);
208 int max_events;
209 int num_counters;
210 int num_counters_fixed;
211 int cntval_bits;
212 u64 cntval_mask;
213 int apic;
214 u64 max_period;
215 struct event_constraint *
216 (*get_event_constraints)(struct cpu_hw_events *cpuc,
217 struct perf_event *event);
218
219 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
220 struct perf_event *event);
221 struct event_constraint *event_constraints;
222 void (*quirks)(void);
223 int perfctr_second_write;
224
225 int (*cpu_prepare)(int cpu);
226 void (*cpu_starting)(int cpu);
227 void (*cpu_dying)(int cpu);
228 void (*cpu_dead)(int cpu);
229
230 /*
231 * Intel Arch Perfmon v2+
232 */
233 u64 intel_ctrl;
234 union perf_capabilities intel_cap;
235
236 /*
237 * Intel DebugStore bits
238 */
239 int bts, pebs;
240 int pebs_record_size;
241 void (*drain_pebs)(struct pt_regs *regs);
242 struct event_constraint *pebs_constraints;
243
244 /*
245 * Intel LBR
246 */
247 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
248 int lbr_nr; /* hardware stack size */
249 };
250
251 static struct x86_pmu x86_pmu __read_mostly;
252
253 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
254 .enabled = 1,
255 };
256
257 static int x86_perf_event_set_period(struct perf_event *event);
258
259 /*
260 * Generalized hw caching related hw_event table, filled
261 * in on a per model basis. A value of 0 means
262 * 'not supported', -1 means 'hw_event makes no sense on
263 * this CPU', any other value means the raw hw_event
264 * ID.
265 */
266
267 #define C(x) PERF_COUNT_HW_CACHE_##x
268
269 static u64 __read_mostly hw_cache_event_ids
270 [PERF_COUNT_HW_CACHE_MAX]
271 [PERF_COUNT_HW_CACHE_OP_MAX]
272 [PERF_COUNT_HW_CACHE_RESULT_MAX];
273
274 /*
275 * Propagate event elapsed time into the generic event.
276 * Can only be executed on the CPU where the event is active.
277 * Returns the delta events processed.
278 */
279 static u64
280 x86_perf_event_update(struct perf_event *event)
281 {
282 struct hw_perf_event *hwc = &event->hw;
283 int shift = 64 - x86_pmu.cntval_bits;
284 u64 prev_raw_count, new_raw_count;
285 int idx = hwc->idx;
286 s64 delta;
287
288 if (idx == X86_PMC_IDX_FIXED_BTS)
289 return 0;
290
291 /*
292 * Careful: an NMI might modify the previous event value.
293 *
294 * Our tactic to handle this is to first atomically read and
295 * exchange a new raw count - then add that new-prev delta
296 * count to the generic event atomically:
297 */
298 again:
299 prev_raw_count = local64_read(&hwc->prev_count);
300 rdmsrl(hwc->event_base + idx, new_raw_count);
301
302 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
303 new_raw_count) != prev_raw_count)
304 goto again;
305
306 /*
307 * Now we have the new raw value and have updated the prev
308 * timestamp already. We can now calculate the elapsed delta
309 * (event-)time and add that to the generic event.
310 *
311 * Careful, not all hw sign-extends above the physical width
312 * of the count.
313 */
314 delta = (new_raw_count << shift) - (prev_raw_count << shift);
315 delta >>= shift;
316
317 local64_add(delta, &event->count);
318 local64_sub(delta, &hwc->period_left);
319
320 return new_raw_count;
321 }
322
323 static atomic_t active_events;
324 static DEFINE_MUTEX(pmc_reserve_mutex);
325
326 #ifdef CONFIG_X86_LOCAL_APIC
327
328 static bool reserve_pmc_hardware(void)
329 {
330 int i;
331
332 if (nmi_watchdog == NMI_LOCAL_APIC)
333 disable_lapic_nmi_watchdog();
334
335 for (i = 0; i < x86_pmu.num_counters; i++) {
336 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
337 goto perfctr_fail;
338 }
339
340 for (i = 0; i < x86_pmu.num_counters; i++) {
341 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
342 goto eventsel_fail;
343 }
344
345 return true;
346
347 eventsel_fail:
348 for (i--; i >= 0; i--)
349 release_evntsel_nmi(x86_pmu.eventsel + i);
350
351 i = x86_pmu.num_counters;
352
353 perfctr_fail:
354 for (i--; i >= 0; i--)
355 release_perfctr_nmi(x86_pmu.perfctr + i);
356
357 if (nmi_watchdog == NMI_LOCAL_APIC)
358 enable_lapic_nmi_watchdog();
359
360 return false;
361 }
362
363 static void release_pmc_hardware(void)
364 {
365 int i;
366
367 for (i = 0; i < x86_pmu.num_counters; i++) {
368 release_perfctr_nmi(x86_pmu.perfctr + i);
369 release_evntsel_nmi(x86_pmu.eventsel + i);
370 }
371
372 if (nmi_watchdog == NMI_LOCAL_APIC)
373 enable_lapic_nmi_watchdog();
374 }
375
376 #else
377
378 static bool reserve_pmc_hardware(void) { return true; }
379 static void release_pmc_hardware(void) {}
380
381 #endif
382
383 static int reserve_ds_buffers(void);
384 static void release_ds_buffers(void);
385
386 static void hw_perf_event_destroy(struct perf_event *event)
387 {
388 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
389 release_pmc_hardware();
390 release_ds_buffers();
391 mutex_unlock(&pmc_reserve_mutex);
392 }
393 }
394
395 static inline int x86_pmu_initialized(void)
396 {
397 return x86_pmu.handle_irq != NULL;
398 }
399
400 static inline int
401 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
402 {
403 unsigned int cache_type, cache_op, cache_result;
404 u64 config, val;
405
406 config = attr->config;
407
408 cache_type = (config >> 0) & 0xff;
409 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
410 return -EINVAL;
411
412 cache_op = (config >> 8) & 0xff;
413 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
414 return -EINVAL;
415
416 cache_result = (config >> 16) & 0xff;
417 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
418 return -EINVAL;
419
420 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
421
422 if (val == 0)
423 return -ENOENT;
424
425 if (val == -1)
426 return -EINVAL;
427
428 hwc->config |= val;
429
430 return 0;
431 }
432
433 static int x86_setup_perfctr(struct perf_event *event)
434 {
435 struct perf_event_attr *attr = &event->attr;
436 struct hw_perf_event *hwc = &event->hw;
437 u64 config;
438
439 if (!hwc->sample_period) {
440 hwc->sample_period = x86_pmu.max_period;
441 hwc->last_period = hwc->sample_period;
442 local64_set(&hwc->period_left, hwc->sample_period);
443 } else {
444 /*
445 * If we have a PMU initialized but no APIC
446 * interrupts, we cannot sample hardware
447 * events (user-space has to fall back and
448 * sample via a hrtimer based software event):
449 */
450 if (!x86_pmu.apic)
451 return -EOPNOTSUPP;
452 }
453
454 if (attr->type == PERF_TYPE_RAW)
455 return 0;
456
457 if (attr->type == PERF_TYPE_HW_CACHE)
458 return set_ext_hw_attr(hwc, attr);
459
460 if (attr->config >= x86_pmu.max_events)
461 return -EINVAL;
462
463 /*
464 * The generic map:
465 */
466 config = x86_pmu.event_map(attr->config);
467
468 if (config == 0)
469 return -ENOENT;
470
471 if (config == -1LL)
472 return -EINVAL;
473
474 /*
475 * Branch tracing:
476 */
477 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
478 (hwc->sample_period == 1)) {
479 /* BTS is not supported by this architecture. */
480 if (!x86_pmu.bts)
481 return -EOPNOTSUPP;
482
483 /* BTS is currently only allowed for user-mode. */
484 if (!attr->exclude_kernel)
485 return -EOPNOTSUPP;
486 }
487
488 hwc->config |= config;
489
490 return 0;
491 }
492
493 static int x86_pmu_hw_config(struct perf_event *event)
494 {
495 if (event->attr.precise_ip) {
496 int precise = 0;
497
498 /* Support for constant skid */
499 if (x86_pmu.pebs)
500 precise++;
501
502 /* Support for IP fixup */
503 if (x86_pmu.lbr_nr)
504 precise++;
505
506 if (event->attr.precise_ip > precise)
507 return -EOPNOTSUPP;
508 }
509
510 /*
511 * Generate PMC IRQs:
512 * (keep 'enabled' bit clear for now)
513 */
514 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
515
516 /*
517 * Count user and OS events unless requested not to
518 */
519 if (!event->attr.exclude_user)
520 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
521 if (!event->attr.exclude_kernel)
522 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
523
524 if (event->attr.type == PERF_TYPE_RAW)
525 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
526
527 return x86_setup_perfctr(event);
528 }
529
530 /*
531 * Setup the hardware configuration for a given attr_type
532 */
533 static int __x86_pmu_event_init(struct perf_event *event)
534 {
535 int err;
536
537 if (!x86_pmu_initialized())
538 return -ENODEV;
539
540 err = 0;
541 if (!atomic_inc_not_zero(&active_events)) {
542 mutex_lock(&pmc_reserve_mutex);
543 if (atomic_read(&active_events) == 0) {
544 if (!reserve_pmc_hardware())
545 err = -EBUSY;
546 else {
547 err = reserve_ds_buffers();
548 if (err)
549 release_pmc_hardware();
550 }
551 }
552 if (!err)
553 atomic_inc(&active_events);
554 mutex_unlock(&pmc_reserve_mutex);
555 }
556 if (err)
557 return err;
558
559 event->destroy = hw_perf_event_destroy;
560
561 event->hw.idx = -1;
562 event->hw.last_cpu = -1;
563 event->hw.last_tag = ~0ULL;
564
565 return x86_pmu.hw_config(event);
566 }
567
568 static void x86_pmu_disable_all(void)
569 {
570 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
571 int idx;
572
573 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
574 u64 val;
575
576 if (!test_bit(idx, cpuc->active_mask))
577 continue;
578 rdmsrl(x86_pmu.eventsel + idx, val);
579 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
580 continue;
581 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
582 wrmsrl(x86_pmu.eventsel + idx, val);
583 }
584 }
585
586 void hw_perf_disable(void)
587 {
588 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
589
590 if (!x86_pmu_initialized())
591 return;
592
593 if (!cpuc->enabled)
594 return;
595
596 cpuc->n_added = 0;
597 cpuc->enabled = 0;
598 barrier();
599
600 x86_pmu.disable_all();
601 }
602
603 static void x86_pmu_enable_all(int added)
604 {
605 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
606 int idx;
607
608 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
609 struct perf_event *event = cpuc->events[idx];
610 u64 val;
611
612 if (!test_bit(idx, cpuc->active_mask))
613 continue;
614
615 val = event->hw.config;
616 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
617 wrmsrl(x86_pmu.eventsel + idx, val);
618 }
619 }
620
621 static struct pmu pmu;
622
623 static inline int is_x86_event(struct perf_event *event)
624 {
625 return event->pmu == &pmu;
626 }
627
628 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
629 {
630 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
631 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
632 int i, j, w, wmax, num = 0;
633 struct hw_perf_event *hwc;
634
635 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
636
637 for (i = 0; i < n; i++) {
638 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
639 constraints[i] = c;
640 }
641
642 /*
643 * fastpath, try to reuse previous register
644 */
645 for (i = 0; i < n; i++) {
646 hwc = &cpuc->event_list[i]->hw;
647 c = constraints[i];
648
649 /* never assigned */
650 if (hwc->idx == -1)
651 break;
652
653 /* constraint still honored */
654 if (!test_bit(hwc->idx, c->idxmsk))
655 break;
656
657 /* not already used */
658 if (test_bit(hwc->idx, used_mask))
659 break;
660
661 __set_bit(hwc->idx, used_mask);
662 if (assign)
663 assign[i] = hwc->idx;
664 }
665 if (i == n)
666 goto done;
667
668 /*
669 * begin slow path
670 */
671
672 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
673
674 /*
675 * weight = number of possible counters
676 *
677 * 1 = most constrained, only works on one counter
678 * wmax = least constrained, works on any counter
679 *
680 * assign events to counters starting with most
681 * constrained events.
682 */
683 wmax = x86_pmu.num_counters;
684
685 /*
686 * when fixed event counters are present,
687 * wmax is incremented by 1 to account
688 * for one more choice
689 */
690 if (x86_pmu.num_counters_fixed)
691 wmax++;
692
693 for (w = 1, num = n; num && w <= wmax; w++) {
694 /* for each event */
695 for (i = 0; num && i < n; i++) {
696 c = constraints[i];
697 hwc = &cpuc->event_list[i]->hw;
698
699 if (c->weight != w)
700 continue;
701
702 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
703 if (!test_bit(j, used_mask))
704 break;
705 }
706
707 if (j == X86_PMC_IDX_MAX)
708 break;
709
710 __set_bit(j, used_mask);
711
712 if (assign)
713 assign[i] = j;
714 num--;
715 }
716 }
717 done:
718 /*
719 * scheduling failed or is just a simulation,
720 * free resources if necessary
721 */
722 if (!assign || num) {
723 for (i = 0; i < n; i++) {
724 if (x86_pmu.put_event_constraints)
725 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
726 }
727 }
728 return num ? -ENOSPC : 0;
729 }
730
731 /*
732 * dogrp: true if must collect siblings events (group)
733 * returns total number of events and error code
734 */
735 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
736 {
737 struct perf_event *event;
738 int n, max_count;
739
740 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
741
742 /* current number of events already accepted */
743 n = cpuc->n_events;
744
745 if (is_x86_event(leader)) {
746 if (n >= max_count)
747 return -ENOSPC;
748 cpuc->event_list[n] = leader;
749 n++;
750 }
751 if (!dogrp)
752 return n;
753
754 list_for_each_entry(event, &leader->sibling_list, group_entry) {
755 if (!is_x86_event(event) ||
756 event->state <= PERF_EVENT_STATE_OFF)
757 continue;
758
759 if (n >= max_count)
760 return -ENOSPC;
761
762 cpuc->event_list[n] = event;
763 n++;
764 }
765 return n;
766 }
767
768 static inline void x86_assign_hw_event(struct perf_event *event,
769 struct cpu_hw_events *cpuc, int i)
770 {
771 struct hw_perf_event *hwc = &event->hw;
772
773 hwc->idx = cpuc->assign[i];
774 hwc->last_cpu = smp_processor_id();
775 hwc->last_tag = ++cpuc->tags[i];
776
777 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
778 hwc->config_base = 0;
779 hwc->event_base = 0;
780 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
781 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
782 /*
783 * We set it so that event_base + idx in wrmsr/rdmsr maps to
784 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
785 */
786 hwc->event_base =
787 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
788 } else {
789 hwc->config_base = x86_pmu.eventsel;
790 hwc->event_base = x86_pmu.perfctr;
791 }
792 }
793
794 static inline int match_prev_assignment(struct hw_perf_event *hwc,
795 struct cpu_hw_events *cpuc,
796 int i)
797 {
798 return hwc->idx == cpuc->assign[i] &&
799 hwc->last_cpu == smp_processor_id() &&
800 hwc->last_tag == cpuc->tags[i];
801 }
802
803 static int x86_pmu_start(struct perf_event *event);
804 static void x86_pmu_stop(struct perf_event *event);
805
806 void hw_perf_enable(void)
807 {
808 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
809 struct perf_event *event;
810 struct hw_perf_event *hwc;
811 int i, added = cpuc->n_added;
812
813 if (!x86_pmu_initialized())
814 return;
815
816 if (cpuc->enabled)
817 return;
818
819 if (cpuc->n_added) {
820 int n_running = cpuc->n_events - cpuc->n_added;
821 /*
822 * apply assignment obtained either from
823 * hw_perf_group_sched_in() or x86_pmu_enable()
824 *
825 * step1: save events moving to new counters
826 * step2: reprogram moved events into new counters
827 */
828 for (i = 0; i < n_running; i++) {
829 event = cpuc->event_list[i];
830 hwc = &event->hw;
831
832 /*
833 * we can avoid reprogramming counter if:
834 * - assigned same counter as last time
835 * - running on same CPU as last time
836 * - no other event has used the counter since
837 */
838 if (hwc->idx == -1 ||
839 match_prev_assignment(hwc, cpuc, i))
840 continue;
841
842 x86_pmu_stop(event);
843 }
844
845 for (i = 0; i < cpuc->n_events; i++) {
846 event = cpuc->event_list[i];
847 hwc = &event->hw;
848
849 if (!match_prev_assignment(hwc, cpuc, i))
850 x86_assign_hw_event(event, cpuc, i);
851 else if (i < n_running)
852 continue;
853
854 x86_pmu_start(event);
855 }
856 cpuc->n_added = 0;
857 perf_events_lapic_init();
858 }
859
860 cpuc->enabled = 1;
861 barrier();
862
863 x86_pmu.enable_all(added);
864 }
865
866 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
867 u64 enable_mask)
868 {
869 wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
870 }
871
872 static inline void x86_pmu_disable_event(struct perf_event *event)
873 {
874 struct hw_perf_event *hwc = &event->hw;
875
876 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
877 }
878
879 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
880
881 /*
882 * Set the next IRQ period, based on the hwc->period_left value.
883 * To be called with the event disabled in hw:
884 */
885 static int
886 x86_perf_event_set_period(struct perf_event *event)
887 {
888 struct hw_perf_event *hwc = &event->hw;
889 s64 left = local64_read(&hwc->period_left);
890 s64 period = hwc->sample_period;
891 int ret = 0, idx = hwc->idx;
892
893 if (idx == X86_PMC_IDX_FIXED_BTS)
894 return 0;
895
896 /*
897 * If we are way outside a reasonable range then just skip forward:
898 */
899 if (unlikely(left <= -period)) {
900 left = period;
901 local64_set(&hwc->period_left, left);
902 hwc->last_period = period;
903 ret = 1;
904 }
905
906 if (unlikely(left <= 0)) {
907 left += period;
908 local64_set(&hwc->period_left, left);
909 hwc->last_period = period;
910 ret = 1;
911 }
912 /*
913 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
914 */
915 if (unlikely(left < 2))
916 left = 2;
917
918 if (left > x86_pmu.max_period)
919 left = x86_pmu.max_period;
920
921 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
922
923 /*
924 * The hw event starts counting from this event offset,
925 * mark it to be able to extra future deltas:
926 */
927 local64_set(&hwc->prev_count, (u64)-left);
928
929 wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
930
931 /*
932 * Due to erratum on certan cpu we need
933 * a second write to be sure the register
934 * is updated properly
935 */
936 if (x86_pmu.perfctr_second_write) {
937 wrmsrl(hwc->event_base + idx,
938 (u64)(-left) & x86_pmu.cntval_mask);
939 }
940
941 perf_event_update_userpage(event);
942
943 return ret;
944 }
945
946 static void x86_pmu_enable_event(struct perf_event *event)
947 {
948 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
949 if (cpuc->enabled)
950 __x86_pmu_enable_event(&event->hw,
951 ARCH_PERFMON_EVENTSEL_ENABLE);
952 }
953
954 /*
955 * activate a single event
956 *
957 * The event is added to the group of enabled events
958 * but only if it can be scehduled with existing events.
959 *
960 * Called with PMU disabled. If successful and return value 1,
961 * then guaranteed to call perf_enable() and hw_perf_enable()
962 */
963 static int x86_pmu_enable(struct perf_event *event)
964 {
965 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
966 struct hw_perf_event *hwc;
967 int assign[X86_PMC_IDX_MAX];
968 int n, n0, ret;
969
970 hwc = &event->hw;
971
972 n0 = cpuc->n_events;
973 n = collect_events(cpuc, event, false);
974 if (n < 0)
975 return n;
976
977 /*
978 * If group events scheduling transaction was started,
979 * skip the schedulability test here, it will be peformed
980 * at commit time(->commit_txn) as a whole
981 */
982 if (cpuc->group_flag & PERF_EVENT_TXN)
983 goto out;
984
985 ret = x86_pmu.schedule_events(cpuc, n, assign);
986 if (ret)
987 return ret;
988 /*
989 * copy new assignment, now we know it is possible
990 * will be used by hw_perf_enable()
991 */
992 memcpy(cpuc->assign, assign, n*sizeof(int));
993
994 out:
995 cpuc->n_events = n;
996 cpuc->n_added += n - n0;
997 cpuc->n_txn += n - n0;
998
999 return 0;
1000 }
1001
1002 static int x86_pmu_start(struct perf_event *event)
1003 {
1004 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1005 int idx = event->hw.idx;
1006
1007 if (idx == -1)
1008 return -EAGAIN;
1009
1010 x86_perf_event_set_period(event);
1011 cpuc->events[idx] = event;
1012 __set_bit(idx, cpuc->active_mask);
1013 x86_pmu.enable(event);
1014 perf_event_update_userpage(event);
1015
1016 return 0;
1017 }
1018
1019 static void x86_pmu_unthrottle(struct perf_event *event)
1020 {
1021 int ret = x86_pmu_start(event);
1022 WARN_ON_ONCE(ret);
1023 }
1024
1025 void perf_event_print_debug(void)
1026 {
1027 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1028 u64 pebs;
1029 struct cpu_hw_events *cpuc;
1030 unsigned long flags;
1031 int cpu, idx;
1032
1033 if (!x86_pmu.num_counters)
1034 return;
1035
1036 local_irq_save(flags);
1037
1038 cpu = smp_processor_id();
1039 cpuc = &per_cpu(cpu_hw_events, cpu);
1040
1041 if (x86_pmu.version >= 2) {
1042 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1043 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1044 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1045 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1046 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1047
1048 pr_info("\n");
1049 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1050 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1051 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1052 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1053 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1054 }
1055 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1056
1057 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1058 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1059 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1060
1061 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1062
1063 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1064 cpu, idx, pmc_ctrl);
1065 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1066 cpu, idx, pmc_count);
1067 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1068 cpu, idx, prev_left);
1069 }
1070 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1071 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1072
1073 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1074 cpu, idx, pmc_count);
1075 }
1076 local_irq_restore(flags);
1077 }
1078
1079 static void x86_pmu_stop(struct perf_event *event)
1080 {
1081 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1082 struct hw_perf_event *hwc = &event->hw;
1083 int idx = hwc->idx;
1084
1085 if (!__test_and_clear_bit(idx, cpuc->active_mask))
1086 return;
1087
1088 x86_pmu.disable(event);
1089
1090 /*
1091 * Drain the remaining delta count out of a event
1092 * that we are disabling:
1093 */
1094 x86_perf_event_update(event);
1095
1096 cpuc->events[idx] = NULL;
1097 }
1098
1099 static void x86_pmu_disable(struct perf_event *event)
1100 {
1101 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1102 int i;
1103
1104 /*
1105 * If we're called during a txn, we don't need to do anything.
1106 * The events never got scheduled and ->cancel_txn will truncate
1107 * the event_list.
1108 */
1109 if (cpuc->group_flag & PERF_EVENT_TXN)
1110 return;
1111
1112 x86_pmu_stop(event);
1113
1114 for (i = 0; i < cpuc->n_events; i++) {
1115 if (event == cpuc->event_list[i]) {
1116
1117 if (x86_pmu.put_event_constraints)
1118 x86_pmu.put_event_constraints(cpuc, event);
1119
1120 while (++i < cpuc->n_events)
1121 cpuc->event_list[i-1] = cpuc->event_list[i];
1122
1123 --cpuc->n_events;
1124 break;
1125 }
1126 }
1127 perf_event_update_userpage(event);
1128 }
1129
1130 static int x86_pmu_handle_irq(struct pt_regs *regs)
1131 {
1132 struct perf_sample_data data;
1133 struct cpu_hw_events *cpuc;
1134 struct perf_event *event;
1135 struct hw_perf_event *hwc;
1136 int idx, handled = 0;
1137 u64 val;
1138
1139 perf_sample_data_init(&data, 0);
1140
1141 cpuc = &__get_cpu_var(cpu_hw_events);
1142
1143 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1144 if (!test_bit(idx, cpuc->active_mask))
1145 continue;
1146
1147 event = cpuc->events[idx];
1148 hwc = &event->hw;
1149
1150 val = x86_perf_event_update(event);
1151 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1152 continue;
1153
1154 /*
1155 * event overflow
1156 */
1157 handled++;
1158 data.period = event->hw.last_period;
1159
1160 if (!x86_perf_event_set_period(event))
1161 continue;
1162
1163 if (perf_event_overflow(event, 1, &data, regs))
1164 x86_pmu_stop(event);
1165 }
1166
1167 if (handled)
1168 inc_irq_stat(apic_perf_irqs);
1169
1170 return handled;
1171 }
1172
1173 void smp_perf_pending_interrupt(struct pt_regs *regs)
1174 {
1175 irq_enter();
1176 ack_APIC_irq();
1177 inc_irq_stat(apic_pending_irqs);
1178 perf_event_do_pending();
1179 irq_exit();
1180 }
1181
1182 void set_perf_event_pending(void)
1183 {
1184 #ifdef CONFIG_X86_LOCAL_APIC
1185 if (!x86_pmu.apic || !x86_pmu_initialized())
1186 return;
1187
1188 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1189 #endif
1190 }
1191
1192 void perf_events_lapic_init(void)
1193 {
1194 if (!x86_pmu.apic || !x86_pmu_initialized())
1195 return;
1196
1197 /*
1198 * Always use NMI for PMU
1199 */
1200 apic_write(APIC_LVTPC, APIC_DM_NMI);
1201 }
1202
1203 struct pmu_nmi_state {
1204 unsigned int marked;
1205 int handled;
1206 };
1207
1208 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1209
1210 static int __kprobes
1211 perf_event_nmi_handler(struct notifier_block *self,
1212 unsigned long cmd, void *__args)
1213 {
1214 struct die_args *args = __args;
1215 unsigned int this_nmi;
1216 int handled;
1217
1218 if (!atomic_read(&active_events))
1219 return NOTIFY_DONE;
1220
1221 switch (cmd) {
1222 case DIE_NMI:
1223 case DIE_NMI_IPI:
1224 break;
1225 case DIE_NMIUNKNOWN:
1226 this_nmi = percpu_read(irq_stat.__nmi_count);
1227 if (this_nmi != __get_cpu_var(pmu_nmi).marked)
1228 /* let the kernel handle the unknown nmi */
1229 return NOTIFY_DONE;
1230 /*
1231 * This one is a PMU back-to-back nmi. Two events
1232 * trigger 'simultaneously' raising two back-to-back
1233 * NMIs. If the first NMI handles both, the latter
1234 * will be empty and daze the CPU. So, we drop it to
1235 * avoid false-positive 'unknown nmi' messages.
1236 */
1237 return NOTIFY_STOP;
1238 default:
1239 return NOTIFY_DONE;
1240 }
1241
1242 apic_write(APIC_LVTPC, APIC_DM_NMI);
1243
1244 handled = x86_pmu.handle_irq(args->regs);
1245 if (!handled)
1246 return NOTIFY_DONE;
1247
1248 this_nmi = percpu_read(irq_stat.__nmi_count);
1249 if ((handled > 1) ||
1250 /* the next nmi could be a back-to-back nmi */
1251 ((__get_cpu_var(pmu_nmi).marked == this_nmi) &&
1252 (__get_cpu_var(pmu_nmi).handled > 1))) {
1253 /*
1254 * We could have two subsequent back-to-back nmis: The
1255 * first handles more than one counter, the 2nd
1256 * handles only one counter and the 3rd handles no
1257 * counter.
1258 *
1259 * This is the 2nd nmi because the previous was
1260 * handling more than one counter. We will mark the
1261 * next (3rd) and then drop it if unhandled.
1262 */
1263 __get_cpu_var(pmu_nmi).marked = this_nmi + 1;
1264 __get_cpu_var(pmu_nmi).handled = handled;
1265 }
1266
1267 return NOTIFY_STOP;
1268 }
1269
1270 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1271 .notifier_call = perf_event_nmi_handler,
1272 .next = NULL,
1273 .priority = 1
1274 };
1275
1276 static struct event_constraint unconstrained;
1277 static struct event_constraint emptyconstraint;
1278
1279 static struct event_constraint *
1280 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1281 {
1282 struct event_constraint *c;
1283
1284 if (x86_pmu.event_constraints) {
1285 for_each_event_constraint(c, x86_pmu.event_constraints) {
1286 if ((event->hw.config & c->cmask) == c->code)
1287 return c;
1288 }
1289 }
1290
1291 return &unconstrained;
1292 }
1293
1294 #include "perf_event_amd.c"
1295 #include "perf_event_p6.c"
1296 #include "perf_event_p4.c"
1297 #include "perf_event_intel_lbr.c"
1298 #include "perf_event_intel_ds.c"
1299 #include "perf_event_intel.c"
1300
1301 static int __cpuinit
1302 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1303 {
1304 unsigned int cpu = (long)hcpu;
1305 int ret = NOTIFY_OK;
1306
1307 switch (action & ~CPU_TASKS_FROZEN) {
1308 case CPU_UP_PREPARE:
1309 if (x86_pmu.cpu_prepare)
1310 ret = x86_pmu.cpu_prepare(cpu);
1311 break;
1312
1313 case CPU_STARTING:
1314 if (x86_pmu.cpu_starting)
1315 x86_pmu.cpu_starting(cpu);
1316 break;
1317
1318 case CPU_DYING:
1319 if (x86_pmu.cpu_dying)
1320 x86_pmu.cpu_dying(cpu);
1321 break;
1322
1323 case CPU_UP_CANCELED:
1324 case CPU_DEAD:
1325 if (x86_pmu.cpu_dead)
1326 x86_pmu.cpu_dead(cpu);
1327 break;
1328
1329 default:
1330 break;
1331 }
1332
1333 return ret;
1334 }
1335
1336 static void __init pmu_check_apic(void)
1337 {
1338 if (cpu_has_apic)
1339 return;
1340
1341 x86_pmu.apic = 0;
1342 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1343 pr_info("no hardware sampling interrupt available.\n");
1344 }
1345
1346 void __init init_hw_perf_events(void)
1347 {
1348 struct event_constraint *c;
1349 int err;
1350
1351 pr_info("Performance Events: ");
1352
1353 switch (boot_cpu_data.x86_vendor) {
1354 case X86_VENDOR_INTEL:
1355 err = intel_pmu_init();
1356 break;
1357 case X86_VENDOR_AMD:
1358 err = amd_pmu_init();
1359 break;
1360 default:
1361 return;
1362 }
1363 if (err != 0) {
1364 pr_cont("no PMU driver, software events only.\n");
1365 return;
1366 }
1367
1368 pmu_check_apic();
1369
1370 pr_cont("%s PMU driver.\n", x86_pmu.name);
1371
1372 if (x86_pmu.quirks)
1373 x86_pmu.quirks();
1374
1375 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1376 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1377 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1378 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1379 }
1380 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1381 perf_max_events = x86_pmu.num_counters;
1382
1383 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1384 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1385 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1386 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1387 }
1388
1389 x86_pmu.intel_ctrl |=
1390 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1391
1392 perf_events_lapic_init();
1393 register_die_notifier(&perf_event_nmi_notifier);
1394
1395 unconstrained = (struct event_constraint)
1396 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1397 0, x86_pmu.num_counters);
1398
1399 if (x86_pmu.event_constraints) {
1400 for_each_event_constraint(c, x86_pmu.event_constraints) {
1401 if (c->cmask != X86_RAW_EVENT_MASK)
1402 continue;
1403
1404 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1405 c->weight += x86_pmu.num_counters;
1406 }
1407 }
1408
1409 pr_info("... version: %d\n", x86_pmu.version);
1410 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1411 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1412 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1413 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1414 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1415 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1416
1417 perf_pmu_register(&pmu);
1418 perf_cpu_notifier(x86_pmu_notifier);
1419 }
1420
1421 static inline void x86_pmu_read(struct perf_event *event)
1422 {
1423 x86_perf_event_update(event);
1424 }
1425
1426 /*
1427 * Start group events scheduling transaction
1428 * Set the flag to make pmu::enable() not perform the
1429 * schedulability test, it will be performed at commit time
1430 */
1431 static void x86_pmu_start_txn(struct pmu *pmu)
1432 {
1433 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1434
1435 cpuc->group_flag |= PERF_EVENT_TXN;
1436 cpuc->n_txn = 0;
1437 }
1438
1439 /*
1440 * Stop group events scheduling transaction
1441 * Clear the flag and pmu::enable() will perform the
1442 * schedulability test.
1443 */
1444 static void x86_pmu_cancel_txn(struct pmu *pmu)
1445 {
1446 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1447
1448 cpuc->group_flag &= ~PERF_EVENT_TXN;
1449 /*
1450 * Truncate the collected events.
1451 */
1452 cpuc->n_added -= cpuc->n_txn;
1453 cpuc->n_events -= cpuc->n_txn;
1454 }
1455
1456 /*
1457 * Commit group events scheduling transaction
1458 * Perform the group schedulability test as a whole
1459 * Return 0 if success
1460 */
1461 static int x86_pmu_commit_txn(struct pmu *pmu)
1462 {
1463 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1464 int assign[X86_PMC_IDX_MAX];
1465 int n, ret;
1466
1467 n = cpuc->n_events;
1468
1469 if (!x86_pmu_initialized())
1470 return -EAGAIN;
1471
1472 ret = x86_pmu.schedule_events(cpuc, n, assign);
1473 if (ret)
1474 return ret;
1475
1476 /*
1477 * copy new assignment, now we know it is possible
1478 * will be used by hw_perf_enable()
1479 */
1480 memcpy(cpuc->assign, assign, n*sizeof(int));
1481
1482 cpuc->group_flag &= ~PERF_EVENT_TXN;
1483
1484 return 0;
1485 }
1486
1487 /*
1488 * validate that we can schedule this event
1489 */
1490 static int validate_event(struct perf_event *event)
1491 {
1492 struct cpu_hw_events *fake_cpuc;
1493 struct event_constraint *c;
1494 int ret = 0;
1495
1496 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1497 if (!fake_cpuc)
1498 return -ENOMEM;
1499
1500 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1501
1502 if (!c || !c->weight)
1503 ret = -ENOSPC;
1504
1505 if (x86_pmu.put_event_constraints)
1506 x86_pmu.put_event_constraints(fake_cpuc, event);
1507
1508 kfree(fake_cpuc);
1509
1510 return ret;
1511 }
1512
1513 /*
1514 * validate a single event group
1515 *
1516 * validation include:
1517 * - check events are compatible which each other
1518 * - events do not compete for the same counter
1519 * - number of events <= number of counters
1520 *
1521 * validation ensures the group can be loaded onto the
1522 * PMU if it was the only group available.
1523 */
1524 static int validate_group(struct perf_event *event)
1525 {
1526 struct perf_event *leader = event->group_leader;
1527 struct cpu_hw_events *fake_cpuc;
1528 int ret, n;
1529
1530 ret = -ENOMEM;
1531 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1532 if (!fake_cpuc)
1533 goto out;
1534
1535 /*
1536 * the event is not yet connected with its
1537 * siblings therefore we must first collect
1538 * existing siblings, then add the new event
1539 * before we can simulate the scheduling
1540 */
1541 ret = -ENOSPC;
1542 n = collect_events(fake_cpuc, leader, true);
1543 if (n < 0)
1544 goto out_free;
1545
1546 fake_cpuc->n_events = n;
1547 n = collect_events(fake_cpuc, event, false);
1548 if (n < 0)
1549 goto out_free;
1550
1551 fake_cpuc->n_events = n;
1552
1553 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1554
1555 out_free:
1556 kfree(fake_cpuc);
1557 out:
1558 return ret;
1559 }
1560
1561 int x86_pmu_event_init(struct perf_event *event)
1562 {
1563 struct pmu *tmp;
1564 int err;
1565
1566 switch (event->attr.type) {
1567 case PERF_TYPE_RAW:
1568 case PERF_TYPE_HARDWARE:
1569 case PERF_TYPE_HW_CACHE:
1570 break;
1571
1572 default:
1573 return -ENOENT;
1574 }
1575
1576 err = __x86_pmu_event_init(event);
1577 if (!err) {
1578 /*
1579 * we temporarily connect event to its pmu
1580 * such that validate_group() can classify
1581 * it as an x86 event using is_x86_event()
1582 */
1583 tmp = event->pmu;
1584 event->pmu = &pmu;
1585
1586 if (event->group_leader != event)
1587 err = validate_group(event);
1588 else
1589 err = validate_event(event);
1590
1591 event->pmu = tmp;
1592 }
1593 if (err) {
1594 if (event->destroy)
1595 event->destroy(event);
1596 }
1597
1598 return err;
1599 }
1600
1601 static struct pmu pmu = {
1602 .event_init = x86_pmu_event_init,
1603 .enable = x86_pmu_enable,
1604 .disable = x86_pmu_disable,
1605 .start = x86_pmu_start,
1606 .stop = x86_pmu_stop,
1607 .read = x86_pmu_read,
1608 .unthrottle = x86_pmu_unthrottle,
1609 .start_txn = x86_pmu_start_txn,
1610 .cancel_txn = x86_pmu_cancel_txn,
1611 .commit_txn = x86_pmu_commit_txn,
1612 };
1613
1614 /*
1615 * callchain support
1616 */
1617
1618 static void
1619 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1620 {
1621 /* Ignore warnings */
1622 }
1623
1624 static void backtrace_warning(void *data, char *msg)
1625 {
1626 /* Ignore warnings */
1627 }
1628
1629 static int backtrace_stack(void *data, char *name)
1630 {
1631 return 0;
1632 }
1633
1634 static void backtrace_address(void *data, unsigned long addr, int reliable)
1635 {
1636 struct perf_callchain_entry *entry = data;
1637
1638 perf_callchain_store(entry, addr);
1639 }
1640
1641 static const struct stacktrace_ops backtrace_ops = {
1642 .warning = backtrace_warning,
1643 .warning_symbol = backtrace_warning_symbol,
1644 .stack = backtrace_stack,
1645 .address = backtrace_address,
1646 .walk_stack = print_context_stack_bp,
1647 };
1648
1649 void
1650 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1651 {
1652 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1653 /* TODO: We don't support guest os callchain now */
1654 return;
1655 }
1656
1657 perf_callchain_store(entry, regs->ip);
1658
1659 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1660 }
1661
1662 #ifdef CONFIG_COMPAT
1663 static inline int
1664 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1665 {
1666 /* 32-bit process in 64-bit kernel. */
1667 struct stack_frame_ia32 frame;
1668 const void __user *fp;
1669
1670 if (!test_thread_flag(TIF_IA32))
1671 return 0;
1672
1673 fp = compat_ptr(regs->bp);
1674 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1675 unsigned long bytes;
1676 frame.next_frame = 0;
1677 frame.return_address = 0;
1678
1679 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1680 if (bytes != sizeof(frame))
1681 break;
1682
1683 if (fp < compat_ptr(regs->sp))
1684 break;
1685
1686 perf_callchain_store(entry, frame.return_address);
1687 fp = compat_ptr(frame.next_frame);
1688 }
1689 return 1;
1690 }
1691 #else
1692 static inline int
1693 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1694 {
1695 return 0;
1696 }
1697 #endif
1698
1699 void
1700 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1701 {
1702 struct stack_frame frame;
1703 const void __user *fp;
1704
1705 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1706 /* TODO: We don't support guest os callchain now */
1707 return;
1708 }
1709
1710 fp = (void __user *)regs->bp;
1711
1712 perf_callchain_store(entry, regs->ip);
1713
1714 if (perf_callchain_user32(regs, entry))
1715 return;
1716
1717 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1718 unsigned long bytes;
1719 frame.next_frame = NULL;
1720 frame.return_address = 0;
1721
1722 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1723 if (bytes != sizeof(frame))
1724 break;
1725
1726 if ((unsigned long)fp < regs->sp)
1727 break;
1728
1729 perf_callchain_store(entry, frame.return_address);
1730 fp = frame.next_frame;
1731 }
1732 }
1733
1734 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1735 {
1736 unsigned long ip;
1737
1738 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1739 ip = perf_guest_cbs->get_guest_ip();
1740 else
1741 ip = instruction_pointer(regs);
1742
1743 return ip;
1744 }
1745
1746 unsigned long perf_misc_flags(struct pt_regs *regs)
1747 {
1748 int misc = 0;
1749
1750 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1751 if (perf_guest_cbs->is_user_mode())
1752 misc |= PERF_RECORD_MISC_GUEST_USER;
1753 else
1754 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1755 } else {
1756 if (user_mode(regs))
1757 misc |= PERF_RECORD_MISC_USER;
1758 else
1759 misc |= PERF_RECORD_MISC_KERNEL;
1760 }
1761
1762 if (regs->flags & PERF_EFLAGS_EXACT)
1763 misc |= PERF_RECORD_MISC_EXACT_IP;
1764
1765 return misc;
1766 }